Marquette University
e-Publications@Marquette

Mathematics, Statistics and Computer Science Mathematics, Statistics and Computer Science,
Faculty Research and Publications Department of
1-1-2010

Digraphs with Isomorphic Underlying and
Domination Graphs: 4-cycles and Pairs of Paths

Kim A. S. Factor
Marquette University, kim.factor@marquette.edu

Larry ]. Langley
University of the Pacific

Published version. Australasian Journal of Combinatorics, Volume 48 (2010), Publication’s website. ©
2010 University of Queensland Centre for Discrete Mathematics and Computing. Used with
permission.


https://epublications.marquette.edu
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs
https://epublications.marquette.edu/mscs
http://ajc.maths.uq.edu.au/?page=home

AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 48 (2010), Pages 25-41

Digraphs with isomorphic underlying and
domination graphs: 4-cycles and pairs of paths

Kim A.S. FacTOoR

Marquette University
P.0. Box 1881, Milwaukee, WI 532(11-1881
US.A.

kim.factor@marquette.edu

LARRY J. LANGLEY

University of the Pacific
3601 Pacific Avenue, Stockton, CA 95211
US.A,
llangley@pacific.edu

Abstract

A domination graph of a digraph D, dom{D}, is created using the vertex
set of D, V(D). Therc is an edge uv in dom(D) whenever (u, z) or (v, 2)
is in the arc set of D, A(D), for every other vertex z € V(D). For
only some digraphs D has the structure of dom(D) been characterized.
Examples of this are tournaments and regular digraphs. The authors
have characterizations for the structure of digraphs D for which UG(D) =
dom{D) or UG(D) = dom(D). For example, when UG(D) = dom(D),
the only components of the complement of UG(D) are complete graphs,
paths and cycles. Here, we determine values of 7 and § for which UG (D) =
dom(D) and UG*(D) = C4 U P, U P;.

1 Introduction

Domination graphs were first introduced by Merz, Lundgren, Reid and Fisher [11]
to describe the structure of the domination graphs and competition graphs of tour-
naments. Let D be a directed graph, or digraph, with nonempty vertex set V(D)
and arc set A(D). The domination graph of D, dom(D}, is the graph created using
the vertex set of D, V(D). An edge uv is in dom{D) if for every other vertex z in
D, either (u, z) or (v, z) is in A{D). The competition greph of D, C(D), is created
on the vertex set of D with an edge zy if there exists a third vertex z € V(D) such
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that (z, 2) and (y, 2) € A(D). Given a tournameni T', where there is exactly one are
between cach pair of vertices, dom(7T) is the complement of the competition graph of
the tournament formed by reversing the arcs of T". Since dom(D) is a much sparser
graph than the competition graph of a digraph, Merz et al. studied the domination
graphs of tournaments to determine characteristics of the corresponding competition
graphs. Such characteristics included the minimum and maximumm number of edges
in the competition graph of a tournament.

Since that time, further refinements have been made in the work on tournaments,
including that done by Cho, Doherty, Kim and Lundgren ([1], [2]) and Merz et al. {[7},
8], [9], [10], [12}). For example, in [1], Cho et al. characterized the structure of the
domination graphs of regular tournaments. Given the complexity of digraph struc-
ture, a complete characterization of domination graphs is probably an unreasonable
expectation. Thus, classes of digraphs are studied. In our research, the underlying
graph of a digraph is of particular interest. The underlying graph of D, UG(D),
is the graph obtained from D by removing the directions of the ares. Previously,
we have used underlying graphs to add to the knowledge base by characterizing di-
graphs 1) where UG(D) = dom(D) [4], and some digraphs where UG(D) = dom (D)
([3), (31, [6])- In this paper, we find values of i and j where UG(D) = dom(D) and
UGHD)=CyUP,UP;.

In a digraph D, if (u,v) € A(D), then u is said to dominate v. When for ecvery
other vertex z in V(D), either (u,z) or (v,z) is an arc in D, then w and v form
a dominating pair. Thus, all edges in dom (D) are formed by dominating pairs of
vertices. A digraph D is considered a biorientation of a graph G if for every edge
uv € E(G), either (u,v) or {v,u) or both are arcs in D, and D contains no other
arcs. If for edge wv in G, only one of arcs (z,v) or (v,u) is in D, then the arc is called
an ortentaiion of edge uw, or a single arc. We say edge wv in G is bidirected if it is
?'el)laced with arcs {u,v) and (v, %) in D. When all edges of G are bidirected edges
in D, then D is a complete biorientation of G, also known as a symmetric digraph.
Although bidirected edges are allowed in D, there are no directed loops.

When UG(D) = dom(D), there arc often many edges. Let UG(D) be the
complement of UG(D), where v is an edge in UG(D) if and only if it is not an
edge in UG(D). Similarly define the complement of dom(D), domc(b)‘ IHUG(D) =
dom(_D), lthen UG(D) = dom®(D). The difference in the number of edges can be
seen in F]gur.e L at the beginning of Section 2 where UG(D) is shown in part (a),
and UG(D) in part (b). It is quite apparent tha UGY(D) has significantly fewer
edges. Thus, it is easier to work with UGS(D) and dom¢(D). t

To relate the results obtained from the complemenis to IJ G(D) and dom (D), we
gse the concepts of the union and the join of graphs and digraphs. The ?mz'()';'z, of
LE}:JO 'graphs, deno?ed‘ GUH, is the graph on vertex set V(GYU V(H) with edge set

(6) U E’(H)A Similarly define the union of two digraphs. Figure 1(a) sho“c')% the
in;a’on }of _C,, and Fy. The join of graphs & and H, G+ H, is the graph G U H ;)l;,lS all
glgzjl{iegvejesn Dea(i? I\Drerﬁ(;x in G and each vertex in i Similarly, the join of digraphs
Figure 1(§)2) iilatsltrate.z' E’;?aﬁ;mg ) end (0 for each ¢ VP y € V(D).

