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A Class of Models for Uncorrelated Random Variables 

By Nader Ebrahimi, G.G. Hamedani, Ehsan S. Soofi, and Hans Volkmer 

 

We consider the class of multivariate distributions that gives the distribution of the sum of 

uncorrelated random variables by the product of their marginal distributions. This class is defined 

by a representation of the assumption of sub-independence, formulated previously in terms of 

the characteristic function and convolution, as a weaker assumption than independence for 

derivation of the distribution of the sum of random variables. The new representation is in terms 

of stochastic equivalence and the class of distributions is referred to as the summable 

uncorrelated marginals (SUM) distributions. The SUM distributions can be used as models for 

the joint distribution of uncorrelated random variables, irrespective of the strength of dependence 

between them. We provide a method for the construction of bivariate SUM distributions through 

linking any pair of identical symmetric probability density functions. We also give a formula for 

measuring the strength of dependence of the SUM models. A final result shows that under the 

condition of positive or negative orthant dependence, the SUM property implies independence. 

 

1. Introduction 

We present models for the joint distribution of uncorrelated variables that are not 

independent, but the distribution of their sum is given by the product of their marginal 

distributions. We refer to these models as the summable uncorrelated marginals (SUM) 

distributions. These models are developed utilizing the assumption of sub-independence which 

has been used previously as a weaker assumption than independence for the derivation of the 

distribution of the sum of random variables.  

Let                  be a random vector with probability distribution function   and 

characteristic function     . Components of   are said to be sub-independent if 

       ∏     

 

   

                     

where       is the characteristic function of   . For      , (1) was utilized in [1] to construct 

bivariate models with normal marginals and Durairajan [2] referred to this assumption as 

sub-independence. Hamedani and Walter [3] proved several versions of the Central Limit 

Theorem for the sequence of random variables that satisfy (1). The assumption of 

sub-independence can replace that of independence in most of the theorems in probability and 
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statistics which deal with the distribution of the sum of the random variables, rather than the joint 

distribution of the summands; see [4] for more references.  

Independence implies (1) and the variables that satisfy (1) must be uncorrelated. A 

representation in terms of convolution usually accompanies (1) to provide further interpretation. 

In Section 2, we give an alternative representation of (1) in terms of stochastic equivalence, 

which can be interpreted more intuitively as the basis for the SUM models. This representation 

naturally leads to the mutual information (see, e.g., [5,6]) which is a measure of dependence 

between the variables. We provide a series expansion for the mutual information of a class of 

distributions which includes the Farlie–Gumbel–Morgenstern (F–G–M) family and two families of 

SUM distributions developed in this paper.  

Numerous general methods are available for constructing a joint distribution by linking 

given univariate distributions as the marginals, see for example [7–14]. In Section 3, we present 

a method for the general construction of bivariate SUM distributions by linking univariate 

symmetric distributions. We show that Kendall’s tau and Spearman’s rho for these models are 

zero. However, these are not properties of all SUM models. We also provide a formula for the 

mutual information measure for assessing the extent of dependence of the proposed family of 

SUM models. 

The SUM models are capable of capturing weak and strong nonlinear dependence 

between variables. In Section 4 we compare the strength of dependence that is captured by 

some bivariate SUM models with other models. The illustrations include discrete and continuous 

examples. We derive the mutual information formula for the F–G–M family and show that its 

upper bound is less than that for some SUM examples. In contrast, Kendall’s tau and 

Spearman’s rho for these examples are zero, but for the F–G–M family, in general, are not. We 

construct a continuous SUM family of distributions for random variables that are not independent 

but all their polynomial functions are uncorrelated,       
    

     for all          . We 

obtain the mutual information formula for this family and compare it with the dependence 

measure for a non-SUM family with the same dissociation property. 

Often it is of interest to identify conditions under which a weak dissociation such as 

uncorrelatedness is equivalent to independence. In Section 5, we discuss generalizations of (1) 

in the multivariate case and give a few examples. We provide a result showing that 

sub-independence under the well-known notions of positive and negative orthant dependence is 

equivalent to independence. Section 6 gives brief conclusions. 
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2. Representation of SUM and Mutual Information 

Let   be the probability distribution function of            , and         
    

   denote 

the random vector with probability distribution function                       , where 

         is the marginal probability distribution function of   . 

