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The Influence of Cytokines on Altered Pain Thresholds in Obesity 

Introduction 

Obesity continues to be a dramatic problem throughout the globe. The World Health 

Organization (WHO) reports that more than 1.5 billion adults worldwide are overweight; of 

these, over 200 million men and nearly 300 million women meet the criteria for obesity (WHO). 

In the United States, over 78 million adults and about 12.5 million children and adolescents are 

obese (Ogden et al. 2010). 

The obesity epidemic translates to a significant public health concern since obesity is 

associated with many pain related co-morbidities including low back pain , diabetic neuropathy, 

osteoarthritis, headaches, and other musculoskeletal pain conditions (O'arcy 2012). The 

number of pain issues reported to health care providers is increasing exponentially along with 

the obesity epidemic since nearly 50% of obese patients regularly experience pain (Kerns et al. 

2003). Unfortunately, the association between pain and obesity is not clear. It is well 

documented that obesity is a pro-inflammatory stat)and inflammatory markers contribute to the 

development and modulation of pain; therefore, inflammation may be part of the causation 

between obesity and pain (Ray et al. 2011). The objective of this translational literature review 

is to discuss the role of inflammatory markers as modulators of pain in the peripheral and 

central nervous systems in individuals with obesity. 

The Neurophysiology of Pain 

Pain is defined as "an unpleasant sensory and emotional experience that is commonly 

associated with actual or potential tissue damage" (Merskey et al. 1994). In humans, pain is 

always subjective and is affected by past experiences, context, emotions, cognition, gender, 

and even cultural and religious influences (Merskey et al. 1994). Acute pain is associated with 

tissue injury; chronic pain extends beyond normal tissue healing. In the peripheral nervous 
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system, pain receptors, also called nociceptors, are located in the skin and viscera; nociception 

is transmitted by A delta and C afferent nerve fibers. Additional nociceptors are located in the 

muscle and joint; this nociception is transmitted by Group III and IV afferent nerve fibers. 

Nociceptors are activated via four main stimuli : chemical, mechanical, electrical, and thermal. 

After the nocicepter is activated, the pain signal is transmitted along the afferent fiber to the 

dorsal horn of the spinal cord, specifically lamina I and V-VII. Via the spinothalamic tract, the 

pain signal crosses to the opposite side of the spinal cord, ascends through the brain stem to 

the ventroposterior lateral nucleus of the thalamus, and finally to the somatosensory cortex I 

and II . It is here that the sensory aspect of pain is processed. Another ascending pathway, the 

spinomesencephalic tract, transmits pain contralaterally from the spinal cord to the midbrain, 

specifically to the periaqueductal gray matter. Other projections extend from here to the limbic 

system where the emotional and psychological aspects of pain are processed. In addition to 

these ascending pathways, there are descending pathways from the cortex that can excite or 

inhibit pain . Both the peripheral and central nervous system are involved in pain transmission 

and processing (Kandel et al. 2000). 

The Prevalence of Pain in Obese Individuals 

Recent research has documented the incidence of pain with obese individuals throughout the 

lifespan and provided insight into the distinct relation between obesity and pain. Pain 

prevalence and severity have been linked to obesity in adults, the elderly, and children (Ray et 

al. 2011; Hitt et al. 2007; Wachholtz et al. 2009; Stone and Broderick 2012). After controlling for 

demographic and lifestyle variables, obesity is a significant predictor for self-reported pain with 

an increased incidence of pain at each level of obesity (Hitt et al. 2007). Therefore ~ there is a 

dose-response relationship between higher body mass index (BMI) and chronic pain (McCarthy 

et al. 2009). 
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Even specific pain conditions such as low back pain, tension-type or migraine headaches, 

fibromyalgia, abdominal pain, and chronic widespread pain are associated with increased 

weight in adults (Wright et al. 2010). Similarly, children in the overweight category are more 

likely to report musculoskeletal pain or discomfort, most commonly in the knee, back or foot (de 

Sa Pinto et al. 2006; Taylor et al. 2006; Stovitz et al. 2008) and headaches (Bell et al. 2007; 