33
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The structure of UG(D) is limited when UG(D) £ dom(D). This is summed up
in the following three resulis.

Theorem 1.1 [5] If Dy,..., D, are digraphs with UG(D;) & dom(D;) fori =
L...skand D= Dy + Do+ - 4 Dy, then UG(D) = dom(D). Also

L UGDY =% Uc();

2. dom(D) = 3% dom(D,);
8. UGHD) = UL, UG(Dy);
4. domé(D) = UL, dom®(D;).

Theorem 1.2 [5] If UG(D) = dom(D), ihen cach component of UG(D) s cither
a complete graph, a path, or a cycle.

Corollary 1.3 [5] [fUG(D) = dom(D), then D is the join of Dy, Do, ..., Dy, where
UG(D;) is isomorphic to an independent sel, the complement of a path, or the com-
plement of a cycle.

Theorem 1.2 gives the three basic components that comprise UG¢(D) for the
digraphs in which we are interested. The structure of D and UG(D) where UG(D)
is connected has been completely characterized [5], as have the cases where Py, P
and Cy are the components of UG(D) [6], and UG D) = P, U P; [3]. In this paper,
we find the values of 7 and j where UG(D) = dom(D), and UG(D) = C,UPUP;. In
the next section, we set up the preliminaries by discussing the general constructions,
as well as previous results for 4,5 = 1,2. In the final two sections, the case where
i = 1 and j > 3 is examined as a special case and then the general case of ¢ > 2,
7 2 3. The final theorem merges these cases to give combined results for 3,7 > 1.

2 The Preliminaries

To illustrate the basic ideas of tying together UGS(D) with UG(D) = dom(D),
consider Figure 1. In part (a), UG(D) = CyUF;s. Then in part (b), UG(D) is shown
with the edges between all vertices in Cf and all vertices in P¢ represented by a thick
line. Consider what happens if directions are given to the edges of UG(D). Even
if all edges of UG (D) are bioriented, some pairs of vertices will never dominate in
D. Such pairs will never be adjacent in dem(D), so are always adjacent in dom“{D}).
For example, consider pair z;, 3 in Figure 1(b). Neither 27 nor z; is adjacent
Lo vertex xo, so cannot dominate zo. Thus, m;2y is always an edge in doem®()).
Similarly, an edge y;, %42 will always be in dom®( D), sinee neither vertex is adjacent
£0 ¥y in UG(D). Figure 1(c) shows all edges that are always in dom®(D) given
UGD) = Cy, U P;. We call such an edge a generated edge or, collectively, the
generated subpaths of dom®(D).
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The generated subpaths for the component £, in UGS(D) are formally identified
in the following lemma.

Y Yi Y:
X X2 X) X X) X2
Y2 : Y2
Y3 ><_ Y3
X4 X3 Ya X4 X3 Xa X3 Y4
¥s ¥s ¥s

UG(D) UG((D) Subpaths in dom‘(D)
(a) (b) (c}

Figure 1: (a) UG(D) = Cy U Bs. {b) UG(D) with edges between all vertices of Cf
and all vertices of P¢ represented by the thick line. (¢) All generated subpaths in
dom®(D).

Lemma 2.1 5] fUGY(D) =P, = xy,%9,...,%, forn >3, then

1. ifnis odd, xy,24,...,%, and T2, 2q, ..., Tu_1 are paths in dom(D), and
2. if n is even, T1,%3,. .., Tney GRd Ta, Ta, - . -, Ty are paths in dom®(D).

Remark 2.2 If uv is o generated edge in dom®(D), then there evists a vertex z in
UG(D) such that uz and vz are not edges in UG(D).

‘This is true because if there were an edge, it could always be oriented toward z
from u or v, creating D where u and v are a dominating pair. Since a generated edge
is always in dom®(D) for every biorientation of UG/(D), this cannot happen.

There can also be edges in dom®(D) that are created. This requires a vertex x
that either beats both u and v or is not adjacent to w and beats v. For exampie,
orient edge z3y, in Figure 1(b) from y, to x3, making single arc (¥, z3) in . Then
neither =3 nor y» dominates y,, and edge zay, is “created” in dom®(D). We call edge
z3yo and others like it a created edge.

Any vertex that two vertices do not dominate is referred to as a source of the
edge between them in dem®(D). For a generated edge, it is any vertex that is not
adjacent to the pair. In Figure 1, 2, and T4 are sources for the pair xy, xz3 in C4. For

a created edge, it is any vertex 2 as described in the preceding paragraph. From [6]
we know the following,

Lemma 2.3 [6] If UG(D) = dom(D) and every component of UGe(D) s isomor-
phic to Ky, Ky, or Cy, then no vertez of D is a source of more than one edge in
dom®( D).

e
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Lemma 2.4 (6] If UG(D) = dom(D) and y is the source of two or more edges
in dom®(D), then the set of vertices which do not dominate Yy 15 conteined in a
component isomorphic to K, r > 3 in UG(D).

Since we do not have any components in dom®(D) that contain K, for » > 3,
there can be no vertex that is the source of more than one edge in our constructions.

Corollary 2.5 If UG(D) = dom(D) and UG(D) = Cy U P, U Pj, then any vertez
15 the source of at most one edge in dom®( D).

Now we look specifically at the vertices of Cy and their role as sources.

Lemma 2.6 Let UG(D) = dom(D) where every component of UG*(D) is isomor-
phic to Ky, Ky, or Cy. If z1, %9, T3, 24, 1 forms Cy in UG D), then z; is the source
of exactly one edge in dom®(D): z; and m3 are sources of ToT4; T2 and x4 are sources
of xyxs.