 

Definition 1.   is said to be a summable uncorrelated marginals (SUM) bivariate distribution if 

     

  
   

    
  , where 

  
  denotes the stochastic equality. Random variables with a SUM 

joint distribution are referred to as SUM random variables. 

It is clear that the SUM and sub-independence are equivalent, so the two terminologies 

can be used interchangeably. It is also clear that the class of SUM random variables is closed 

under scalar multiplication and addition under independence. That is, if           is a SUM 

random vector, so is   , and if           is another SUM random vector independent of X, 

then X + Y is also a SUM random vector. However, the SUM property is directional in that    

and    being SUM random variables does not imply that    and     are SUM. Definition 1 

can be generalized to any specific direction by          

  
     

      
 . 

The discrepancy between   and    is only due to the dependence between    and   , 

thus any discrepancy function between these two distributions is a measure of dependence. 

Kullback–Leibler discrimination information between   and    gives the mutual information 

between    and   : 

                 ∫∫    
        

                        (2) 

where                          for continuous and                    for discrete 

variables, and                       , provided that          is absolutely continuous with 

respect to the reference distribution          . The equality in (2) holds if and only if          

          almost everywhere; i.e., if and only if    and    are independent. Other 

representations of the mutual information are: 

                               

     
    

             (3) 

where       ∫             
  ,        is the Shannon entropy. The second equality is due 

to the property that Shannon information is additive for independent random variables, and 

signifies that in general,   is more concentrated than   . For the continuous case,          is 

usually calibrated with the mutual information of bivariate normal distribution,          



 

 

Ebrahimi, Hamedani, Soofi, Volkmer 4 

 
 

 
         , where   is the product moment correlation coefficient of the bivariate normal 

model.  

An important property of          is invariance under one-to-one transformations of   . 

In particular, the probability integral transformation          gives                      , 

where          is the copula density of the joint distribution. This is easily seen from (3) when 

the distributions of          are uniform over [0,1] and        . 

We also use Kendall’s tau   and Spearman’s rho   ; see [6]. For continuous 

distributions, 

   ∫∫                            (4) 

     ∫∫                                 (5) 

These measures are invariant under strictly increasing transformations. However, since in 

general, unlike the mutual information,     and      do not imply independence, these 

measures cannot capture complicated dependence structures. For a SUM model, both 

measures can be nonzero, one of them can be zero while the other one is not, and both can be 

zero without the variables being independent. We will provide examples showing these cases.  

A bivariate SUM copula is a SUM distribution on the unit square [0, 1]2 with uniform 

marginals. 

 

Lemma 1. For any SUM copula,       . 

Proof. This follows from the fact that for copulas      (see, e.g., [8], p. 156).  □ 

A family of SUM models with        will be presented in Section 3. We need the 

following result for providing examples and constructing families of SUM models by linking the 

univariate probability density functions (pdf’s)       ,      . 

 

Lemma 2. Let       ,       be pdf’s and          a measurable function. Set  

                                              
 . (6) 

Then for some                 is a SUM pdf with marginal pdf’s       ,        , provided that:  

(a)             

(b)               ∫  
 

             for all            
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(c)                for all        

Proof. Condition (a) is required for           to be a pdf and (b) is needed for       ,         

to be marginal pdf’s. Condition (c) is exactly what is needed to make           a SUM pdf.  □ 

The next example illustrates Lemmas 1 and 2.  

Example 1. Let       ,         be two pdf’s on [0, 1] and set  

                                      ,                  (7) 

such that for some                 is a pdf on [0, 1]2. Since                           

    , conditions of Lemma 2 are satisfied, and           is the pdf for a family of SUM models 

on the unit square. Two specific examples are as follows. 

(a) Let         ,       be the pdf of uniform distribution on [0, 1] and    
 

 
. Then, by 

Lemma 1, Spearman’s rho (7) is       . It can be shown that    .  

(b) Let        
 

 
            , and    

 

 
. It can be shown that Kendall’s tau and 

Spearman’s rho for (7) are negative:   
   

    and    
  

   . 

