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Abstract 

A domination graph of a digraph D, domeD), is created using the vertex 
set of D, V(D). There is an edge uv in domeD) whenever (u, z) or (v, z) 
is in the arc set of D, A(D), for every other vertex z E V(D). For 
only some digraphs D has the structure of domeD) been characterized. 
Examples of this are tournaments and regular digraphs. The authors 
have characterizations for the structure of digraphs D for which UG(D) = 
domeD) or UG(D) ~ domeD). For example, when UG(D) ~ domeD), 
the only components of the complement of UC(D) are complete graphs, 
paths and cycles. Here, we determine values of i and j for which UG(D) ~ 
domeD) and UGC(D) = C4 U P;. U Pj' 

1 Introduction 

Domination graphs were first introduced by Merz, Lundgren, Reid and Fisher [11] 
to describe the structure of the domination graphs and competition graphs of tour
naments. Let D be a directed graph, or digraph, with nonempty vertex set V(D) 
and arc set A(D). The domination graph of D, dom(D), is the graph created using 
the vertex set of D, V(D). An edge uv is in domeD) if for every other vertex z in 
D, either (u, z) or (v, z) is in A{D). The competition graph of D, C(D), is created 
on the vertex set of D with an edge xy if there exists a third vertex z E V(D) such 
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that (x, z) and (y, z) E A(D). Given a l0U77Wmc71l T, where there is exactly onc arc 
between each pair of vertices, dom(T) is the complement of the cOlllPetition graph of 
the tournament formed by reversing the arcs of T. Sillce dOIll(D) is a much sparser 
graph than the competition graph of a digra.ph, rvfer% et at. studied the domination 
graphs of tournaments to determine characteristics of the correspollding competition 
graphs. Such characteristics included the minirnum and maximulll number of edge..s 
in the competition graph of a tournament. 

Since that time, further refinements have been made ill the work on t01!rnaments, 
including that done by ella, Doherty, Kim and Lundgren ([1], [2)) and Ivlerz et al. ([7J, 
18], [9], [IO], [121). Por example, in [11, ello et aL cbaracLerized the structure of the 
domination graphs of regular tournaments. Givcn the complcxi ty of digraph struc
ture, a complete characterization of domination graphs is probably all unreasonable 
expectation. Thus, classes of digraphs are studied. In our research, the llllderlying 
graph of a digraph is of particular interest The wl.de1·lying graph of D, UG(D), 
is the graph obtained from D by removing the directions of t.he , .. res. Previously, 
we have used underlying grapbs to add to the knowledge bnsc by clw.racterizing di
graphs D where UG(D) = dom(D) [4], and some digraphs \vhere UG(D) ::: dom(D) 
(13], [Sj, [6]). In this paper, we find values of i and j where UCCD) ~ domeD) and 
UGC(D) = C4 UP; u~. 

In a digraph D, if (1l, v) E A(D), then 1l is said to donl.inalc v. vVhen for every 
other vertex z in V(D), either ('11., z) or (v, z) is an arc in D, then '11. and v fornl 
a dominating pai'r. Thus, all edges in dom(D) are formed by dominating pairs of 
vertices. A digraph D is considered a. bi01'tCntaiion of a graph G if for every edge 
uv E E(G), either (u, v) or (v, u) or both are arcs ill D, and D contains no other 
arcs. If for edge uv in G, only one of arcs (u, v) or (v, u) is in D, then the a.rc is called 
an oheniation of edge UV, or a single aTe. VVe say edge uv in G is bidi7'ected if it is 
replaced with arcs (u, v) and (v, '11.) in D. \iVhen all edges of G are bidirectcd edges 
in D, then D is a complete bio1'icniation of G, also known as a syrmnetric digraph. 
Althougb bidirected edges are allowed in D, there are no directed loops. 

\Nhen UG(D) ~ dom(D), there are often many edges. Let UGC(D) be the 
complement oj UG(D), where uv is an edge in UCC(D) if and only if it is not an 
edge in UG(D). Similarly define the complement of dom(D), clomC(D). If UG(D) ,....., 
domeD), then UGC(D) ~ domC(D). The dif"ference in the !lumber of edges can be 
seen in Figure 1 at the beginning of Section 2 where UCC(D) is shown in part (a), 
and UG(D) in part (b). It is quite apparent that UG"(D) ha .. ,,> significantly fewer 
edges. Thus, it is easier to work with UGC(D) and domC(D). 

To relate the results obtained from the complements to UO(D) and dom(D), we 
use the concepts of the union and the join of graphs and digraphs. The union of 
two graphs, denoted G U H, is the graph on vertex set 1/(0) U V(H) wit.h edrTe set 
E(G) U E(H) S"1 I d fi.· . . 0 

. " 1m] ar y. eme the union of two digraphs. FIgure l(a) shows the 
Ul1lon of c,\ and Pr.:.. The Jom of graphs G and H) G + H, is the grn.piJ G U H plus all 
cdg~s betwe.en each vertex in G and each vertex in H. Similarly, the join of digraphs 
~l <mel D2 j~ DI UD2 plus all arcs (x,y) and (y,x) for each x E V(Dd, Y E V(D?). 
FIgure 1(b) Illustrates q + P{ -
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The stmcture of UG(D) is limited when UG(D) ~ domeD). This is summed up 
in the [ollowing t.hree results. 

Theoren1. 1.1 (5] If Dh···,D),- oxe difl7YLphs with VG(D,) ~ dom(Di) fOT i 
1, ... ,k and D = Dl + D2 + ... + D je , then UG(D) ~ domeD). A/so 

1. UG(D) = =7=1 UG(D;); 

2. domeD) = =7=1 domeD;}; 

3. UGC(D) = U7=1 UG'C(D;); 

4· clomC(D) = U:'=1 clomC(Di)' 

Theoren1 1.2 IS} If UG(D) ~ domeD), Uwn each componc1d of VCe(D) is eith(T 
a complc/,c gmph, (L ]XLlh. 07' (t cycle. 