If UGS(D) = dom®(D), the generated edges must be supplemented with created
edges. The following corollary to Lemma 2.6 shows that the vertices of Cy cannot
be sources for these created edges.

Corollary 2.7 Let UG(D) = dom(D) and Cy, = x1, 79, T3, T4, 2; be a component
of UGY(D). Then x1, ©2, xa, and x4 will not be sources for eny created edges in
dom®(D). Furthermore, edges v 3 and xx4 are generated edges in dome(D).

Since the vertices of Cy cannot be sources, by Lemma 2.6 we conclude that the
sources must come from the two paths that are the components of UGS(D). Let
P =y, ...,y and Pj = z;,..., 2z be the two paths.

Lemma 2.8 Lei K = {y} be a component in UG(D). Then vertez y in D can be
the source of any created edge wv in dom®(D)} where y 5 u, v.

Proof. If 4 is an isolated vertex in UG(D), then y is adjacent to every other vertex
in UG(D). Therefore, if (y,w) and (y,v) are single arcs in D, y is a source of edge
wv in dom<(D) since u# and v do not dominate y in D. Because there are no loops,
y cannot be incident with any edge for which it is a source, soy # u,v. ®m

Next, we find what vertices of paths can be socurces, and what vertices are incident
with the sourced edges in dom®(D). In the following lemma, N(y) is the neighborhood
of y, which is the set of vertices adjacent to y.

Lemma 2.9 [6] If UG(D) = dom(D) and N(y) = {z} in UG(D), then y is a
source of at most one edge in dom®(D), and this edge will be incident to x.
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Lemma 2.10 /3] Let UG(D) = dom(D), UGD) = UL, Pu;, 1 = 1, and P, =
Ty, Toiy o Eyi- If (0, 0) i D is an ortentation of edge uv in UG(D), then v = xy;
0T U = Tpj Jorsomel <j <k

Corollary 2.11 [fUG(D) = dom{D), each component of UG*(D) is either Cy or
a path, and y is the source of a created edge tn dome(D), then y is an end verter of
¢ path.

Lemma 2.12 Let UG(D) = dom{D) where P = xz;,...,2; is a componeni of
UGD) jori = 3. If 1 or z; is the source of a created edge in domc(D), then
that created edge is incident with x4 or xi_y respectively.

Proof. Let (x),u) be a single arc in D. Then neither w nor z; dominates x;, and
ux, is an edge in dom®(D). A similar argument holds for z; and 2,_; wheni > 3. =

The sources that can be used to create edges in dom®(D) have now been identified,
as well as the vertices with which those edges must be incident. Following is a lemma
that shows the only possible vertex that can be the origin of more than one single
arc in D is a vertex isomorphic to the component K, in UG¢(D).

Lemma 2.13 [6] Let UG(D) = dom(D) where every component of UGS(D) is iso-
morphic to Iy, Ky, or Cy. Let x be a vertex of D. If x is in a component isomorphic
to Cy in UGS(D), then x is the origin of no single arcs of D. If z is in a component
isomorphic to Ky in UGS(D), then z is the origin of at most one single are of D.
If z s in a component isomorphic to K, in UGY(D), then x is the origin of at most
two single arcs of D.

To complete the construction preliminaries, it is important to have an idea of '
where the created edges can be placed. Consider a path P = Y1, Y2y - - s Vi1, Y5 N
UG4(D). We call y; and v; the outer vertices of P. Vertices yy and ;-1 are called the
inner end vertices (since these are the end vertices of generated subpaths). All other
vertices of the paths are inner vertices. First, we determine under what conditions
an edge may be incident with a vertex in dome(D).

Prgppsition?.lé Let UG(D) = dom(D) and UGH(D) = C4U P, UPR;. Ifve V(D)
is incident with exactly one generated edge in dom®(D), then v is incident with at
most one created edge.

Proof. Vertices in UG*(D) = C,UP, U P; have degree of at most 2. Since UG(D) =
dom(D), no vertex can be incident with more than two edges. m

Corollary 2.15 Only o generated subpath Py in dom®(D) can be incident with two
created edges.

Coroll'flry. 2.18 iny specific vertices of components K 1, K, and Py in UGS(D)
can be incident with two created edges in dom®(D). )
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One important aspect of joining subpaths to create a larger path is that we must
be careful about what vertices are used to create an edge.

Lemma 2.17 Let UG(D) = dom(D) where every component of UGS(D) is isomor-
phic to a path or Cy. A created edge in dom®(D) between any two end vertices must
have as a source a vertexr Ky = {y} in UG(D).

Proof. The end vertices of any path can be sources for created edges in dom®(D).
Any edge for which they are a source is incident with the corresponding inner end
verbex in ., k£ > 2. Thus, end vertices cannot be used to create edges between end
vertices. According to Lemma 2.8, K, = {y} can create any edge, so is the only way
that an edge can be created between two end vertices. =

Corollary 2.18 Let UG(D) = dom(D) where every component of UG(D) is iso-
morphic to a nontriviel path or Cy. Then there is no biorientation of D such that
the end wertices of any path form a created edge in dom®(D).

Another special case occurs when we try to create an edge between two inner
end vertices to make a cycle. In order for this to happen, the path must have an
odd number of vertices. Otherwise, the inner end vertices will not be on the same
generated subpath and no cycle will be made. Figure 2 illustrates this concept. The
figure is a mix of D and dom“(D). Single arc (vy,vs) causes neither v, nor vg to
dominate v, in D. This creates edge vaug in dom®(D) between inner end vertices vs
and vg. The same edge can also be created with single arc (vr,v2). The generated
subpaths in dom®(D), vy, vs, Vs, v7 and vq,v4, Vg, are shown, as well as the created
edge wsvg. After constructing this Cy, no other created edge can be adjacent to v,
or vg, as Cy in dom®(D) cannot be adjacent to another edge. The following lemma
formalizes this.

