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ABSTRACT 
 RFID TAGS / PLANAR INDUCTORS AS 

 CHEMICAL SENSOR PLATFORMS IN LIQUID 
 SENSING APPLICATIONS 

  

 Gregory D. Novak 
 

 Marquette University, 2009 
 

In this work, RFID tags are investigated as a liquid-phase chemical sensing 
platform.  A dual-layer of selective coating film with polyaniline (PANi) on top of 
poly(epichlorohydrin) (PECH) is used for the detection of trace amounts of organic 
compounds (toluene and ethylbenzene) in aqueous solutions.  Various experiments were 
performed to evaluate the coated RFID tag sensors.  Shifts in the impedance and resonant 
frequency due to analyte sorption are measured.  Details of the responses of the dual-
layer film to different pH baseline solutions are shown.  The results show that this dual-
layer film can be used to detect toluene and ethylbenzene with high sensitivity.  The 
conductive nature of PANi when protonated with an acidic solution allowed for increased 
sensitivity.   

To describe the observed changes that occur during detection, an equivalent 
circuit model of the RFID tag chemical sensor was developed.  The derived equations 
could be used to describe the observed response due to chemical sorption.  The addition 
of PANi provided added sensitivity as the traces of the planar inductor began to 
effectively short out with increasing conductivity of the polymer.  This is due to the 
different level of protonation of PANi that occurs.  Lower pH solutions result in an 
increase in the conductivity of PANi to a level that drastically changes the characteristics 
of the coil (number of turns and width of the traces), thus shifting the operating resonant 
frequency.  The large shift in frequency is related to a decrease in both the inductance and 
the capacitance of the coil.  However, this shift would cause the tag to no longer operate 
with the reader.  The results with the aqueous baseline solution of pH = 1 provides the 
largest sensitivity; however, the results with the aqueous baseline solution of pH = 3.5 
also provides highly sensitive responses.  Partial selectivity of the coated sensor was also 
found to be a function of the solution pH, thus the protonation of the PANi.  For the 
present study, a limit of detection with a baseline solution of pH = 3.5 was found to be 
6.24 ppb and 8.3 ppb for toluene and ethylbenzene, respectively. 
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1 INTRODUCTION 
 

1.1 Background 
 

Chemicals have useful applications, but can be harmful depending on both 

the type and the concentration. For example, chemical contamination of ground 

and waste water can result in hazardous water that can affect many components of 

human life.  To ensure the health of the general public concerning the presence of 

these chemicals in various solutions, it is necessary to test or monitor the 

environment for the concentration and types of any harmful substances. 

 Traditional analytical methods for gas and liquid phase chemical 

detection are slow and inefficient.  This leads to the need for improving the 

detection process of these chemicals to ensure the safety of the general public.  

There are currently different sensing platforms available for chemical sensing in 

liquid environments.  However, they result in a long response time or have 

reduced, relatively low sensitivity.  New sensor platforms that can improve the 

response time or sensitivity, as well as other sensing characteristics, are then 

needed. 

A radio frequency identification (RFID) tag or a planar inductor has the 

opportunity to provide a new sensor platform that could fulfill the need for 

improvements in response time and sensitivity.  RFID tags consist of an antenna 

(i.e. planar inductor) with a microchip placed at the end of the antenna.  There are 

three types of RFID tags:  active, semi-active, and passive.  Active and semi-
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active tags implement a battery to power the microchip.  A passive RFID tag does 

not use a battery.  Rather, a passive tag is powered through an external electric 

field that is coupled with the antenna.  The energy transferred to the tag is used to 

turn the chip on, releasing the identification number encoded on the chip [1].  This 

information is sent back to the external source, identified as the RFID reader.  By 

implementing an RFID sensor into a full RFID system, including the tag and 

external reader, one has the potential to have a wireless sensor, adding further 

improvements over current liquid-phase chemical sensors. 

RFID tags were initially used for wireless tracking of goods and key lock 

systems.  As RFID tags have become mainstream devices, new applications of 

RFID have been investigated, including the use of RFID tags as sensors in the gas 

phase.  RFID tags are often used as sensor platforms for different applications, 

ranging from humidity sensing to temperature sensing to food monitoring [2,3,4].  

However, in many of these applications, RFID tags are merely used as 

communication devices for the external sensor.   

Some applications have used RFID tags as sensors in gas-phase 

environments [5,6,7,8] to monitor humidity and chemicals in a way that 

implements the sensor into the antenna coil, a planar inductor.  However, very 

little work has been done to use RFID tags as sensors in the liquid phase.  This 

work will focus on the use of a RFID tag as a chemical sensor in the liquid phase. 

A brief overview of chemical sensors, specifically RFID chemical sensors, is 

presented in the following sections. 
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1.2 Overview of Chemical Sensors 
 

A sensor is defined as a type of transducer that receives and responds to a 

stimulus [9], specifically turning one form of energy into electrical energy.  When 

detecting a signal, or measurand, the sensor produces a measureable output, 

typically a voltage or current that is related to the measurand. Additional signal 

conditioning units are often included inside the sensor system to amplify any 

weak electrical signals into detectable quantities for further use. 

When considering the types of the measurands, sensors are classified as 

either physical or chemical sensors; for physical sensors, the measurand is a 

physical quantity, such as velocity, acceleration, force, humidity, etc whereas for 

chemical sensors, the measurand has chemical attributes, such as concentration of 

a certain chemical. 

A chemical sensor can then be defined as a device that responds to stimuli 

produced by various chemicals or chemical reactions, converting this response to 

an electrical signal [9,10,11,12,13].  The sensor system consists of a device 

(sensor platform), a partially selective layer (molecular film), and a data 

acquisition system.  Chemical sensors are designed to detect substances in both 

liquid and gaseous phases.  These are used in industry, medicine, environmental 

monitoring, and in the military.   

It is important to focus on the characteristics that define the response a 

chemical sensor provides due to a certain chemical and its concentration.  Many 

different characteristics define chemical sensors, including sensitivity, selectivity, 

and response time.  Sensitivity describes the minimal concentrations and change 
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in the concentration (resolution) that can be successfully and repeatedly detected 

by the sensor [9].  This is also seen as the ratio of the change in output to the 

change in the value of the measurand [11,12].  Selectivity describes the degree to 

which a sensor responds to the desired stimulus with minimal interference from 

other species [10,11].  Selectivity is often used to show how a sensor responds 

differently to different measurands. Specifically, for chemical sensors, selectivity 

depends on the molecular size, shape, or polar properties of the measurand in 

respect to that of the partially selective film [13].  Response time is defined as 

how long it takes a sensor to reach 90% of its steady state value after introduction 

of a given concentration of the measurand [10].  Combining the different sensor 

characteristics will allow for proper quantification and analysis of the chemicals 

detected by the sensor. 

A chemical sensor may be identified as either a direct or indirect sensor 

depending on the physical indicators that are used in the system.  In direct 

chemical sensors, the interaction of the chemicals with the sensing material 

directly changes a measureable physical quantity such as resistance, potential or 

current.  Direct chemical sensors require no further transducers as the result of the 

sensing is already an electrical signal.  However, indirect chemical sensors utilize 

chemical interactions that do not result in an electrical signal.  Therefore, a 

transducer is necessary for an indirect chemical sensor.  Different types of 

interactions that occur in indirect chemical sensors include mass change, 

temperature change, change of physical shape, and frequency shifting. 
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There are many different sensor technologies that can be used to 

implement chemical sensors.  These include MEMS (Micro-electrical and 

Mechanical Sensors), acoustic wave technology, electromagnetic technology, 

optical technology, and electrochemical technology.  All these platforms operate 

under the same principle whereas the chemical interaction between the sensing 

layer and the target species (analyte) produces a measureable change in the state 

of the sensor system.  RFID chemical sensors also produce measureable changes 

in the resistance and the resonant frequency, and represent a new class of 

chemical sensor platforms.  In the next section the RFID Chemical Sensor, the 

focus of this thesis, is discussed. 

 

1.3 RFID Chemical Sensor 
 

RFID (Radio Frequency Identification) is a technology that allows for 

wireless transmission of data in a system, defined by a combination of a reader 

and a tag.  Figure 1.1 shows the full RFID system in a simple model that details 

the antenna of the reader and the equivalent circuit of the tag [14].  The reader 

emits an electromagnetic signal at a frequency to which the tag is designed to 

respond.  When recognizing the inquiry signal from the reader, the tag responds 

with the data stored on a microchip.  Tags are classified into three different types:  

active, semi-active, and passive.  The most abundant type of tag is the passive tag 

due to the fact that they have a low cost of production and are easily designed.  

Depending on the distance between the tag and the reader, the tag will either 

couple in the near field or the far field.  If coupling in the near field, the reader 
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and the tag are assumed to inductively couple, powering the tag through this 

process.  

 

    

Figure 1.1 RFID system containing reader and tag 

 

RFID tags consist of an antenna (i.e. a planar inductor coil) and a 

microchip, allowing them to be modeled as simple electric circuit elements, as 

seen in Figure 1.2.  RFID tags can be considered as a planar inductor on a 

substrate, which can then be modeled as a parallel RLC circuit with R, the 

resistance of the metal traces; L, the inductance of the coil on the tag; and C, the 

capacitance between the coil traces [14]. 