Hershey et al. 2009). In addition, the impact of pain on functional status and health-related 

quality of life is more significant in individuals with higher BMI compared to normal BMI (Marcus 

2004). The co-occurrence of pain and obesity have an additive negative effect on health-related 

quality of life as evidenced in patients seeking treatment for obesity and for chronic pain 

(Marcus 2004; Barofsky et al. 1997; Janke et al. 2007). Consequently, obese individuals are at 

high risk in developing chronic pain, which negatively impacts their quality of life to a greater 

degree than obesity alone (Marcus 2004). The presence of pain in obesity can also decrease 

participation in physical activities and this can lead to additional weight gain (Taylor et al. 2006). 

Clinical pain is highly evident in individuals with obesity and can influence their quality of life, 

lead to chronic pain, and contribute to a sedentary lifestyle which further increases obesity. 

Experimental Pain and Obesity 

Since the 1980s, researchers have been examining specific aspects of pain in individuals with 

obesity. This research can be difficult to evaluate since researchers have examined pain 

thresholds, pain sensitivity, and pain tolerance. Pain thresholds are defined as the minimum 

amount of stimuli required to produce a report of pain in an individual. Pain sensitivity is related 

to a subject's pain threshold level; an elevated pain threshold demonstrates that pain sensitivity 

has decreased. Pain tolerance is the maximum stimulus that a subject can endure. It can be 

difficult to summarize results from the variety of studies due to methods. Furthermore, there are 

conflicting results in experimental pain as to whether obesity in animals or adults contributes to 

higher or lower pain thresholds and tolerance (Table 1). 
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It is crucial to understand the difference between pain and nociception when comparing human 

and animal research. In humans, pain includes both the sensory and emotional aspects to a 

noxious stimulus. However, in animal research, pain must be classified as "nociception" 

because it does not include the emotional aspect and is inferred from the animal's behavioral 

response to a noxious stimulus. 

Animal research supports increased and decreased nociception assoyiated with obesity. Obese 

rats demonstrated attenuated nociception (a higher thermal threshold) by increased tail flick 

latency to a thermal stimulus compared to normal weight controls (Ramzan et al. 1993). In 

rabbits, obesity decreased the amount of time spent in pain behavioral responses in response to 

a 151 phase formalin test to the hind limb paw; this demonstrated an increased thermal threshold 

(Sinha et al. 2009). In contrast, Zucker rats (a genetic model for research on obesity and 

hypertension) exhibited shorter latencies to nociceptive mechanical stimuli in tail-flick and tail-

pinch methods than normal weighted ones (Roane and Porter 1986). There is minimal animal 

research in this area and it shows differences in nociception in response to experimental pain . 

In the animal model, nociception seems to be dependent on the stimulus, thermal versus 

mechanical. 

Human research also shows conflicting results with experimental pain associated with obesity. 

Research has shown that obesity is linked with higher pain thresholds (Khimich 1997; Maffiuletti 

et al. 2011; Raymond et al. 1995; Zahorska-Markiewicz et al. 1983; Zahorska-Markiewicz et al. 

1988). Pain thresholds to an electrical stimulus on the forearm and arm were observed to be 

higher in obese subjects over normal lean subjects; obese individuals appear to be less 
. . 

susceptible to pain with the correlation existing between overweight and the pain threshold 

(Zahorska-Markiewicz et al. 1983). Additional work by Zahorska-Markiewicz in 1988 

demonstrated that sensory and pain thresholds to an electrical stimulus on the forearm were 

higher in obese versus lean controls (Zahorska-Markiewicz et al. 1988). Pain detection 
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thresholds in response to a mechanical stimulus on the fingers were elevated in obese subjects 

when compared to controls with no significant differences in pain tolerance levels between the 

groups (Raymond et al. 1995). Higher pain thresholds to a mechanical stimulus on the forearm 

were also evident in subjects with excessive body weight in comparison to normal body weight 

controls indicating that they felt less pain (Khimich 1997). 

Not all human research with experimental pain shows increased pain thresholds and tolerance. 

