Document Type




Format of Original

22 p.; 28 cm

Publication Date




Source Publication


Source ISSN



The suprachiasmatic nucleus (SCN) is a network of neural oscillators that program daily rhythms in mammalian behavior and physiology. Over the last decade much has been learned about how SCN clock neurons coordinate together in time and space to form a cohesive population. Despite this insight, much remains unknown about how SCN neurons communicate with one another to produce emergent properties of the network. Here we review the current understanding of communication among SCN clock cells and highlight a collection of formal assays where changes in SCN interactions provide for plasticity in the waveform of circadian rhythms in behavior. Future studies that pair analytical behavioral assays with modern neuroscience techniques have the potential to provide deeper insight into SCN circuit mechanisms.


Accepted version. Neuroscience, Vol. 320 (April 2016): 259-280. DOI. © Elsevier 2016. Used with permission.

NOTICE: this is the author’s version of a work that was accepted for publication in Neuroscience. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Neuroscience, VOL. 320, April 2016, DOI.

Available for download on Friday, April 21, 2017

Included in

Neurosciences Commons