Corollary 1.3 15) IJUG'(D) ~ domeD), then Dis Uu:join oj Dll D2 , ... , D k , wlic7c 
U C(Di) is isom.orphic /;0 an 1:ndc]Joulcnt. sct., the c01HplcTlwnl, oj (J, 7mlh, 01" the com
plement; oj a. cycle, 

Theorem 1.2 gives the three basic components that comprise UGC(D) for the 
digraphs in which we a.re interested. The structure of D and UG(D) where UGC(D) 
is connected has becn completely charac:LerijOed [5], as have the cases where P l1 P2 
and C 4 arc the components of UGC(D) [Gj, and UGC(D) = Pi U Pj [31. In thif) paper, 
we find the values of i and j where UG(D) ~ domeD), and UGC(D) ~ C4 UPiUPj . In 
the next section, we set up the preliminaries by discussing tbe genera.l constructions, 
as well as previous results for i,.i = 1,2, In the final two sections, the case where 
i = 1 and j ~ 3 is examined as a special case and then the general case of i ~ 2, 
j ~ 3. The final theorem merges these cases to give combilled result.s for i,j ~ 1. 

2 The Prelin1.inaries 

'1''0 iIIustrat.e the bw-;ic ideas of tying together UGC(D) with UG(D) ~ domeD), 
consider Figure 1. In part (a.), VGC(D) = 0.1 UP5' Then ill part (b), UG(D) is shown 
with the edges between all vertices in C,~ a.llCi all vertices in Pt represented by a thick 
line. Consider what happens if directions are given to the edges of UG'(D). Even 
if all edges of UG(D) arc bioriented, i;Ollle pairs of vertices will never dominate in 
D. Sueh pairs wilt never be adjacent in domeD), so are a]wrtys adjacent ill domC(D). 
For example, consider pair Xl, 1:;, in Figure l(b). Neither :L'l nor X:3 is adjacent 
to vertex 1:2, so canno\; dominate X2. Thus, XIX3 is nhvays an edge ill dornC(D). 
Similarly, an edge Vi, Yi+2 will always be in clom"(D), sincc neither vert.ex is a.djacent 
to Yi+1 in UG(D). Figure l(c) shows all edges that a.re ,tlways ill dOlllC(D) given 
UGC(D) = C4 U Pr" Vvc call such an edge a gencm,tcd edge or, collectively, the 
genemted suupaths of clomC(D), 
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The generated subpaths for the component P" in UG('(D) are formally identified 
in the following lemma. 

Yl 
Xl X2 Xl Xz XI X2 

0 Y2 X- X YJ 

Y4 
X4 XJ X4 Xl X4 X3 

Ys Ys 

UG«D) UG(D) Subpaths in domC(D) 

(a) (b) (c) 

Figmc 1: (a) UCC(D) = C1 U P5 . (b) UC(D) with edges between all vertices of C% 
and all vertices of Pff represented by the thick line. (c) Ali generated subpaths in 
dom"(D). 

1. iJn is odd, x"x:h ... , Xn and X2, X4,"" Xn-l aTe paths in domC(D), and 

2. iJ n is even, Xl, X3, . .. ,Xn-l (Lnd X2, X4,' .. , x" are paths in domC(D). 

Remark 2.2 IJ uv is a genemted edge in domC(D), then theTe e:L"lsts a vertex z in 
UC(D) such that uz and vz (Lf'e not edges in UG(D). 

This is true because if there were an edge, it could always be oriented toward z 
from u or v, creating D where u and v are a dominating pair. Since a generated edge 
is always in domC(D) for every biorientation of UG'(D), this cannot happen. 

There can also be edges in domC(D) that are created. This require.."l a vertex x 
that either beats both u and v or is not adjacent to u a.nd beats v. For exarnple, 
orient edge XSYI in Figure l(b) from Yl to X3, making single arc (YI, X3) in D. Then 
neither X3 nor Y2 dominates YI, and edge X3Yz is "created" in domC(D). Vie call edge 
X3Y2 and others like it a created edge. 

Any vertex that two vertices do not dominate is referred to as a source of the 
edge between them in domC(D). For a. generated eelge, it is any vertex that is not 
adjacent to the pair. In Figure 1, X2 and :C4 are sources for the pair Xl> X3 in C4 . For 
a created edge, it is any vertex x as described in the preceding paragraph. From [6] 
we know the following. 

Lemma 2.3 [oj If UG(D) 3:! dOln(D) and every C07nlJOnent of UGC(D) is isomor
phic to K I , ]{z, aT 0 4, then no vertex oj D is a S011.l'Ce oj more than one edge in 
domC(D}. 

-
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Lemma 2.4 {u} If VC(D) ~ dom(D) CLnd y is the SOU7'ce of two 01' m07'e edges 
in domC(D), then the set of ver'tices which do not dominate y is contained in a 
c07nponent isomorphic to K,., r ~ 3 in UGC(D). 

Since we do not have any components in domC(D) that contain K,. for l' ~ 3, 
t.here can be no vertex that is the source of more than one edge in our constructions. 

Corollary 2.5 If VG(D) ~ domeD) and VOC(D) = C'q U Pi U Pj, then any veTtex 
is the SOU7"Ce of at most one edge in domC(D). 

Now we look specifically at the vertices of G.1 and their role as sources. 

Lemn."la 2.6 Let UO(D) ~ domeD) where evenJ component of VOC(D) is isomoT
phic to 1<1, K 2 , or'CIj, Ifxl,X2,X3,XIj,Xl forms C4 inUCC(D), then Xi is the SOUTee 
of exactly one edge in dom"(D): Xl and X3 are SOU1'ces of X2X4; Xi and X4 a7'e sovxces 
of XIX3, 

If VGC(D) ~ domC(D), the generated edges must be supplemented with created 
edges. The following corollary to Lemma 2,6 shows that the vertices of C4 cannot 
be sources for these created edges. 

Corollary 2.7 Let UG(D) ~ domeD) and C'l = Xl,X2,X3,XIj,Xl be a C01nponent 
of UOC(D). Then Xl, X2, X3, and X4 will not be sow'ces fOT any cr-caied edges in 
dornC(D). Pnrthellnor'e, edges XIX;! and X2X4 are generated edges in domC(D). 