In contrast, a lower sural nerve nociceptive-flexion reflex was demonstrated in obese women 

showing a significant reverse correlation between degree of overweight and the threshold of the 

nociceptive reflex (Pradalier et al. 1981). In obese subjects, pain sensitivity was increased as 

demonstrated by obese individuals displaying decreased mechanical pain thresholds assessed 

by a constant force applied to the finger (McKendall and Haier 1983). 

Significant differences in pain responses in obese animals and humans have been 

demonstrated in the previous research studies. There is noteworthy variability with the type of 

stimulus (mechanical , electrical, thermal) and the body location to which it was applied. Also, it 

is important to remember that experimental pain is not the same as clinical pain. The clinical 

reports of pain in obesity are very strong, but experimental pain is more variable. This suggests 

that in response to a noxious stimulus, obesity mayor may not attenuate pain thresholds and 

tolerance. 

The Chronic Inflammatory State of Obesity 

In order to understand the linking of pain and obesity through the mechanism of inflammatory 

markers, it is essential to know the substantial role that inflammatory marker:s play in obesity. 

Obesity is not just an imbalance of energy intake and expenditure. Adipose tissue is no longer 

considered a passive energy store but rather a major endocrine organ (Berggren et al. 2005; 

Ferris and Crowther 2011). Increased adiposity is linked to increased macrophage accumulation 

Stalzman 6 



) 
and ultimately an increase in pro-inflammatory marker production which acts on a variety of 

physiological processes throughout the body (Weisberg et al. 2003). Specifically, inflammatory 

markers are secreted by adipose tissue and can create a persistent low-grade inflammatory 

state in obese individuals. These biologically active molecules are called cytokines or 

adipokines when they orig inate in adipose tissue. Cytokines are proteins and peptides that are 

secreted by cells which then act as cell messengers, including pro-inflammatory mediators. 

Cytokines can influence insulin sensitivity, glucose metabolism, inflammation and 

atherosclerosis (Cancello et al. 2006). Therefore, adipose tissue plays an important role in the 

complex cross-talk between organs regulating the body's homeostasis (Fischer-Posovszky et al. 

2007). 

The most commonly studied inflammatory markers associated with obesity are tumor necrosis 

factor a (TN Fa) and interleukin-6 (IL-6). In obesity, these inflammatory markers are linked with 

physiological mechanisms that lead to compromised health. TNFa, for example, can stimulate 

the production of atherosclerotic lesions leading to endothelial dysfunction and hypertension 

(Arslan et al. 2010; Lyon et al. 2003); furthermore TNFa impairs insulin signaling which 

negatively affects glucose transport (Keller et al. 2004; Umpaichitra 2006). IL-6 has been shown 

to negatively impact insulin sensitivity and endothelium functioning (Arslan et al. 2010) . 11-6 has 

been shown to inhibit TNFa production and increase the number of voltage-dependent sodium 

channels (Aderka et al. 1989; Satoh et al. 1988). The resultant inflammatory state, as 

demonstrated by elevated levels of TNFa and IL-6 in obese individuals , contributes to impaired 

metabolic and cardiovascular health associated with obesity (Wisse 2004). 

The Effects of Cytokines on the Nervous System 

In tissue injury, the initial role of cytokines is to sustain or reestablish homeostasis; however, 

sustained or excessive cytokine production can lead to damage (Rothwell and Hopkins 1995). 

Literature has shown that cytokines can negatively influence the function of neuronal cells 
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(Benveniste 1992). Also, the nervous system can both respond to cytokines and produce them 

(Hopkins and Rothwell 1995). Obese individuals with a chronic inflammatory state due to 

altered cytokine production may have different pain perception. For example, in obese 

individuals, elevated levels of TNFa and IL-6 are involved in the modulation of nociceptive 

pathways in both the peripheral and central nervous systems (Sommer 2001 ; aka et al. 1993; 

Ferreira et al. 1993; Bianchi et al. 1992). It is important to distinguish the potential mechanisms 

on these peripheral and central nervous system components to alter pain in obesity (Table 2) . 

