
Marquette University
e-Publications@Marquette
Mathematics, Statistics and Computer Science
Faculty Research and Publications

Mathematics, Statistics and Computer Science,
Department of

9-1-2010

A Methodology for Engineering Collaborative and
ad-hoc Mobile Applications using SyD Middleware
Praveen Madiraju
Marquette University, praveen.madiraju@marquette.edu

Srilaxmi Malladi
Georgia State University

Janaka Balasooriya
Georgia State University

Arthi Hariharan
Georgia State University

Sushil K. Prasad
Georgia State University

See next page for additional authors

Accepted version. Journal of Network and Computer Applications, Vol. 33, No. 5 (September 2010).
DOI. © 2010 Springer. Used with permission.

https://epublications.marquette.edu
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs_fac
https://epublications.marquette.edu/mscs
https://epublications.marquette.edu/mscs
http://dx.doi.org/10.1016/j.jnca.2010.03.007

Authors
Praveen Madiraju, Srilaxmi Malladi, Janaka Balasooriya, Arthi Hariharan, Sushil K. Prasad, and Anu
Bourgeois

This article is available at e-Publications@Marquette: https://epublications.marquette.edu/mscs_fac/8

https://epublications.marquette.edu/mscs_fac/8

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 1

A Methodology for Engineering Collaborative and ad-hoc Mobile

Applications using SyD Middleware

By Praveen Madiraju, Srilaxmi Malladi, Janaka Balasooriya, Arthi Hariharan, Sushil K.

Prasad, and Anu Bourgeois

Today’s web applications are more collaborative and utilize standard and ubiquitous

Internet protocols. We have earlier developed System on Mobile Devices (SyD) middleware to

rapidly develop and deploy collaborative applications over heterogeneous and possibly mobile

devices hosting web objects. In this paper, we present the software engineering methodology for

developing SyD-enabled web applications and illustrate it through a case study on two

representative applications: (i) a calendar of meeting application, which is a collaborative

application and (ii) a travel application which is an ad-hoc collaborative application. SyD-enabled

web objects allow us to create a collaborative application rapidly with limited coding effort. In this

case study, the modular software architecture allowed us to hide the inherent heterogeneity

among devices, data stores, and networks by presenting a uniform and persistent object view of

mobile objects interacting through XML/SOAP requests and responses. The performance results

we obtained show that the application scales well as we increase the group size and adapts well

within the constraints of mobile devices.

1. Introduction

Rapid development of coordinating distributed applications by leveraging off existing web

entities is key to bringing the Internet’s collaborative potential to the users at large. Such

collaborative applications span domains as diverse as personal applications (travel, calendaring

and scheduling) to enterprise e-commerce applications (supply chains, work flows, and virtual

organizations), and scientific biomedical applications (biomedical data and process integration,

and experiment workflows). All the coordinating applications themselves and the constituent

autonomous entities are usually hosted on heterogeneous and autonomous, possibly mobile

platforms (Krone et al., 1998). There is an emerging need for a comprehensive middleware

technology to enable quick development and deployment of these collaborative distributed

applications over a collection of mobile (and wired) devices. This has been identified as one of

the key research challenges (Edwards et al., 2002; Phan et al., 2002).

Limitations of current technology: The current technology for the development of such

collaborative applications over a set of wired or wireless devices has several limitations. It

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 2

requires explicit and tedious programming on each kind of device, both for data access and for

inter-device and inter-application communication. The application code is specific to the type of

device, data format, and the network. Managing applications running across mobile devices

becomes complex due to lack of persistence data and weak connectivity. A few existing

middlewares have addressed the stated requirements in a piecemeal fashion. The current

state-of-the-art still lacks in enabling mobile devices with server capabilities, and developing

collaborative applications is restricted to few domains. It also suffers in providing group or

transaction functionalities and offers limited mobility support. These issues are further elaborated

by Prasad et al. (2004).

Contributions: Our work is an ongoing effort to address the aforementioned limitations

and in Prasad et al. (2004), we reported our first prototype design and implementation of a

middleware for mobile devices called System on Mobile Devices (SyD). In this paper, we

continue our work and utilize SyD’s high-level programming platform to rapidly engineer group

web applications over a collection of heterogeneous, autonomous, and possibly mobile data

stores. We describe a software engineering based design methodology with case studies on a

calendar of meetings application (a collaborative application) (Prasad et al., 2005), and a travel

application (an ad-hoc application). We also show that SyD naturally extends to enabling

collaborative applications across web-based objects. The SyD objects are stateful, web-based,

and provide interfaces like web services for method invocations. Furthermore, all method

invocations and their responses in SyD employ SOAP-like XML envelopes. Therefore, SyD

objects, their interactions, and the underlying techniques discussed in this paper have a direct

bearing on web services and their compositions and coordination, making the development of

coordinating applications over mobile devices easier and faster. The middleware addresses the

key problems of heterogeneity of device, data format and network, and of mobility. SyD achieves

ease of application development, transparency in mobility of code, and the scalability required for

large enterprise applications with a small footprint (total of 112 with 76 KB being device-resident)

required by handheld devices. SyD also allows creating ad-hoc collaborative applications by

composing or configuring pre-existing SyD objects. The application development is both quick

and streamlined using a design methodology that includes realizing UML design phases with

SyD components (described in Section 4.). We illustrate this with two sample SyD application

case studies later in this work; we briefly introduce these two application cases below.

Sample SyD application case studies: Currently there are two key SyD-based

applications. We implemented these using various technologies, including JDBC, SOAP, and

SyD. The SyD-based development was by far the quickest, with more functionalities, due to

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 3

high-level APIs of SyD (2–3 weeks each by 3–4 students), with comparable execution

efficiencies.

The calendar application is an example SyD application wherein several individuals

manage their time schedules. The typical functionalities provided in a calendar application are: (a)

set up meeting among individuals with certain conditions to be met such as a required quorum,

(b) set up tentative meetings that could not be set up otherwise due to unavailability of certain

individuals, and (c) remove oneself from a meeting resulting in automatic triggers being executed.

The triggers may possibly convert tentative meetings into confirmed meetings. The calendar

application showcases various aspects like constraint-satisfaction in applications to achieve the

required quorum, mobility of devices, and heterogeneous data and devices as the individuals

maintain their schedules on their devices in a format suitable to them. To implement our calendar

application with the current technology involves cumbersome programming, such as opening

authorized connections to respective database servers, executing individual queries against

several databases and accumulating results of these queries, and manually enforcing

constraints (by writing code) that the databases as a whole need to satisfy. Another problem with

the current technology is that it is difficult to deal with multiple types of heterogeneity in the

representation of time-schedule information. One individual may have different device, data

format, or network from another individual. The existing calendar systems also have

considerable amount of delays to confirm the availability of all participants and schedule a

meeting. In a calendar application, each user has his own database that is either stored locally or

on a proxy. The application programming can be logically divided into server side and client side.

The server side comprises of all the methods that interact with the local data store and can be

invoked remotely. The client side consists of the user interface which enables the user to interact

with the application.

The second application of this study is the travel application. In our previous work

(Hariharan et al., 2004), we demonstrate a travel application that allows for automatic

rescheduling and cancellation of itineraries. Once an itinerary is decided and the trip is planned

for the user, corresponding links are created and maintained in the user’s database. If part of the

itinerary is cancelled, then automatic cancellation of further itinerary schedule occurs. For

example in a travel application, if a flight is cancelled, car and hotel reservations are

automatically cancelled, thus easing the burden on the user to have to manually cancel all

associated reservations. A SyD ad-hoc application developer’s nook provides a simple

GUI-based interface for the application developer to initially set up and develop SyD-enabled

collaborative applications.

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 4

The rest of the paper is organized as follows. Section 2 provides a background on the

SyD middleware. Section 3 details distributed and ad-hoc collaborative applications. Section 4

describes a design methodology for collaborative applications using a case study on a calendar

of meetings application. Section 5 describes ad-hoc collaborative applications design using a

case study on a travel application. We present implementation details of an important module

relevant to this work in Section 6. Section 7 discusses implementation of a calendar of meetings

application and its performance results. In Section 8, we compare our work with the current

state-of-the-art. Finally, we make concluding remarks in Section 9.

