Diffusion Tensor Imaging of the Spinal Cord: Insights From Animal and Human Studies

Document Type




Format of Original

8 p.

Publication Date



Lippincott Williams & Wilkins, Inc.

Source Publication


Source ISSN


Original Item ID

doi: 10.1227/NEU.0000000000000171


Diffusion tensor imaging (DTI) provides a measure of the directional diffusion of water molecules in tissues. The measurement of DTI indexes within the spinal cord provides a quantitative assessment of neural damage in various spinal cord pathologies. DTI studies in animal models of spinal cord injury indicate that DTI is a reliable imaging technique with important histological and functional correlates. These studies demonstrate that DTI is a noninvasive marker of microstructural change within the spinal cord. In human studies, spinal cord DTI shows definite changes in subjects with acute and chronic spinal cord injury, as well as cervical spondylotic myelopathy. Interestingly, changes in DTI indexes are visualized in regions of the cord, which appear normal on conventional magnetic resonance imaging and are remote from the site of cord compression. Spinal cord DTI provides data that can help us understand underlying microstructural changes within the cord and assist in prognostication and planning of therapies. In this article, we review the use of DTI to investigate spinal cord pathology in animals and humans and describe advances in this technique that establish DTI as a promising biomarker for spinal cord disorders.


Neurosurgery, Vol. 74, No. 1 (January 2014): 1-8. DOI.