 

Figure 1.2 Equivalent Circuit of RFID Tag 

 
Tags are constructed so that the R, L, and C values created by the geometry of the 

metal traces as well as the material properties of the substrate resonate at a 

specific frequency.  Properly modeling the tag as basic circuit elements will aid in 
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the analysis of the tag as a sensor since these are the components that will most 

likely be affected. 

Many applications of RFID tags as sensors do not use RFID as the sensor 

platform; rather, these systems connect the RFID tag to a separate sensor, using 

the wireless capability of RFID to transmit the sensor signal [15,16].  The use of 

RFID in sensing systems provides great advantages; however, further integration 

of the sensing unit into the RFID tag itself would create a viable new sensor 

platform.  There have been sensors implemented using a simple antenna to detect 

humidity and chemicals [5,6,7,8], but these have been only in the gas phase.  

Investigation of RFID chemical sensors in liquid environments is needed. 

The use of RFID tags as a chemical sensing platform is relatively recent 

[8].  To transform an RFID tag into a chemical sensor, a chemically sensitive 

polymer layer must be placed on top of the tag.  This analyte interacts with the 

polymer, causing a change in the permittivity and resistivity of the polymer.  It 

must be noted that the changes will be seen in the parasitic capacitance, as well as 

the resistance of the tag.  The reactive capacitance is a very small value when 

compared to the impedance due to the material properties of the tag.  Changes to 

this small value of the reactive capacitance are sometimes very difficult to 

measure when considered in the overall impedance (hundredths of an ohm or 

smaller). The changes that occur in the resistance are on the same scale as the 

impedance due to the material properties, making them easier to measure.  

Changes in the resistance will be the focus of the measurements. 
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Changes in the polymer layer due to chemical interaction will correlate to 

changes in the characteristic impedance of the RFID tag.  Changes in the 

impedance also affect the resonant frequency of the tag.  The choice in polymer 

layer on the tag must be one that ensures the tag’s resonant frequency remains in 

an allowable bandwidth for the tag to be read by a given external reader.  If the 

tag’s resonant frequency shifts outside of this bandwidth, it will be unable to be 

read by the reader. 

The type of polymer coated on the surface of the RFID tag will also 

greatly affect the sensitivity of the RFID chemical sensor.  The use of a non-

conductive polymer produces a relatively small sensor response, difficult to 

measure since the polymer only acts as a dielectric material that affects the 

parasitic capacitance.  In order to optimize the sensor response, we have found 

that the use of a conductive polymer provides a strong response.  A conductive 

polymer will in effect short out the traces as detection occurs, providing a high 

level of sensitivity.  A conductive polymer is ideal to enhance the sensor 

response.  However, this polymer should not affect the response of the impedance 

or frequency of the tag when no chemicals are present.  Many different 

conductive polymers can change their characteristics depending on the properties 

of the liquid that interacts with the polymer.  One of the properties that can affect 

the conductivity of a conductive polymer is the pH of the liquid interacting with 

the polymer [17].   

The problem statement will be discussed next, detailing the work that will 

be done to design and test a RFID chemical sensor. 
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1.4 Problem Statement 
 

Previous applications of RFID Tags as chemical sensors have only 

involved gas-phase detection [8], with no testing conducted in the liquid phase.  

Present challenges of the use of a RFID chemical sensor in liquid phase include 

the interaction of the RFID tag with a reader.  However, the feasibility a RFID 

liquid-phase chemical sensor could still be demonstrated. 

Using a modified circuit model of an RFID tag, the resonant frequency, 

the sensitivity, and the quality factor will be analytically characterized for a tag 

coated with a chemically-sensitive film. This characterization will be used to 

properly identify the elements that have the greatest effect on the changes in the 

response of the RFID tag.  Analytical equations will be obtained to provide a 

baseline for comparison to experimental data.  Experiments will include liquid-

phase testing of chemically-sensitive coated RFID tags, providing information 

such as changes in resonant frequency and impedance. Commercially available 

tags will be used for the experiments.  A partially selective layer will be coated 

onto the RFID tag to create a chemical sensor.  The sensitive layer, consisting of a 

layer of poly(epichlorohydrin) (PECH) followed by a layer of polyaniline (PANi), 

will be used to detect chemicals such as toluene and ethylbenzene.  Experiments will 

involve the bare RFID tag to serve as a baseline for comparison to the coated tag.  

With the thickness of the coating kept constant, the pH of the analyte and 

reference solution will be varied to show different conductivity levels of 

polyaniline and the interaction of the conductive polymer to the RFID tag.  The 

concentration of the chemicals will also be varied to show increased sensitivity 
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for higher concentrations of chemicals.  The end objective of this work is to create 

a RFID liquid-phase chemical sensor with good sensitivity, response time, and 

limit of detection.  

 

1.5 Thesis Organization 
 

This thesis is made up of five chapters.  Chapter 1 gives a brief 

introduction to chemical sensors, their classification, and definitions for basic 

relevant sensor technology.  Also included is a background to the RFID chemical 

sensor, followed by the problem statement for this work.  In Chapter 2, the theory 

of the coated RFID chemical sensor is examined.  Equations are derived to 

describe the theory behind the changes seen in resonant frequency and which 

circuit parameters cause the largest amount of change.  Chapter 3 contains a brief 

description of the physical and chemical properties of the analytes and polymers 

used in this research.  A description of the experimental setup and procedures are 

given.  Chapter 4 presents the results and analysis.  Sample sensor responses for 

the different baseline solutions are first presented followed by a comparison of the 

responses to the different analytes.  A comparison of the measured results to the 

concentration of analyte is shown.  Also, the limit of detection and response time 

for the current measurements is determined.  Chapter 5 gives a summary of the 

findings from this research followed by possible extensions to this work. 

 

 

  



11 
 

2 RFID  AS A SENSOR PLATFORM 
 

2.1 Introduction 
 

As described in Chapter 1, an RFID system consists of a tag and an 

external reader.  A reader is a combination of an antenna and circuitry that outputs 

an inquiry signal within a specific frequency range.  When used in an RFID 

system, the tag is tuned to resonate at the operating frequency of the reader.  

Many RFID systems are designed for near field operation in which inductive 

coupling provides the means of energy transfer between the tag antenna and the 

reader antenna.  In this thesis, near field coupling is assumed for analysis and, 

while energy transfer is important, the focus of this work is to develop a chemical 

sensor using the RFID tag; therefore, all analysis will consist of the equivalent 

circuit of the tag to model operation of the sensor.  When integrated into a full 

RFID system, the tag’s impedance is reflected onto the reader for measurement.  

The changes seen in the reflected impedance can be correlated to the chemical 

analyte being detected.   

The use of RFID tags as chemical sensors has been widely reported for 

gas-phase sensing.  However, no liquid-phase application has been reported.  

Moreover, the reported literature for gas-phase sensing does not include detailed 

theory on the operating principles.  It is therefore necessary to properly model the 

sensor system to accurately describe the measured sensor response.  As stated in 

Chapter 1, an RFID tag can simply be modeled as a planar inductor whose 

equivalent circuit consists of an inductor, a resistor, and a capacitor, as shown in 
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Figure 1.2.  Each of these elements depends on the material properties and the 

geometry of the RFID tag.  The resistance depends on the resistivity of the metal 

traces of the antenna, as well as the geometry of the tag itself.  The inductance 

depends on the permeability and geometry of the coil.  The capacitance depends 

on the dielectric constant of the substrate and the distance between the turns of the 

coil.  Generally, RFID tags are designed to have an additional tuning capacitor 

added to the system to bring the tag to the desired resonant frequency of 

operation.  Additional circuit elements are also often seen in other models to 

account for lossy substrates. 

 

2.2 Modeling of a RFID Tag / Planar Inductor as a Chemical 
Sensor Platform 
 

An RFID tag chemical sensor platform consists of the RFID tag, with an 

external reader that generates a field to excite the tag.  Current analysis and 

testing focuses on the planar inductor portion of the RFID tag as the chemical 

sensing platform.  A chemically sensitive polymer film is deposited over the 

traces to act as the sensing layer. 

As stated earlier, this concept has already been tested as a gas-phase 

sensor [8].  The deposition of the film perturbs the RLC circuit due to changes in 

the electrical properties of the polymer.  The resulting modified circuit is shown 

in Figure 2.1.  The elements added to the equivalent circuit of Figure 2.1 are the 

resistance of the film, Rfilm , the change in capacitance due to the polymer coating 

over the turns of the antenna, Cfilm , and the resistance associated with the 

distributed capacitance of the antenna windings, Rcap. Rfilm  and Cfilm  are added 
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due to the deposition of a polymer layer onto the antenna, while Rcap is associated 

with the distributed parasitic capacitance throughout the coil. 

 

Figure 2.1 Modified RFID circuit of the coated tag 

 
The addition of a polymer layer over a tag causes a shift in the resonant 

frequency of the tag.  The circuit of Figure 2.1 can be further simplified to give 

the circuit in Figure 2.2.  In Figure 2.2, the resistance of the antenna is R1, the 

combined resistance of the distributed capacitance and the resistance of the film is 

R2, and the combined capacitance of the antenna and the film is CT.   

 

 

Figure 2.2 RFID equivalent circuit 

 

The inductance of the antenna, L  in the circuit model, is affected by the 

polymer layer only if the polymer is conductive.  As the polymer becomes more 

conductive, a uniform potential is created across the tag, “eliminating” or shorting 
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out the spaces between the traces.  Without this spacing, the tag impedance 

exhibits behavior similar to that of a single large coil or a single sheet of metal 

film, reducing the inductance.  The conductive polymer also causes a decrease in 

the capacitance for the same reason, by eliminating the gaps between the traces.  