2. SyD Architecture and Coordination Bonds—Background

In this section, we describe the design of System of Mobile Devices (SyD) (Prasad et al.,

2003a) and related issues, and highlight important features of its architecture. Each individual

device in SyD may be a traditional database such as a relational or object-oriented database, or

may be an ad-hoc data store such as a flat file, an EXCEL worksheet or a list repository. These

may be residing in traditional computers, in personal digital assistants (PDAs), or even in devices

such as a utility meter or a set-top box. These devices are assumed to be independent in that

they do not share a global schema and therefore rules out the possibility of unique data

representation. The devices in SyD cooperate with each other to perform interesting tasks, and

we envision a new generation of collaborative applications built using this SyD framework.

2.1. SyD Architecture Overview

The SyD architecture is shown in Fig. 1. SyD uses the simple yet powerful idea of

separating device management from management of groups of users and/or data stores. The

SyD framework accomplishes distinct management of devices, user data stores and their

coordination when needed with its three layered architecture. At the lowest layer, individual data

stores such as device data or personal data are represented by device objects that encapsulate

methods/operations for access, and manipulation of data (SyD Deviceware). For example, the

data objects are high level wrappers for a flat file or an excel file or an XML file. At the middle

layer, there is SyD Groupware, a logically coherent collection of services, APIs, and objects to

facilitate the execution of application programs. This forms the middleware kernel API. At the

highest level are the SyD Applications themselves such as the calendar and travel applications

discussed in this paper. The applications rely on middle and lower layer SyD services, and are

independent of device, data and network, making the applications appealing to all kinds of

heterogeneity.

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 5

We have developed a prototype test bed of SyD middleware that captures the essential

features of SyD’s overall framework. We have designed and implemented a modular SyD kernel

in Java. In Fig. 2, we present the internal architecture of the SyD middleware. The SyD Kernel

includes the following five modules:

SyDDirectory: Provides user/group/service publishing, management, and lookup services

to SyD users and device objects. Also supports intelligent proxy maintenance for users/devices.

SyDListener: Provides a uniform object view of device services, and receives and

responds to clients’ synchronous or asynchronous XML-based remote invocations of those

services (Prasad et al., 2004). Also allows SyD device objects to publish their services locally to

the listener and globally through the directory service.

SyDEngine: Allows users/clients to invoke individual or group services remotely via

XML-based messaging and aggregate responses. This yields a basic composer of mobile web

services.

SyDBond: Enables an application to create and enforce interdependencies, constraints

and automatic updates among groups of SyD entities and web Services (Prasad et al., 2003b;

Prasad and Balasooriya, 2004)

SyDEventHandler: This module handles local and global event registration, monitoring,

and triggering.

To register services with the middleware, the SyD Application Object Server (shown in

the left of Fig. 2) publishes applications with SyDListener. The SyDListener then registers

globally with SyDDirectory. In order to call these services, the client user interface (Client UI)

makes a remote invocation for some of the application services by invoking the SyDEngine. The

SyDEngine then makes a lookup with the SyDDirectoy, and finds the required information for

making a remote call such as URL information for the application services. The SyDEngine then

eventually makes a remote invocation using TCP/IP on the SyD Application Objects (SyDAppO).

SyD applications are likely to be hosted on mobile devices that frequently suffer from intermittent

disconnections or battery discharges. The SyD framework therefore provides tolerance for

disconnected devices through its proxy. Extended details regarding the SyD middleware can

found in Prasad et al. (2003a).

A key goal of SyD is to enable SyD objects to coordinate in a distributed fashion, possibly

in an ad-hoc way. Each SyD object is capable of embedding SyD coordination bonds to other

entities enabling it to enforce dependencies and act as a conduit for data and control flows. Over

data store objects, this provides active database like capabilities. In general, aspect-oriented

properties among various objects are created and enforced dynamically. Its use in rapid

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 6

configuration of ad-hoc collaborative applications, such as a set of calendars for a meeting setup

(Prasad et al., 2003b), or a set of inter-dependent web services in a travel reservation application

(Hariharan et al., 2004), has been demonstrated. The SyD bonds have the modeling capabilities

of extended Petri nets and can be employed as general-purpose artifacts for expressing the

benchmark workflow patterns (Prasad and Balasooriya, 2004, 2005)

2.2. SyD Coordination Bonds

Coordination bonds enable applications to create contracts between entities and enforce

interdependencies and constraints, and carry out atomic transactions spanning over a group of

entities/processes. The constraints and dependencies can be of QoS type like budget, deadline,

etc., or member dynamics such as, all inclusion (and), exclusion (xor), any inclusion (or), etc., or

any user defined constraints. While it is convenient to think of an entity as a row, a column, a

table, or a set of tables in a data-store, the concept transcends these to any SyD object or its

component. There are two types of bonds: subscription bonds and negotiation bonds.

Subscription bonds allow automatic flow of information from a source entity to other reference

entities that subscribe to it. This can be employed for synchronization as well as more complex

changes, needing data or event flows. Negotiation bonds enforce dependencies and constraints

across entities and trigger changes based on constraint-satisfaction. SyD bonds may be further

combined with other constraint logics like and, or, xor, which are user defined (Joshi, 2005).

A SyD bond is specified by its type (subscription/negotiation), status (confirmed/tentative),

references to one or more entities, triggers associated with each reference

(event-condition-action rules), priority, constraints (and, or, xor), bond creation and expiry times,

and a waiting list of tentative bonds (a priority queue). A tentative bond may become confirmed if

the awaited confirmed bond is destroyed. Let an entity A be bonded to entities B and C, which

may in turn be bonded to other entities. Under subscription bond logic, a subscripted change in A

may trigger changes in B and C, and under negotiation bond logic, A can change only if B and C

can be successfully changed. In the following, the phrase ‘‘Change X’’ is employed to refer to an

action on X (action usually is a particular method invocation on SyD object X with specified set of

parameters); ‘‘Mark X’’ refers to an attempted change that triggers any associated bond without

an actual change on X (Balasooriya and Prasad, 2005; Prasad and Balasooriya, 2005).

Subscription Bond: Mark A; If successful, Change A then Try: Change B, Change C. A

‘‘try’’ may not succeed.

Negotiation-and Bond: Change A only if B and C can be successfully changed.

(Implements atomic transaction with ’’and’’ logic.)

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 7

Semantics (may not be implemented this way):

Mark A for change and Lock A

If successful

Mark B and C for change and Lock B and C

If successful

Change A

Change B and C

Unlock B and C

Unlock A

Note that locks are only for the explanation of the bond semantics. A reservation/locking

mechanism to implement this usually will have an expiry time to obviate deadlocks. In a

database web service, this would usually indicate a ‘‘ready to commit’’ stage.

Negotiation-or Bond: Change A only if at least one of B and C can be successfully

changed. (Implements atomic transaction with ‘‘or’’ logic and can be extended to at least k out of

n.)

Semantics:

Mark A for change and Lock A

Mark B and C for change; Obtain locks on those entities that

can be successfully changed.

If obtained at least one lock

Then Change A; Change the locked entities.

Unlock entities

Negotiation-xor Bond: Change A only if exactly one of B and C can be successfully

changed (implements atomic transaction with ’’xor’’ logic and can be extended to exactly k out of

n).

Semantics:

Mark A for change and Lock A

Mark B and C for change. Obtain locks on those entities that can be successfully

changed.

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 8

If obtained exactly one lock

Then Change A; Change the locked entities.

Unlock entities

Notations: A subscription bond from A to B is denoted as a dashed directed arrow from A

to B. A negotiation bond from A to B is denoted as a solid directed arrow from A to B. A

negotiation—and bond from A to B and C is denoted by two solid arrows, one each to B and C,

with a ‘‘٭’’ in between the arrows. Similarly, a negotiation—or bond from A to B and C is denoted

by two solid arrows, one each to B and C, with a ‘‘+’’ in between the arrows. A negotiation-XOR

bond from A to B and C is denoted by two solid arrows, one each to B and C, with a ‘‘^’’ in

between the arrows. A tentative bond, which is a negotiation bond in a waiting list, is shown as a

solid arrow with cuts.