We will develop more specific construction methods using 

                              in (6). We then have the pdf’s in the following form: 

                                                 
 , (8) 

where       ,       are the marginal pdf’s,          is a measurable bounded function on    

with bound |        |   , and      . Various bivariate distributions in the form of (8) have 

been proposed in the literature, see, e.g., [6,8]. We will introduce two classes of SUM 

distributions in the form of (8). 

The level of dependence in (8) is a function of   and the linking function         . The 

following result facilitates calculation of the mutual information for the family (8). 

 

Lemma 3. The mutual information of bivariate distributions with pdf’s of the form (8) is given by  

          ∑
     

      
 
                  

  , (9) 

where   ,         denotes the expectation with respect to   . 

 

Proof. Let 
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                     ∑       
   

  

      
, (10) 

where the second equality is the Taylor series expansion which converges uniformly for | |   . 

For | |      , |         |, and we have 

          ∫∫              
        

         
        

 ∫∫                                  (11) 

The result is obtained by applying (10) in (11), interchanging the integral and sum in (11), and 

noting that                   , due to the normalization requirement.  □ 

 

3. A Bivariate SUM Family 

The following result presents a method for constructing a bivariate SUM family with given 

marginal distributions and gives the mutual information measure, Kendall’s tau, and Spearman’s 

rho for the family. 

Proposition 1. Let           ,       in (8) be a symmetric pdf and the linking function 

         be such that 

                                       (12) 

Then:  

(a) the bivariate function (8) is the pdf of a family of SUM distributions with marginals        

     ,      , and            ,      ,       are SUM variables; 

(b) the mutual information for the family is given by 

          ∑
   

        
 
                  

   , (13) 

where   ,       denotes the expectation with respect to   . 

(c) Kendall’s tau and Spearman’s rho are       . 

Proof. It is easy to see that fβ(x1, x2) is a joint pdf. 

(a) Let                              . Then the first equality in (12) implies condition (c) and 

the second and third equalities in (12) imply condition (b) of Lemma 2. The proofs for 

distributions of            ,     ,       are similar. 

(b) The mutual information is given by (9), where by the first equality in (12) the terms in the sum 

vanish for odd  , and we obtain (13). 

(c) The pdf’s and probability distribution functions of the family (8) are in the form of  
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                                (14) 

                                (15) 

where                               and          ∫ ∫              
  

  

  

  
. 

Let    ,         denote the integral of the product of the hth term in (14) and the kth term in 

(15). Clearly,     
 

 
 and (4) and (5) for pdf’s of the form (8) are given by 

                   and          . (16) 

Since                           and                   , the quantities in (16) are as 

follows. 

    ∫∫                               . 

Similarly, we obtain      , which gives     . We also have                     and 

                   , so  

    ∫∫                           . 

This is due to the fact that the inside integral is zero for every fixed   . Therefore    .   □ 

We see from (13) that           is an even and convex function of  . We can use 

partial sums of the sum on the right of (13) to approximate          . For     we have 

          
 

 
                 

  . 

We can also bound the mutual information as  

               , 

where 

   ∑
   

        
  

 
                

   ,     , 

and 

   ∑                     
     

    (17) 

   {

 

        
         

∑
 

        

 
            

 (18) 

The lower bound for           is obtained by noting that the sum in (13) has nonnegative 

terms. The upper bound is obtained as follows. Since |         |   , if     then 
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  . 

Therefore, for every      , 

          ∑      

 

   

∫∫       
  

                
          

where    is defined in (18). 

Proposition 1 is applicable in constructing SUM distributions by linking marginal 

distributions such as normal, Student  , and Laplace. The parameter   determines the strength 

of dependence and the linking function          determines the shape of the pdf. When 

         satisfies only the first equality, or if       is not symmetric, we still obtain a SUM 

distribution, but      ,       are not the marginals anymore. 

Next we provide two examples where the marginals are normal and the linking functions 

are the product of two functions 

                         , (19) 

where          is the independent bivariate normal (BVN) kernel and          is specified in 

each example. More generally, C(x1, x2) can be any bivariate function such that 

                                      , 

and          can be the kernel of a circular bivariate distribution such as the bivariate Student 

  kernel                
    

          , and the product of two Student   kernels 

              ∏       
            

   . 

Example 2. Let distributions of    and    be identical N(0, 1), and 

                
    

    
 
 (  

    
 )  

The upper bound   is obtained by changing to polar coordinates  

|              |  |
 

 
           

  

 |   . 