Since the vertices of C4 cannot be sources, by Lemma 2.5 we conclude that the 
sources must come from the two paths that are the components of UOC(D). Let 
l~ = V1,"" Yi and Pj = Zl,"" Zj be the two paths. 

Lenuna 2.8 Let [(1 = {y} be a component in VOC(D). Then vertex y in D can be 
the source of any c7'eated edge 'Uv in dOll1C (D) where y =f u, v. 

Proof. If Y is an isolated vertex in VGC(D), then y is adjacent to every othel' vertex 
in VGCD). Therefore, if (y,1L) and (Y, v) are single arcs in D, Y is a source of edge 
uv in domC(D) since II and v do not dominate y in D. Because there are no loops, 
y cannot be incident with any edge for which it is ,1 source, so y =f u, v. • 

Next, we find what vertices of paths can be sources, and ,"vhat vertices are incident 
with the sourced edges in clomC(D). In the following lemma, N(y) is the neighbodwod 
of y, which is the set of vertices adjc1.cent to y. 

Lemm.a 2.9 [6] If VC(D) ~ domeD) and N(y) = {x} in VGC(D), then y is a 
SOUTce of at most one edge in domC(D), and this edge will be incident to x, 
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Lemma 2.10 is} Let UC(D) ~ dom(D), UCe(D) = U~=l P"i' n; ;::: 1, and P rl , = 
Xli, X2;, ... ,X"i;' IJ (u, v) in D is an mientaiion of edge uv in UC(D), then u = Xlj 

OT It = Xnjj fOT some 1 ::::; j ::::; k. 

Corollary 2.11 If UCCD) S:! domeD), each component of uce(D) is either C4 01' 

a path, and y is the SOU1'ce of a cTeated edge in domC(D), then y is an end ve1'te:c oj 
a path. 

Lemma 2.12 Let UC(D) S:! domeD) where P = XI,"" .');i is (L component oj 
UGC(D) jor i ::::: 3. If XI 07' Xi is the source of a cr-eaied edge in dom,C(D), then 
that created edge is incident with X2 aT Xi-I r-espectively. 

Proof. Let (x), u) be a single arc in D. Then neither u nor ,');2 dominates .'/;1, and 
UX2 is an edge in domC(D). A similar argument holds for Xi and Xi-) when i ?: 3. _ 

The sources that can be used to create edges in domC(D) have now been identified, 
as well as the vertices with which those edges nUlst be incident. Following is a lemma 
that shows the only possible vertex that can be the origin of more than one single 
arc in D is a. vertex isomorphic to the component 1(1 in UGC(D). 

Lemma 2.13 {6} Let UG(D) S:! domeD) where every component of UCC(D) is i80-

rr(017)liic to J(l, 1<2, or C'.1. Let X be a ver'iex of D. If 2,' is in a component isom.017)hic 
to C.j in UGC(D), then x is the O1igin of no single aTCS of D. IJ x is in a component 
iSOTlW1]Jhic to J(2 in UGC(D), then x is the O1'igin of at most one single arc of D. 
If x is in a component isomoTphic to ](1 in UGC(D), then x is the oTigin oj at most 
two single aTCS of D. 

To complete the construction preliminaries, it is important to have an idea of . 
where the created edges can be placed. Consider a path P = VJ, Y2, ... } Yi-l, Yi in 
UGC(D). We call YI and Yi the oute?' veTtices of P. Vertices Y2 and Yi-l are called the 
inner- end vedices (since these are the end vertices of generated sub paths) . All other 
vertices of the paths are inner vertices. First, we deterrnine under what conditions 
an edge may be incident with a vertex in domc(D). 

Proposition 2.14 LetUG(D) ~doIl1(D) andUGC(D) =C4UPiUP. Ifv E V(D) 
is incident with exactly one genemted edge in domC(D), then v is i~cident with at 
most one cTeated edge. 

Proof. Vertices in UGC(D) = 0 4 UP; uPj have degree of at most 2. Since UC(D) ~ 
dom(D), no vertex can be incident with more than two edges. _ 

Corollary 2.15 Only a generated subpath PI in domC{D) can be incident with two 
cn~ated ed.ges. 

Coroll~'~ 2.16 Only S1Jecific vel·tices of components 1\1, K 2, and P3 in UGC(D) 
can be mczdent with two cTeatcd edges in domC ( D). 
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One important aspect of joining subpaths to cmate a larger path is that ,ve must 
be careful about what vertices are used to create an edge. 

Lemma 2.17 Let UC(D) ~ domeD) wheTe every component of UGC(D) i.s iS01n07'-

1)/tic to a path or C 4 . A created edge in domC(D) between any two end vertices rn'Ust 
have as u source a veTte:D Kl = {y} in UGc(D). 

Proof. The end vertices of any path can be sources for created edges in domC(D). 
Any edge for which they are a source is incident with the corresponding inner end 
vertex in n" k 2: 2. Thus, end vertices cannot be used to create edges between end 
vertices. According to Lemma 2.8, Kl = {V} can create any edge, so is the only way 
that an edge can be created between two end vertices. II 

Corollary 2.18 Let UG(D) ~ dom(D) where eve7'Y component oj UCC(D) is iso-
17WTphic to a nontrivial path 01' C4 . Then there is no bi07'ientation oj D such that 
the end vertices of any IJuth fonn a cr'eated edge in domC(D). 

Another special case occurs when we try to create an edge between t\\'o inner 
end vertices to make a cycle. In order for this to happen, the path must have an 
odd number of vertices. Otherwise, the inner end vertices will not be Oll the same 
generat.ed subpath and no cycle will be made. Figure 2 illustrates this concept. The 
figure is a mix of D and domC(D). Single arc (Vl1 vG) causa" neither V2 nor VG to 
dominate VI in D. This creates edge VZVG in domC(D) between inner end vertices V2 

and VG. ]"'he same edge can also be created with single arc (V7, V2)' The generat.ed 
subpaths in domC(D), Vl,V:"V5,V7 and V2,Vq ,V(j, are shown, as well as the created 
edge V2V6. After constructing this C'4, no other created edge can be adjacent to V2 

or V6, as C'4 in domC(D) cannot be adjacent to another edge, The following lemma 
formalizes this. 

