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Research Note

Accuracy of the NDI Wave Speech Research System

Jeffrey J. Berry®

Purpose: This work provides a quantitative assessment of the
positional tracking accuracy of the NDI Wave Speech Research
System.

Method: Three experiments were completed: (a) static rigid-body
tracking across different locations in the electromagnetic field
volume, (b) dynamic rigid-body tracking across different locations
within the e|ectromogneﬁc field volume, and (c) human jaw-
movement tracking during speech. Rigid-body experiments were
completed for 4 different instrumentation settings, permuting

2 electromagnetic field volume sizes with and without automated
reference sensor processing.

Results: Within the anthropometrically pertinent “near field”

(< 200 mm) of the NDI Wave field generator, at the 300-mm?

volume setting, 88% of dynamic positional errors were < 0.5 mm
and 98% were < 1.0 mm. Extreme tracking errors (> 2 mm)
occurred within the near field for < 1% of position samples. For
human jaw-movement tracking, 95% of position samples had

< 0.5 mm errors for 9 out of 10 subjects.

Conclusions: Static tracking accuracy is modestly superior to
dynamic tracking accuracy. Dynamic tracking accuracy is best for
the 300-mm? field setting in the 200-mm near field. The use of
automated head correction has no deleterious effect on tracking.
Tracking errors for jaw movements during speech are typically
<0.5 mm.
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Ontario, Canada) is an electromagnetic arti-

culography (EMA) system that supports three-
dimensional (3D) tracking of 5 or 6 degree-of-freedom
(5-DOF, 6-DOF) sensors in one of two electromagnetic
field volume settings (300 mm? or 500 mm?). 5-DOF sen-
sors allow tracking of x, y, and z spatial coordinates, as
well as angular coordinates characterizing rotation
about the transverse axis (pitch) and anterior—posterior
axis (roll). 6-DOF sensors have the added capacity for
tracking angular coordinates characterizing rotation
about the inferior—superior axis (yaw). The standard
NDI Wave (used for the current work) has eight input
channels (each 6-DOF sensor requires two channels;
each 5-DOF sensor requires one channel) and records
sensor movements with a 100-Hz sampling rate. A hard-
ware upgrade is available to extend the sampling rate up
to 400 Hz. Moreover, two NDI Wave system control units
can be synchronized, allowing 16 total input channels.

I he Wave Speech Research System (NDI; Waterloo,
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The NDI Wave follows the basic operating principles
of two-dimensional magnetometer systems (see Perkell
et al., 1992). In short, a signal of varying strength is
induced in a receiver (sensor) via an alternating electro-
magnetic field, generated by a transmitter. The strength
of the induced signal varies with the distance and rela-
tive orientation between the receiver and the transmit-
ter. Thus, sensor location can be derived from signal
strength, but changes in sensor orientation confound
the relationship. In the simplest case, when the long
axes of the receiver and transmitter coils maintain a
parallel relationship, sensor position registration is
straightforward. However, changes in sensor orienta-
tion result in potential increases in tracking error.
Perkell et al. (1992) refer to this as the problem of rota-
tional misalignment. In practical application, rotational
misalignment is particularly likely for tongue and jaw
sensors as a result of variations in pitch. In principle,
the hardware and software design of 3D magnetometer
systems can eliminate the problem of rotational mis-
alignment (Kaburagi, Wakamiya, & Honda, 2005). How-
ever, for the 3D NDI Aurora system, a predecessor to the
NDI Wave with a 40-Hz sampling rate, both sensor ori-
entation and distance affect tracking accuracy (Frantz,
Wiles, Lies, & Kirsch, 2003).

Adapted from the Aurora system (Frantz et al.,
2003; Kroger, Pouplier, & Tiede, 2008), the NDI Wave
has design features, such as real-time movement data
display and automated head-movement compensation,
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that may bolster the development of clinical applications
(cf., Katz et al., 2007). The electromagnetic field genera-
tor for the NDI Wave system is a small, mountable box
designed to be placed in profile to the human subject.
The internal hardware design and tracking algorithms
used in the NDI Wave are proprietary. Consequently, it
is unclear how the Aurora and Wave systems are differ-
ent other than in sampling rate.