Cytokines and the Peripheral Nervous System 

Cytokines, associated with obesity, offer the potential to affect the peripheral nervous system, 

specifically the afferent nociceptor. Changes in the environment from cytokine levels can 

influence sensory neurons to develop alterations which lead to modification of the transduction, 

conduction, and transmission functionality of these neurons (Cunha et al. 1992; Woolf and 

Costigan 1999). Sensitization of the pain receptor causes hyperalgesia and can be related to 

the inflammatory environment from dose-dependent levels of TNFa and IL-6 (Cunha et al. 

1992). 

With tissue injury, silent nociceptors are inactive under normal conditions but are activated by 

inflammation and can then respond to noxious or non-noxious (innocuous) mechanical stimuli 

(Kandel et al. 2000) . Silent nociceptors were initially discovered in response to injection of 

Kaolin , a clay substance used to mimic clinical pain (Schaible and Schmidt 1985; Schaible and 

Schmidt 1988). No research to date has assessed the role of cytokines in activating silent 

nociceptors, but it is hypothesized that cytokines may be part of the inflammatory impact in 

activating these silent nociceptors and creating pain associated with obesity. 

Another response to inflammation is peripheral sensitization , an increased responsiveness of 

peripheral afferent nociceptors after tissue injury. It affects the ability of the peripheral nervous 
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system to send information to the central nervous system. Peripheral sensitization is 

characterized by an increased firing rate of the nociceptor, decreased threshold for firing of the 

nociceptor, and increased release of excitatory neurochemicals such as substance P, aspartate, 

glutamate, and calcitonin gene related peptide (Sluka and International Association for the 

Study of Pain 2009). With peripheral sensitization, a larger pain signal is delivered to the spinal 

cord resulting in hyperalgesia. 

Aspects of peripheral sensitization are highlighted in the research work related to TNFa. An 

animal study showed that intraplantar (peripheral) injections of TNFa reduced mechanical 

nociceptive thresholds and induced mechanical allodynia (a noxious response to an innocuous 

stimulus) and thermal hyperalgesia in rats (Cunha et al. 1992). Through injection of TNFa on 

individual C nociceptors of the sural nerve of rats, it was demonstrated that TNFa sensitized C 

nociceptors (Junger and Sorkin 2000). TNFa injections into corresponding receptive fields also 

created transient bursting or more sustained and persistent C nociceptor activity (Junger and 

Sorkin 2000). The main components of peripheral sensitization may be occurring in response to 

peripheral exposure of TNFa. 

Another obesity cytokine, IL-6 is associated with increased pain and hyperalgesia (Sommer 

2001). IL-6 is suggested to significantly change the survival, histological behavior, and the 

functionality of cells related to nociception or pathologic pain (De Jongh et al. 2003). For 

example, IL-6 signaling starts an intracellular cascade system that shares intracellular signal 

proteins resulting in stronger nociception (De Jongh et al. 2003). Intraplantar injections of IL-6 

have produced hyperalgesia or allodynia in rats (De Jongh et al. 2003). Similarly, 

intramuscular IL-6 injections into mice resulted in long lasting mechanical hyperalgesia 

(Manjavachi et al. 2010). IL-6 has been shown to be a major element of the nociceptor 

environment that contributes to nociceptor sensitization and heat hyperalgesia (Obreja et al. 
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2002) . Obese individuals, who display elevations in IL-6, have evidence for a cytokine 

mechanism related to increased peripheral sensitization. 

In contrast, animal research also lends support for TNFa to alter pain via damage to the 

peripheral nerve itself. TNFa is known to directly cause demyelination and axonal degeneration 

in rats (Stoll et al. 1993). A delta nociceptors are myelinated and transmit the "first pain", while 

C nociceptors are unmyelinated and transmit the "second pain" (Kandel et al. 2000). However, 

if afferent fibers are demyelinated or potentially have axonal degeneration from increased 

exposure to TNFa, the first pain would be slower in transmission or unable to be transmitted to 

the spinal cord. This would result in decreased pain as a result from elevated TNFa exposure 

from obesity. While this is not demonstrated in the clinical pain associated with obesity, this 

may explain some of the experimental pain research results . 