A negotiation bond has two interpretations: pre-execution and post-execution. In case of

pre-execution, in order to start activity B, A needs to complete its execution. In case of

post-execution, in order to start activity B, B needs to make sure that A can be completed

afterwards. In this paper, we have primarily employed the pre-execution type of negotiation

bonds.

3. Collaborative Applications—Distributed and ad-hoc

In this section, we introduce two kinds of collaborative applications, and illustrate them

with our case studies on a personal system of calendar application and travel application used as

case studies throughout the paper. Both distributed applications of personal system of calendar

application and ad-hoc travel application can be easily developed using the SyD framework and

showcase SyD capabilities effectively.

3.1. Collaborative SyD Applications

Collaborative group applications leverage off multiple constituent web entities, where

each of those entities is a server application/component or an object or a data store. A

centralized coordinator application resides on one host and composes or configures multiple

SyD objects (which may themselves be typically distributed). Composition is achieved through

method calls of constituent objects. Configuration additionally employs the SyD coordination

bonds to establish flow and dependency structure between coordinator application and

constituent objects. These get triggered at various points in execution of coordinator application.

Centralized vs. distributed coordination: Not much work has been done in the area of web

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 9

service composition for small mobile wireless devices. Disconnection and memory constraints

are two important issues considered while designing any application targeted for small handheld

devices. Chakraborty et al. (2004) survey the issues related to service composition in mobile

environments and evaluate criteria for judging protocols that enable such composition. It states

that many of the current technologies, still, do not cover all these aspects in their implementation.

Some of the proposed approaches that handle centralized coordination of web services suffer

from central point of failure despite making the design and implementation simple. As opposed to

the prevailing centralized coordination, distributed coordination has the following two advantages:

(i) due to security, privacy, or licensing imperatives, some web-based objects will only allow

direct pair-wise interactions without any coordinating third-party entity; and (ii) centralized

coordination/ workflows suffer from issues such as scalability, performance, fault tolerance, etc.

Achieving coordination in collaborative applications consisting of composed web services for

mobile environment is still an evolving area and much work needs to be done. A distributed

coordinator application primarily employs SyD bonds among constituent SyD objects and thus is

co-hosted distributively.

Ad-hoc Applications: Ad-hoc SyD applications leverage off preexisting objects and

typically create coordinated application by simple composition of constituent objects or simple

configuration using SyD bonds. An ad-hoc application allows web-enabled objects to find

services of common interest and compose them to suit the application need. The composition

and integration of these objects may vary from being simple (without any constraints enforced) to

complex (with pre-defined constraints among the objects). The constraints can be defined over a

group of users, objects and/or applications. We refer such a collection of group dependency

objects as an ad-hoc group SyD object. All SyD objects are autonomous objects that can

communicate in a distributed, peer-to-peer fashion and can be made web-enabled. SyD provides

a way to build on-the-fly applications by a proper composition and integration of the pre-existing

SyD objects for simple applications and additionally configuring SyD bonds for complex

applications. SyD gives a methodology to configure SyD objects on-the-fly via an ad-hoc

application development. We give a design methodology and calendar specific details of the

development methodology in Section 4.

Garbinato and Rupp (2003) define that ad-hoc applications meet three essential criteria

of: (i) mobility, (ii) peer-to-peer, and (iii) collocation. SyD applications reside on mobile,

heterogeneous, and autonomous devices giving application level mobility. SyD enabled mobile

devices can serve both as a client/server to any service. SyD users communicate with each

other in a peer-to-peer fashion. By the definition of collocation, the application is

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 10

proximity-restricted and has to end up in a physical transaction. SyD supports both logical and

physical proximity based applications. The SyD applications qualify with these criteria.

3.2. A Calendar of Meetings Application

A calendar of meetings application illustrates a distributed coordinator application.

Prasad et al. (2003b) demonstrated how an empty time slot is found, how a meeting is setup

(tentative and confirmed), and how voluntary and involuntary changes are automatically handled.

We now provide an overview here. A simple scenario is as follows: A wants to call a meeting

between dates d1 and d2 involving B, C, D and himself. After the empty slots in everybody’s

calendar are found, a ‘‘negotiation-and bond’’ is created from A’s slot to the specific slot in each

calendar table shown as solid lines (Fig. 3).

Choosing the desired slot involves an attempt to write and reserve that slot in A’s

calendar, triggering the negotiation—and bond. The sequence of actions of this bond is to: query

each table for this desired slot, ensure that it is not reserved, and reserve this slot. If this

sequence of actions succeeds, then each corresponding slot at A, B, C and D create a

negotiation bond back to A’s slot. Else, for those individuals who could not be reserved, a

tentative back bond to A is queued up at the corresponding slots to be triggered whenever the

status of the slot changes. Assume that C could not be reserved. Thus, C has a tentative bond

back to A (shown as solid line with dashes), and others have subscription bond, shown as dotted

line, to A (Fig. 4). Whenever C becomes available, if the tentative bond back to A is of highest

priority, it will get triggered, informing A of C’s availability, and will attempt to change A’s slot to

be confirmed. This triggers the negotiation—and bond from A to A, B, C and D, resulting in

another round of negotiation. If all succeed, then corresponding slots are confirmed, and the

target slots at A, B, C, and D create negotiation bonds back to A’s slot (Fig. 4). Thus, a tentative

meeting has been converted to confirmed. Now suppose D wants to change the schedule for this

meeting. The reschedule meeting process happens automatically in real time. A reschedule

request from D triggers its’ back bond to A, triggering the forward negotiation—and bond from A

to A, B, C, and D. If all succeed, then a new duration is reserved at each calendar with all forward

and back bond established. If not all can agree, then D would be unable to change the schedule

of the meeting.

3.3. An ad-hoc Travel Application

The technologies with Web services have progressed a long way now and have become

more sophisticated, interconnected, and interoperable. A travel application can integrate the

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 11

reservations of flights, rental cars, and hotel accommodations. Most existing travel reservation

applications do not combine and maintain a global relation among these services. As a result,

manual changes need to be performed if one portion of the itinerary changes. The process

behind such applications would not only integrate these Web services, but also enforces QoS

constraints, such as deadlines, budgets, etc. This application integrates the reservations of

flights, rental cars, and hotel accommodations using Web Bonds (further explained in Section 5).

The development of this application exploits the rapid application development feature of SyD.

SyD coordination bonds in web-enabled SyD objects serve as web bonds. By leveraging off

existing web services, the developer needs only to select the desired services via UDDI and

include the required global logic to link the chosen services.

As mentioned above, the travel application allows for automatic rescheduling and

cancellation of itineraries. Once an itinerary is decided and the trip is planned for the user, bonds

that are created are maintained in the user’s database. This way, the itinerary is still ’’alive,’’

meaning there is a global relation over these web services and thus providing ‘statefulness’ to

the web services. Any changes made in any one of the web services will affect the other web

services associated with that current service. If the flight is cancelled, then automatic

cancellation of car and hotel reservations will be triggered, thus easing the burden of the user to

manually cancel all associated reservations.

4. Designing Collaborative Applications

In this section, we give a methodology for designing collaborative application using

concepts of SyD.

4.1. Methodology

SyD middleware provides components to aid easy development of collaborative

applications that span from centralized to pure distributed. Collaborative applications interact

with each other and in the process may encounter data dependencies, control dependencies, or

both depending on the nature of the application.

The SyD components provide an effective way of collaboration with heterogeneous peer

devices and also provide a way to enforce dependencies. SyD bonds provide methodologies to

enforce data and control dependencies in such application scenarios. The challenge is to

associate SyD bonds in an early stage of application design for its effective use. In fact, one can

follow standard UML design methods to design applications (Fowler and Scott, 2002) and then

insert SyD artifacts at appropriate design phases as required. We will explain the design process

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 12

of a collaborative application using SyD middleware and SyD bonds based on UML (Pressman,

1997).

The sequence of steps for designing distributed applications using the concepts of SyD is

(captured in Fig. 5):

Step 1: As an initial step, requirement specification is given by the user of the application

system describing the way the system is expected to work.

Step 2: A requirement analysis is carried out to identify actors and use cases. An actor is

an external entity (person, another system, or object) that uses the system. Use cases are either

text descriptions or flow descriptions of how actors interact with the system in all scenarios

encountered in the applications. From use cases and actors, use case diagrams are drawn. Use

case model diagrams show interaction between actors and all use cases.