When this occurs, the antenna starts to behave like a resistor.   

 

2.3 Sensing Principles 
 

It is desired to use the polymer coated RFID tag as a chemical sensor in 

liquid phase environments.  The liquid layer in contact with the tag acts as a 

transport medium for the target chemical species.  The interaction of the analyte 

with the polymer changes the characteristics of the polymer as sorption of the 

analyte occurs.  The changes will be reflected in the different electrical properties 

of the polymer, including its resistivity and permittivity.  These changes in the 

polymer properties will, in turn, affect both the resonant frequency and complex 

impedance of the tag. 

The resonant frequency and the magnitude of the real component of the 

impedance at the resonant frequency (i.e. the resistance of the tag) are the main 

parameters that will be affected by the analyte sorption into the polymer due to 

the change in the polymer’s resistivity and permittivity.  Shifts in either the 

frequency or resistance can be correlated to the concentration of analyte is 

detected by the sensor.  The resonant frequency of a bare RFID tag is determined 

from the inductance and capacitance of the coil and given by   

�� � � ���     (2.1) 
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where L  is the inductance and C is the capacitance of the bare tag.  The resonant 

frequency is often also called the center or zero-crossing frequency because this is 

the frequency at which the phase of the circuit is zero.  When the circuit 

undergoes resonance, the resistance is the only non-zero portion of the 

impedance, as the net inductive and capacitive reactance is reduced to zero.  

As previously described, a conductive polymer will effectively short out 

the traces as the conductivity increases.  To properly understand the effect of 

shorting the traces out, it is necessary to understand the relationship between the 

geometry of the coil and the circuit elements of the planar inductor model.  For a 

spiral planar inductor, the resistance, R, is given by [18,19] 

 � � �.
 � 
 � ��� � � �� ����   (2.2) 

  
where n is the number of turns, a is the mean radius of the coil, Rs is the sheet 

resistance of the trace (Ω/square), w is the width of the trace, ρ is the resistivity of 

the wire, l is the length of the wire, and teff is defined by ���� � � �1 � �� !", 

where δ is the skin depth of the conductor and t is the thickness of the trace.   

For the same planar inductor, the inductance, L , is given by [20]   

 # � $%
%
�&'.(
$   (2.3)  

where n is the number of turns, d is the diameter of the coil in meters, and l is the 

length of the wire in meters.  As the conductivity of the polymer increases and the 

traces begin to effectively short out, the number of turns and width of the trace 
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will change.  From Equation 2.2, it is determined that the resistance will change 

as a function of both the decrease in the number of turns and the increase in the 

width of the trace.  From Equation 2.3, it is determined that the inductance will 

change as a function of the decrease in the number of turns, as well as the change 

in the length of the coil.  The effective change in the number of turns and width of 

the trace will also cause drastic shifts in the capacitance due to the change in the 

geometry of the coil. 

 

2.4 RFID Chemical Sensor: Theory 
 

The model of the coated RFID tag is analyzed to quantify measurable 

parameters that will explain the changes in resistance and resonant frequency due 

to chemical sorption into the polymer.  The parameters needed for the analysis are 

the resonant frequency and the relative change in frequency. 

 

2.4.1 Resonant Frequency 
 

Starting with the equivalent circuit of the polymer coated device (Figure 

2.2), the circuit elements are combined using basic circuit analysis.  The circuit is 

terminated from the side of the inductor since the impedance seen by the reader 

will be reflected from this side of the circuit.  The resulting circuit analysis 

provides the equivalent complex impedance of the planar inductor as 

 

    )�*+,-���
� � �1�2/0�#�2�2/1�1/0�#211/0��2342 .  (2.4) 
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The denominator of Equation (2.4) is expanded and multiplied by the complex 

conjugate of the denominator to determine the resonant frequency.  The 

numerator of the relationship previously described is given by 

 )
+5 � ���66 / 0�#�66 � �6#���6637 � 0�8#6�6637 � 0���6�6637 / �6#���6637. (2.5) 

 
The resonant frequency can then be determined after modifying Equation 2.5 

since it is known that resonance occurs when the imaginary portion of the 

impedance equals zero.  This process results in  

 
 �6#6�6637 � 1#�66 � ��6�66372 � 0.  (2.6) 

 
Equation 2.6 is solved for ω, resulting in the resonant frequency of a coated RFID 

tag / planar inductor as 

 

  �� � � ���: � �;%
�% .    (2.7) 

 
It should be noted that the combined resistance from the polymer and the 

capacitance, R2, does not affect the resonant frequency of the planar inductor.  

Therefore, all changes in the resonant frequency upon sensing are functions of the 

change in the permittivity and resistivity of the polymer layer as they affect the 

geometry of the coil.  

2.4.2 Relative Change in Frequency 
 

To obtain the relative change in frequency �∆=>=> " for a RFID tag / planar 

inductor chemical sensor, it is assumed that 
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 ∆�� � �� ′ � ��   (2.8) 
 

 
where �� ′ is the perturbed frequency.  Multiplying both sides of Equation 2.8 by  

?�� ′ / ��@ and assuming �� ′ / �� A 2�� results in the following 

 ∆�� ?2��@ � �� ′6 � ��6.   (2.9) 
 
 

From Equation 2.9, the relative change in frequency, 
∆=>=>  can be written as 

 ∆=>=> � =>′%�=>%
6=>% .   (2.10) 

 
 

The perturbed circuit elements are written as 

#′ � # / ∆#   (2.11a) 37 ′ � 37 / ∆37  (2.11b) ��′ � �� / ∆��.  (2.11c) 
 �� ′ is given by 

                                       �� ′ � B ��′�:′ � �;′%�′% .    (2.12) 

Substitution of Equation 2.7 and Equation 2.12 into Equation 2.10 gives 

 
 

∆=>=> � C;%D ;E′F:′�G;′%E′% HI�C�;%"J ;EF:�G;%
E% KI

;EF:�G;%
E%

.   (2.13) 

 
It is desired that the relative change in frequency be expressed in terms of 

the relative changes in the lumped element components, �∆�� " , �∆�:�: ", and �∆�;�; ".  
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Further substitution of Equations 2.11(a-c) into Equation 2.13 gives the relative 

change in frequency as: 

 
 

∆=>=> � M;%J ;?EN∆E@1F:N∆F:2�?G;N∆G;@%
?EN∆E@% KO�C�;%"J ;EF:�G;%

E% KI
;EF:�G;%

E%
 . (2.14) 

 
 
Binomial expansion is applied to the terms of Equation 2.14 assuming that the 

changes in the values are small and that the responses are all first order effects, 

resulting in 

 

�?�&∆�@?�:&∆�:@ � ���: �1 � ∆�� � ∆�:�: "  (2.15a) 

 
 

?�;&∆�;@%
?�&∆�@% � �;%

�%
��&∆G;G; "%
��&∆EE "% � �;%

�% �1 / 2 ∆�;�; � 2 ∆�� ". (2.15b) 

 
 
Substituting Equations 2.15(a-b) into Equation 2.14 and rearranging in terms of  

�∆�� " , �∆�:�: ", and �∆�;�; ", results in the relative change in frequency of a coated 

RFID tag / planar inductor as: 

 

∆=>=> � ∆�� ��16�;%�:�6�2��6�;%�:�6� " / ∆�:�: � �6�;%�:�6�" / ∆�;�; � 6�;%�:6�;%�:�6�" (2.16) 

 

This equation is helpful to predict which of the components will have the largest 

effect on the sensitivity of the sensor. 



20 
 

2.5 RFID / Planar Inductor as a Sensor Platform in Liquid 
 

2.5.1 RFID Operation in Liquid 
 

RFID tags as currently designed would not work well in liquid [21].  The 

introduction of dielectric spacers would be required to decrease the parasitic 

capacitance and allow for use in a fluid.  However, other researchers were able to 

read a tag through a liquid medium, although the liquid was not interacting with 

the surface of the tag [22].  These experiments show that RFID communication 

through a liquid is feasible, but dependent on the reader.  Since the focus of this 

work is the RFID tag / planar inductor chemical sensor, the most important factor 

to consider is the effect that the liquid has on the electric field. 

As a liquid flows over the surface of a RFID tag, as indicated in Figure 

2.3, the liquid will inhibit the ability of the tag to couple to an external energy 

source due to the changed dielectric that is in the fluid.  This reduction in external 

energy will lead to an increase in loss, seen in the resistance, and a shift in the 

resonant frequency due to the decrease in parasitic capacitance from the dielectric 

constant changing from air to that of the liquid.   

 

 
Figure 2.3 Bare RFID tag in liquid 

 

An example of the changes expected in the response of the tag is 

illustrated in Figure 2.4.  These changes include a decrease in both the resistance 
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and the resonant (or center) frequency.  While liquids have a large effect on RFID 

tags, the effect is reduced when a polymer layer is introduced on top of the 

antenna.  This change in resistance and resonant frequency occurs because the 

polymer layer traps the electric field, thus allowing less energy to be lost into the 

liquid. 

 

Figure 2.4 Comparison of bare tag response to response of coated tag in liquid 

 

2.5.2 Effects of Coated RFID Tag / Planar Inductor in Liquid 
 

For chemical sensing applications, a polymer layer is deposited on the 

traces.  In the present study, polyepicholorhydrin (PECH), will be used as the base 

layer in the RFID tag chemical sensor.  A diagram of this configuration is shown 

in Figure 2.5.  This polymer layer isolates the electric field from the fluid.  