Another peripheral aspect that cytokines may affect is prostaglandins which are one of the most 

important mediators of inflammatory tissue injury hyperalgesia. Prostaglandin synthesis, which 

is stimulated by a number of cytokines including TNFa and IL-6, is a major feature of both acute 

and chronic inflammatory states (Rothwell and Hopkins 1995). This increase in prostaglandins 

sensitizes sensory neurons, decrease their activation threshold, and enhance their responses to 

other stimuli (Dray 1995). TNFa promotes eicosanoid synthesis through stimulation of 

increased transcription of synthetic enzymes (Rothwell and Hopkins 1995). IL-6 participates in 

increased pain response (hyperalgesia) in response to TNFa through prostaglandins (Rothwell 

1991 ; Dinarello et al. 1991). Pro-inflammatory cytokines, such as TNFa and IL-6, increase 

prostaglandin synthesis. Therefore, there is a synergistic effect of hyperalgesia in obesity 

through several peripheral mechanisms. 
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Cytokines and the Central Nervous System 

Increasing evidence suggests that pro-inflammatory cytokines enhance pain via central 

mechanisms in both the spinal cord and brain. ChrQnic pain conditions induce pro-inflammatory 

cytokines in the spinal cord; intrathecal injections of these cytokines enhance pain; and spinal 

blockade of cytokines attenuates chronic pain (Kawasaki et al. 2008). In addition, cytokines 

may influence the central nervous system aspect of pain both directly and indirectly (Szelenyi 

2001). Unfortunately, less is known how these inflammatory cytokines specifically alter synaptic 

transmission and neuronal activity in the central nervous system. 

Central sensitization is an increased excitability of the nociceptive neurons in the central 

nervous system to their normal afferent input. The five main characteristics of central 

sensitization include: 1) increased receptive field size, 2) increased response to a noxious 

stimulus (hyperalgesia), 3) increased response to a non-noxious stimulus (allodynia), 4) 

increased spontaneous firing, and 5) decreased activation threshold (Sluka and International 

Association for the Study of Pain 2009). Pro-inflammatory cytokines, such as TNFa and IL-6, 

enhance pain via central mechanisms to accelerate central sensitization in rats (Kawasaki et al. 

2008). Specific to animals, intracerebroventricular or intrathecal injections of IL-6 have 

produced hyperalgesia or allodynia in rats (De Jongh et al. 2003). Due to elevated inflammatory 

markers secreted from adipose tissue, central sensitization may explain the increased pain 

associated with increased 8MI. 

A pivotal study investigating the cytokine mechanisms of central sensitization was completed by 

Kawasaki et al. in 2008. Kawasaki stated that "central sensitization is caused by increased 

excitatory synaptic transmission and decreased inhibitory synaptic transmission". Past research 

had shown that most neurons in lamina II (part of the spinothalamic tract) of transverse spinal 

cord slices are excitatory and pro-nociceptive (8aba et al. 2003; Kohno et al. 2005; Moore et al. 

2002; Yang et al. 1998). Through patch-clamp recordings in lamina II neurons of isolated spinal 
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cord slices of Sprague Dawley rats, the effects of TNFa and Il-6 on excitatory and inhibitory 

synaptic transmission were compared (Kawasaki et al. 2008). TNFa heightened the frequency 

of spontaneous excitatory postsynaptic current (EPSCs) to induce glutamate (an excitatory 

neurotransmitter) release from central terminals of primary afferents (Kawasaki et al. 2008; 

Saba et al. 2003) . In contrast, Il-6 decreased the frequency and amplitude of inhibitory 

postsynaptic currents (IPSCs) and suppressed inhibitory neurotransmission through 

suppression of GASA and glycine (inhibitory neurotransmitters) induced currents (Kawasaki et 

al. 2008) . In the superficial dorsal horn neurons of the spinal cord, the synaptic mechanisms of 

TNFa and Il-6 are individual but also corresponding through their actions of increasing 

excitatory synaptic transmission (TNFa) or decreasing inhibitory synaptic transmission (ll-6) to 

create central sensitization (Kawasaki et al. 2008) . Therefore, pro-inflammatory cytokines 

evident in the inflammatory state of obesity can induce central sensitization . 