Figure 2: Generated subpaths VI, V3, V5, V7 and V2, V4, V6 in dom.c (D), created edge 
VZVG in domc (D), and the single arcs in D that create V2VG in domc (D). 

Lem.ma 2.19 Let UC(D) ~ dom(D) where every component ojUCC(D) is isomor
phic to a path or' C41 and two inneT end veTtices oj one subpath aTe joined by a 
cTeated edge in dornC(D). Then the end ve1,tices oj the path Jmm which the subputh 
was genemted can be the source of no other edge. 

Proof. Let U!,U2,'" ,Ui-I,U; be a path in UGC(D), where Uz and Ui-l are inner end 
vertices of one subpath, and 'U2Ui-! is an edge in domC(D). From Lemma 2.12, we see 
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that U2 and Uj-l are incident with created edges from sources Ul and Ui respectively. 
If Ul or Ui was the source of a different edge, then it would be a pendant edge to the 
cycle 111, U2, .. " Uj-l, Ui, Ul in dom"(D), which indicates domC{D) ~ UGC(D) .• 

To finalize the preliminaries, we take care of the cases UGC(D) = c,j U Pi U Pj 

where i,j = 1,2. These were special cases examined in [6], The theorem from that 
paper is generalized, and we find that there is a biorientation for each of the four 
cases. 

Theorem 2.20 (O) Let G be a gmph such that G is the 7Lnion of l' copies of 1(1, s 
copies of ](2, and t copies oj C4 with r + s + t ;;:: L Then the1'e exists a digmph D 
with dom(D)congUG(D) ~ GC iJ and only if 2t :::; T + s, and if s = 1, then l' ;;:: l. 

Corollary 2.21 Let UGC(D) = Cq U Pi U Pj fOI i,j = 1,2. Then there exists a 
bioTientation oj the edges oj UC(D) such that UC(D) ~ dom(D), 

In every graph of C4 U PI U Pj when j is at least 3, there are 4 + (j - 1) edges. 
The generated edges in domC(D) total 2 from C j and j - 2 from the vertices of 
Pj. Vie must, therefore, be able to create 3 edges in domC(D) if we are to have 
UG(D) ~ dom(D). 

Proposition 3.1 Let UG(D) ~ dom(D), and UGC(D) = Ct! U PI U Pj } wher'e PI = 
{y} and Pj = Z1, .•. , Zj for j ;;:: 3. Then y, Z1, and Zj m1J.si all be used as S07LTCeS fm' 
distinct created edges in domC

( D). 

Proof. There are j generated edges in domC(D). There are j + 3 edges in UGC(D). 
Since UGC(D) ~ domC(D), three edges must be created in domC(D). Only y, ZI, and 
Zj can be sources of these edges, so each must be the source of exactly one created 
edge. _ 

To determine what must be done with these three edges, consider how the copy 
of C4 must be designed in domC(D). The first que.';;;tion may be whether or not the 
vertices of Ct! in UGC(D) will be the vertices of C 4 in domC(D). The next proposition 
shows that this is not possible. 

Proposition 3.2 Let UC(D) ~ domeD), and UCC(D) = C
4 

U Pi UP
j

, i ;;:: 1, j ;::: 2, 
~he1>e Ct! = xl, X2, X3, X4, Xl· Then at most one of the genemted edges XIX3 01' X2 X 4 
zs an edge of C" in dom"(D), 

Proof. If both X1 X 3 and X2X4 are edges of C4 in domC(D), then there must be two 
created edges joining them. From Lemma 2.12, we know that inner end vertices will 
be incid~nt with the created edges for any source other than PI' Thus, we must have 
two COPleS of PI to create the edges, which we do not. _ 

G.iv~n ~ ;;:: 5, it is natural to ask whether Z2 Z j_l can be a created edge. Note 
that It lS a generated edge when j = 5. 

,. 
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Lemma 3.3 Let UG(D) ~ domeD), and UGC(D) = G4 U PI U ~" where j ~ 5 odd. 
Then Z2Zj_l is not a cr'eated edge in domC(D). 

Proof. Edge Z2Zj-l creates a cycle in dOll1
C (D). Since UGC(D) ~ domC(D), the 

cycle is C4 , which indicates j = 9. By Lemma 2.19, ZI and Zg must both be the 
source of Z2Zj-l. However, t;hey must also source two distinct. created edges. Thus, 
Z2 Zj-l cannot be a created edge in domC(D). III 

Now we begin to determine the values for j that will yield domC(D) ~ CqUP! UPj . 

The method that is used throughout the remainder of the paper is to consider the 
values for j that will allow C4 to be constructed out of 1, 2, or 3 of the generated 
subpaths in domC(D). \Ve begin by determining the values of j where C4 is created 
using one of the generated subpaths in domC(D). 

Figure 3: Example of a digraph and its associated domC(D) graph where UGC{D) = 
0" U PI U P7 · Edges shown are in d0111C (D) , while single arcs are in D. Bidirected 
edges of D are omitted. 

Len1.ma 3.4 If UG(D) ~ domeD), UGC(D) = G4 U PI U Pj, j ~ 3, and Ct! in 
domC(D) is JOT'med using only vertices Jmrn one generated s'Ubpath, then j = 7,8. 
Flt1'ther'mOTe, such D e:cists. 