The only commercially available, comparable 3D
EMA system is the Carstens AG500 (Carstens Medizin-
electronik, Lenglern, Germany). The AG500 differs from
the basic NDI Wave system in that the field generator is
larger (albeit less portable), and it has a larger number of
input channels and a higher sampling rate. The AG500
field generator is composed of six transmitter coils ar-
ranged spherically in an acrylic housing that surrounds
the human subject. The AG500 system can track 12 sen-
sors with 5 DOFs at 200 Hz. A noteworthy feature of the
AG500 is that the design and measurement principles
that underlie the instrument are thoroughly docu-
mented and publicly available (Kaburagi et al., 2005;
Zierdt, Hoole, & Tillmann, 1999).

The aim of the current work was to provide an appraisal
of NDI Wave system accuracy for static and dynamic track-
ing applications. Although definitive methods have yet
to be established for 3D accuracy assessment in EMA
systems, Kroger et al. (2008) and Yunusova, Green,
and Mefferd (2009) have described initial efforts for the
NDI Aurora and Carstens AG500 systems, respectively.
Both studies presented accuracy estimates derived
from rigid-body and human jaw-movement tracking
experiments.

Kroger et al. (2008) used two 5-DOF sensors
attached to a ruler at a fixed distance of approximately
20 mm apart. The ruler was moved manually by the
experimenter, in time with a metronome, to simulate
jaw movements with two speed and two amplitude
variations. The method was designed to simulate slow
and fast rate, large and small amplitude jaw wagging.
Kroger et al. (2008) presented accuracy estimates in
the form of SDs around the mean distance between sen-
sors, demonstrating average measurement errors of
< 1 mm for the NDI Aurora system. Average measure-
ment errors and the magnitude of outlier (maximum)
errors increased with the distance from the field generator
and with average movement velocity. Comparable results
are reported for jaw-movement tracking of a human
subject producing head movement (“yes” and “no”) and
brief speech tasks (slow and fast CV repetitions, phrase
repetition, and passage reading).

Yunusova et al. (2009) presented spatial error esti-
mates for movements of the Circal calibration device
for the AG500 EMA system (Zierdt, 2007). The Circal
device produces predictable rotations of sensors in the

horizontal plane. The rotating plane has a diameter of
16 cm and requires approximately 1.5 min for a complete
a rotation. Yunusova et al. (2009) also presented accu-
racy estimates derived from manual movements of
two sensors (secured to a rigid body approximately
12.5 mm apart) and human jaw movements tracked
during speech tasks. The rigid body was moved manually
within a sphere of radius 15 cm, centered on the origin of
the measurement field volume. Human jaw-movement
data were derived from records of sustained phonation,
syllable repetition, sentence repetition, and paragraph
reading. Results were characterized by summary statis-
tics for absolute deviations from the mean distance be-
tween sensors. In general, Yunusova et al. (2009) found
median positional errors of approximately 0.5 mm or less
for the AG500 system. A spatial resolution of 0.5 mm
may be necessary to resolve perceptually salient speech-
kinematic events (Perkell et al., 1992).

For the present study, three experiments were used
to assess the NDI Wave: (a) tracking sensors affixed to
a static rigid body positioned systematically at differ-
ent locations within the electromagnetic field volume,
(b) tracking sensors affixed to a dynamic rigid body
(a four-bar linkage) following a repetitive path of motion
and supported by a static framework positioned system-
atically at different locations within the electromagnetic
field volume, and (c) tracking human jaw movements
during speech. These data sets were used to estimate
positional tracking error and variability of the NDI Wave
system using known distance comparisons.

Method
Control of Rigid-Body Position

Rigid-body experiments required an adjustable sur-
face to support systematic repositioning of the rigid bod-
ies within the 3D electromagnetic field volume (Nafis,
Jensen, & van Jako, 2008). A table with telescoping
legs was constructed using polyvinyl chloride pipe and
fittings, plywood, nylon fasteners (washers, nuts, and
bolts), Velcro, and rubber chair-leg tips. The legs of the
table base allowed for vertical adjustments at fixed
5-cm increments. The table top consisted of a sheet of
0.75-in. thick precision-planed glass mounted atop four
rubber bumpers encasing 0.25-in. nylon nuts fastened
on fixed 0.25-in. nylon bolts. Rotation of the rubber bum-
pers raised or lowered the vertical position. This mech-
anism allowed for fine height adjustment of each of the
four corners of the table top through a continuous range
of approximately 2.5 cm, facilitating precision position-
ing of the table and leveling of the horizontal surface. A
5-cm grid was drawn on poster board and secured to the
superior surface of the glass table top. The grid was
aligned by means of a T-square abutted against one
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edge of the glass and centered with respect to the NDI
Wave field generator positioned along an adjacent edge
of the glass. Two bull’s-eye spirit levels were placed at
various locations on the table top and field generator
to assist with leveling. A 25-1b concrete block was placed
on the middle (plywood) support shelf, and two 50-1b
bags of sand were placed on the bottom support shelf
as ballast to ensure stability of the table.