The maximum is at    , from which we obtain       . The SUM model for (     ) has pdf  

          
 

  
  

 

 
   

    
  *          

    
    

 

 
(  

    
 )+              

 , 

where     
 

 
         . The distribution of         is N(0, 2), given by the 

independent BVN model                     . 
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The left side panels of Fig. 1 show the contour plots of the pdf’s of this SUM family for 

      (independent BVN) and          . These plots show patterns similar to that shown in 

Arnold and Strauss [15] for an interesting example where the model for the joint distribution was 

specified through normal conditionals; also see Arnold et al. [16] p. 69. These plots show that the 

densities are unimodal and as β increases the distribution becomes highly concentrated at the 

center. That is, the entropy of           is a decreasing function of  . Since the entropy of the 

marginal distribution does not depend on  , by (3), the mutual information increases with  . 

There is no closed form for (13), we use (17) to approximate its value for            as:  

             
                

This bound is tight. The upper limit is equal to the mutual information of a BVN distribution with a 

correlation of approximately 0.42. 

The regression function is  

    |       
 

 √ 
        

    
 
 
  

 

  

Fig. 2(a) shows the plot of this highly nonlinear regression for    , which reflects the 

uncorrelatedness between the two variables. The parameter   affects the amplitude, not the 

shape of the regression function. 

Next we give an example where the SUM density is multimodal. We also obtain an 

explicit expression for the mutual information. 

Example 3. Let distributions of    and    be identical N(0, 1), and  

         
       

    
  

   
    

   
 

 
 (  

    
 )  

The upper bound   is obtained by changing to polar coordinates  

|              |  |
 

 
         

  

 |   , 

which gives   
 

 
 and    . The SUM model for         has pdf  

          
 

  
  

 

 
(  

    
 ) [   

    (  
    

 )

(  
    

 )
   

 

 
(  

    
 )]              

 , 

where      . The marginals are identical N(0, 1), so the distribution of         is 

N(0,2), given by the independent BVN model                     . 

The right side panels of Fig. 1 show the contour plots of the pdf’s of this SUM family for   
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= 1, 2, 4. These plots show that as   increases the distribution becomes highly concentrated at 

four modes. Thus, the entropy of           decreases and the mutual information increases 

with  . The mutual information is  

             (  √  
  

  
)  

 

 
      (

 

 
)  

 

 
√  

  

  
               (20) 

We find this expression directly by changing to polar coordinates:  

          
 

  
∫        

 

 

 ∫                                      
  

 

  

where      
 

 
      . If | |   , then 

     
 

  
∫                        

  

 

 

    (
 

 
√     

 

 
)    √      

Therefore, 

          ∫   
   

  (    )   
 

 
∫       

   

 

 

 

  

This integral gives (20). 

 

Since           is an increasing function of  , 

                    
 

 
     . 

Note that     , which is the mutual information of the independent BVN limit and the upper 

limit is equal to the mutual information of a BVN distribution with a correlation of approximately 

0.41. 

The regression function is 

    |       
   

√ 
{      

    
 
 
  

 

  √ |  |   
           |  |   

 
 
  

 

}  

where        
 

√ 
∫     

  
 

 
 is the error function. Fig. 2(b) shows the plot of this highly nonlinear 

regression for    , which reflects the uncorrelatedness between the two variables. Note that 

  affects the amplitude, not the shape of the regression function. 
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4. Comparisons 

We compare the strength of dependence that can be captured by SUM models with 

models that do not possess SUM properties in three contexts: a discrete example, in a class of 

distributions that all powers of the two variables are uncorrelated, and with the bivariate F–G–M 

family of distributions. 

The following example illustrates the SUM concept through a family of distributions 

constructed on a 3 × 3 grid which includes a SUM sub-family. 

Example 4. Consider the bivariate family of distributions: 

            

{
 
 

 
 

                        

                                  
 

 
 

 

 
                             

 

The marginal distributions are uniform on        
 

 
,         . It can be easily checked that for 

  
 

 
 the family   

 
  

             
 

 
 is a SUM family, where the distribution of         

is given by the independent model   

 
 
 

 

                   
 

 
. The mutual information function 

computed by (3) is 

                   *            (
 

 
    )    (

 

 
    )+. 