Proof. In UGC(D), let C4 = .'C!,X2,X3,X4,Xl, PI = {V}, and Pj = Zj, ... ,Zj for 
j ~ 3. Since one generated subpath is being used to form C4 , it must have four 
vertices. \Vith i = 1, the subpath must be generated from the vertices of Pj , so 
j = 7,8,9. If j = 9, then the two inner end vertices would have to be joined to 
form 0 4 = Z2, Z4, Z6, ZS, Z2, which violates Lemma 3.3. For j = 7, biorient all edges 
of UG(D), except construct single arcs (y, Zj), (y, Z7), (Zll Xl)' and (Z7' X2), creating 
edges ZIZ7, X1Z2, and X2Z6 in domC(D). Thus, the components of domC(D) are C4 = 
Zl, Z3, ZS, Z7, Zj, PI = {y}, and P7 = ''C3, Xl, Z2, Z4, Zr;, X2, X4 (see Figure 3). For j = 8, 
biorient all edges of UG(D), except construct single arcs (zs, Zl), (Zl, x'd, (y, X2), and 
(y,X3), creating edges ZlZ7, X1Z2, and X2X3 in dom"(D). Thus, the cornponents of 
d0I11"(D) are C4 = Zl,Z3,ZS,Z7,Zl, PI = {y}, and Ps = X4,X2,X3,Xr,Z2,Zt!,Z6,ZS. III 

The next lemma considers the possibility that C4 is created using Pi and P3 or 
P2 and P2 . The latter possibility is broken into two cases: XIX3 is OIieP2or it is nGt: 
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Lemma 3.5 If UG(D) ~ dom(D), UGC(D) = C4 U PI U P j ) j ;::: 3, and C 4 in 
domC(D) is fanned using only veTtices 1T07n exactly two generated s1lbpaths, then 
j = 4,5. Furthermore, such D exists. 

Proof. In UGC(D), let C4 = Xl, X2, X:l, .X.l, Xl, Pj = {y}, and Pj = ZI, . .. ,Zj for j 23. 
V/e break this proof into two possibilities for the two subpaths. Either P;l and PI are 
the two subpaths, or there arc two P2 that will be used. P3 is a generated subpath 
when j = 5,6, 7. PI ml1st be y since there are no other ](1 generated. Vertices ZI 

and Zj must be the sources of the two edges incident to y in C 1 . By Lemma 2.12, 
these edges are also incident to 22 and Zj-l respectively. So, Z2Zj-l cannot be a 
generated edge without forming a cycle with y. To form G;j, Z2 and Zj-I must be 
adjacent to a fourth vertex in a generated subpath of domC(D) (Proposition 2.14). 
This ilnpbes that P3 = Z2,Z4,Z6 is a generated subpath on V(Pj ), and j = 7 is the 
only possibility. However, generated edges XIX;l and X2X'l and subpath z], Z3, Z5, Z7 

ca.nnot be appended to form P7 . Therefore, j =I 7. 

Now consider that 0 4 is created using two generated subpaths, P2 . Proposition 
3.2 states that at most one of the edges XIX3 or X2X4 is an edge that can be used to 
create C4 • This indicates tha.t at least one other generated subpath on two vertices 
must exist, so j = 3,4,5. Vertices ZI and Zj must be used as sources, creating edges 
incident with 22 and 2j-I respectively. \"lhile y may be used H.S a source for an edge 
in C4 , at least one of ZI and Zj must be the source of an edge in G4 . If j = 3, then ZI 

and Z3 create two edges incident with Z2, and C4 cannot be created. If j = 4, biorient 
all edges of UG(D), except construct single arcs (y, .x.d, (y, Z4), (ZI' X2), and (Z4' X3), 

creating edges ~C4Z.1l.T2Z2, and X3Z3 in domC(D). So, domC(D) ~ C4 UP] UP
4

• If j = 5, 
biorient all edges of UG(D), except construct single arcs (ZI, xr), (Z5, X3), (y, X2), and 
(y, zd, creating edges XIZ2, X3Z4, and X2Z1 in domC(D). So, domC(D) ~ G4 U PI U Pt!. 
Figure 4 shows this construction. _ 

y 

Figure 4: Example of a digraph and its associated domC(D) graph where UGC(D) _ 
C4 U PI.U Pr,. Edges shown are in domC(D), while single arcs are in D. Bidirected 
eelges ot D are omitted. 

While it is ~ossible to continue looking at joining more and more subpaths, it is 
not necessary smce there are only so many that can be used to create C In the case 
where we have UGC(D) = CuP up. . -1. 

4 1 j, we ca.n Jom at most hvo generated subpaths. 

Lemma 3.6 If UG(D) ~ domeD) a d UGC(D) - C' P . 
. b·· . n - '1 U I Up· 107' J > 3 then thet'e 
~s no ~o~"en~atzon of the edges of UG(D) such that the copy ~1 G

4 
i;; d~mC(D) can 

e crea e usmg t/wce 01' more gencmted subpaths. 
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Proof. The only way to append three subpaths to form 0,1 is to use one copy of 
P2 and two copies of Pl. This can only occur v"hen j = 3, creating PI = Y and 
p.'3 = Z1, Z2, Z3· Both y and Z2 will be incident with two created edges. Sources ZI 

and Z3 create two edges incident with Z2, only one of which can be incident with 
y. There is no source for another edge incident with y, so this construction is not 
possible. III 

Combining Lemmas 3.4, 3.5, and 3.6. we have the following. 

Theorem 3.7 1j UG(D) ~ dom{D) and UGC(D) = C4 U PI U Pj JOT j > 3, then 
j = 4,5,7,8. FUTtherrnore, such D e:Disis. 

4 Existence where UGC(D) = C4 U Pi U Ph i > 2, .i > 3 

The existence of a biorientation for UG(D) when i = j = 2 has been established in 
Corollary 2.21, so we begin the rernaining cases with i 2: 2 and j 2: 3. 

Len'lma 4.1 If UG(D) ~ dom(D), UGC(D) = 0 4 U Pi U Pj ] i. j 2: 2, wher'e P; = 
Yi •... , Yi and P j = ZI,"" Zj, then YI, Vi, ZI, and Zj nwst all be used as saUTce 
veTtices of distinct cT'Cated edges in domC

( D). 