In other experiments, injection of TNFa and Il-6 into spinal cord cerebral spinal fluid has 

created marked heat hyperalgesia (Kawasaki et al. 2008) . The overall effect of TNFa and Il-6 

are both pro-nociceptive, but specifically intrathecal Il-6 (a simulation of the effects of obesity) 

has produced allodynia in otherwise normal rats (Deleo and Yezierski 2001). These central 

injections simulate the increased pro-inflammatory cytokines evident in obesity to help explain 

heat hyperalgesia and allodynia. 

A final central nervous system component that is potentially affected by the chronic 

inflammatory state associated with obesity is the hypothalamus and hippocampus. Pain by 

definition is a both a sensory and emotional response; the central nervous system allows 

nociception to be transmitted to critical processing areas in the brain for these sensory 

discriminative (somatosensory cortex I and II) and motivational affective components (anterior 

cingulate and anterior insular cortex). These motivational-affective processing areas are 

intimately connected to the limbic system which contains the hypothalamus, known to regulate 
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the pain response, and the hippocampus, which plays a strong role in our emotional life and 

converts short-term memory to long-term memory (The Limbic System [Online]) . Brain research 

shows that the highest density of cytokine receptors are located in the hypothalamus and 

hippocampus, areas noted to be critical in pai'n processing (Hopkins and Rothwell 1995). If 

peripheral cytokines from adipose tissue are able to reach these central areas, they could be 

influencing pain regulation and pain memory formation. Additional research in this area is 

required to make more concrete statements about the potential role of peripheral cytokines from 

adipose tissue crossing the blood brain barrier and affecting central receptors in the 

hypothalamus and hippocampus. 

Cytokines and the Opioid System-A Peripheral & Central Effect 

Opioid receptors are located throughout both the peripheral and central nervous system. After 

tissue injury, opioid receptors are upregulated to reduce pain in inflamed tissues (Kandel et a!. 

2000). The opioid system is also affected by cytokines. IL-6 knockout mice demonstrate fewer 

opioid receptors in the midbrain, larger hypothalamic levels of l3-endorphin, and decreased 

analgesic response to morphine; therefore, IL-6 may be playing a role in the responses to 

nociceptive stimuli and modulating the opioid pathway (Bianchi et a!. 1992). It has also been 

demonstrated that morphine is less potent in obese versus lean rats suggesting a defect in the 

endogenous opioid systems of obese Zucker rats (Roane and Porter 1986). Increased opioid 

receptors have been found in obese animal models of obesity (Cozzolino et a!. 1996; Smith et 

a!. 2002); a possible link between obesity and the opioid receptors density could be cytokines 

associated with obesity. In addition, increases in endogenous opioid levels have been reported 

in obese humans (Cozzolino et a!. 1996; Givens et al. 1980; Karayiannakis et a!. 1998). 

Another reason for the variability of results in the experimental pain studies may be the 

influence of cytokines on the opioid receptor representation and opioid levels in obese 

individuals leading to decreases in pain. 
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The changes to the opioid system from cytokines may be indirect as ghrelin may be the 

mediator. Ghrelin is a hormone related to obesity that affects hunger; obese individuals have 

decreased levels while lean individuals have increased levels. Ghrelin receptors have been 

shown to be expressed in various brain areas that influence the transmission of noxious 

messages such as the brainstem and hypothalamus (Kojima and Kangawa 2005; Zigman et al. 

2006). Both intracerebroventricular, intraperitoneal, and intraplantar ghrelin have been shown 

to effectively counteract the development of hyperalgesia induced by intra plantar carrageenan 

(a seaweed derivative to induce inflammation) in rats (Sibilia et al. 2006). Therefore, ghrelin 

acts as an inhibitor on inflammatory pain through an interaction with the central opioid system 

(Sibilia et al. 2006). In obese individuals, ghrelin is decreased resulting in less inhibition. 

Whether administered centrally or peripherally, ghrelin exerts an inhibitory role on the 

development of inflammation and hyperalgesia (Sibilia et al. 2006). This inhibitory role evolves 

from ghrelin inhibiting the expression of pro-inflammatory cytokines such as TNFa and IL-6 

(Dixit et al. 2004). These cytokines contribute to both central and peripheral inflammatory pain 

hypersensitivity (Samad et al. 2001). With the decrease in ghrelin in obese individuals, IL-6 and 

TNFa remain elevated and may be even higher in obese individuals due to additional production 

by adipose tissue; this would increase pain. 