Static Tracking

The rigid body used in Experiment 1 was a metric
engineer’s scale with six 5-DOF sensors attached at ap-
proximate 1-cm intervals along a measurement surface
oblique to the surface of the table. Because sensor orien-
tation may affect tracking accuracy (Kroger et al., 2008),
and orientation may be difficult to control in practical
application, a fixed oblique (non-normal to the field gen-
erator surface) orientation of the sensors was thought to
improve the validity of tracking error estimates by
avoiding the implausibility of consistently optimal sen-
sor orientation. All 5-DOF sensors assumed a fixed ori-
entation with a roll of 50° relative to the horizontal
surface. One 6-DOF sensor was affixed to the end of
the scale and used in conjunction with the grid on the
table surface as a reference for repositioning the rigid
body at different locations within the plane defined by
each vertical setting of the table.

The process of data acquisition involved first estab-
lishing the midpoint vertical position of the table by in-
teractively adjusting the table height (and level) and the
positioning of the NDI Wave field generator. Reference
lines defining the horizontal and vertical middle axes
of the field generator surface were drawn on the table
using a T-square. The center of the field generator (inter-
section of vertical and horizontal lines) was aligned with
the center line of the gridded surface. A triangular set
square was used to ensure a normal relationship be-
tween the front surface of the field generator and the
table surface. The position of the field generator was
then secured using the mounting arm provided with
the NDI Wave system. Sections of polyvinyl chloride
pipe were also placed underneath the field generator to
eliminate the possibility that it would oscillate if per-
turbed. Each record of data collection involved repeated
repositioning of the rigid body at each grid intersection
on the surface of the table.

At each table height setting, a data record was gen-
erated for each of four conditions: (a) 300-Ref condition
(tracking all 5-DOF sensors with the 300-mm? field vol-
ume settings, with all positions encoded with reference
to a local coordinate system origin defined by the posi-
tion of the 6-DOF reference sensor); (b) 500-Ref condition
(same as Condition 1, but using the 500-mm? field vol-
ume); (¢) 300-No Ref (tracking all 5-DOF and the

6-DOF sensors in machine space, without the use of
the automated head-movement correction algorithm);
and (d) 500-No Ref condition (same as Condition 3, but
using the 500-mm? field volume). A novel rigid-body po-
sition was defined at any place where the reference sen-
sor was aligned with a grid intersection and all sensors
on the rigid body where registered by the NDI Wave, as
indicated on the real-time data display. This approach
typically resulted in 30 different static positions of the
rigid body for each 300-mm?® data record and 90 different
static positions for each 500-mm?® data record.

To establish a basis for comparison of all data ac-
quired during the experiment, a 30-s data record was
collected with the table at the midpoint vertical position
of the field generator. The rigid body was positioned
such that all sensors were centered (along the anterior—
posterior dimension) within the field, equidistant (100 mm)
away from the field generator surface. Averaged across
samples, data from this record were used to define the
known distance between each adjacent sensor along
the rigid body. All tracking error estimates were calcu-
lated with reference to these distances.

Dynamic Tracking

Experiment 2 followed the protocol used for static
tracking except for the use of a different rigid body. A ki-
nematic chain was constructed of Lego building blocks to
systematically assess positional tracking error of the
NDI Wave system in a dynamic application. The dynamic
component of the model was defined by a four-bar link-
age (crank-rocker mechanism) with 1 DOF (Vinogradov,
2000). The long bar of the linkage supported an 8-cm
length of tongue depressor with six 5-DOF sensors
placed along the length, approximately 1 cm apart.
The tongue depressor was necessary because direct ad-
hesion of the sensors to the Lego material proved unre-
liable. Thus, the tongue depressor was secured to the
long bar of the linkage, and the sensors were secured
to the tongue depressor. One 6-DOF sensor was secured
to an anterior portion of the rigid framework to serve as a
reference for repositioning the apparatus. The crank
mechanism of the four-bar linkage was connected via a
gear system to a 45-cm plastic axel driven by a precision
drill motor (Model PD-3; OK International, Garden
Grove, CA). The Lego model and drill motor were at-
tached to a 0.75 x 7.25 x 48 in. oak plank. The relatively
long driving axel and support plank allowed the entire
apparatus to be repositioned anywhere on the adjust-
able table without the metal components of the drill
motor entering the electromagnetic field volume and
causing field distortion.