¥
Yo

Figure 2: Generated subpaths vy, vs, s, vy and ve, vs, v in dom® (D), created edge
voug in dom® (D), and the single arcs in D that create vevg in dom® (D).

Lemma 2.19 Let UG(D) = dom(D) where every component of UG(D) is isomor-
phic to a path or Cy, and two inner end wvertices of one subpath are joined by a
ereated edge in dome(D). Then the end vertices of the path from which the subpath
was generated can be the source of no other edge.

Proof. Let uy,ug, ..., %1, % be a path in UGS(D), where us and u;—; are inner end
vertices of one subpath, and uou;_; is an edge in dom®(D). From Lemma 2.12, we see
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that uy and u;.; are incident with created edges from sources u; and u; respectively.
If 21 or u; was the source of a different edge, then it would be a pendant edge to the
cycle uy,ug, ..., Uiy, Uy, uy in dom€( D), which indicates dom®(D) g UG(D). =

To finalize the preliminaries, we take care of the cases UGH(D) = CyU P U P
where 1,7 = 1,2. These were special cases examined in [6]. The theorem from that

paper is generalized, and we find that there is a biorientation for each of the four
cases.

Theorem 2.20 [6] Let G be a graph such that G is the union of r copies of ICy, s
copies of I(s, and t copies of Cy with r + s+t > 1. Then there exists a digraph D
with dom(D)econgUG(D)Y = G if and only if 2t <7+ s, and if s = 1, thenr > 1.

Corollary 2.21 Let UG*(D) = C4, U P, U By fori,5 = 1,2. Then there erists a
biorientation of the edges of UG(D) such that UG(D) = dom(D).

3 Existence where UG‘(D)=CyUP, UPF;, 5> 3

In every graph of C; U P, U P; when j is at least 3, there are 4 4+ (j — 1) edges.
The generated edges in dom®(D)} total 2 from Cy and j — 2 from the vertices of
F;. We must, therefore, be able to create 3 edges in dom®(D) if we are to have
UG(D) = dom(D).

Proposition 3.1 Let UG(D) = dom(D), end UG*(D) = Cy U P, U P;, where Py =
{y} and Py =z,...,2; for > 3. Theny, z;, and z; must all be used as sources for
distinct created edges in dom®(D).

Proof. There are j generated edges in dom®(D). There are 7 + 3 edges in UG(D). -
Since UG(D) = dom®(D), three edges must be created in dom®(D)}. Only y, =, and
z; can be sources of these edges, so each must be the source of exactly one created
edge. =

To determine what must be done with these three edges, consider how the copy
of Cy must be designed in dom®(D). The first question may be whether or not the

vertices of Cy in UGS(D) will be the vertices of C'4 in dom®(D). The next proposition
shows that this is not possible.

Proposition 3.2 Let UG(D) = dom(D), and UGY(D) = CLUP,UP;, i > 1,5 > 2,

z'uhere C1 = 21, %9, 23,24, z1. Then at most one of the generated edges x,23 or Tomy
i an edge of Cy in dom®(D).

P'roof. If l)Ot!l 1 and wozy are edges of C in dom®(D), then there must be two
ic;ez:,‘,t.e% edges-golnmg t;hem. From Lemma 2.12, we know that inner end vertices will

e inci ?nt with the created edges for any source other than P,. Thus, we must have
two copies of P, to create the edges, which we do not. m

Given P; > 5, it is natural to ask w

Ive hether z,2;_; can be a creat e. N
that it is a generated edge when j = 5. o rested edge. Hore
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Lemma 3.3 Let UG(D) = dom(D), and UGS(D) = C4U P, U P;, where 7 > 5 odd.
Then zaz;_y is not o created edge in dom®( D).

Proof. Edge z3z;_, creates a cycle in dom®(D). Since UGS(D) = dom®(D), the
cycle is Cy, which indicates j = 9. By Lemma 2.19, z; and zy must both be the
source of zpz;_;. However, they must also source two distinet ereated edges. Thus,
z2zj-1 cannot be a created edge in dom®(D). =

Now we begin to determine the values for j that will yield dom®(D) 2 C4UP,UP;.
The method that is used throughout the remainder of the paper is to consider the
values for j that will allow Cy to be constructed out of 1, 2, or 3 of the generated
subpaths in dom®(D). We begin by determining the values of § where Cy is created
using one of the generated subpaths in dom®(D).

X4 X3

Figure 3: Example of a digraph and its associated dom®(D) graph where UGe(D) =
Cy U P U P;. Edges shown are in dom¢(2), while single arcs are in D. Bidirected
edges of D are omitted.

Lemma 3.4 If UG(D) = dom(D), UGY(D) = CL UPLUP;, 7 > 3, and Cy in
dom®(D) is formed using only vertices from one generated subpath, then j = 7,8.
Furthermore, such D egists.

Proof. In UGY(D), let Cy = x5, 32,23, %4, 21, Py = {y}, and P; = 2,,...,2; for
7 = 3. Since one generated subpath is being used to form Cy, it must have four
vertices. With ¢ = 1, the subpath must be generated from the vertices of P}, so
7 =17,8,9. If y =9, then the two inner end vertices would have to be joined to
form Cy = 2z, 24, 2g, 28, 22, which violates Lemma 3.3. For j = 7, biorient all edges
of UG(D), except construct single arcs (v, 21), (v, z7), (21,21), and (27, 22}, creating
edges zyz7, )20, and Zyz¢ in dom®(D). Thus, the components of dom®(D) are Cy =
21, 23, 25, 27, 21, 1 = {y}, and Py = x3,%,, 29, 24, 25, %2, T4 (see Figure 3). For j = §,
biorient all edges of UG(D), except construct single arcs (zg, z1), (21, 21), (¥, z2), and
(y,s), creating edges zy27, T, 22, and oz in dom®(D). Thus, the components of
dom®(D) are Cy = =1, 23, 25, 27, 21, 1 = {y}, and Ps = x4, %q, T3, L1, 22, 24, 26, Z5. W

The next lemma considers the possibility that Cy is created using P, and Psor
Py and P,. Thelatter possibility is broken into two cases: ;43 -i§one Py orit is'net:
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Lemma 3.5 [ UG(D) = dom{D), UG(D) = C4 U P, UP;, j = 3, and Cy in
dom®(D) is formed using only vertices from exacily two gencrated subpaths, then
7 =4,5. Furthermore, such D exists.