Step 3: Based on the derived use case diagrams, use cases and actors from Step 2,

activity diagrams are developed. UML activity diagrams are equivalent to flow charts and data

flow diagrams in object-oriented paradigm. In activity diagrams, the data flow spans across use

cases and allows one to identify data and method inter-dependency of the use cases at an

abstract level. These data and control dependencies can be analyzed, attributed as

SyD-bondable and may be realized using SyD bonds in the later step.

Step 4: The identification of classes and class diagrams follows activity diagrams. Class

diagrams represent the static behavior of the system. Class diagrams describe the object types

in a system and their relationships. Class diagrams model class structure and its contents using

design elements such as classes, packages, and object. The persistent or non-persistent data

objects with dependencies can be modeled using SyD methods to automate any method

invocation needed for the application. Dynamic behavior of the system is modeled using

sequence diagrams and collaboration diagrams. Both these diagrams help to identify

inter-service dependencies at method level where we can apply SyD bonds to enforce them.

Such design can further be clarified using communication diagrams that show the message flow

between objects.

Once all the objects, data, data dependencies, and control dependencies have been

identified and modeled using SyD and other components, implementation can begin. Server

logic can be coded starting from SyD-listener skeleton which is middleware specific. Client

coding can be started using SyDBond, SyDEngine, SyDDoc directory logic which is application

specific. Fig. 5 shows our collaborative application design process.

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 13

4.2. Designing Calendar Application—A Case Study

Here, we illustrate the design process with a distributed calendar application. We will limit

the discussion to particular scenarios in the system wherever appropriate.

Step 1: The requirements specification details the view of user and addresses the

aspects of the benefits of the new system, interaction with other systems and system

functionality. This includes the details of available time slots, its representation, need to

collaborate before deciding on a place and time to meet, any constraints to be met, etc. Based

on the specification, several different use cases are identified for calendar application. The use

cases of interest are: get available times, setup meeting, cancel meeting, view calendar,

reschedule meeting, create bond, and delete bond.

Step 2: The actors and its interactions are then modeled as use case diagrams. The text

description of the cancel meeting use case is given in Table 1. The interaction between the

actors and all use cases of the system can be given in a use case model diagram.

Step 3: We extend use case diagram of cancel meeting to the activity diagram for cancel

meeting. For the calendar application, the method call for cancel meeting checks for any

dependencies associated in its execution (see Fig. 6).

As shown in Fig. 6, dependencies are managed using bonds and deleting corresponding

bonds make sure that all required attendees agree on the cancellation. The presence of

confirmed dependencies will result in its successful execution. However, in case of tentative

dependencies, a reschedule is triggered resulting in an automatic execution of the scenario

‘‘conversion of status’’, in case of no conflicts. These method dependencies indicate

placeholders for SyD methods (Prasad and Balasooriya, 2004, 2005).

Step 4: The methods cancel meeting (attendeelist, starttime, and endtime), reschedule

(attendeelist, starttime, and endtime), confirm meeting (attendeelist, starttime, and endtime), etc.,

when executed in the calendar application result in the update of dependent data objects. These

data dependencies indicate placeholders for SyD bonds. The identified objects and

dependencies that can be enforced using SyD bonds are identified in the resulting class

diagram.

5. Designing ad-hoc Collaborative Applications

SyD allows rapid development of a range of portable and reliable collaborative

applications, including ad-hoc applications by the users. It provides well-defined steps and a

layered middleware environment to quickly develop applications by composing and bonding

existing and new constituent objects. Within this section, we will describe the design process a

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 14

user will employ to develop such an ad-hoc application. The development procedure involves

using the developer’s nook, which is the SyD ad-hoc application development environment. We

will also explain the detailed steps performed in developing the travel application (our second

case study application).

5.1. Ad-hoc Application Design

Users can develop and deploy ad-hoc collaborative applications on-the-fly by leveraging

off the pre-existing providers of services/methods and data sources, SyD Client Objects

(SyDCOs), SyD Middleware Objects (SyDMWOs) and SyD Application Objects (SyDAppOs), by

composing the SyDCOs and non-SyD objects in an application-specific structure through

SyDBonds as follows:

(a) Search and locate the required SyDCOs and other objects by employing the SyD

Directory Service.

(b) Develop and deploy the ad-hoc SyD collaborative application (SyDAppO) by

employing a suitable domain-specific GUI-based SyD ad-hoc application developer

service as follows:

1 Choose the desired SyDCOs and other objects to be part of this ad-hoc application

SyDAppO.

2 Create SyD bonds among the SyDCOs and other objects and define the attributes of

each bond thereby establishing the required constraints and dependencies among

the constituent objects (or their parts), and verify the intended functionality and QoS

attributes by a simulated execution.

3 Launch the ad-hoc application SyDAppO thereby registering it with the SyD Directory

Service.

Register the resulting sydgroups and applications so that further applications may be

built.

All the devices with SyD middleware installed on them, can host SyD enabled

applications called SyDAppos. To run an application, the application is launched on a home

SyDMW (each application may have a home SyDMW providing specialized SyDMWOs), and

registered with the home and other SyDMWs. A typical user may run this application by joining

the group of users executing on the home SyDMW. Another option is that client’s SyDMW

downloads the application and launches it. The third scenario is that the client’s SyDMW runs the

application locally, but employs the home SyDMW for its special services. As can be seen, the

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 15

process of developing SyD applications is highly distributed. Data stores are accessed via

SyDCOs that encapsulate them, SyDAPPOs coordinate the collection of SyDCOs involved in the

application, and SyDMW provides the various services that enable group and communication

primitives. This highly distributed approach to application development creates flexibility and

ease of programming, allowing rapid development of applications.

5.2. Designing Travel Application: A Case Study

As mentioned in Section 3.3, the travel application integrates the reservations of flights,

rental cars, and hotel accommodations by using SyDBonds. The process behind this application

is the web services framework, so that the application not only integrates these existing web

services, but also enforces QoS constraints, such as deadlines and budgets.

The centralized coordinator of the travel application is the SyDBond module. It is the

module that invokes the appropriate methods and web services required. SyDBond also

automatically triggers requests to web services that are interlinked. It is therefore in-charge of

wrapping the method invocation into SOAP requests, and getting back the response and

returning only the desired result back to the user. The travel application takes advantage of the

rapid application development feature of SyD. By leveraging off of existing web services, the

developer needs only to select the desired services (by providing the WSDL) and include the

required global logic to bond the chosen services.

Rather than creating distributed bonds that are maintained across each of the web

service objects, the SyDBond module can serve as a central coordinator. This is implemented in

our travel application. The web services that are collaborating with our travel application are

legacy web services and are not SyD enabled. For this reason, these services are not capable of

coordination bonding between the various entities. To enable legacy services with coordination

bond logic, the SyDBond module wraps the method invocations into SOAP requests, which can

then be processed by the legacy web services.

Since travel application involves negotiation bonds among various phases of its itinerary,

we need a mechanism to enforce dependencies and constraints across entities and trigger

changes based on constraint-satisfaction. The non-SyD-enabled web services will not be able to

perform the constraint checking and automatic triggering. By centralizing this control across the

entities at the SyDBond module, we are able to interlink existing web services together with the

coordination of multiple bonds. The bond module holds all associated methods for a particular

service. As shown in Fig. 7, if one service is cancelled, this will automatically trigger the deletion

methods on all associated or interlinked services.

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 16

Just as the SyDBond module is responsible for coordinating particular methods across

entities and automatically triggering methods on services that are bonded together, it is also

responsible for enforcing specified constraints. Fig. 8 shows how the SyDBond module is the

centralized coordinator for checking these constraints. The bond module holds all associated

methods for a particular service. The enforcement of constraints is performed across all entities

that are interlinked, but it is performed through the communications invoked by the SyDBond

module.

6. Implementation of SyDBond Module

In the previous section, we have presented centralized coordinating and constraint

checking across multiple applications using SyDBond module. The implementation details of

SyDBond module and SyD database are explained in this section. We provide the details to set

up the SyDBond database, its tables, and how to identify and associate SyDBond methods. We

also show the procedure for initial set up of the travel application by using the developer’s

interface. The developer’s interface is simple and menu driven. With just a few clicks, one can

setup the necessary SyDBond database, initialize tables, view the services available, and

specify constraint logic. The developer simply needs to specify the database username,

password and the jdbc connection string and the tables are then setup automatically for the user.