However, for this to be most effective, a very thick polymer layer is necessary.   
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Figure 2.5 RFID Tag Coated with a Polymer in liquid 

 
Although the use of a very thick polymer layer is the most effective way to 

ensure that the liquid is isolated from the charge in the traces, it does not 

contribute to ensure the highest sensitivity.  Previous work by Marioli, et al. [23] 

shows that an ideal polymer layer does not completely cover the traces.  This 

technique isolates the electric field to ensure that the RFID tag works as designed. 

In general, a chemically sensitive polymer film is selected for the 

detection of a particular analyte.  For the detection of analytes in liquid 

environments, the analyte must displace the liquid’s molecules from the area near 

the coating surface and in the coating.  The interaction between the analyte and 

the polymer layer will result in changes to the physical properties of the polymer.  

A single polymer layer of PECH over an RFID tag will allow for changes in the 

parasitic capacitance due to changes in the dielectric constant of the film as a 

result of analyte sorption.  Because PECH has a low conductivity, it has minimal 

effects on the resistance associated with the traces of the RFID tag.  The 

introduction of a chemically sensitive conductive polymer could allow for higher 

sensitivity as detection occurs due to the changes to the geometry of the coil that 

would occur. 
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2.5.3 Effects of RFID Tag / Planar Inductor Coated with a Conductive 
Polymer in Liquid 

 
A conductive polymer will affect the response of the coil by connecting 

the traces of the tag, effectively shorting out the traces to act like a single metal 

sheet.  There are many different types of conductive polymers, including some 

that are conductive and others that become conductive as they interact with the 

solutions or the analytes.  Polyaniline (PANi), a conductive polymer, is used in 

the present work.  Because PANi cannot adhere to any medium, including the 

bare RFID tag / planar inductor, a layer of PECH was utilized as both as a sensing 

layer as well as the base layer onto which the PANi layer could be deposited.  The 

multi-layer sensor is illustrated in Figure 2.6. 

 

 

Figure 2.6 RFID tag coated with a conductive polymer in liquid 

 
 

Addition of PANi to the sensor configuration will allow for increased sensitivity 

over a single layer of PECH.  This increased sensitivity occurs because the 

conductive polymer will change the geometry of the coil, affecting the values of 

resistance and resonant frequency more than that of a single layer of PECH.  

Therefore, the multi-layer sensor configuration is implemented for this work. 
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3 EXPERIMENTAL METHODS 
 

3.1 Introduction 
 

The objective of this research is to investigate the applicability of an RFID 

sensor as a chemical sensor in liquid phase.  To test this concept, a dual layer 

sensor system consisting of poly(epichlorhydrin) (PECH) and polyaniline (PANi) 

as the partially selective polymers will be investigated for detection of toluene and 

ethylbenzene.  The sensor is characterized through experiments that are designed 

to test the sensitivity and selectivity of the sensor when subjected to the different 

analytes.  The experiments consist of exposing the RFID sensor to combinations 

of baseline solutions with different pH values and the different analytes.  The 

experiments are performed several times to confirm that the results are repeatable 

and reproducible.  In designing the experimental setup, efforts were taken to 

minimize the noise in the system that would affect the measured response (i.e. the 

resonant frequency and complex impedance) of the sensor.  The experiments 

consist of first exposing the sensor to a reference solution, and then allowing for 

the system to stabilize.  Upon system stabilization, the sensor is exposed to the 

analyte solution and then allowed to reach equilibrium.  The analyte next is 

flushed from the system using the reference solution.  This process is repeated for 

increasing concentrations.  A typical set of data is shown in Figure 3.1, measuring 

the resistance of the sensor for varying concentrations of the analyte.  This data is 

representative of that measured throughout the different experiments.  Similar 

data is obtained for the monitoring of the resonant frequency of the sensor. 
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Figure 3.1 Representative data for the experiments performed.  This data monitors 
the change in resistance as the concentration of analyte is increased over time. 

 

Section 3.2 describes the materials and apparatus used in this set of 

experiments, as well as the steps taken in preparing the baseline, analyte, and 

polymer solutions and preparing the device for coating and experimentation.  

Section 3.3 details the equipment setup and procedures used for coating the 

device and collecting data. 
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3.2 Apparatus and Materials 
 

All analytical-grade materials used in this research were purchased from 

Sigma-Aldrich (Milwaukee, WI) and used as supplied. 

3.2.1 Baseline Solution and Preparation 
 

It is known that PANi becomes more conductive when in the presence of a 

strong acid [25,26,30,31].  Therefore, it is important to prepare acidic solutions to be 

used as the baseline solution and as the carrier solution.   HCl is diluted with de-

ionized (DI) water to prepare different solutions of varying acidity, which in turn 

varies the conductivity of the polymer.  HCl has a molecular weight of 36.46 g/mol 

and a density of 1.2 g/mL [32].  The pH of the solution depends on the concentration 

of HCl in the solution.  A higher acidic solution contains a higher percent 

concentration of HCl.   

Preparation of the baseline solution begins with proper cleaning of the 

required containers.  DI water is added to a certain amount of HCl to prepare a 

solution with a desired pH.  Knowing that the molecular weight of HCl is 36.46 

g/mol [32], a solution that is 1 M would require 36.46 g in 1000 mL solution.  

Another solution of 0.001 M was prepared by adding 36.46 mg in 1000 mL.  

Using a pH meter [40], the solutions were measured to determine the pH, as 

indicated in Table 3.1. 

 

Amount of HCl in 1000 mL Flask (g) Molarity of Solution pH of Solution 

0.03646 0.001 M 3.5 

36.46 1 M 1 
 

Table 3.1 Data table for preparation of different baseline solutions  
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3.2.2 Analytes and Analyte Solution Preparation 
 

The analytes used in these experiments are toluene and ethylbenzene.  

These analytes were chosen for the harmful nature that they have on humans.  The 

EPA has set a maximum limit allowed for both of these chemicals in drinking 

water [42].  Individual states also have limits placed on the amount of these 

chemicals present in waste water.  For example, for Wisconsin, the daily limits of 

toluene and ethylbenzene are 200 ppb and 140 ppb respectively for waste water 

[43].  It is necessary to have a sensor capable of detecting at least this level of 

chemical concentration, and ideally lower concentrations as well.   

Toluene is a clear, water-insoluble liquid that is often used as industrial 

feedstock.  Toluene has a boiling point of 111˚C,  molecular mass of 92.14 g/mol, 

and the empirical formula of (C6H5CH3) [27].  Ethylbenzene is a dangerous 

byproduct that is produced during the creation of polystyrene, a commonly used 

plastic material.  Ethylbenzene has a boiling point of 136 ˚C, molecular mass of 

106.167 g/mol, and the empirical formula of C6H5C2H5 [28]. 

Preparation of the analyte solution begins with proper cleaning of the 

containers.  De-ionized water (DI) and 100 mL of previously described baseline 

solution are both added to a 1000 mL flask.  A specific amount of analyte is 

added to create a solution with the desired concentration (ppm).  The appropriate 

volume of analyte is determined using the expression given by 

 

PQRP�R�ST�UQR UR VVW �  5�XX �� �
��Y�� ?Z@[ �'\
5�XX �� �
��Y��,]^ ����_,�
$ `�X��,
� X��+�,�
 ?Z@  (3.1) 
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Once the analyte is added to the mixture of DI water and baseline solution, 

the resulting solution is placed on a stirrer for an hour to ensure equal distribution 

of the analyte throughout the flask.  From Equation 3.1, a solution of 1 ppm for 

each analyte was obtained.  From the initial concentration, each analyte was then 

diluted to a desired lower concentration.  Table 3.2 shows the required volume of 

the analytes ethylbenzene and toluene for these experiments. 

Vol. Baseline Solution 
(mL) 

Vol. Analyte Solution 
(mL) 

Concentration of Toluene 
(ppm) 

0 120 1.038000168 
27 93 0.804450101 
51 69 0.596850056 
74 46 0.397900025 
97 23 0.198950006 
109 11 0.095150001 

 
Vol. Baseline Solution 

(mL) 
Vol. Analyte Solution 

(mL) 
Concentration of Ethylbenzene 

(ppm) 
0 120 1.04039969 
27 93 0.806309814 
51 69 0.598229897 
74 46 0.398819954 
97 23 0.199409989 
109 11 0.095369997 

 

Table 3.2 Data table for preparation of toluene and ethylbenzene analyte solutions 

 

3.2.3 Polymers and Polymer Preparation 
 

The two chemically sensitive polymers that are used are PECH and PANi.  

PECH has an average molecular weight of Mw=700,000 and a bulk density of 

1.36 g/mL
 
[29].  PECH is classified as a rubbery polymer at room temperature 

because of its low glass transition temperature of -25.5 °C [10].  The rubbery 
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nature of PECH allows for PANi to adhere to it, while also acting as a chemically 

sensitive layer. 

PANi has an average molecule weight of Mw= 65,000 [24].  Depending on 

the chemical composition of PANi, the polymer is either conductive or insulating.  

The form of PANi used in the present work is the emeraldine-base structure of 

PANi, which is insulating [24].  However, when emeraldine-base PANi comes in 

contact with a strong acid, it changes from an insulating polymer to a conductive 

polymer [25,30].  In an acidic environment, the emeraldine-base of PANi interacts 

with the hydrogen atoms from the acid.  This process, in which the hydrogen 

atoms (protons) are added to the polymer chain, is referred to as protonation of 

the polymer.  Figure 3.2 shows the chemical reaction for this process [26].  