Proof. InUG*(D),let Cy = &1, %0, x5, T4, 21, Pr = {y},and P = z;,. .., z; for j > 3.
We break this proof into two possibilities for the two subpaths. Either P and P, are
the two subpaths, or there are two P that will be used. P; is a generated subpath
when j = 5,6,7. P, must be y since there are no other /(| generated. Vertices z
and z; must be the sources of the two edges incident to y in Cy. By Lemma 2.12,
these edges are also incident to z; and z;_; respectively. So, zgz;_; cannot be a
generated edge without forming a cycle with y. To form C4, 2z, and z;_; must be
adjacent to a fourth vertex in a generated subpath of dom¢(D) (Proposition 2.14).
This implies that P = 25, 24, 25 is a generated subpath on V(F;), and § = 7 is the
only possibility. However, generated edges z;z3 and 2524 and subpath 2, 23, 25, 27
cannot be appended to form 7. Therefore, j £ 7.

Now consider that Cy is created using two generated subpaths, 7. Proposition
3.2 states that at most one of the edges x5 or 292, is an edge that can be used to
create Cy. This indicates that at least one other generated subpath on two vertices
must exist, so 7 = 3,4,5. Vertices z; and z; must be used as sources, creating edges
incident with z; and z;_; respectively. While ¥ may be used as a source for an edge
in Cy, at least one of z, and z; must be the source of an edge in Cy. If § = 3, then z
and z3 create two edges incident with zs, and Cy cannot be created. If J = 4, biorient
all ed'ges of UG(D), except construct single arcs (y, z4), (y,24), (21, 22), and (24, 23),
creating edges T4zy, T222, and 2323 in dom®(D). So, dom(D) = CLUP, UP,. If j =5,
biorient all edges of UG(D), except construct single arcs (2, 21), (25, z3), (¥, z2), and
(y. 21), creating edges zy 20, T3zq, and 29z in dom®(D). So, dom®(D) = CLUP, U Py.
Figure 4 shows this construction. m

gig;i'; 4:U Fg&nﬁ):e of a digraph and its associated dom®(D) graph where UG(D) =
4 1 5. Lidges shown are in dom®(D), while single ares are i e
edges of D are omitted. ( ) ngle arcs are in . Bidirected

V\’ll]le lt 18 OSSlble LO Oﬂtlll e O &

nOt BGCGSS&I}' sice theIC are Olll y -

7> We can join at most two generated subpaths.

Lemmg 3.6 IfUG(D) = dom(D) and UGe
is no biorientation of the edges of UG(
be created using three or more genera

(D) =C,UPR UP; forj > 3, then there

D) such that the copy of Cy in dom®(D) can
ed subpaths.




ISOMORPHIC UNDERLYING AND DOMINATION GRAPHS 35

Proof. The only way to append three subpaths to form Cj is to use one copy of
P> and two copies of ;. This can only occur when 7 = 3, creating P, = y and
Py = z;,29,23. Both y and z will be incident with two created edges. Sources z,
and 23 create two edges incident with 2o, only one of which can be incident with
y. There is no source for another edge incident with %, so this construction is not
possible. ®

Combining Lemmas 3.4, 3.5, and 3.6, we have the following.

Theorem 3.7 If UG(D) = dom{D) and UG*(D) = C4U P, U P; for j > 3, then
j =4,5,7,8. Furthermore, such D exisis.

4 Existence where UG(D)=CyUF,UP;,1>2,7>3

The existence of a biorientation for UG(D) when i = § = 2 has been established in
Corollary 2.21, so we begin the remaining cases with ¢ > 2 and 7 > 3.

Lemma 4.1 If UG(D) = dom(D), UGY(D) = C4 U P, U F;, i,5 = 2, where P, =
Yi,- .Y and Pp o= zy,..., 25, then yy, yi, 21, end z; must all be used as source
vertices of distinct created edges in dom®(D).

Proof. There are i+ 7 — 2 generated edges in dom¢(D). Since UG¢(D) has i+ 7+ 2
edges and UGS(D) = dom®(D), four edges must be created in domé(D). Corol-
lary 2.11 states that y;, 1, 21, and z; are the only possible source vertices. So they
must each source a distinct created edge in dom®(D). =

The copies of F; and P; that are found in dom®(D) are constructed by appending

A .
generated subpaths using created edges. Here we define P, U P, as the graph obtained
by creating an edge between an end vertex of P, and an end vertex of P,. When
such an edge is created, we say that P, has been appended to F,. This operation is
A A
associative, but not necessarily commutative. For example, with P, U P, U P, we
create a distinct edge between subpaths P, and P, and another between Ps and F,.
A A

This does not guarantee that P. U P, U Ps is a possible construction.

As was done when z = 1, we look at constructing Cy in dom®(D) by appending 1,
2, and 3 generated subpaths. Since there is no P; as a component in UG¢(D), there

will be no constructions where any vertex is the origin of more than once single arc
(see Lemma 2.13).

Lemma 4.2 If UG(D) = dom(D), UGHD) = C4 UP,UP;, i 2 2, 7 = 3, where
P=y,...,ui, P = z1,...,2;, and Cys is formed using vertices from exvactly one
generated subpath in dom®{D), then j = 8.