6.1. Initial Setup of SyDBond Database

All the information concerning a bond is maintained in a bond database that is stored

locally by the user. This bond database is created for a user when he/she installs a SyD

application with bond-enabled features. As of now, SyDBond is compliant only with Oracle

database.

Some of the important tables that are created include:

• syd_bond: main table that holds the details of bonds

• bond_method: holds the method names and corresponding names of methods to be

triggered upon automatic updates, cancellations, etc.

• waiting_bond: holds the waiting bond details

• service_info: stores details of web services, its wsdl URL and methods

• global_constraint: used for maintaining global constraints such as budget, deadlines, etc.

Population of SyDBond tables: This is an important event of the initial set up. The

application developer gives details of the web services that are to be included in the application.

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 17

The details include the service name, the wsdl url, and optional features such as the list of

methods that can be invoked and an associated priority. Once the developer feeds in the data,

the parsewsdl method in SyDBond may be invoked. This method parses the specified wsdl file

and stores the lists of methods that are listed in the web service. All the required information is

then stored in the service_info table of SyDBond database. The developer has an option to view

service info table any time and see the list of web services available, add or delete entries within

the table in an easy manner.

Enforcing constraints and interdependencies are some of the vital features of SyDBond.

In order to achieve this, the constraint and bond_method tables have to be populated. The

constraint table holds information as to which methods of the web services are related with

constraints such as budgets, deadlines. Likewise, the bond_method table holds the list of

methods and their associated methods to be triggered. This information is used for automatic

triggering on events in case of cancellations or reschedules. Once the SyDBond tables are

populated we can use the methods of SyDBond to develop new applications in an ad-hoc

manner.

6.1.1. Using SyD Developer’s Nook for Initial Set up

The SyD middleware provides a simple GUI-based interface for the application developer

to initially setup and SyDBond-enable his/her application. We refer to this interface as the

Developer’s Nook, as it provides a separate working area for the application developer. As

SyDBond attempts to make things as automated as possible, the developer needs to initialize

certain entities based on the business logic. He/she is given access to different GUI screens to

perform various functions such as setting up database tables, populating table values, specifying

constraints and methods that qualify for auto-triggering. We will go through in depth details for

selective functions.

The application developer can also specify the constraints on web services that are to be

interlinked using the SyDBond module. The developer specifies a service name (e.g. Flight

Service) and gives its wsdl URL (e.g. http://www.xmethods.net/sd/2001/Flight Service.wsdl). The

developer also has an option to enumerate the methods in the service. This in turn, invokes

methods of SyDBond that parses the wsdl. If the location of the URL is faulty, an appropriate

error message is thrown.

The application developer can specify constraints associated with methods. This is also

done using a simple GUI. When the developer chooses the desired method and the associated

constraint, entries are made in the user’s database. This information is later used by the

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 18

SyDBond module to check for constraints associated with methods. Upon service method

invocation through SyDBond, it checks to see the associated constraints on the methods. The

application developer also chooses the methods that are to be bonded. These details are stored

in the database of the user. SyDBond, upon any method invocation checks to see for associated

methods that are to be triggered. It then automatically invokes the rest of the methods that are

bonded.

After the initial set up is complete, the application developer can finalize the details

pertaining to the application. In the travel application, this includes creating the login page and a

main page that offers the appropriate options that include viewing one’s itinerary,

making/rescheduling one’s reservation or viewing their set up page.

For instance, the user makes reservations by selecting the necessary itinerary entities.

The user also has an option to specify any constraints that needs to be considered such as

budget, time, etc. Once the user gives all these details, SyDBond first packs the details in a

SOAP request, branches out to various web services and invokes the corresponding methods. It

then returns the appropriate results back to the user. Once the user has decided on the itinerary,

after the confirmation, SyDBond then forms the bonds for this itinerary. The bonds are then ‘‘live’’

meaning that any change in any one of the entities of the bond, causes an automatic affect on

the other entities.

When itineraries are displayed, the user has an option to cancel his/her itineraries. When

the user chooses any one of the segments to be cancelled, automatic cancellations of the rest of

the trip is done by SyDBonds. When user chooses to cancel, say, user’s flight reservations,

SyDBond checks to see if there are any auto triggers associated with that method. It checks in

the database for associated methods to be triggered. Once the methods are identified, it

automatically invokes the rest of the methods and all bonded segments of the itinerary are

cancelled.

6.2. Significant SyDBond Methods

As we have seen, the effort taken by the application developer to develop an application

is minimal. An application developer needs to mainly participate only in the initial set up and

developing the GUI. Listed below are some of the important SyDBond methods that help to

accomplish this ease of development of an application:

 createSyDBondDatabase: This method is invoked to create all the necessary tables of

SyDBond. This call is done initially when the application developer needs to make an

application SyDBond-enabled.

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 19

 createSyDBond: This method is used to form associations or bonds among entities.

When a schedule is decided upon, bonds are created. Details like source entity,

destination entity, start time, expiry time, constraints, priority, comments, etc., are

specified and a bond between the source and the destination entities is created. These

details are later used by the SyDBond module for automatic reschedules, and updates.

 parseWsdl: This method parses the wsdl file of the web service, lists out the methods that

can be invoked, parameters to be used, etc. The application developer initially, gives the

url location of the web services which he desires to integrate. This method is then invoked

to parse the wsdl. A DOM parser is used in this method to parse the XML document.

Methods names (and their parameter types) of the given web service are then extracted

and placed in a table for further reference.

 packAndSend: This method is used to invoke methods of web services. This creates the

SOAP envelope by packing the necessary parameters and sends the request to the web

services. When a SOAP response it obtained, it then returns the desired output back to

the user.

 packAndSendConstraints: This method is also used to invoke methods of web services.

This creates the SOAP envelope by packing the necessary parameters and sends the

request to the web services. However, methods that are associated with constraints like

budget are executed through this method of SyDBond. The resulting response is

aggregated and the only results that satisfy the constraints are returned.

 viewBonds: This method is used to view all the bonds associated with a particular user.

This is a simple yet useful method of SyDBond. In case of a travel reservation application,

upon this method invocation, would result in the itineraries being displayed.

 autoTrigger: Before any method is executed, it is first checked to see if there are any

methods coupled with it that need to be triggered. This method of SyDBond is used to

realize it. Multithreading of methods is employed to achieve faster execution time.

 checkOnWaitingBonds: This method is invoked upon any bond deletion. A check is done

to see if there are any waiting bonds associated with the bond currently being deleted. If

there is such a case, then the waiting bond is converted to a permanent bond and an

entry is made in the bond table.

 deleteBond: This method is invoked upon any bond deletion. A check is done to see if

there are any associated bonds to be deleted (using autoTrigger method) and the bonds

are physically removed from the database.

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 20

6.3. An Example Usage of SyDBond Module

Here we discuss an example usage of SyDBond module focusing on the cancel meeting

scenario in the SyD Calendar Application. This description will help to highlight some of the

methods of the SyDBond module and show the interaction of it with the bond database and other

modules of SyD Middleware. The Calendar application is dependent on SyDBonds in order to

manage the interdependencies between various calendars. Cancel meeting especially involves

following all the interdependencies and automatically converting a tentative meeting to

permanent based on priority. Using SyDBonds the application can call deleteBond(), which

follows the following steps to achieve automatic triggering.

1. Check to see if there are any associated waiting bonds.

2. If so, automatically convert status of waiting bonds from tentative to permanent through

SyDEngine.

3. Delete the local bond.

4. Invoke deleteBond on the rest of the associated bonds.

5. Update the calendar database of the user.

6. SyDEngine gets the remote URL of the associated users from the SyDDirectory Service

and invokes the necessary method.

7. Repeat steps 1 through 6 for each associated user.

7. Calendar Application Implementation and Experiments

In this section, we discuss implementation and experiments on the calendar of meetings

application. The performance metrics like response time, server processing time, etc., for various

meeting scenarios are evaluated and compared.