The dimensions of the four-bar linkage and gearing
of the crank mechanism were defined to evoke sensor
movements that roughly approximated characteristics
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ofthe kinematics of human speech (Perkell & Zandipour,
2002; Westbury, Severson, & Lindstrom, 2000). The ki-
nematics of the crank-rocker mechanism caused differ-
ent sensors to follow different characteristic movement
trajectories with different peak and average movement
speeds. The sensor closest to the crank mechanism fol-
lowed the trajectory with the most rotational pattern
and lowest average speed (89 mm/s), whereas the sensor
closest to the rocker mechanism followed the trajectory
with the most reciprocating pattern and highest average
speed (137 mm/s). Sensors positioned between the most
anterior and posterior ones followed intermediate trajec-
tories that combined variously rotational and reciprocat-
ing patterns and produced intermediate average speeds.
Across sensors, peak speeds averaged 260 mm/s. For ci-
tation form speech, Westbury et al. (2000) reported peak
lingual speeds averaging 136 mm/s for the word prob-
lem. For syllable repetitions (diadochokinesis), Perkell
and Zandipour (2002) reported peak lower lip closing
speeds averaging as high as 290 mm/s.

With regard to sensor orientation, the dimensions of
the crank-rocker mechanism evoked periodic variations
in sensor pitch. The long bar of the mechanism traversed
a 20° pitch range, moving between 17.5° and 37.5° below
horizontal. Hoole and Nguyen (1999) suggested that a
pitch range of 15° may be a reasonable estimate for var-
iation in tongue-sensor orientation during conversa-
tional speech. Ostry, Vatikiotis-Bateson, and Gribble
(1997) presented data that suggest speech ranges of
variation in jaw pitch of 12° may increase to as much as
20° for some subjects during mastication.

Known Distance Measure

All positional tracking error estimates were calcu-
lated with reference to the known distance between ad-
jacent 5-DOF sensors. Five discrete distance values
between each adjacent pair of 5-DOF sensors were
established for each of the two rigid bodies as described
above. For each indexed data position, the difference be-
tween the five registered distances and the five known
distances was calculated. The root-mean-square across
these five comparisons served as the estimate of posi-
tional tracking error for each position within the field.

Speech-Tracking Protocol

Experiment 3 used speech-kinematic data from 10
human subjects. Six 5-DOF sensors were affixed to the
tongue, lips, and jaws (two each), with a 6-DOF sensor
affixed midsagittally between the eyebrows using Iso-
Dent adhesive (Ellman International, Oceanside, NY).
Subjects were seated with the left profile parallel to
the surface of the field generator. The field generator
surface was positioned approximately 5 cm from the

left ear of each subject. Subjects completed a reading of
the “Farm Passage” (Crystal & House, 1982). Only jaw-
sensor data were used for estimating tracking error, as
these sensors assumed fixed relative positions. For each
subject, one sensor (MI) was secured to the labial surface
of the juncture of the central mandibular incisors (mid-
sagittal), and another sensor (MM) was secured to the
buccal surface of the right first or second molar. Both
sensors were positioned on the gingival tissue near the
enamel-gingival border. Gingival tissue proved more re-
liable for sensor adhesion than enamel surfaces. A single
known distance value between the MI and MM sensors
was calculated from the average registered distance be-
tween the two jaw sensors over 10 s while each subject
held a relatively stationary position of the mandible.
Within the data record for each subject, all samples for
which both jaw sensors were registered were used to
estimate positional tracking error by comparison with
the known distance value. All procedures involving the
human subjects were approved by the Marquette Uni-
versity Institutional Review Board.