It can be shown that             is convex in each parameter and for the SUM sub-family,  

    

 
 
 

 

          

 
  

          

 
  
          

 
 
 

 

       . 

For a given  ,   

 
  

        can be more, less, or equal to            . That is, the 

dependence in the SUM sub-family can be stronger, weaker, or equal to that of a distribution 

which is not SUM. For example,                            for            , respectively. 

 

4.1. Bivariate SUM Models with Polynomial Dissociation 

Consider distributions that have the following dissociation property:  

      
    

                       

In this family all pairs of polynomial functions of the components are uncorrelated, thus we refer 

to (21) as polynomial dissociation. 

Next we construct a family of SUM distributions with polynomial dissociation. We use the 
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following result from Lukacs [17]. Let       be a function which is infinitely many times 

differentiable, vanishing outside [−0.5, 0.5], and ∫          
 

. Then: 

     ∫             
 

 (22) 

is the characteristic function of a pdf     , and        for | |    (Lukacs [17], Theorem 

4.2.4). 

 

Proposition 2. Let      be the pdf with characteristic function (22). Then 

(a) the distributions with pdf’s 

                                                                 (23) 

are a family of SUM distributions with marginals             ,      , and       
    

   

                     ; 

(b) the mutual information for the family is given by 

         ∑
  

 

        
  

    (24) 

where        (  
 
). 

Proof. (a) For m = 1, 2,... set  

      
 

 
                 

Then         unless |   |    or |   |   , and       is the Fourier transform of 

                   

Since the derivatives of       at   all vanish, we get  

∫            
 

               (25) 

Noting that      ,       are pdf’s, it immediately follows from (25) with     that 

            is a bivariate pdf. Now  

      
                                          

where                    for all      , so       
              for all      . This 

shows that the distribution with pdf      is a SUM distribution. Moreover, by (25), for every  ,  

∫   
               

 

      ∫   
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and for every   and  ,  

 (  
   

 )       
       

   ∫   
             

 

∫   
             

 

 

      
       

    

Thus,       
    

    . 

(b) By Lemma 3, we have  

                                            

 ∑
     

      
 
                                         (26) 

where    denotes the expected value with respect to the marginal pdf  . We express 

      in terms of        ,            , and use (25), we find that  

                                      {
             
                  

This completes the proof.  □ 

The sum in (24) is of hypergeometric type but there appears to be no closed form 

expression for it. We can approximate it as                    which corresponds to 

the mutual information of a bivariate normal distribution with a correlation of approximately 

0.5.  

A specific example of (23),      was used in [18]. The SUM family (23) is in the class of 

bivariate distributions with pdf’s  

                                       (27) 

where      is a pdf and      ,       is periodic and bounded; see [19]. Alfonsi and Brigo 

[7] study copulas that are based on periodic functions. Next we show that (24) dominates the 

mutual information of another family of bivariate distributions with pdf’s of the form (27) 

having the polynomial dissociation. 

Consider the family of bivariate distributions with pdf’s 

                                (28) 

where 

     
 

√   
  

 
 
       

 

is the log-normal pdf and   is a positive parameter. It can be shown that (28) is a bivariate 
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pdf with polynomial dissociation (21) but is not SUM. For     , (28) gives the distribution 

used by De Paula [19]. We will show that  

                                   ∑
  

 

        
 
     (29) 

That is, the SUM distribution (23) has stronger dependence than the non-SUM distribution 

(28). To show (29), let       . By the invariance property of mutual information, 

                 , where   ,       are identically distributed variables as   having the 

standard normal distribution with pdf      
 

√  
  

 

 
  

. Letting 

                           in (8), Lemma 3 gives  

         ∑
 

        

 

   

{  [         ]}
 
  

where    denotes the expectation with respect to     . Using the trigonometric identity  

                 ∑     

 

   

(
  

   
)            

we have 

  [         ]          ∑     

 

   

(
  

   
)       

  

It is easy to see that the sum of the terms with     and     is negative. Similarly, the 

sum of the terms with    ,     is negative and so on. Therefore, we obtain the 

inequality 

  [         ]      

Note that         [         ]    . Therefore, we find that 

         ∑
  

 

        
   

 

   

  

and                  . 