7.1. Calendar Application Implementation

The design of the calendar application has been implemented on HP iPAQ H3600 and

H3700 series running windows CE operating system. Here, we describe implementation details

providing insights into the development process. These development logistics and device-level

details should help developers of similar applications for mobile devices.

Step 1: We implemented SyD Middleware (as a Java package) and Calendar code using

Java JDK 1.3. The system user interface was designed using Java Applets. We used Oracle8i as

the back end database for storing SyD bond and application specific tables. All were

implemented on a PC. Calendar application code interfaces with SyD Middleware application

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 21

code for executing method calls (SyDEngine), listening for incoming method calls (SyDListener),

and making directory service calls (SyDDirectory).

Step 2: We installed JVM for iPAQ, Jeode EVM Version 1.9. We ported the SyD

Middleware code and calendar application code on the iPAQ using Microsoft ActiveSync version

3.5 and set the classpath appropriately.

Step 3: After downloading the SyD Middleware, we installed and ran the middleware

components on the iPAQ. This involves: (i) running a directory server (Oracle server) on a PC

connected via a wireless network with the base iPAQ and (ii) running listener.lnk file (located

in/syd/sydlistener path), which continuously listens for incoming method calls.

Step 4: We then installed the calendar application code itself. To do this, we executed the

CalRegistrar.lnk file, which registers the application with SyDDirectory, followed by the

application GUI to implement the various scenarios (set up meeting, cancel meeting, and

reschedule meeting).

7.2. Experiments and Performance Metrics

We ran our experiments on a high performance/low power SA1110 (206 MHz) Compaq

iPAQ H 3600 and 3700 series, with 32 MB of SD RAM and 32 MB of Flash ROM. We had three

3600 series and seven 3700 series iPAQ running middleware and calendar applications

connected through a wireless network using a 2.4 GHz wireless router. The operating system

was Windows CE. We used JDK version 1.3 to code our programs and JVM for iPAQ was Jeode

EVM Version 1.9. The DBMS of the directory server was Oracle 8i.

In Section 4 we have shown that SyD middleware enables structured, streamlined and

rapid application development on mobile devices backed with theoretical and proven case study

implementations of the calendar application. However, in a mobile setting, it is also significant

that the applications developed scale well in terms of bandwidth, memory storage and response

time parameters, as these resources are scarce for mobile devices. The motivations for

considering aforementioned parameters are as follows: (1) mobile devices cannot afford large

amounts of message transfers, as the network bandwidth is limited; hence, we measured

message size transferred; (2) storage size on iPAQ is scarce and larger storage size for

applications is not desired; hence, we measured storage requirements; (3) response time for

executing method calls on mobile devices is critical, as higher response times are possible when

applications: (a) consume more storage space, (b) transfer larger message sizes, and (c) require

higher memory; hence we measured response time. We carried out experiments on calendar

application for three scenarios: set up meeting, cancel meeting, and reschedule meeting. Our

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 22

experiment results have been encouraging, as the application has shown to scale well in terms

of all the parameters.

7.2.1. Setup Meeting Scenario

A constant message size of 50 bytes is transferred for each participant in a meeting

consisting of meeting details. The storage size for group sizes of 2, 3, and 4 are: 120, 146, and

170 bytes, respectively. For group sizes of more than 3, the storage size does not increase

linearly as we associated a meeting id for each meeting, which avoids repetitive information such

as start times, end times, and comments.

Response time: Response time is the time required to execute set up meeting method

call. A set up meeting method call includes time required to execute a get available time method

returning the available times of all the participants, time required to execute the set up meeting

for all involved meeting participants, and time to write the meeting details of all the participants to

a file. It should also be noted that any method call must go through SyD middleware components.

More specifically, it includes time required for (i) SyDEngine to contact SyDDirectory to get other

user url information, (ii) SyDDoc to create a request document, and (iii) SyDEngine to invoke

SyDListener remotely and get back the results.

In Fig. 9, we show the response time for all three scenarios based on varying number of

group sizes. We observe that response time scales well (does not increase rapidly) for

increasing group size through parallelism in processing and this behavior can be explained by

analyzing different middleware component timings that make up response time as can be seen

from Fig. 10. The different components and their timing analysis are given below:

The ‘‘Engine to Directory Service’’ takes around 47–60 ms for group sizes of 2–10, which

is less than 1% of total time. The ‘‘Create SyDDoc’’ value ranges from 13 to 90 ms for group

sizes of 2–10, which is again less than 1% of response time. Now, we go in details on the

components that make up a large share of the total response time.

Engine to remote listener: SyDEngine invokes remote listener for executing method call

on remote devices by using the request document generated from the above step. This involves

sending the request document to the remote listener, parsing the request document at the

remote listener end, invoking the method call on the remote listener and writing the meeting

details of each individual participant to a file. For increased group sizes, we achieve some

concurrency as multiple remote listener calls are made to participant devices and results are

collected. This value ranges from 1725 to 2900 ms for group sizes of 2–10 (takes around 48% of

total time).

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 23

Server processing: This refers to all other miscellaneous processing times such as

opening, writing, and closing of file at initiator side, initializations for middleware components

(SyDEngine, client side RMI registry components of directory server), and different application

specific objects such as vectors. Here, we achieve concurrency for increased group sizes. This

value ranges from 1995 to 2100 ms for group sizes of 2–10 (takes around 50% of total time).

7.2.2. Other Meeting Scenarios

In a reschedule meeting scenario, from the initiator point of view, size of message

transferred is the message size transferred to convey the information that meeting has been

cancelled to the other participants, and another message to send a confirmation of the meeting

set up that has been tentative so far. The initiator does not have to wait on any

acknowledgements in either case as one corresponds to cancel and for the tentative meeting the

timings have been already agreed as tentative. We assume that only an initiator can cancel the

meeting as he alone knows all the participant details and the tentative meeting participant details.

This yields in a very small amount of data to be transferred, two messages containing initiator

name, start time, end time, and date (around 20 bytes each). Cancel meeting also takes around

20 bytes of data transfer. Just like set up meeting scenario, we present response time of

components for cancel meeting and reschedule meeting in Figs. 11 and 12.

8. Related Work

Our literature survey broadly spans two areas: middleware systems for collaborative

applications and the ease of developing and deploying collaborative applications, in particular

calendar and travel applications. In this section, we describe related work in these two areas.

8.1. Middleware Systems

Here, we compare our work with other mobile middleware platforms supporting

collaborative application development. Although, there is an abundant body of research carried

out in middleware area in general, we review the ones that aim at supporting colloborative

application development on mobile devices. Generally, mobile middleware systems can be

classified as: (i) P2Pprotocol oriented systems (Fok et al., 2004; Kortuem, 2002; Mascolo et al.,

2001; Kotilainen et al., 2005), (ii) dynamic distributed applications (e.g. JXTA) or IP-based

client-server applications (e.g. Jini, Microsoft .NET, and others), and, (iii) middleware

infrastructures supporting collaborative application development (Kortuem, 2002; Krebs et

al.,2003; Cugolaand Picco,2002; Kirdaet al.,2002; Yamin et al., 2002; Gupta et al., 2009).

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 24

As elaborated in Section 1, the current technology for the development of collaborative

web applications over a set of wired or wireless devices has several limitations. A few existing

middleware systems have addressed the stated requirements in a piecemeal fashion. For

example, Proem (Kortuem, 2002) is one such platform for developing and deploying peer-to-peer

(P2P) collaborative applications in a mobile ad-hoc networking environment. Similiarly,

Kotilainen et al. (2005) also propose Mobile Chedar, a peer-to-peer middleware for mobile

devices using Bluetooth technology. LIME (Fok et al., 2004) is a P2P-Protocol oriented

coordination model for ad-hoc networks. Commercial products such as .NET compact framework

(Neable, 2002) and J2ME are also popular.