Proof. There are i + j - 2 generated edges in domC(D). Since UGC(D) has i + j + 2 
edges and UGC(D) ~ clomC(D), four edges must be created in domC(D). Corol
lary 2.11 states that Yl, Vi, Zl, and Zj are the only possible source vertices. So they 
must each source a distinct created edge in domC(D). III 

The copies of Pi and Pj that are found in domC(D) are constructed by appending 
A 

generated subpaths using created edges. Here we define P,. U Pt as the graph obtained 
by creating an edge between an end vertex of Ps and m1 end vertex of PL. \iVhen 
such an edge is created, we say that P,. has been appended to Pt. This operation is 

A A 
8ssociative. but not necessarily commutative. For example, with Pr U Ps U Pt , we 
create a distinct edge between subpaths Pr· and P,., and another between Ps and Pt.· 

A A 
This does not guarantee that P,. U Pt U Ps is a possible construction. 

As was done when i = I, we look at constructing C4 in domC(D) by appending 1, 
2, and 3 generated subpaths. Since there is no PI as a component in UGC(D), there 
\",ill be no constructions where any vertex is the origin of more than once single arc 
(see Lemma 2.13). 

Lelnma 4.2 If UC(D) ~ domeD), UGC(D) = C4 up; U Pj, i 2: 2, j 2: 3, 'whcr'e 
Pi = YI)" . ) Vi, Pj = ZI,' .. ) Zj, and 0", is j077ned using vertices from exactly one 
genemted snupath in clomC(D), then j = 8. 

Proof. T'he generated subpath must have four vertices. and the possible values of j 
where this occurs are j = 7,8,9. There is no ](1 as a component in UGC(D). Thus, 



36 KIrvI A.S. FACTOR AND LARRY J. LANGLEY 

using Corollary 2.18 we see that this subpath callnot have two outer vertices, and 
j =1= 7. If the subpath uses two illner end vertices, then Lemma 2.19 shows that 21 

and Zj must be the sources for that edge. However, Lemma 4.1 indicates that 21 and 
Zj must be the sources for distinct edges, so j fo 9. Thus, j = 8. III 

Lemma 4.3 If UG(D) ~ domeD), UGC(D) = Gel U P; U Pj , i ;::: 2, j ;::: 3, WhC1'C 
C'4 = Xj,X2,X:,>, X,t, Xj) P; = Y1, ... ,Y;, Pj = ZI,'" ,2j, and C4 'in domC(D) 'is f0171wd 

using vC7·tices fmm. exactly one gcneryded subpaih in P j , then i = 2,4,6, 7, 9, 12,15 
and j = 8. Fm1hcnnoTc, such D e:r:isls. 

Proof. By Lemma 4.2 we know j = 8. \iVithoul; loss of generality, we may take 
(2],28) to be a single arc in D for the remainder of the proof, thus creating edge 2228 

in domC(D) and C'4 = Z2,2'hZG,ZS,Z2. That leaves three sources, Y], v;, and 2j, and 
five generated subpaths with which to create P; and Pg . These subpaths are Xt,X3 

and X2,X'I, plus the two subpaths of p;, and Zl,Z3,Z5,27' Note that Z7 is an inner 
end vertex and so will be incident wi th a created edge that has Z8 as the source. 

\Ve will consider the cases where i is even and i is odd. 

1. i = 2m is even. Two copies of Pm are generated on V(Pi)' Vie use these 
subpaths with X1,X:,>, X2, X4, etHd Zl, Z3, Z&, Z7 to create Pg and P2rn in domC(D). 
Refer to Ps and P2m as paths Sand T in no particular order. Each of the 
subpaths P4 , P,,, ancl P", have i:U1 inner end vertex, so each will be incident 
with a created edge. There are only three 110nisomorphic ways to append the 

11 A A A A A 
subpaths: S = P2UP4UP'nUP'" and T = P2 ; S = P2UP'nUP'n and T = P2 uP.j; 

A A A 
and S = P2 U P.i U p." and T = P2 U P,n. 

(a) 

(b) 

A A A 
S = P2 UP4 UP",UP", and T = P2 . Since T is a path on 2 vertices, S must 
be the path on 8 vertices. So 2 +4 + 2nt = 8, and i = 2m = 2. In addition 
to single arc (Z1' Z8), construct single arcs (Z8, Y2), (Y2, X2), and (Yl, X4) in 
D, and biorient all other edges of UG(D). This creates edges Y2Z7, YIX2 

and X4Y2 in domC(D) so domC(D) ~ UGC(D). This construction is shown 
in Figure 5(a). 

S
A A A 

= P2 U Pm U P,,, and T = g U P4 • T is a path on 6 vertices, a.nd S must 
be the path on 8 vertices, so i = 6. Similarly to 1 (a), the construction of 
singe arcs (Z1,Z8), (Zg,X4), (YJ,xt}, and (YC,X3) in D create the necessary 
edges in domC(D) so that domC(D) ~ UGC(D). This construction is shown 
in Figure 5(b). 

A A A 

(c) S = P2 U Pol U Pm and T = P2 U P,n. In this case either S or T can be the 
path with 8 vertices. If S has 8 vertices, then'i = 4. Similarly to lea), 
the construction of single arcs (Z1,Z8), (Z8,X3), (YIlXt}, and (Y4,X2) in D 
create the necessary edges in domC(D) so that domC(D) ~ UGC(D). 

'~7' lfIilJI! T' 

On the other hand, if T has 8 vertices, then i = 12. Similarly to l(a) 
the construction of single arcs (Z1' 28), (zs, yd, (YI. :cd, and (YI2, X4) in D 
create the necessary edges in domC(D) so that domC(D) ~ UGC(D). 
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X, Xl 

YI~Y(; 
)'~ ) s 

Xt-Xl 

(II) (b) 

Figure 5: Examples of digraphs and their associated domC(D) graphs where C" is 
created using vertices of on8 subpath. Edges are shown for domC(D), and single arcs 
are shown for D. Bidireded arcs of D are not shown. (a) UGC(D) = C4 U P2 UPs. 
(b) UGC(D) = C 1 U PG UPs-

2. i = 2111 + 1 is odd. The two subpaths generated are an outer subpath on m + 1 
vertices and an inner subpath on m vertices. 1"'he inner subpath has two inner 
end vertices, which will be appended to two other subpaths, placing it in the 
middle of S or T. The subpath P4 = Z1, 23, Z5, Z7 has the only other inner 
end vertex, 27- Thus, there are only four nonisornorphic ways to append the 

A A A A A A 
subpaths: S = P2 U Pm U P4 U P2 and T = P'n+l; S = P2 U P.n U P4 U P'n·H 

A A A A A 
and T = P2 ; S = P2 U Pm. U Pm+! and T = P2 UP,,; and S = P2 U P.n U P2 and 

A 
T = P'1 U P'r;+1- In the second and third case, S is odd, T is constant, and there 
is no way to construct Ps . The remaining two subcases are addressed below. 