For     ,                            , so          is less than          

but very close to         . 

 



 

 

Ebrahimi, Hamedani, Soofi, Volkmer 15 

4.2. Comparison with F–G–M Family 

The pdf of distributions in the F–G–M family is in the form of  

                                                 | |     

(see, e.g., [6], p. 114). Thus, the F–G–M distributions are in the family (8) with             

                   . The mutual information for the F–G–M bivariate family can be computed 

by Lemma 3. Noting that          ,       have uniform distributions, we have 

                    ∑
     

      
 
             

            
    (30) 

Now 

          
            

               
            

       
 {

         
 

      
          

 

Thus the terms in the sum (30) vanish for odd  , and we obtain  

          ∑
      

               

 

   

  

This confirms that dependence in the F–G–M family increases with | | and 

          ∑
      

               

 

   

  

where   
          | |         . Computation using 106 terms indicates that           

     and the series converges quickly; the first term in the sum is 
 

  
      , the first 3 terms 

give 0.05957, and the first 10 terms give 0.05998. Thus, for the F–G–M family               . 

However, the maximum strength of dependence for the F–G–M family                is less 

than the maximum levels of dependence for the SUM distributions in Examples 2 and 3, 

   
               and           

 

 
             , respectively. Interestingly, the 

Kendall’s tau and Spearman’s rho for the F–G–M family with | |    are | |  
 

 
 and |  |  

 

 
 

(see, e.g., [12]), but for distributions in Examples 2 and 3,       . The maximum strength of 

dependence for the F–G–M family is also weaker than the dependence for the SUM family of 

Proposition 2,                . 
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5. Multivariate SUM and POD (NOD) 

Let   be the probability distribution function of   (       )  and    (  
      

 )  

denote the random vector with probability distribution function    ∏   
 
   , where    is the 

marginal probability distribution function of   . 

Definition 2.   is said to be a SUM distribution of order         if ∑   
 
    

  
  ∑   

  
   . 

Definition 2 can be extended to the product of a linear combination of marginals, that is 

    
  
       where    (       ). A particular case of interest is when       , which leads to 

the following extension of Definition 2. 

Definition 3.   is said to be a multivariate SUM distribution if it is SUMp and all  -dimensional 

marginal distributions,     are SUMn. That is,     
  
      , for all  ’s such that        and 

∑   
 
       . 

The following examples show variants of SUM distributions. 

 

Example 5. Let              . 

(a) Consider the distribution with pdf 

      
 

    
 
 

  
 
 
   (                         

 
 
 
   )        

where       and 

|                      
 

 

 
   

|     (31) 

The characteristic function is 

        
 
 
    

 

   ⁄
                        

 
 
 
          

where              . Clearly       is SUM3. It can be shown that   (     ),           

are SUM2 for all   satisfying (31). So       is a trivariate SUM distribution. The univariate 

marginals are       , so the distribution of        where ∑        
    are       , 

      given by the independent trivariate normal model. 

(b) Consider the distribution with pdf 

      
 

       
  

 
 
   [        

    
    

 
 
   ]       
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where       and 

|     
    

    
 

 
   

|     (32) 

The characteristic function is 

        
 
 
    

 

   ⁄
       

    
    

 
 
          

Clearly       is SUM3. It can be shown that for    ,           and           are not 

SUM2, and           is an independent BVN for all   satisfying (32). So       is SUM3, 

but not a trivariate SUM distribution. The univariate marginals are       , so the distribution 

of             is       , given by the independent trivariate normal model. 

 

Example 6. Let                has pdf 

      
 

       
  

 
 
   [      

    
    

 
 
   ∏  

 

   

]       

so that       and 

|   
    

    
 
 
   ∏  

 

   

|     

The characteristic function is  

        
 
 
    

 

 
(

 

 √ 
)
  ⁄

   
    

    
 
 
   ∑   

 

   

       

where             . Clearly       is SUMp. It can be shown that all  -dimensional marginals, 

   , are independent normal. So,       is a multivariate SUM distribution. The univariate 

marginals are       , so the distribution of        where ∑   
 
        are       , 

           , given by the independent  -variate normal model. 