Juszczyk and Dustdar (2008) describe RESCUE, a service oriented middleware for

disaster and recover application which uses efficient P2P protocols for service advertisements

and discovery. Gu et al. (2005) describe a service oriented middleware for developing context

aware applications using an ontology based approach. Chakraborty et al. (2004) describe issues

related to service composition in mobile environments and evaluate criteria for judging protocols

that enable such composition. A distributed architecture and associated protocols for service

composition in mobile environments based on factors like mobility, dynamic changing service

topology and device resources are presented. The composition protocols are based on

distributed brokerage mechanisms and utilize a distributed service discovery process over

ad-hoc network connectivity. The DISCIPLE System (Krebs et al., 2003) also supports

heterogeneous collaboration over web, including mobile devices. ISAM (Yamin et al., 2002)

supports infrastructure for mobile collaborative applications using java based middleware, similar

to ours. MOTION (Kirda et al., 2002) is another framework for developing collaborative

applications on mobile devices. Newer developments in mobile middleware include developing a

mobile middleware for social networking applications (Pietiläinen et al., 2009; Gupta 2009),

which falls under the broader category of collaborative applications. Gupta et al. (2009) propose

MobiSoc, a middleware for mobile social computing applications.

All the aforementioned research works provide a middleware for mobile devices targeting

different features. The distinguishing aspect of our work is we propose a software engineering

methodology for developing both collaborative and ad hoc applications using middleware for

mobile devices. Also, features such as atomic transactions over group of web objects,

constraints on mobile web objects, and ease of application development methodology that are

supported in SyD middleware are simply missing in the existing middleware systems. Other

limitations of current middleware systems include: restricting the usage of mobile devices to only

client-side programming and are incapable of being used as servers, can be applied to only

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 25

restricted domain of applications like gaming, bidding, etc., or limited group or transaction

functionalities or mobility support, as further elaborated in our earlier work (Prasad et al., 2004).

SyD, on the other hand, addresses all these heterogeneous data and device problems and

provides a new platform technology that makes developing applications easy and independent of

data format, device type and device location.

8.2. Calendar Application Development

Many existing calendar system‘s main goal is setting up meetings. Apart from setting up

simple meetings, SyD calendar also focuses on the logic and enforces interdependencies, if any

in context of meeting. Here, we compare SyD calendar with other widely used industrial calendar

systems like Novell GroupWise, Microsoft Outlook, and Lotus Notes.

The Novell GroupWise offers the full range of workgroup functions, messaging,

calendaring, scheduling, task management, document management, document imaging and

editing, and web publishing (Novell, 2003). SyD calendar targets only at the calendar workgroup

function with many inter-dependency options and automated rescheduling in case of cancel

meetings. GroupWise leverages from pre-existing user profiles. The SyD directory service for a

wired device needs the account information to be published only once. SyD emphasizing on the

mobile work group functionality needs the publishing of proxy information for each account on to

the directory to handle disconnectivity. The existing account information is synchronized with

proxy information when the original account is restored from disconnections.

The Lotus Notes directory is not smart because public address book is a

single-application directory, unlike GroupWise. Thus user accounts for these workgroup products

are created and managed separately from existing Network Operating System

accounts—requiring double the time, effort, and cost to create. A Notes application can however

be rapidly built and deployed than a GroupWise application (Lotus, 1999). Outlook calendars are

stored centrally and allow sharing calendar with other account’s calendar (Outlook, 2001).

When a calendar is shared, it is visible to everyone or select individuals. Outlook calendar

keeps the privacy if we choose not to share our calendar details, all others can see only the slots

available. Outlook allows meeting comments like conference room, details, etc., and

synchronization with PDA calendar. The Exchange server 2003 provides Exchange ActiveSync

for windows mobile-based devices (Morimoto et al., 2003). When set-up meeting is initiated,

Exchange sends a message inviting all of the attendees. The participants can agree to attend,

tentatively agree to the time, or decline. If they agree, the entry is marked in their calendar and

the initiator is notified both by email and in a tracking function for that event. Microsoft Exchange

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 26

server software enables Outlook’s collaborative groupware features. The Exchange Server

requires lot of space and the installation procedure is complex, requires licensing and costly

(Morimoto et al., 2003). The SyD middleware is very light, easy to install and part of the serving

capability is hosted by mobile devices themselves.

The centralized storage of outlook calendars raises fault tolerance issues. SyD calendars

are stored in a distributed fashion. When set up meeting is initiated on SyD calendars, the

initiator first gets the available times from all participants. The initiator then picks a time slot for

meeting and blocks that particular slot. The participants receive a meeting notification along with

other meeting details in a simple text file format. A meeting can be set tentatively with

participants who are already booked for the timing initiator has planned on. This provides an

easy way to automate rescheduling tentative meetings when the current meetings are cancelled.

Both SyD and outlook have the provision for priority of meetings. The other group logic in SyD

incorporates OR, AND, and XOR logic for the inclusion or exclusion of various participants.

8.3. Travel Application Development

There is a lot of effort involved to induce the application logic and requires proficiency in

coding and other technical details with the current state of art to compose existing web services.

In the early phases of internet, the customer had to manually navigate the Internet, searching

sites to organize his trip. Flights and cars had to be reserved, hotels booked, all from different

websites (Oellermann, 2001). Companies like Hotwire, Priceline, Orbitz, etc., made an initial

effort to transform a travel plan from multiple sites to a single website. But even now, most

portals do not combine and maintain a global relation among these services (e.g. flight

reservation, rental car, hotel, etc.). There is huge effort when changes are made to one aspect of

an itinerary (e.g., a cancelled flight) resulting on manual changes to other sequence of events in

the planned trip (e.g., canceling the car, changing hotel room reservation, etc.). Monolithic

applications take a great deal of time and resources to create. They are often tied to a specific

platform or to specific technologies, and they cannot be easily extended and/or enhanced. There

is no effortless way to access information or perform a task without working through the graphical

user interface, which can be cumbersome over a slow connection or unworkable on a portable

device like a cell phone. SyD travel application provides units of application logic that can be

reused between one application and another. Non-technical users will be able to easily and

rapidly compose and link existing web services to create ad-hoc applications using SyD travel

(Hariharan et al., 2004).

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 27

9. Conclusions and Future Work

We have described the high-level programming and deployment methodology of System

on Mobile Devices (SyD) middle-ware which supports an efficient collaborative application

development environment for deployment on a collection of mobile devices. One of the main

advantages of SyD is a modular architecture that hides inherent heterogeneity among devices,

data stores, and networks by presenting a uniform and persistent object view of mobile server

applications and data-stores interacting through XML/SOAP requests and responses.

The paper has demonstrated the systematic and streamlined application development

and deployment capability of SyD for collaborative applications composed over mobile web

objects. We illustrated this design process using two application case studies: (i) a calendar of

meetings application representing a collaborative application, and (ii) a travel application which is

an ad-hoc collaborative application. We also presented implementation details and performance

metrics for the calendar of meetings application. Specifically, we measured the bandwidth

required, the storage requirements, and the response timings. The results we obtained show that

the application scales well as we increase the group size and fits well within the framework of

mobile devices. Therefore, SyD objects, their interactions, and the underlying techniques

discussed in this paper provide a direct benefit to web services and their compositions and

coordination.

In future, we would like to design a secure platform for SyD applications for different

domains of applications such as social networking, emergency, disaster, and recovery

applications. We also would like to expand the current architecture to include cloud based

applications by integrating our rapid application development with generic interface for pluggable,

web service based applications.

References

Balasooriya J, Prasad SK. Toward fundamental primitives and infrastructure enhancements for

distributed web object coordination and workflows. In: Proceedings of the IEEE

international conference on web services, Orlando, July, 2005.

Chakraborty D, Joshi A, Finin T, Yesha Y. Service composition for mobile environments. Journal

on Mobile Networking and Applications February 2004 [special issue on mobile services].

Cugola G, Picco GP. Peer-to-peer for collaborative applications. In: Proceedings of the

International Conference on Distributed Computing Systems Workshops (ICDCSW), July

2002.

Edwards WK, Newman MW, Sedivy J, Smith T, Izadi S.Recombinant computing and speakeasy

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 28

approach. In: Proceedings of the MobiCom, Atlanta, September 2002. p. 279–86.

Fok C, Roman G, Hackmann G. A lightweight coordination middleware for mobile computing. In:

Proceedings of the 6th international conference on coordination models and languages,

Italy, February 2004. p. 135–51.

Fowler M, Scott K. UML distilled: a brief guide to the standard object modeling language, 2nd ed.

Addison-Wesley Publication; 2002.

Garbinato B, Rupp P. From ad hoc networks to ad hoc applications. ERCIM News Journal 2003.