Hydrochloric acid (HCl) is an acid that has been documented to protonate PANi.  

When HCl interacts with PANi, the chlorine ions that bond to the nitrogen atoms 

in PANi cause the formation of radical cations.  These radical cations in the PANi 

allow for increased charge mobility throughout the polymer chain, causing the 

change in conductivity [26].  When the acid is removed from the PANi, the 

polymer returns to the insulating form as the chemical reaction is reversible.  

Since PANi becomes conductive when protonated, it is beneficial to use an acidic 

solution for sensing measurements. 

 
Figure 3.2 Chemical Reaction of PANi from Insulating to Conductive Form 
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 The process in which PANi becomes increasingly conductive has been 

well researched.  MacDiamard, et al. [31] explains how PANi reacts when 

exposed to varying levels of pH in a solution and is shown in Figure 3.3.  PANi 

has three specific regions of conductivity depending on the pH of the solution: if 

the solution ranges from a pH of 7 to 4, the conductivity remains very low; if the 

solution ranges from a pH of 4 to 2, the conductivity increases in a linear fashion; 

and if the solution decreases from a pH of 2 to negative values, the conductivity 

remains constant at a high value.  

 

 

Figure 3.3 Conductivity of PANi as a function of exposure to HCl.  The red marks are the 
pHs used in the present experiments 

 

As the conductivity increases, the protonation of PANi causes the gaps 

between the traces to be shorted out.  The shorting of the traces causes the 

capacitance to greatly decrease, with the inductance increasing as the coil begins 

to act like a single sheet conductor.  When PANi is in its conductive form, it 
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affects the traces in a manner that allows for higher sensitivity due to the changed 

geometry.  This will cause a large increase in the resonant frequency of the tag 

and a decrease in resistance.   

It should also be noted that both PECH and PANi are stable in water, a 

key requirement for liquid phase applications. 

The polymers PECH and PANi are prepared using similar solution 

preparation procedures.  PECH is supplied as a rubbery mass, while PANi comes 

in granular form.  The solvents used to dissolve the polymers are chloroform and 

xylenes respectively for PECH and PANi.  Polymer solutions are prepared by 

using the weight/weight definition for percent solutions given by 

% b� � 5�XX �� c��Y5�_ ?Z@����� 5�XX �� X��+�,�
 ?Z@ [  100 (3.2) 

The concentrations of polymer solutions prepared are 2.99% wt PECH and 2.52% 

wt PANi.  The general procedures for preparing the polymer solution are given as 

follows [10]:  

1. Calculate the mass of solvent and polymer needed to prepare a specific % 

wt polymer solution.  

2. Clean solution container and dry.  

3. Place the dried vial on an electronic balance and zero. Add polymer until 

desired mass is reached.  

4. Using a pipette, add solvent to the container until the total mass of the 

polymer and the added solvent reaches the determined value for the 

desired wt% solution.  
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5. Seal the vial and place on a magnetic stirrer.  Leave solution on stirrer for 

24 hours.  

This procedure has been repeatedly used in the Microsensor Research Laboratory.  

The difference in the procedures for PANi involves an additional 30 minutes of 

the solution being placed in an ultrasonic cleaner to ensure all loose particles are 

properly mixed [39].  This sonication occurs during the first hour of the 24 hour 

stirring period. 

 

3.2.4 RFID Tags and Preparation 
 

RFID tags were received as samples from RCD Corporation [34].  Figure 

3.4 shows a tag before any preparation and after coating.  On the left is a tag that 

is bare and is placed on a glass slide for preparation.  The tag on the right is after 

it is coated with the dual layer film of PECH and PANi. 

 

 

Figure 3.4 A commercial RFID tag from RCD Corporation.  Model HFR11FCP8.0.  A bare 
tag is shown on the left, with the coated tag on the right. 

 
The tags are first tested to ensure they resonate at the designed frequency.  

As the tags are manufactured on thin plastic for use in many different 
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environments, it is necessary to place them on a solid surface that will provide 

support for the coating process without interfering with the test results.  To solve 

this problem, glass slides are used as substrate for the tag throughout the 

experimentation process.  The glass slides are trimmed to the same size as the tags 

to ensure they will fit in the test cell.  The tags are secured to the glass slide using 

3M Spray Mount Artist’s Adhesive [35].  The adhesive is first sprayed on the 

glass slide, and the tag is placed on top of the adhesive.  Once the tags are placed 

on the glass slide, they are left to dry overnight in the dessicator before the 

polymer coating process. 

 

3.2.5 Flow Cell 
 

A specially designed flow cell was fabricated to facilitate exposure of the 

polymer-coated RFID tag to the aqueous solution containing the analyte.  The cell 

was fabricated at the Discovery Learning Center at Marquette University [36].  

The cell acts as a holder for the tag on the glass slide, as well as the connection 

point for the Vector Network Analyzer (VNA).  Figure 3.5 shows the designed 

flow cell, and Figure 3.6 shows the fabricated flow cell.  Fluid flows into the flow 

cell through the inlet.  The fluid is directed over the RFID sensor that is placed in 

the middle of the flow cell.  The fluid leaves the flow cell through the outlet. 
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Figure 3.5 Solidworks design for RFID liquid-phase flow cell. 

 

 

Figure 3.6 Flow cell used for device characterization and experimentation.  Designed and 
manufactured by the Marquette University Discovery Learning Center. 

 

The base has a recess to hold the tag.  The polycarbonate top houses the 

pogo-pins that connect the tag to the VNA.  The cell is fitted with inlet and outlet 

ports.  A specially designed gasket fits around the flow area to provide an airtight 

seal for the flow system.  The tubing and connectors also provide an airtight seal 

for the system so that the proper pressure can allow aqueous solutions to flow 

through the system.  Gaskets around the pogo-pins shield them from the liquid.   
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3.2.6 Vector Network Analyzer 
 

The Hewlett Packard HP8753C VNA is used in this experiment.  The 

VNA includes the capability to convert S-parameter data to impedance data [38].  

The feature of converting to impedance internally allows the ability to track 

change in the resonant frequency and in the real impedance.  A computer is used 

to collect data every 20 seconds. 

A special calibration kit was created to properly calibrate the flow cell 

connection to the VNA.  The kit was created by modifying RFID tags placed on 

glass slides.  A short was created by soldering a wire to each contact, with an 

insulator under the wire so the wire did not contact the coil (Figure 3.7).  An open 

was created by slicing the traces near the contacts (Figure 3.8).  A 50 Ω load was 

created by soldering a 51 Ω chip resistor to the contacts, similar to the short as 

previously described (Figure 3.9).  Each of these calibration tags were placed in 

the flow cell and tightened to ensure proper connection of the pins to the contacts.  

When each of the tags had been used to create the entire calibration on the VNA, 

the resulting calibration setting was saved for further use in the present work. 

 

 

Figure 3.7 RFID Cal – Short 
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Figure 3.8 RFID Cal – Open 

 

 

Figure 3.9 RFID Cal – 50 Ohm Load 

 

3.3 Equipment Setup and Procedures 
 

3.3.1 Equipment Setup 
 

The experimental setup for this investigation consists of the VNA 

measurement system, the sensing system, and a liquid sample delivery system.  

This setup is available in the Microsensor Research Laboratory at Marquette 

University for liquid-phase chemical-sensor research and development. The VNA 

measurement system consists of the VNA and PC-based Labview control 

software for data acquisition. The data (real impedance and frequency) collected 

by the network analyzer is transmitted to the PC for data analysis. 



37 
 

The Specialty Coating System (SCS) Model P6700 spin coater is used in this 

experiment for film deposition on the RFID tag [33]. A typical spin coating process 

involves depositing a small volume of the polymer solution onto the center of the coil 

followed by spinning the device at a high speed [33].  Centripetal force causes most 

of the polymer solution to spread while the tag is held steady by a vacuum chuck.  

Any excess solution flies off the edge of the substrate, leaving behind a thin film of 

polymer on the tag. The final film thickness and other properties depend on the nature 

of the polymer solution (viscosity, drying rate, percent solids, etc.) and the spin 

parameters (spin speed, acceleration, and ramp time) chosen for the spinning process 

[33]. The vacuum holds the tags in place as they are spun at 5000 rpm.  The settings 

used in the spin coating process can be found in Appendix A. 

A peristaltic pump (Cole Parmer Model 7518-00) is used to control the 

flow of aqueous solutions from the vial through the cell and into a waste 

container. The pump was calibrated before initial use [37].  

The sensing system includes the RFID tag mounted on a glass slide inside 

a specially designed flow-through cell to facilitate exposure of the coated device 

to the liquid of interest. The liquid sample delivery system consists of a peristaltic 

pump, a waste container, aqueous solution, and the connecting tubes. The 

experimental setup is shown in Figure 3.10.  
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Figure 3.10 Diagram of the Experimental Setup used to measure real and reactive 
impedance for a RFID tag exposed to Analyte / Baseline solution 

 

3.3.2  Procedures 
 

To conduct an experiment, the device must first be coated with the 

prepared polymers.  Once coated, the baseline and analyte solutions are prepared 

as previously described.  The coated device is then subjected to the baseline and 

analyte solutions with the use of the flow cell while data acquisition is performed. 