Results

Preliminary analyses revealed no differences be-
tween positional tracking with and without automated
head-movement correction. Consequently, the Ref and
No Ref conditions for all rigid-body data were pooled.
Inferior—superior (vertical) position within the field
also proved to have negligible influence on tracking
error. Consequently, all data were pooled across vertical
position. Table 1 and Table 2 present distributional sum-
maries for data pooled across vertical position and orga-
nized by distance from the field generator surface for
both field volume settings in static and dynamic tracking
applications, respectively. Median, interquartile range
(IQR), 95% quantile, and maximum values are shown.
Data are organized in columns labeled by distance from
the field generator surface. For example, in Table 1,
the column labeled 50 presents distributional summary
statistics for positions indexed at the border of the mea-
surable field volume nearest the field generator surface.
Comparison between the two field volume size settings
suggests similar results for the middle of the error dis-
tributions (i.e., medians of 0.19 mm and 0.12 mm; IQRs
of 0.22 mm and 0.21 mm) that are differentiated with
respect to the larger upper error ranges for the 500-mm?
volume. The Total column in each table indicates results
across all distances for each field volume.

As a result of anatomical differences and variations
in the ease of sensor positioning, the physical distance
between sensors MI and MM varied across the 10 sub-
jects (M = 38.75 mm; SD = 3.60 mm). Differences in
mandibular girth in combination with variation in the
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Table 1. Summary statistics for static positional error (in mm).

Distance from field generator

Valuve 500 450 400 350 300 250 200 150 100 50 Total
500-mm?® field
Med 5.98 3.78 2.57 1.79 1.01 0.65 0.41 0.23 0.19 0.19 0.71
IQR 9.09 5.43 3.34 2.28 1.37 0.92 0.58 0.35 0.31 0.22 212
95% 21.57 13.28 8.28 511 4.09 2.75 1.68 1.15 0.88 0.76 8.92
Max 32.57 26.91 20.01 10.50 7.02 8.98 4.82 2.50 2.84 2.54 32.57
300-mm? field
Med 0.88 0.54 0.31 0.17 0.13 0.12 0.26 0.88
IQR 1.1 0.70 0.37 0.22 0.19 0.21 0.45 1.1
95% 3.27 212 1.46 0.56 0.57 0.46 1.83 3.27
Max 7.01 3.21 6.00 0.92 0.88 1.07 7.01 7.01
Note. Med = median; IQR = interquartile.

positioning of each subject resulted in differences be-
tween subjects in the average distance of MM from the

generator surface for both field volume settings. Track-
ing error control was improved using the 300-mm? field

field generator (M = 137.30 mm; SD = 21.00 mm). All
subjects were able to comfortably maintain a position
whereby MM (the most distal sensor) stayed within
200 mm of the field generator throughout data collec-
tion. Table 3 presents distributional summaries of jaw-
tracking error estimates for the 10 subjects reciting the
Farm Passage. Both median and IQR values fell below
0.25 mm for all subjects. Maximum errors were consis-
tently approximately 1.0 mm or less for all subjects.

Discussion

The focus of this work was on quantifying the spatial
resolution of the NDI Wave system. The data presented
suggest that average tracking errors stay near or below
0.5 mm within approximately 200 mm from the field

volume setting. The 500-mm? setting, in contrast,
appeared to offer little useful additional field volume.
Beyond 250 mm, median and IQR values consistently
exceeded 1.0 mm, and outlier errors (> 2.0 mm) became
more prevalent and extreme. The magnitudes of ex-
treme tracking errors obtained with the NDI Wave sys-
tem may exceed those reported for the Carstens AG500.
On the basis of data presented by Yunusova et al. (2009),
the AG500 system tracking error appears relatively
more stable throughout the field volume when compared
with the NDI Wave. This stability, however, is critically
tied to a necessary, time-consuming user calibration pro-
cess (Zierdt, 2007). The NDI Wave system, in contrast,
requires no user calibration, making it more efficient
to use.

In general, static tracking accuracy is modestly su-
perior to dynamic tracking for the NDI Wave system.

Table 2. Summary statistics for dynamic positional error (in mm).

Distance from field generator

Value 500 450 400 350 300 250 200 150 100 50 Total
500-mm?® field

Med 8.50 579 4.48 3.05 1.73 1.1 0.61 0.31 0.22 0.16 1.16

IQR 11.73 9.07 6.24 4.20 2.53 1.76 0.97 0.67 0.42 0.32 3.79

95% 28.41 22.41 17.10 12.35 7.33 4.76 3.18 1.89 1.36 1.16 14.73

Max 66.64 50.13 51.01 30.45 23.16 11.75 9.98 7.99 4.09 3.86 66.64
300-mm? field

Med 1.29 0.63 0.27 0.31 0.07 0.08 0.21

IQR 1.69 0.78 0.42 0.19 0.09 0.13 0.57

95% 4.62 2.00 1.09 0.62 0.29 0.52 2.31

Max 92.12 2.85 3.50 1.10 4.28 2.19 9.12
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Table 3. Summary statistics for jaw movements during speech (in mm).