Proof. The generated subpath must have four vertices, and the possible values of §
where this occurs are j = 7,8,9. There is no K, as a component in UG®(D). Thus,
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using Corollary 2.18 we see that this subpath cannot have two outer vertices, and
j # 7. If the subpath uses two inner end vertices, then Lemma 2.19 shows that z
and z; must be the sources for that edge. However, Lemima 4.1 indicates that z, and
z; must be the sources for distinct edges, so 7 # 9. Thus, 7 =8. =

Lemma 4.3 [f UG(D) = dom(D), UGYD) = C4 U P, U P, i > 2, j > 3, where

4= 2,20, 08, 2, T, D=, 0 By = 21,0, 25, and Cy dn dom®(D) s formed
using vertices from ezactly one generated subpath in P, then i = 2,4,6,7,9,12,15
and 7 = 8. Furthermore, such D ezists.

Proof. By Lemma 4.2 we know 7 = 8. Without loss of generality, we may take
(21, 28) to be a single arc in D for the remainder of the proof, thus creating edge zazg
in dom®(D) and Cy = 23, 24, 25, 25, 22. That leaves three sources, y;, ¥, and z;, and
five generated subpaths with which to create P, and P;. These subpaths are z;, x3
and xy, 74, plus the two subpaths of P, and 2y, z4, 25, 2;. Note that z; is an inner
end vertex and so will be incident with a created edge that has zg as the source.

We will consider the cases where 7 is even and 7 is odd.

L. ¢ = 2m is even. Two copies of P, are generated on V(F;). We use these
subpaths with @y, 23, ©2, 24, and 2y, 23, 25, 27 to create Py and Py, in dom®(D).
Refer to Py and Py, as paths S and 7' in no particular order. Each of the
subpaths Py, P, and P,, have an inner end vertex, so each will be incident
with a created edge. There are only three nonisomorphic ways to append the

, A A A ) A A
subpaths: § = R,UP,UP, OB, and T = Py: S = ROPR, 0P, and T = BOP;:
A A /
and S =P 0P 0P, andT =R 0P,

(a) S= Pg{SP,,LIBP,,ELAJP,,z and T = P,. Since 7" is a path on 2 vertices, S must.
be the path on 8 vertices. So 244 +2m = 8, and i = 2m = 2. In addition
to single arc (21, zg), construct single arcs (zs,y2), (Y2, z2), and (y1, z4) in
D, and biorient all other edges of U G{D). This creates edges yo27, 1172
and z4ys in dom®(D) so dom®(D) = UG*(D). This construction is shown
in Figure 5(a).

A
(b) S=P0U Pmc*Pm and T = P, () P;. T is a path on 6 vertices, and S must
'i}»'e the path on 8 vertices, so i = 6. Similarly to 1(a), the construction of
singe ares (21, 28), (28, 24), (1, 21), and (yg, x3) in D create the necessary
?dges in dom®(D) so that dom®(D) = U G*(D). This construction is shown

in Figure 5(b).

A A
() S=PRUPUPR, and T = P ‘:\J F,. In this case, either S or 7" can be the
path with 8 vertices. If § has 8 vertices, then ¢ = 4. Similarly to 1{a),
the construction of single arcs (21, 23), (28, 23), (11, z1), and {yg, T9) in D
create the necessary edges in dom®(D) so that dom®(D) =~ U G’C(D“).
On the other hand, if T has 8 vertices, then i = 12. Similarly to 1(a)
the construction of single arcs (2, zg), (28, 31), (1, 21), and (y12, 24) In 15
create the necessary edges in dom®(D) so that dom®(D) = U G’CéD).




ISOMORPHIC UNDERLYING AND DOMINATION GRAPHS 37

71 “

¥
X2 £y

Nne—e

{n} (b}

Figure 5: Examples of digraphs and their associated dom®(D) graphs where Cy is
created using vertices of one subpath. Edges are shown for dom®(D), and single arcs
are shown for D. Bidirected arcs of D are not shown. (2) UG(D) = C4y U P U Ps.

2. i = 2m-+1 is odd. The two subpaths generated are an outer subpath on m 41
vertices and an inner subpath on m vertices. The inner subpath has two inner
end vertices, which will be appended to two other subpaths, placing it in the
middle of § or T". The subpath Py = 2z, 23, 25, 2 has the only other inner
end vertex, z7. Thus, there are only four nonisomorphic ways to append the

A A A A A A

subpaths: S = RUP,UPUP and T = Py S=FPRUP,UPU P,
A A A A A

and T=82; S=RUP,UP, m1and T =P UPj;and §= A UPEF,UP and

A
T = PyU Py, In the second and third case, S is odd, T is constant, and there
is no way to construct Py. The remaining two subcases are addressed below,

(ay S= PQGP,,LGFQ{‘JP? and T = P,,1. Since m must be at least 1, S cannot
be a path on 8 vertices, so T' = P,,.1 = P, and ¢ = 15. Similarly to 1{a),
the construction of single arcs (21, zs), (zs,3), (Y1, z1), and (y15, z4) in D
create the necessary edges in dom®(D) so that dom®(D) = UG*(D).

by § = P LAJ P, é P oand T = P, Cﬁj Pp1- If S is a path on 8 vertices,
then m = 4, and ¢ = 9. Similarly to 1{a), the construction of single arcs
(z1, 2z8), (28, 1), (y1, 1), and (yo,x4) in D create the necessary edges in
dom?(D) so that dom®(D) = UG*(D).
On the other hand, if T is a path on 8 vertices, then m = 3, and ¢ = 7.
Similarly to 1{a), the construction of single ares (z1, z5), (25, 11), W1, %1),
and (y7, 22) in D create the necessary edges in dom®(D) so that dom®(D) =
UGe(D).