Our final result relates the SUM distributions to the well-known notions of Positive Orthant 

Dependence (POD) and Negative Orthant Dependence (NOD) defined as follows.  

 

Definition 4. A multivariate distribution F is said to be POD (NOD) if 
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 ̅(       )     ∑ ̅     

 

   

  

where  ̅(       )    (             ) and  ̅               . 

It should be noted that POD (NOD) are the weakest among all existing notions of 

dependence. The special case of     is known as positive (negative) quadrant dependence. It 

is known that under POD (NOD), if  (     )   , the    and    are pairwise independent, 

without implying any higher order dependence among            . For details about POD (NOD) 

and other notions of dependence see Barlow and Proschan [20]. The following result shows that 

under POD (NOD), SUM models implies independence. 

 

Lemma 4. Let X be a nonnegative random vector with a POD (NOD) distribution F. Then F is a 

SUM distribution if and only if      ∏       
 
   . 

 

Proof. Independence implies SUM. We use induction to prove the converse for POD. For    , 

POD implies  ̅         ̅      ̅     . Since SUM implies uncorrelatedness, 

           ∫ ∫   ̅         ̅      ̅      
 

 

      

 

 

    

Hence  ̅         ̅      ̅     . Now suppose that the proposition holds for    . Using SUM 

property,         
               , where   denotes the moment generating function, and 

    ,         after some messy integrations by parts for any     and, say for     , 

we get 
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For example, for    ,    , and     , 
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   ∫ ∫ ∫              ̅                   

 

 

 

 

 

 

  

where  ̅  (     ) is the bivariate survival function of (     ). Similarly,    
      

      
    is 

given by the same expression as above where  ̅           in the last integral is replaced with 

 ̅      ̅      ̅     . 

From (33) we have  

∫  
 

 

∫              ̅           ̅       ̅      
 

 

           

Since   is POD, the integrand is nonnegative and the equality is attained if and only if 

 ̅           ̅       ̅      for all  , i.e.,         are independent. Proof for NOD is 

similar. □ 

 

6. Conclusions 

The SUM distributions can provide solution for some modeling applications where the 

variable of interest consists of the sum of a few components. Examples include household 

income, the total profit of major firms in an industry, and a regression model          where 

     and   are uncorrelated (the standard assumption), however, they may not be independent. 

For example, in Bazargan et al. [21], the return value of significant wave height     is modeled 

by the sum of a cyclic function of random time delay  ̂    and a residual term  ̂. They found 

that the two components are uncorrelated but not independent and used (1) to calculate the 

distribution of the return value. 

We showed how to construct bivariate SUM models for applications. At a general level, 

the product marginal pdf’s of marginals are added to a multiple of a bivariate function          

which integrates to zero and changes sign when we interchange    with   . Another 

construction produces bivariate SUM models with identical symmetric marginal distributions such 

as normal, Student  , and Laplace. In practice, one may rather easily develop models for the 

univariate distributions of each component and test for independence and lack of correlation 

between them. If tests reject independence but not lack of correlation, a SUM model can be 

appropriate. The linking function          models the dependence and determines the shape of 

the regression function. Selection of          can be a challenging task. We provided two 

examples for linking normal marginal distributions into SUM models.  

We showed that Kendall’s tau and Spearman’s rho can fail for measuring dependence 

between SUM variables. We developed formulas for the mutual information measures that 



 

 

Ebrahimi, Hamedani, Soofi, Volkmer 20 

enabled us to assess the strengths of dependence captured by examples of SUM distributions 

and to make comparison with models that do not possess SUM properties. Using a discrete 

example, we showed that the strength of dependence in a SUM sub-family can be stronger, 

weaker, or equal to that of other distributions in the family which are not SUM. We also showed 

that the SUM models are capable of capturing higher levels of dependence than the maximum 

strength of dependence for the F–G–M family. Finally, we proved that in the class of POD (NOD) 

distributions, the SUM model implies independence, so for these classes the product of 

marginals cannot be used for computing the distribution of the sum without independence. Fitting 

SUM models to the data and simulating from SUM distributions are topics of future research.  
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Appendix 

Figure 1: Contour Plots of SUM Models in Examples 2 and 3 
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Figure 2: Regression Plots of Two SUM Models in Examples 2 and 3 with     
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