 
Device Coating 

Before coating a tag, the electrical contacts are masked using Kapton tape 

to prevent the contacts from being coated by the polymer.  The use of Kapton tape 

shields the contacts, ensuring proper electrical connection after coating.  Once the 

coating process is completed, the chuck and the bottom of the device are cleaned 

thoroughly using cotton-tipped applicators and chloroform [10].  No chloroform 

or other chemicals are used on the surface of the tag as the chemicals break down 

the adhesive layer between the traces and the plastic backing of the tag. 
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In the current experiments, a layer of PECH is first coated onto the RFID 

tag, followed by a layer of PANi.  To ensure consistency in the layers, the same 

spin speeds and ramp times are used for each polymer.  The coatings are 

performed consecutively, with a cleaning of the chuck to ensure that no excess 

polymer affects the coating process.  The coating must be uniform to create an 

effective sensing layer [10].  A crude form of optical verification was performed 

to ensure a uniform coating layer was present.  The coated device was cured in 

ambient air for 19 hours in a desiccator to ensure no dust or any other molecules 

adhere to the polymer. 

The final film thickness is a function of the viscosity of the polymer 

solution and spin coating conditions.  A thickness characterization experiment 

was performed to determine the appropriate spin coating speed and polymer 

solution concentration for a desired film thickness [10].  A microbalance scale 

[44] was used to estimate the thickness of the polymer layer for each coated tag 

using the following expression 

 

  �dUPeR�ff?W@ �  g����$ ��Z 5�XX ?Z@� `�_� ��Z 5�XX ?Z@
�,$�h �� ��Z ?5@[ ��
Z�h ��  ��Z ?5@[$�
X,�Y �� c��Y5�_ � ijkl".

 (3.3) 

 
Data Acquisition and Analysis 
 

Prior to each measurement, a full one-port calibration of the VNA is 

performed by following the steps outlined in [41] using the calibration kit as 

previously described.  Once saved, the calibration file includes the settings 



40 
 

regarding center frequency, span, and other necessary measurement settings, and 

is recalled before each experiment.  The pump is started to fill the cell with the 

baseline solution.  Air bubbles are removed from the cell by tapping the sides 

until the bubbles move to the outlet of the cell.  This removal of air bubbles is 

necessary to avoid disturbance of the sensor response [10].  The aqueous solution 

is flowed over the tag at 1 mL/min to keep low pressure and allow for laminar 

flow over the tag. 

A Labview program is started after introducing the baseline solution into 

the cell to continuously collect data.  The data received from the Labview 

program, i.e. the resistance and resonant frequency, is saved for subsequent data 

analysis. 

After stabilizing the device in the baseline solution for one hour, analyte is 

introduced into the flow cell.  A preconditioning run of the lowest concentration 

in ppm is performed.  Upon completion of preconditioning, the analyte solution is 

flushed with the baseline solution.  Once it is ensured that the response has 

returned to the baseline after another half hour, the concentration of the analyte 

solution is routinely increased every half hour, flushing for another half hour 

between concentrations.  This process is repeated until the highest concentration 

has been reached and flushed, at which point the experiment is complete. 

Upon completion, the results are transferred for data analysis.  The results 

will be analyzed in terms of sensitivity, selectivity, limit of detection, and 

response time. 
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4 Results and Discussion 
 

4.1 Introduction 
 

A coated RFID tag with a two-layer film consisting of polyaniline (PANi) 

over poly(epichlorhydrin) (PECH) was investigated for the detection of organic 

compounds (toluene and ethylbenzene) in liquid phase environments.  Four 

different experiments were performed and repeated to ensure reproducibility.  In 

this chapter, results from the experiments are shown and discussed by analyzing 

the sensor response to determine the sensitivity of the polymer layer to the 

different analytes.  The shifts in the real part of the impedance (resistance) and 

resonant frequency due to analyte sorption are measured.  This chapter also 

details the different responses of the two-layer film to the different pH baseline 

solutions used.  A comparison of partial selectivity of the film layer is also 

included to show the different responses of the sensor to similar concentrations of 

toluene and ethylbenzene.  A discussion on the limit of detection of both analytes 

in each baseline solution is included, as well as an analysis on the response time 

of the system to each analyte.  The information presented here is expected to be 

used in the design and implementation of RFID chemical sensors in liquid phase 

environments. 
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4.2 Sensor Responses 
 

Several different experiments were performed for different analyte / 

baseline solution pairs with the same film.  Figures 4.1 through 4.10 show typical 

sensor responses (change in resistance and resonant frequency shift) to varying 

concentrations of toluene (0.1–1ppm) and ethylbenzene (0.1–1ppm) in aqueous 

solutions after it has been baseline corrected.  A set of raw data is shown in 

Appendix B, along with details as to how the baseline correction was performed.  

The measured changes in resistance and resonant frequency can be correlated 

directly with the analyte-induced changes in the viscoelastic properties of the film 

layer.  The pH of the solution also contributes to the different responses.  As the 

concentration of chemical increases in the baseline solution, the pH of the 

baseline solution also increases, becoming more basic.  This change in pH appears 

to further contribute to the response due to the conducting nature of PANi.   

There were large spikes in the resonant frequency when using a baseline 

solution of pH = 1 at a concentration of 1 ppm, seen in Figures 4.2 and 4.6.  These 

large spikes are due to the change in acidity as the pH increases as the 

concentration increases.  A concentration of 1 ppm shifts the pH of the solution 

near a pH = 2, which is on the crest of the linear region.  At this point, the 

frequency increases due to the decrease in the protonation of the polymer.  There 

is also a large spike in the frequency in Figure 4.4.  This spike is due to a decrease 

in the resonant frequency that quickly increased when the analyte solution was 

flushed with the baseline solution.  The spike is due the baseline correction of the 

measured signal.  
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The RFID tag is coated with an estimated thickness of 1.5 µm total layer 

thickness as determined by thickness estimations performed.  While the same 

recipe and volume of polymer was used to create the film for each tag, the 

thickness varied slightly.  The slight difference in thickness for the same layer 

may be due to a small difference in temperature, therefore viscosity.  Although 

the total film layer varies per experiment, the consistent method used to create the 

polymer layer allowed for reproducible data using a PECH / PANi dual layer film.   

The measured shift in resistance for two identical experiments is shown in 

Figure 4.9 and Figure 4.10.  The relative times of analyte injection and flush have 

been shifted for comparison of the two experiments.  The large difference 

between the two experimental results in Figure 4.10 is due to the fact that new 

sets of baseline and analyte solution were prepared for each run.  While similar 

concentrations were prepared, it could not be verified that the solutions were 

identical.  It should also be noted that the shift in both resonant frequency and 

resistance was completely reversible when the analyte solution was flushed with 

the baseline solution.   
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Figure 4.1 Change in Resistance of RFID Sensor to Increasing Concentration of Toluene in 
an Aqueous Baseline Solution of pH =1 
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Figure 4.2 Change in Frequency of RFID Sensor to Increasing Concentration of Toluene in 
an Aqueous Baseline Solution of pH = 1 
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Figure 4.3 Change in Resistance of RFID Sensor to Increasing Concentration of Toluene in 
an Aqueous Baseline Solution of pH = 3.5 
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Figure 4.4 Change in Frequency of RFID Sensor to Increasing Concentration of Toluene in 
an Aqueous Baseline Solution of pH = 3.5 
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Figure 4.5 Change in Resistance of RFID Sensor to Increasing Concentration of 
Ethylbenzene in an Aqueous Baseline Solution of pH = 1 
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Figure 4.6 Change in Frequency of RFID Sensor to Increasing Concentration of 
Ethylbenzene in an Aqueous Baseline Solution of pH = 1 
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Figure 4.7 Change in Resistance of RFID Sensor to Increasing Concentration of 
Ethylbenzene in an Aqueous Baseline Solution of pH = 3.5 



51 
 

 

 

 

 

 

Figure 4.8 Change in Frequency of RFID Sensor to Increasing Concentration of 
Ethylbenzene in an Aqueous Baseline Solution of pH = 3.5 
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Figure 4.9 Comparison of Two Experiments of Increasing Concentrations of Toluene in an 
Aqueous Baseline Solution of pH = 1.  Injection and flush times have been shifted for 

comparison purposes. 
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Figure 4.10 Comparison of Two Experiments of Increasing Concentrations of Toluene in an 
Aqueous Baseline Solution of pH = 3.5.  Injection and flush times have been shifted for 

comparison purposes. 
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4.3 Comparison and Effect of the Solution pH 
 

A difference in the response of the RFID tag sensor for different pHs of 

the baseline solution has been observed.  Analysis from MacDiamard, et al. [31] 

provides more details as to the reason for the different responses.  The protonation 

that occurs in the reaction of the acidic solution with PANi greatly increases the 

conductivity.  When the solution has a pH greater than 4 (closer to neutral), the 

conductivity remains very low, in the order of 10-10
 � �mng5".  As the pH of the 

solution becomes more acidic, a region between pH values of 4 and 2 exhibits a 

linear increase in conductivity.  Once the solution becomes more acidic with a pH 

of 2 or less, the conductivity again stabilizes with a value near 100� �mng5". 

The value of conductivity of the polymer greatly affects the geometry of 

the RFID tag, which in turn affects the response observed in the experiments.  

Table 4.1 details what typically happens as the conductivity increases, decreasing 

the number of the turns and increasing the width of the traces and the length of the 

coil.  These values are calculated using the equations described in Ch. 2 for R and 

L , the resistance and inductance associated with the RFID tag. 