Thus, if 1 = 8, then 7 = 2,4,6,7,9,12,15, and such D exists. &

Next, we look at the case where Cy is creabed using two generated subpaths.
The first lemma considers creating Cy using generated subpaths P, and Ps, and the
second lemma using P and Ps.
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Lemma 4.4 IfUG(D) = dom(D), UG*(D) = C4 U P, U P, ¢ > 2, 7 > 3, where
Cy=1m1,29,%3,20,%, Pr=y1,... .y, P = z1,..., 25, and Cy is formed using vertices
Srom exactly two generated subpaths Py and Ps in dom®(D), then i = 2 and § = 6.
Furthermore, such D exists.

Proof. Since P is a veriex in Cy, there are two created edges incident with it.
Because K is not a component of UG%(D), P, must be a generated subpath of F;
or ;. Without loss of generality, say ;. Then 7= 2, 3.

If i = 2, say that P, = 3. Subpath P; must come from F; and have exactly
one inner end vertex to append to ys. Thus, 7 = 6. Biorient all edges of UG{D)
except construct single arcs (zy, y1), (¥2, 25}, (%6, Z2), and (y1,x4). The created edges
form components Cy = yy, 22, 24, 25, Y1, P2 = 21,23, and Py = ¥, 4, Ta, 25, 23, 21 N
dom®{ D).

If i = 3 and P, = y», then y, and y3 are sources of both edges incident with
y2. Thus, Py cannot contain another interior vertex since the created edges are each
incident with only one. Py must be an outer subpath, so j = 5. However, if Cy is
constructed using zj, z3, 25, then P and Ps cannot be created using the remaining
subpaths, which are all even. =

Lemma 4.5 [fUG(D) = dom(D), UGY(D) = C4 U PR UP;, i > 2, j > 3, where
Ci =21, 29,03, %4, 21, P = y1,. .., Ui, Py=z,...,2;, and Cy is formed using veriices
Jrom ezactly two generated subpaths Py and Py in dom®(D), theni= j=4 ori=25
and j =2,3,4,6,9. Purthermore, such D exists.

Proof. Proposition 3.2 states that at most one of Z123 or waxy will be an edge in Cy.

1. Suppose that 2,23 is an edge of Cy. The two created edges incident with
and z3 will be incident with two adjacent inner end vertices of P, or F;. Say
it is P, making ya, 3 the generated subpath appended to z;25 and ¢ = 5.
Without loss of generality, construct single ares (y;, %) and (ys,z3) in D so
that Cy = 1,92, y4, 23,7, in dom®(D}. Now we find the values of § where such
a [ exists.

(ionsmler how P; can be made by appending the two generated subpaths on
v (Pj_)1 T2, T4 and y1,¥s,¥s. Only two created edges can be constructed using the
remaling sources z; and z;, and will be incident with 2, and z;—1 respectively

{Lemma 2.12). We look at the number of subpaths that are appended to
construet P,

Cgse 1: Py is a generated subpath. Then P5 can have ne inner end vertices, or it
will be incident with a created edge. Thus, j = 9. Construct single arcs (z1,11),
(20, 24), (y1,21), and {ys,23) in D and biorient all other edges of UG(D). This
creates the necessary edges in dom®(D} so that dom®(D) = UG*(D).

S‘?—FG?: ‘Ps 1}3 constructed using z; or z;_;, but not both. So, 23 and z;_; are on
Hierent generated subpaths, and J is even. Say that z, on generated subpath
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P., is appended to another subpath P to create £2. Now P does not contain
zj—1, 80 must either be ma, x4 or yy,y3,¥s. Thus, |V (P,)] = 3 or 2, resulting
inj=0orj=4. If j =4, construct single arcs (z;,1), (24, 22), (y1,21), and
(y5,Ta) in D and biorient all other edges of UG(D). If j = 6, construct single
arcs (z1, 22, {%6,¥s), (U1, 1), and (ys,2z3) in D and biorient all other edges of
UG(D). Both of these constructions create the necessary edges in dom®(D) so
that dom®(D)} = UG(D).

Case 3: P is constructed using both 22 and z;_;. Either zs, 24 or ¥, ys, ys but
not both will be appended to the two inner end vertices (else there would be
more than 5 vertices). The subpath that is not appended will be a path in
dom®(D), so 7 = 2,3. If j = 3, sources z; and z3 create two edges incident
with z». This forms a cycle in dom®(D)}, so j % 3. If § = 2, construct single
ares (z1,11), (22, ¥5), (W1, 71), and (ys,23) in D and biorient all other edges
of UG(D). This creates the necessary edges in dom¢{D) so that dom®(D) =
UGe(D).

2. Suppose that z12;3 is not an edge of Cy. The copy of Cy cannot be created from
one generated subpath in dom®{D) (Lemma 2.19). If C; were to be made from
the two generated subpaths of one path, then that path is P;. However, the
only non-generated edge that can be created by either source z or zy is zmz3,
so Oy cannot be constructed. Thus, C; must be constructed from a generatéed
copy of P in P; and another in P;. Since these paths must be appended using
exactly two created edges, the two copies of PP together must have exactly twa
inner end vertices. This dictates that 2 > 3or 7 > 3. Say thati> 3,s0{=4,5
and 7 = 3,4, 5 are the only values where I is a generated subpath.

We have already shown that D exists for i = 5 and j = 2,4, 6,9, so we need
only consider 7 = 4 with j = 3,4, and ¢ = 5 with j = 3,5. When 7 = 4, only
one vertex of each generated subpath is an inner end vertex, so the subpath
must be appended to another copy of P, with exactly one inner end vertex.
Thus, 7 # 3 and j = 4. Construct single arcs (z1,%1), (24,23), (y1,22), and
(y4, 24) in D and biorient all other edges of UG(D). This creates the necessary
edges in dom®( D) so that dom¢(D) = UG*(D).

