Document Type




Format of Original

12 p.

Publication Date



Veterans Administration

Source Publication

Journal of Rehabilitation Research and Development

Source ISSN



A finite element (FE) model of the below-knee residual limb and prosthetic socket was created to investigate the effects of parameter variations on the interface stress distribution during static stance. This model was based upon geometric approximations of anthropometric residual limb geometry. The model was not specific to an individual with amputation, but could be scaled to approximate the limb of a particular subject. Parametric analyses were conducted to investigate the effects of prosthetic socket design and residual limb geometry on the residual limb/prosthetic socket interface stresses. Behavioral trends were illustrated via sensitivity analysis.

The results of the parametric analyses indicate that the residual limb/prosthetic socket interface stresses are affected by variations in both prosthetic design and residual limb geometry. Specifically, the analyses indicate : 1) the residual limb/prosthetic liner interface pressures are relatively insensitive to the socket stiffness ; 2) the stiffness of the prosthetic liner influences the interface stress distribution for both the unrectified and patellar-tendon-bearing (PTB) rectified models-- the external load state appears to influence the interface pressure distribution, while the prosthetic socket rectification appears to influence the interface shear stress distribution ; 3) the interface pressures are - very sensitive to the prosthetic rectification ; 4) the shape and relative bulk of soft tissue may significantly influence the interface pressure distribution ; 5) the interface pressure distribution is also influenced by the residual limb length; and 6) the stiffness/compliance of the residual limb soft tissues may significantly alter the interface pressure distribution.


Published version. Journal of Rehabilitation Research and Development, Vol. 33, No. 3 (July 1996): 227-238. Permalink.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Approved for public release; distribution is unlimited.