  Bare Tag Low conductive polymer High conductive polymer 
R 334.6153846 178.4615385 89.23076923 
L  2.13269E-06 1.12468E-06 1.24986E-08 

    
Parameters changed by increase in Conductivity of Polymer 

length 0.075 0.08 0.2 
number of 

turns 8 6 1 
width  0.0002 0.0004 0.002 

 

Table 4.1 Change in resistance and inductance of RFID tag as conductivity increases 
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Current experiments were performed in the linear region (pH = 3.5) and in 

the saturated region (pH = 1).  Figures 4.11 and 4.12 show the change in 

resistance versus concentration of toluene.  Figures 4.13 and 4.14 show the 

change in frequency versus concentration of toluene.  Similar results were seen 

for ethylbenzene.  A baseline solution of pH = 3.5 results in an increase in 

resistance when interacting with the increasing analyte concentration.  This can be 

explained as a result of the solution pH increasing further away from the linear 

region for the conductivity of PANi, and into the lower stable region.  In this 

lower region, the low conductivity of PANi results in an increase of resistance as 

analyte sorbed into the polymer layer.  As concentration increases, the response of 

the sensor increases.  The increase in resistance can be attributed to both the 

changing pH of the analyte solution for each concentration of the analyte, as well 

as to the analyte sorbing into the polymer.   

In comparison, a baseline solution of pH = 1 results in a decrease in 

resistance when interacting with increasing analyte concentration.  This can be 

explained by the baseline solution placing the conductivity of PANi in the 

saturated linear region.  Increasing analyte concentrations do not increase the pH 

of the solution to a value that causes a shift to the linear region of the conductivity 

of PANi.  Since the conductivity remains relatively constant and much higher 

than the experiments at a pH = 3.5, the decrease in resistance is attributed to the 

PANi acting like a short across the traces of the tag.  Therefore, the increasing 
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analyte concentration adsorbs into a steady layer of PANi with a pH = 1, resulting 

in larger decreases due to the shorted traces acting like a large sheet resistor. 

It should be noted that while changes in frequency are noted for both pH 

values, the increased conductivity has a negative impact on the response of the 

RFID tag / planar inductor.  Using the baseline solution of pH = 1 shifts the 

resonant frequency from near 20 MHz towards 80 MHz with a large change in the 

inductance value.  While this increase in resonant frequency does not have a 

major impact on the current measurements, it is undesirable for insertion into a 

full RFID system because it will shift the resonant frequency of the tag outside of 

the allowable bandwidth of the reader, rendering the tag useless.  Use of the 3.5 

pH baseline solution keeps the resonant frequency near the original resonant 

frequency, which is desired for future implementation as a wireless sensor. 

Independent measurements of the pH of each solution were taken with a 

pH meter.  Adding analyte to the acidic baseline solution caused an increase in 

overall pH of the solution since the analytes are more basic than the baseline 

solution.  Therefore, the higher the concentration of analyte, the higher the pH of 

the solution became.  To increase detection sensitivity for a wide range of 

concentrations, it is recommended to perform all experiments near a pH of 1. 

While the results are noted to be repeatable, a true error analysis of the 

experimental data is not provided.  The magnitude of error for the change in 

resistance is noted to increase with an increase in concentration.  However, there 

was no independent measurement of the concentration of each solution to produce 

the error data.  
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Figure 4.11 Change in Resistance versus Increasing concentrations of Toluene in an Aqueous 
Baseline Solution of pH = 1 

 
Figure 4.12 Change in Resistance versus Increasing concentrations of Toluene in an Aqueous 

Baseline Solution of pH = 3.5 
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Figure 4.13 Change in Frequency versus Increasing concentrations of Toluene in an 
Aqueous Baseline Solution of pH = 1 

 

 
Figure 4.14 Change in Frequency versus Increasing concentrations of Toluene in an Aqueous 

Baseline Solution of pH = 3.5 



59 
 

4.4 Partial Selectivity 
 

Experiments were run with both toluene and ethylbenzene.  Both analytes 

provided similar responses in terms of magnitude and response time.  To be able 

to properly differentiate between the two analytes, a comparison between the 

change in resistance and the change in frequency are both needed.  Toluene and 

ethylbenzene are both polar compounds with similar chemical structures, so their 

interaction with the polymer layers is very similar.  When in a baseline solution of 

pH = 1, it is difficult to differentiate between the two analytes due to each of the 

solutions having similar conductivities.  However, when comparing the results for 

a baseline solution of pH = 3.5, the results become slightly more distinguishable.  

Ethylbenzene provides a higher increase in resistance, with a larger decrease in 

frequency as well.  This is because ethylbenzene provides a larger shift in pH than 

toluene to the overall solution.  The larger shift in pH coupled with the interaction 

of the ethylbenzene with the polymer layer creates the larger shifts.  These results 

prove that partial selectivity can be achieved for this sensor.  To increase the 

selectivity of this sensor, it is recommended to perform all experiments in the 

linear region of the conductivity, i.e. near a pH of 3.5. 
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Figure 4.15 Change in resistance versus increasing concentration of both toluene and 

ethylbenzene for an aqueous baseline solution of pH = 1 

 
Figure 4.16 Change in resistance versus increasing concentration of both toluene and 

ethylbenzene for an aqueous baseline solution of pH = 3.5 
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4.5 Limit of Detection and Response Time 
 

Two other important characteristics of this sensor are the limit of detection 

and the response time.  Limit of detection, the lowest amount of chemical able to 

be detected, is defined by [10]: 

   #op �  8qr     (4.1) 

where δ is the noise of the measured signal and S is the sensitivity of sensor.  The 

sensitivity of each sensor configuration is determined by the slope of the response 

when fitting the measured shift in resistance versus the concentration of analyte.  

The noise of the measured signal is defined as the level above or below the steady 

state response.  Limit of detection varies for analyte / baseline solution pairs.  

Table 4.1 gives the average noise and sensitivity measured for each experimental 

setup, along with the limits of detection that correspond.  The noise of each 

configuration is found by averaging the noise on the steady state response of the 

measured resistance for each concentration.  The noise for each concentration is 

then averaged to provide an overall average noise for the sensor with a given 

baseline solution and analyte.  The sensitivity of each configuration is found from 

the fit to the measured data.  The limit of detection for toluene is 1.4 ppb in a 

baseline solution of pH = 1, and 6.24 ppb in a baseline solution of pH = 3.5.  The 

limit of detection for ethylbenzene is 0.9 ppb in a baseline solution of pH = 1, and 

8.3 ppb in a baseline solution of pH = 3.5.  Regardless of the baseline solution, 

the low limits of detection indicate that detecting trace amounts of either chemical 

is possible.  The low limits of detection also prove that this sensor would be able 

to detect the levels of maximum daily allowance of toluene and ethylbenzene as 
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defined for drinking water by the EPA [42] and for waste water by the state of 

Wisconsin [43].  Experiments with lower levels of each analyte were not 

attempted due to the inability to independently measure and verify concentrations 

lower than 100 ppb. 

 

    δ S 

LOD 

[ppb] 

pH = 1 

Toluene 0.087906 190.283 1.38593 

Ethylbenzene 0.056521 190.283 0.891113 

  

pH = 

3.5 

Toluene 0.062364 30.003 6.235778 

Ethylbenzene 0.095884 34.671 8.296614 

 

Table 4.2 Measured values of noise and sensitivity for each sensor configuration to provide 
Limit of Detection (LOD). 

 

Response time is defined as the time it takes the sensor to respond to 90% 

of its steady state value.  In determining the response time of the sensor, 90% of 

steady state is calculated for each experiment and analyte concentration.  When 

the time taken to reach this 90% value is found, the data is averaged to find the 

average response time of the sensor to each concentration level.  As analyte 

concentration increases, it takes the sensor longer to reach 90% of its steady state 

value.  This is due to fewer sites in the polymer for the analyte to sorb into.  The 

response time for the sensor sensing toluene in a baseline solution of pH = 1 is 

7.76 min, and 5.2 min for a baseline solution of pH = 3.5; with ethylbenzene as 

the analyte, the response times are 6.9 min and 5.32 min for baseline solutions of 

pH = 1 and pH = 3.5 respectively.  The fast response times seen in the 

experiments are ideal for use as a chemical sensor. 
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The results shown here provide evidence that an RFID tag / planar 

inductor liquid-phase chemical sensor is possible.  Results from the present 

measurements varied for different pH values due to the changing conductivity of 

PANi.  
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5 SUMMARY, CONCLUSION, AND FUTURE 
WORK 

 

5.1 Summary 
 

The objective of this work was to investigate the use of an RFID tag / 

planar inductor as a chemical sensor in liquid-phase environments.  Focusing on 

the planar inductor coil of an RFID tag as the sensor platform, a dual layer film 

was investigated for high sensitivity of organic compounds.  To improve 

sensitivity, a conductive polymer was introduced that allowed for different results 

dependent on the pH of the aqueous baseline solution.  Fast sensor response was 

observed for both analytes, as well as good reversibility.  From the responses 

shown, suggestions were made to improve either the sensitivity or the selectivity 

of the sensor. 