When i = 5, the copy of P, is an inner subpath, so both vertices are inner end
vertices. Thus, it can only be appended to a copy of P, where both vertices are
outer vertices. This implies that 7 = 3. Construct single arcs (y1,z1), (¥s: 23},
(z1,%1), and (z3,34) in D and biorient all other edges of UG(D). This creates
the necessary edges in dom®(D) so that dom®(D) = UG(D).

Given the restrictions of appending paths, these are the only possible construc-
tions. Soi=j=4ori=>5and j =2, 3,4,6,9, and such D exists. W

Finally, the case where C, is constructed using vertices from exactly three gen-
erated subpaths is examined.
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Lemma 4.6 I[f UG(D) = dom(D), UG*(D) = C4 UPF,UP;, i > 2, 7 = 3, where
Cy = my,x0,23,20,2, B = y1,...,y, P = z1,...,2;, and Cy is formed using
vertices from exactly three generated subpaths in dom®(D), then ¢ = 2 and j = 3.
Furthermore, such D exists.

Proof. As seen in the proof of Lemima 3.6, this requires one copy of /% and two
copies of I as generated subpaths. If 4 = 2, there are 2 copies of P, generated.
However, yiys will never be an edge in dom¢({D) (Corollary 2.18). Thus, only one of
¥t or yo may be a vertex in Cy. This implies the other copy of P, must come from
V(F;). Since j > 3, only j = 3 produces a subpath with one vertex. Biorient all
edges of UG(D), except construct single arcs (21, ), (23, 23), (y1,23), and (y2, 1)
This creates the necessary edges in dom®(D) so that dom¢(D) = UGe(D). If i = 3,
then it has one subpath P, and the others must come from V(FP;). Again, j = 3.
However, all created edges are incident with 1, and z3, so there is no way to construct
Cy. 1f1 > 4, with 7 > 3, there are not two subpaths 2. Thus, i =2 and 5 = 3 is
the only possibility. =

As a grand finale, we bring together the results that appear at the end of Section 2,
the end of Section 3, and the lemmas stated previously in this section.

Theorem 4.7 If UG(D) & dom(D), and UGS(D) = C, U P, U Py, then

ILi=1andj=1,2,4,578, or

S

1=2andj= 23,568, or
$.oi=4dandj=475, or

4-1=5and j =3,6,9, or

e

i=8and j =4,6,7,9,12, 15,
Furthermore, in each case such a digraph exists.

Proof. Corollary 2.21 addresses existence for 7,j = 1,2. Further results for i = 1

were listed in Theorem 3.7. Except for i = j = 2, the results in parts (2)-(5) come
directly from Lemmas 4.3, 4.4,

o : 4.5, and 4.6. Although the creation of Cy using
ur components was not specifically mentioned, it requires that ¢ = 7 = 2, so that

there are fOUr COpieS of d i i 4.
1 “’lth \Vhlch to construct i ibility i 3 i
()CTCH‘Z r 29] . C . Ihls pOSSiblhf‘y IS Cover Bd n

References

1] H.H. {im :
[1] H.H. Cho, S.R. Kim and J.R. Lundgren, Domination graphs of regular tourna-

ments, Discrete Math, 259 (2002), 57-71.




2]

[3]

ISOMORPHIC UNDERLYING AND DOMINATION GRAPHS 41

H.H. Cho, F. Doherty, S.R. Kim and J.R. Lundgren, Domination graphs of
regular tournaments II, Congr. Numer. 130 (1998), 95-111.

K.A.S. Factor and L.J. Langley, Digraphs with isomorphic underlying and dom-
ination graphs: Pairs of paths, J. Combin. Math. Combin. Comput. 72 (2010),
3-30.

K.A.S. Factor and L.J. Langley, Characterization of digraphs with eqgual
domination graphs and underlying graphs, Discrete Math. DOL
10.1016/j.disc.2007.03.042.

K.A.S. Factor and L.J. Langley, Digraphs with isomorphic underlying and domi-
nation graphs: Connected UG (D), Discussiones Mathematicae: Graph Theory
27(1) (2007), 51-67.

K.A.S. Factor and L.J. Langley, Digraphs with isomorphic underlying and dom-
ination graphs: Components of I<(;, Kz, or Cy in UG® (D), Congr. Numer. 174
(2005}, 73-82.

S.K. Merz, D. Guichard, J.R. Lundgren and D.C. Fisher, Domination graphs
with nontrivial components, Graphs Combin. 17(2) (2001), 227-236.

S.K. Merz, D. Guichard, J.R. Lundgren, K.B. Reid and D.C. Fisher, Domination

graphs with 2 or 3 nontrivial components, Bull. Inst. Combin. Appl. 40 (2004),
67-76.

S. K. Merz, D. Guichard, J.R. Lundgren, K.B. Reid and D.C. Fisher, Domination
graphs of tournaments with isolated vertices, Ars Combin. 66 {2003), 299-311.

S.K. Merz, J.R. Lundgren, K.B. Reid and D.C. Fisher, Connected domination
graphs of tournaments, J. Combin. Math. Combin. Comput. 31 (1998), 169-17G.

S.K. Merz, J.R. Lundgren, K.B. Reid and D.C. Fisher, The domination and
competition graphs of a tournament, J. Graph Theory 29 (1998), 103-110.

S.K. Merz, J.R. Lundgren, K.B. Reid and D.C. Fisher, Domination graphs of
tournaments and digraphs, Congr. Numer. 108 (1995), 97-107.

(Received 2 Aug 2008; revised 2 July 2010)




	Marquette University
	e-Publications@Marquette
	1-1-2010

	Digraphs with Isomorphic Underlying and Domination Graphs: 4-cycles and Pairs of Paths
	Kim A. S. Factor
	Larry J. Langley

	tmp.1295630210.pdf.UAuL8