A A A 
(a) S = P2 UP",UP"UP2 and T = P',,+l' Since Tn must be at least 1, S canllot 

be a path on 8 vertices, so T = P'n+I = Ps, and i = 15. Sirnilarly to l(a), 
the construction of single a.rcs (ZI, Z8), (zs, ,'C3), (Yb Xl), and (VIS, X4) in D 
create the necessary edges in domC(D) so that domC(D) ~ UGG(D). 

A /1. A 
(b) S = P2 U Pm U P2 and T = P" U P,,,+1. If S is a path on 8 vertices, 

then m = 4, and i = 9. Similarly to l(a), the construction of single arcs 
(21, ZS), (zs, vd, (YI, Xl), and (Yo, X4) in D create the necessary edges in 
domC(D) so that dornC(D) ~ UGC(D). 

On the other hand, if T is a path on 8 vertices, then Tn = 3, and i = 7. 
Similarly to l(a), the construction of single arcs (Z1' Z8), (zs, yd, (Yll Xl)' 
and (Y7, X2) in D create the necessary edges in domC(D) so that domC(D) ~ 
UGC(D). 

Thus, if j = 8, then i = 2,4,6,7,9,12,15, and such D exists. -

Next, we look at the case where C4 is crea.ted using two generated subpaths. 
The first lemma considers creating C4 using generated subpaths PI and P3 , and the 
second lemma using P2 and P2 -
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Lemma 4.4 If UG(D) ~ domeD), UGC(D) = C.l U Pi U Pj , i 2:: 2, j 2:: 3, wheT'e 
0.1 = Xl, X2, X3, X4, ·'Ll, Pi = YI,· .. , Yi, Pj = ZI,' .. ,Zj, and C4 is fonned using vertices 
fmm e.?:(tctly two genemtecl s1J,upaths P j and p;\ in domC(D), then'i = 2 and j = 6. 
Furthermore, such D e.'l;ists. 

Proof. Since P j is a vertex in C4 , there are two created edges incident ,vith it. 
Because /(1 is not a component of UGC(D), PI must be a generated subpath of P; 
or Pj. \Vithout loss of generality, say Pi' Then i = 2,3. 

If i = 2, say that PI = Y2. Subpath P.; must come from Pj and have exactly 
one inner end vertex to append to V2. Thus, j = 6. Biorient all edges of UG(D) 
except cOl1struct single arcs (ZI,Yl), (YZ,Zfi). (ZG,.'L2), and (YI,X4)' The created edges 
form components C4 = YI, Z2, Z4, Z(J, VI, P2 = Xl, X:l, a.nd P fj = Y2, X4, X2, Z5, 2;;, Z1 in 
domC(D). 

If i = 3 and PI = Y'l, then VI and Y3 are sources of both edges incident with 
V2· Thus, P.J cannot contain another interior vertex since the created edges are each 
incident with only one. PI mllst be an outer subpath, so j = 5. However, if C4 is 
constructed using ZI, Z;J, Z5, then P3 and P5 cannot be created using the ren1aining 
subpaths, which are all even. _ 

Lemma 4.5 If UG(D) S:; domeD), UGC(D) = G.1 up; U Pj , i 2': 2, j 2': 3} where 
C[ = Xl, X2, 1,'3, X4, Xl J Pi = Yl, ... , Yi J Pj = ZI, •.• , Zj} and C4 is f01merl 'using vertices 
fmTn exactly two generated suupaths Pz and P2 in dornC(D), then i = j = 4 or- i = 5 
and j = 2,3,4, G, 9. PW'HwrmoTe, such D e.Tists. 

Proof. Proposition 3.2 states that at most one of Xl:C3 or X2X4 will be an edge in C4 . 

L Suppose that X,X3 is an edge of C4 . The two created edges incident \:vith Xl 

and X3 will be incident with two adjacent inner end vertices of Pi or Pj. Say 
it is Pi, making Y2, V4 the generated subpath appended to XIX3 and i = 5. 
\Vithout loss of generality, construct single arcs (Vi, .'Lr) and (Y5, X.1) in D so 
that C4 = Xl,Y2,Y1,X3,Xj in domC(D). Now,ve find the values of j where such 
a D exists. 

Consider how Pr:, can be made by appending the two generated sub paths on 
V(Pj ), X2, X4 and Yl, V3, Yr:,. Oniy two created edges Can be constructed using the 
remaining sources Z1 and Zj, and will be incident with Z2 and Zj-l respectively 
(Lemma 2.12). We look at the number of subpaths that are appended to 
construct P5 • 

Case 1: p& is a generated subpath. Then P5 can have no inner end vertices, or it 
will be incident with a created edge. Thus, j = 9. Construct single arcs (Z1, Y1), 
(Z9,X~), (vl,xd, and (Y5,X3) in D and biorient all other edges of UG(D), This 
creates the necessary edges in domC(D) so that domC(D) ~ UGC(D). 