An overview of chemical sensors was first presented, with an emphasis on 

RFID tag / planar inductor chemical sensors.  Equivalent circuit analysis on both 

bare and coated RFID tags was presented to better understand how analyte 

sorption into the polymer layer affects the lumped elements of the RFID / planar 

inductor equivalent circuit.  The resonant frequency for a coated tag and the 

related change in frequency were derived to predict which elements would 

provide the highest amount of sensitivity.  In this analysis, higher order terms 

were neglected as the chemical sorption was assumed to be the only effect on the 

response of the sensor. 
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Experiments were performed to determine the use of an RFID tag / planar 

inductor sensor in liquid-phase environments.  A liquid flow cell was designed 

and fabricated to properly test the sensor.  A dual layer film consisiting of 

poly(epichlorhydrin) (PECH) under polyaniline (PANi) was implemented as the 

sensing layer.  These polymers were chosen for their known sensitivity to the 

analytes toluene and ethylbenzene; PANi was specifically chosen for its 

conductive nature.  The specific analytes were chosen due to the harmful nature 

that these chemicals have on humans, along with the maximum daily allowances 

of these in both drinking and waste water.  The RFID tags were characterized 

using a vector network analyzer to determine the properties of the bare tags.  The 

tags were then spin-coated with the dual layer film.  Data was collected from the 

coated tags for varying concentrations of analyte (toluene or ethylbenzene) in 

baseline solutions of two different pHs. 

Results were presented proving the use of an RFID tag / planar inductor as 

a liquid-phase chemical sensor platform.  Typical sensor responses showing shifts 

in both resistance and resonant frequency from exposure to toluene and 

ethylbenzene were presented.  Analysis on the responses for the differing pH of 

the baseline solution was also presented showing how the protonation of PANi 

affects the sensing ability.  The sensor with the dual-layer coating showed partial 

selectivity dependant on the conductivity of PANi.  The limit of detection and 

response time were both defined and presented for toluene and ethylbenzene for 

the current measurements. 
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5.2 Conclusion 
 

An ideal chemical sensor should exhibit reversibility, high sensitivity, 

high selectivity to a given analyte, and a fast response time.  In creating a 

chemical sensor, there is often a compromise between these parameters.  In this 

work, it has been shown that a dual-layer polymer coating of PECH and PANi 

provides the necessary sensing layer for the detection of organic compounds in 

aqueous environments. 

Typical sensor responses show very high sensitivity to both toluene and 

ethylbenzene.  Shifts in both resistance and frequency can be used together to 

properly identify and quantify the analyte being detected.  The addition of PANi 

provided added sensitivity as the traces of the planar inductor began to effectively 

short out with increasing conductivity of the polymer.  Similar response times 

were also noted for both analytes, with the response time increasing as analyte 

concentration increased.  The similar sensor responses to both analytes are likely 

due to the similar chemical structure of the analytes.  Partial selectivity is 

necessary for a chemical sensor to determine which chemical is sorbing into the 

polymer.  The partial selectivity noted between the two analytes for the aqueous 

baseline solution of pH = 3.5 is due to the changing conductivity of PANi.  While 

the dual-layer polymer system provides good sensor response, different films 

should be investigated that have high sensitivity and a fast response time, but 

increase the selectivity between the target analytes. 

Changing the pH of the baseline solution provided different sensor 

responses.  This is due to the different level of protonation of PANi that occurred 
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between the baseline solution and the polymer layer.  As the pH of the baseline 

solution decreases, becoming more acidic, more hydrogen atoms are available to 

bond with the amide nitrogens in the PANi.  When the bonding occurs, this allows 

for increased charge mobility through the film, further increasing the conductivity 

of the film.  Lower pH solutions increased the conductivity of PANi to a level that 

drastically changed the behavior of the tag, shifting the resonant frequency from 

around 20 MHz to 80 MHz.  This occurs since the PANi acts like a conductive 

sheet over the traces, effectively shorting out the traces.  The large shift in 

frequency is related to a decrease in both the inductance and the capacitance of 

the tag.  While using the baseline solution with a pH = 1 produced a very sensitive 

response, this is not ideal for implementation as a chemical sensor in RFID 

systems due to the large shift in the resonant frequency.  This shift would cause 

the tag to no longer work with the previously designed reader.  While the results 

with the aqueous baseline solution of pH = 1 provided the largest sensitivity, the 

results from the aqueous baseline solution of pH = 3.5 also provided highly 

sensitive results.  As the resonant frequency did not shift in the baseline solution 

of pH = 3.5 and because the sensor exhibited a high sensitivity, the selected pH 

range represents the ideal operating range for implementing a full RFID sensor 

system.   

If the baseline solution’s pH is decreased to increase the conductivity of 

PANi while keeping the conductivity in the linear range [31], higher sensitivity 

will be seen due to the increased conductivity and the continual increase in pH 

from increased analyte concentration.  However, the limit of detection is 
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increased for higher pH values, making it difficult to detect low quantities of 

analyte.  Limit of detection for an aqueous baseline solution of pH = 3.5 was 6.24 

ppb for toluene and 8.3 ppb for ethylbenzene, which are both still well below the 

hazardous limits allowed by the EPA [42] and the Wisconsin DNR [43].  To 

create an ideal chemical sensor with high sensitivity, good selectivity, and low 

limit of detection, similar preparation of the dual layer coated RFID tags should 

be implemented with a baseline solution of pH = 3.5. 

 

5.3 Future Work 
 

While the results prove the use of a liquid phase RFID tag / planar 

inductor chemical sensor is possible, there are many opportunities to further this 

work.  The first suggestion for future work is to implement the wireless capability 

of this sensor by integrating this into an RFID system.  This would allow for the 

capability to sense chemicals in a liquid environment without having to prepare a 

sample of the solution to be tested.  Results could be immediately correlated to 

chemical concentration, further decreasing the amount of time necessary to 

determine if hazardous concentrations of chemicals are present.  Once the concept 

is tested at a fixed configuration, further tests that change the orientation of the 

reader to the tag would be necessary to ensure proper operation without a 

decrease in coupling or distance between the reader and the tag. 

The measured results were due to changes in the geometry of the planar 

inductor for the given RFID tag when the polymer became more conductive.  The 

specific tag used in the experiments was chosen for its size as a sensor and for 
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rapid availability.  However, RFID tags of different dimensions or geometries 

may produce improved results for use as a chemical sensor.  Different geometries 

would need to be tested to determine if a different geometry, such as a square 

planar inductor or another RFID tag design, would produce higher sensitivities, 

increased read range, or modify another desired parameter.   

A polymer that would allow for similar conductivity but not require any 

sample preparation, i.e. no acid in the baseline solution, would be ideal.  The 

investigation and development of such a polymer would be necessary, followed 

by testing to confirm that it provides similar results to those seen in the present 

work.  The polymer would need to adhere to the sensor surface and remain on the 

sensor when subjected to an aqueous baseline solution.  The removal of the 

additional polymer layer will allow for the conductive nature of the new polymer 

to have an increased effect on the planar inductor’s geometry. 

Finally, to implement the RFID tag / planar inductor sensor as an ideal 

chemical sensor platform, it is necessary to increase the selectivity between 

differing analyte species.  Current experiments show partial selectivity between 

toluene and ethylbenzene depending on the pH of the baseline solution.  It is 

desired that the selectivity between these analytes be noticeable regardless of the 

pH of the solution.  This could be done through the removal of the sample 

preparation, but further investigation would be necessary to ensure that the sensor 

is capable of differentiating between different analyte species. 
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APPENDIX A:  Spin Coater Settings 
 

Below are the spin coater settings used during the present experiments to uniformly 

coat the RFID tags.  These specific settings were chosen from past experience in the 

Microsensor Research Lab, as well as from testing to determine which recipes gave 

uniform polymer coatings.  Setting 1 was used for coating the base layer of PECH, while 

Setting 3 was used to coat the conductive polymer PANi onto the device. 

 
Setting 1: 
RPM 1:   0100 
RAMP 1:   0003 
TIME 1:   0002 
RPM 2:   0100 
RAMP 2:   0003 
TIME 2:   0002 
RPM 3:   5000 
RAMP 3:   0003 
TIME 3:   0050 
RAMP 4:   0003 
 
Setting 3: 
RPM 1:   0100 
RAMP 1:   0003 
TIME 1:   0002 
RPM 2:   0100 
RAMP 2:   0003 
TIME 2:   0002 
RPM 3:   5000 
RAMP 3:   0003 
TIME 3:   0040 
RAMP 4:   0003 
 
The parameters for each recipe include RPM, how fast the chuck spins during the 

segment, TIME, how long the chuck remains at the given speed, and RAMP, the 

approximate amount of time it takes to reach the desired speed.  RAMP 4 is defined as 

the approximate time it takes for the chuck to come to a complete stop at the end of the 

coating cycle.  
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APPENDIX B:  Raw Data and Baseline 
Correction 

 
Below are examples of raw data achieved during the experiments.  While sometimes 

the raw data was clean, there was often some baseline drift that needed to be properly 

corrected.  Also, baseline correction provided a tool to show the magnitude of changes 

when the chemical sorbed into the polymer.  Baseline correction is performed by a linear 

interpolation between when one concentration of analyte is introduced until the next 

concentration is introduced. 

 

Raw data of RFID tag: resistance during exposure to toluene using a baseline solution of pH = 3.5 
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Raw data of RFID tag: frequency during exposure to toluene using a baseline solution of pH = 3.5 

 

 The baseline corrected data is measured as the change in each parameter, such as 

change in resistance or change in frequency, from the baseline of the measurements.  The 

resulting baseline corrected data can be correlated to Figure 4.7 for resistance and Figure 

4.8 for frequency. 
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