Subject
Value 1 2 3 4 5 6 7 8 9 10
Med 0.18 0.08 0.03 0.06 0.09 0.11 0.09 0.08 0.13 0.16
IQR 0.22 0.09 0.04 0.08 0.1 0.15 0.11 0.11 0.10 0.16
95% 0.55 0.22 0.08 0.19 0.28 0.37 0.26 0.24 0.37 0.48
Max 1.03 0.43 0.27 0.56 0.78 0.92 0.64 0.55 0.83 1.06

This conclusion is valid only within the current experi-
mental constraints (i.e., the orientations and relative
sensor positions studied). Relatively superior static
tracking accuracy is of little practical significance for
speech-kinematic applications because dynamic track-
ing is necessary.

Dynamic tracking results were obtained using a rigid
four-bar linkage with 1 DOF. Although the changing
speeds and orientations of the sensors attached to the
model may roughly approximate those measured for
human articulator movements, the fixed distances be-
tween adjacent sensors and limited variability in sensor
trajectories limit the extent to which the modeling results
can be generalized to human articulator-movement
tracking.

On the basis of the model data, dynamic tracking
within the near field (< 200 mm) can be characterized
by positional tracking errors that tend to be < 0.5 mm.
This portion of the field is particularly pertinent, as an-
thropometric data indicate that average human head
breadth is 152 mm (Gordon, 1996). The portion of the
field within which sensor positions can be resolved
begins 50 mm from the field generator surface. Thus,
the useable near field within which tracking error can
be reasonably controlled at < 0.5 mm is approximately
150 mm wide. Midsagittal sensor placement, with the
subject’s profile facing the field generator, is likely to
assist in maintaining equivalent error rates across sen-
sors. The 150-mm width of the optimal tracking volume
of the system also allows sufficient buffer to ensure that
sensors that cannot be positioned midsagittally, such as
a second molar sensor, still fall within the optimal vol-
ume. An important consideration is that human subjects
not be positioned too closely to the field generator be-
cause, according to the manufacturer, field characteris-
tic within the first 20 mm of the field generator surface
(outside of the working field volume) exceed maximum
permissible exposure rates for human subjects (Institute
of Electrical and Electronics Engineers, 1999).

The results of Experiment 3 suggest that tracking
accuracy for human jaw movements during paragraph
reading may be modestly superior to tracking of the dy-
namic model, particularly with regard to the frequency

1300

and magnitude of errors of > 0.5 mm within the near
field. This apparent improvement in human application
is likely influenced by slower sensor speeds and smaller
ranges of variation in sensor orientation in the human
data compared with the model. Another potentially per-
tinent factor that has not been addressed in this study is
differences in the distance between adjacent sensors
within the field. For the model, the distance between ad-
jacent sensors is constant at approximately 1 cm. For the
human data, this distance varies somewhat across sub-
jects but approaches 4 cm on average. Interaction be-
tween adjacent sensors is one of several possible
sources of tracking error (see Perkell et al., 1992). This
potential source of error has yet to be systematically in-
vestigated for the NDI Wave system.

In summary, dynamic tracking accuracy was supe-
rior for the 300-mm? field (compared with the 500-mm?
field) of the NDI Wave system. Tracking accuracy did
not vary significantly along the anterior—posterior and
inferior—superior dimensions of the field and did not
appear to be influenced by use of the automatic head-
movement correction settings. Although extreme track-
ing errors (> 2 mm) did occur within the near field of
the 300-mm? volume, these errors occurred in < 1% of
samples. Within the near field of the 300-mm? volume,
88% of dynamic positional errors were < 0.5 mm and
98% were < 1.0 mm. Human jaw tracking for 10 subjects
during paragraph reading revealed tracking errors
that were typically < 0.5 mm. Taken together, these
results suggest that tracking accuracy for the NDI
Wave system may be bolstered by using the 300-mm?
volume setting and positioning subjects so that sensors
stay within 200 mm of the field generator surface. Fu-
ture studies need to systematically assess the impact of
factors such as sensor orientation and intersensor dis-
tance on tracking accuracy.
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