July.

Gu T, Pung HK, Zhang DQ. A service-oriented middleware for building context-aware services.

Journal of Network and Computer Applications 2005;28(1):1–18.

Gupta A, Kalra A, Boston D, Borcea C. MobiSoC: a middleware for mobile social computing

applications. ACM/Springer Mobile Networks and Applications Journal (MONET)

2009;14(1):35–52.

Hariharan A, Prasad SK, Bourgeois AG, Dogdu E, Navathe S, Sunderraman R, et al.. A

framework for constraint-based collaborative web service applications and a travel

application case study. In: Proceedings of the international symposium on web services

and applications, 2004. p. 866–72.

Joshi J. A system for rapid configuration of distributed workflows over web services and their

handheld-based coordination. Master’s thesis, Georgia State University, 2005.

Kirda E, Fenkam P, Reif G, Gall H. A service architecture for mobile teamwork. In: Proceedings

of the 14th international conference on software engineering and knowledge engineering,

2002.

Kotilainen N, Weber M, Vapa M, Vuori J. Mobile chedar—a peer-to-peer middleware for mobile

devices. In: Proceedings of the third IEEE international conference on Pervasive

Computing and Communications Workshops (PERCOMW’05), 2005. p. 86–90.

Kortuem G. Proem: a middleware platform for mobile peer-to-peer computing. ACM SIGMOBILE

Mobile Computing and Communications Review (MC2R) 2002;6(4). October.

Krebs AM, Ionescu MF, Dorohonceanu B, Marsic I. The DISCIPLE system for collaboration over

the heterogeneous web. In: Hawaii International Conference on Computer System

Sciences, 2003.

Krone O, Chantemargue F, Dagaeff T, Schumacher M, Hirsbrunner B. Coordinating autonomous

entities. The Applied Computing Review, [special issue on coordination models

languages and applications] 1998.

Lotus. Moving from novell groupwise to lotus domino R5. IBM Redbooks Publication; 1999.

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 29

Juszczyk Lukasz, Dustdar Schahram. A middleware for service-oriented communication in

mobile disaster response environments. In: Proceedings of the 6th international

workshop on middleware for pervasive and ad-hoc computing, Leuven, Belgium, 2008. p.

37–42.

Mascolo C, Capra L,Emmerich W. An XML-based middleware for peer-to-peer computing. In:

Proceedings of the international conference on peer-to-peer computing, Linkoping,

Sweden, 2001.

Morimoto R, Gardinier K, Noel M, Coca J. Microsoft exchange server unleashed, 1st ed Sams

Publication; 2003.

Neable C. The NET compact framework. IEEE Pervasive Computing Magazine; 2002. October–

December.

Novell. The groupwise advantage, White papers from Novell, January 2003.

Oellermann WL. Architecting web services. Apress Publication; 2001.

Outlook. Building applications with microsoft outlook version 2002. Microsoft Press Publication;

2001.

PhanT, Huang L, Dulan C. Integrating mobile wireless devices into the computational grid. In:

Proceedings of the MobiCom, Atlanta, September 2002. p. 271–8.

Pietiläinen A, Oliver E, LeBrun J, Varghese G,Diot C. MobiClique: middleware for mobile social

networking. In: Proceedings of the 2nd ACM Workshop on Online Social Networks

(WOSN ’09), Barcelona, Spain, 2009. p. 49–54.

Prasad SK, et al.. System on Mobile Devices (SyD): kernel design and implementation. In:

Proceedings of the international conference on mobile systems, applications, and

services, poster and demo presentation, San Francisco, May 5–8, 2003a.

Prasad SK, et al.. Implementation of a calendar application based on SyD coordination links. In:

Proceedings of the 3rd international workshop on internet computing and E-commerce in

conjunction with the 17th annual International Parallel & Distributed Processing

Symposium (IPDPS), Nice, France, April 22–26, 2003b.

Prasad SK,Balasooriya J. Web coordination bonds: a simple enhancement to web services

infrastructure for effective collaboration. In: Proceedings of the 37th Hawaii International

Conference on System Sciences (HICSS-37), Hawaii, January 2004.

Prasad SK, et al.. System on mobile devices (SyD): a middleware testbed for collaborative

applications over small heterogeneous devices and data stores. In: Proceedings of the

ACM/IFIP/USENIX 5th international middleware conference, Canada, October 2004.

Prasad, SK, Balasooriya, J. Fundamental capabilities of web coordination bonds: modeling Petri

Madiraju, Malladi, Balasooriya, Hariharan, Prasad, Bourgeois 30

nets and expressing workflow and communication patterns over web services. In:

Proceedings of the Hawaii International Conference on System Sciences (HICSS-38),

Hawaii, January 2005.

Prasad SK, Bourgeois AG, Madiraju P, Malladi S,Balasooriya.J. A methodology for engineering

collaborative applications over mobile web objects using SyD middleware. In:

Proceedings of the 2005 IEEE International Conference on Web Services (ICWS 2005),

Orlando, July 2005.

Pressman RS. Software engineering: a practitioner’s approach, 4th ed New York: McGraw-Hill;

1997.

Yamin A, Augustin I, Barbosa J, Silva J, Geyer C,Cavalheiro G. Collaborative multilevel

adaptation in distributed mobile applications. In: Proceedings of the international

conference of the Chilean Computer Science Society (SCCC), November 2002.

Madiraju

Append

Figure 1

, Malladi, Ba

dix

1: SyD Arc

alasooriya, H

chitecture

Hariharan, Prasad, Bourrgeois 31

Madiraju

Figure 2

, Malladi, Ba

2: Interacti

alasooriya, H

ion among

Hariharan, P

g Modules o

rasad, Bour

of SyD Ker

rgeois 32

rnel

Madiraju

Figure 3

, Malladi, Ba

3: A Sched

alasooriya, H

duled Meet

Hariharan, P

ting

rasad, Bourrgeois 33

Madiraju

Figure 4

, Malladi, Ba

4: A Tentat

alasooriya, H

tive Meetin

Hariharan, P

ng

rasad, Bourrgeois 34

Madiraju

Figure 5

, Malladi, Ba

5: A Collab

alasooriya, H

borative Ap

Hariharan, P

pplication

rasad, Bour

Design Pro

rgeois 35

ocess

Madiraju

Figure 6

, Malladi, Ba

6: CANCEL

alasooriya, H

L MEETING

Hariharan, P

G Activity D

rasad, Bour

Diagram

rgeois 36

Madiraju

Figure 7

, Malladi, Ba

7: Automat

alasooriya, H

tic Trigger

Hariharan, P

rs of Metho

rasad, Bour

ods

rgeois 37

Madiraju

Figure 8

, Malladi, Ba

8: SyDBon

alasooriya, H

nd as Centr

Hariharan, P

ralized Coo

rasad, Bour

ordinator –

rgeois 38

– Travel Reeservation Applicatio

on

Madiraju

Figure 9

, Malladi, Ba

9: Respons

alasooriya, H

se Time fo

Hariharan, P

or Three Sc

rasad, Bour

cenarios

rgeois 39

Madiraju

Figure 1

, Malladi, Ba

10: Set Up

alasooriya, H

Meeting R

Hariharan, P

Response T

rasad, Bour

Time for Co

rgeois 40

omponentts

Madiraju

Figure 1

, Malladi, Ba

11: Resche

alasooriya, H

edule Meet

Hariharan, P

ting Respo

rasad, Bour

onse Time

rgeois 41

for Compoonents

Madiraju

Figure 1

, Malladi, Ba

12: Cancel

alasooriya, H

 Meeting R

Hariharan, P

Response T

rasad, Bour

Time for C

rgeois 42

Componentts

Madiraju

Table 1

, Malladi, Ba

: CANCEL_

alasooriya, H

_MEETING

Hariharan, P

G Use Case

rasad, Bour

e

rgeois 43

	Marquette University
	e-Publications@Marquette
	9-1-2010

	A Methodology for Engineering Collaborative and ad-hoc Mobile Applications using SyD Middleware
	Praveen Madiraju
	Srilaxmi Malladi
	Janaka Balasooriya
	Arthi Hariharan
	Sushil K. Prasad
	See next page for additional authors
	Authors

	tmp.1296066571.pdf.NGfR6