~.~e 2: P5 is constructed using Z2 or Zj-l, but not both. So, 22 m1d Zj-1 are on 
I erent generated subpaths, and j is even. Say that 22 on generated subpath 

.l 
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P"2 is appended to another subpath P to create P5 . Now P does not contain 
Zj_l, so must either be X2, X4 or Yh Y3, Y5· Thus, IV(Pz2 )1 = 3 or 2, re.sulting 
in j = 6 or j = 4. If j = 4, construct single arcs (zl,yd, (Z4,X2), (YI,Xl), and 
(Ys, X3) in D and biorient all other eelges of UG(D). If j = 6, construct single 
arcs (Z\,X2), (26,Y5), (y!,xd, anel (Y5,X3) in D and biorient all other edges of 
UG(D). Both of these constructions create the necessary edges in domC(D) so 
that domC(D) ~ UGC(D). 

Case 3: P5 is constructed using both Z2 and Zj_l. Either X2, x~ or Yl, Y3, Y5 but 
not both will be appended to the two inner end vertices (else there would be 
11lO1'e than 5 vertices). The subpath that is not appended will be a path in 
domC(D), so j = 2,3. If j = 3, sources z\ and Z3 create two edges incident 
with 22. This forms a cycle in domC(D), so j =f 3. If j = 2, construct single 
arcs (Zl,Yl), (Z2,YS), (Yl,.'£l). and (YS"?;3) in D and biorient all other edges 
of UG(D). This creates the necessary edges in domC(D) so that domC(D) 9:! 

UGC(D). 

2. Suppose that XIX;; is not an edge of G.1 . The copy of C4 cannot be created from 
one generated subpath in domC(D) (Lemma 2.19). If 0,1 were to be made from 
the two generated subpaths of one ~path, then that path is P4. However, the 
only non-generated edge that can be created by either source Zl or Z4 is Z2z3, 

so C 4 cannot be constructed. Thus, C 4 nlUst be constructed hom a generated 
copy of P2 in Pi and another in Pj . Since these paths must be appended using 
exactly two created edges, the two copies of P2 together must have exactly two 
inner end vertices. This dictates that i > 3 or j > 3. Say that i > 3, so i = 4,5 
and j = 3,4,5 are the only va.lues where P2 is a generated subpath. 

\Ve have already shown that D exists for i = 5 and .i = 2,4,6,9, so we need 
only consider i = 4 with .i = 3,4, and i = 5 with j = 3,5. \Vhen i = 4, only 
one vertex of each generated subpath is an inner end vertex, so the subpath 
must be appended to another copy of P2 with exactly one inner end vertex. 
T'hus, j i=- 3 and j = 4. Construct single arcs (Zl,Yl), (Z4,X3), (Yl,X2), and 
(Y4, Z4) in D and biorient all other edges of UG(D). This creates the necessary 
edges in dornC(D) so that domC(D) ~ UGC(D). 

Vv'hen i = 5, the copy of P2 is an inner subpath, so both vertices are inner end 
vertices. Thus, it can only be appended to a copy of P2 where both vertices are 
outer vertices. This implies that j = 3. Construct single arcs (YI, Zl), (Y5, Z3), 

(Z1, xd, and (Z3, X4) in D and biorient all other eelges of UG(D). This creates 
the necessary edges in dornC(D) so that elornC(D) ~ UGC(D). 

Given the restrictions of appending paths, these are the only possible construc
tions. So i = .j = 4 or i = 5 and j = 2,3,4,6,9, and such D exists. -

Finally, the case where C" is constructed using vertices from exactly three gen
erated subpa.ths is examined. 
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Lemma 4.6 IJ UC(D) ~ domeD), UGC(D) = C 1 U Pi U Pj, 'i 2: 2, j 2: 3, where 
C4 = Xl, X2. X3, X.1, XI, Pi = Y1,"" Vi, Pj = ZI, ...• Zj, and C4 is fonned using 
ver'lices fTOm exactly thTee genen~ded s'I1upaths 'in domC(D), then 'i = 2 and j = 3. 
Fur·therm01'e, s'Uch D e:Lists. 

Proof. As seen in the proof of Lemma 3.6, this requires one copy of P2 and two 
copies of P j as generated subpaths. If i = 2, there are 2 copies of PI generated. 
However, YIY2 will never be an edge in domC(D) (Corollary 2.18). Thus, only one of 
YI or Y2 may be a vertex ill C j • This implies the other copy of P l must come from 
V(Pj ). Since j 2: 3, only j = 3 produces a subpath with one vertex, Biorient all 
edges of UG(D), except construct single arcs (Z1' yd, (Z3, X;l) , (YI, Z3), and (Y2, xd. 
This creates the necessary edges in dOl11 C (D) so that domC(D) ~ UGC(D). If i = 3, 
then it has one subpath PI, and the others must come from V(Fj). Again, j = 3. 
However, all created edges are incident with Y2 and Z2, so there is no way to construct 
C4 , If i 2: 4, with j ;::: 3, there are not two subpaths Pl. T'hus, i = 2 and j = 3 is 
the only possibility. • 

As a grand finale, we bring together the rosults that appear at the end of Section 2, 
the end of Section 3, and the lemmas stated previously in this section. 

Theorem 4.7 If UC(D) ~ dom(D), and UGC(D) = C4 UP; U Pj, then 

1. i = 1 andj = 1,2,4,5,7,8, OT' 

2. i = 2 and j = 2,3,5,6,8, aT' 

3. i = 4 and j = 4,5, 01' 

4· i=5 andj=3,6,9, 01' 

5. i = 8 and j = 4,6,7,9, 12,15. 

PuTtherrrWTe, in each case s~lch a digmph e:ri.sts. 

Proo~. Co~ollary 2.21 addresses existence for i,j = 1,2. Further results for i = 1 
\~ere hsteclm Theorem 3.7. Except for i = j = 2, the results in parts (2)-(5) COITW 
directly from Lemmas 4 3 4 4 4 h d 4 6 AI I . . 

• 1 ., .0, an " t lOugh the creatIOn of C.1 USlIlO' 

four components was not specifically mentioned, it requires that i = J' = 2 so tha~ 
there are four copies of P \\'I'tl1 I' Itt· C . , .. .' . 

1 W 11C 1 0 cons I L1et 4. ThIS POSSI bIll ty IS covered III Corollary 2.21. • 
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