Document Type

Article

Language

eng

Format of Original

12 p.

Publication Date

2017

Publisher

Genetics Society of America

Source Publication

Genetics

Source ISSN

0016-6731

Abstract

In normal development, the order and synchrony of diverse developmental events must be explicitly controlled. In the nematode Caenorhabditis elegans, the timing of larval events is regulated by hierarchy of proteins and microRNAs (miRNAs) known as the heterochronic pathway. These regulators are organized in feedforward and feedback interactions to form a robust mechanism for specifying the timing and execution of cell fates at successive stages. One member of this pathway is the RNA binding protein LIN-28, which promotes pluripotency and cell fate decisions in successive stages. Two genetic circuits control LIN-28 abundance: it is negatively regulated by the miRNA lin-4, and positively regulated by the transcription factor LIN-14 through a mechanism that was previously unknown. In this report, we used animals that lack lin-4 to elucidate LIN-14’s activity in this circuit. We demonstrate that three let-7 family miRNAs—miR-48, miR-84, and miR-241—inhibit lin-28 expression. Furthermore, we show genetically that these miRNAs act between lin-14 and lin-28, and that they comprise the pathway by which lin-14 positively regulates lin-28. We also show that the lin-4 family member mir-237, also regulates early cell fates. Finally, we show that the expression of these miRNAs is directly inhibited by lin-14 activity, making them the first known targets of lin-14 that act in the heterochronic pathway.

Comments

Accepted version. Genetics, Vol. 205, No. 1 (2017): 251-262. DOI. © 2017 Genetics Society of America. Used with permission.

abbott_9797acc.docx (239 kB)
ADA accessible version

Included in

Biology Commons

Share

COinS