Conclusion 

The obesity epidemic has created a significant public health concern with the majority of obese 

individuals reporting clinical pain. Obesity and clinical pain have an established connection in 

literature across the lifespan, but consensus over the true definition of altered experimental pain 

in obesity is not set. Obese individuals demonstrate elevated levels of cytoKines, such as TNFa 

and IL-6, which can create a chronic inflammatory state leading to impaired health (Figure 1). 

These inflammatory markers associated with obesity are also related to pain signaling and 

transmission in both the peripheral and central nervous systems. Therefore, cytokines may be 
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altering the neurophysiological properties of peripheral nociceptors and central neurons via 

quantitative changes in inflammation involved in nociception . Peripheral and central 

sensitization may be enhanced by cytokines. In addition , prostaglandins and the opioid systems 

may be influences by cytokines . Not ali pain research involving cytokines supports the 

increased report of clinical pain in obesity , but this conflict may expound the variability in 

research results involving experimental pain. 

Future Research 

These conflicts in research in both animal models and humans provide numerous avenues for 

additional research in the study of obesity-associated pain. Future research involving 

assessment of obesity variables (8MI and measures of body composition) , peripheral and 

central cytok ine levels, and pain thresholds/tolerance levels are needed to see the direct and 

indirect mechanisms of cytokines on pain in the peripheral and central nervous system. A large 

amount of the research has been completed in animal models where aspects of emotion and 

social influence are not as strong as in humans. Additional research is necessary in humans to 

establish the association of pain reports in individuals with obesity and the inflammatory state 

created by cytokines from obesity. Obesity interventions, such as physical activity and exercise, 

promote changes in body composition through decreases in fat mass. This change in fat mass 

may decrease the inflammatory state brought on by adipose tissue. Ultimately, exercise may 

decrease pain because less pro-inflammatory cytokines are enhancing peripheral and central 

sensitization. In addition , exercise may also promote an anti -inflammatory state and decrease 

pain through exercise induced hypoalgesia. Adults and pediatric studies are need in this area to 

determine how exercise influences changes in cytokine expression on pain in obesity during 

acute and long term exercise training. 

Stalzman 15 



References 

Anonymous The Limbic System [Online]. http://webspace.ship.edu/cgboerllimbicsystem.html 
[4/16/20122012]. 

Anonymous WHO I Obesity and overweight [Online]. 
http://www.who.int/mediacentre/factsheets/fs3111en/ [4/10/2012 2012] . 

Aderka D, Le JM and Vilcek J. IL-6 inhibits lipopolysaccharide-induced tumor necrosis factor 
production in cultured human monocytes, U937 cells, and in mice. J Immuno/143: 11: 3517-
3523, 1989. 

Arslan N, Erdur B and Aydin A. Hormones and cytokines in childhood obesity. Indian Pediatr 
47: 10: 829-839, 2010. 

Baba H, Ji RR, Kohno T, Moore KA, Ataka T, Wakai A, Okamoto M and Woolf CJ. Removal 
of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the 
superficial spinal dorsal horn. Mol Cell Neurosci 24: 3: 818-830, 2003. 

Barofsky I, Fontaine KR and Cheskin LJ. Pain in the obese: impact on health-related quality­
of-life. Ann Behav Med 19: 4: 408-410, 1997. 

Bell LM, Byrne S, Thompson A, Ratnam N, Blair E, Bulsara M, Jones TW and Davis EA. 
Increasing body mass index z-score is continuously associated with complications of overweight 
in children, even in the healthy weight range. J Clin Endocrinol Metab 92: 2: 517-522, 2007. 

Benveniste EN. Inflammatory cytokines within the central nervous system: sources, function , 
and mechanism of action. Am J Physio/263 : 1 Pt 1: C1-16, 1992. 

Berggren JR, Hulver MW and Houmard JA. Fat as an endocrine organ: influence of exercise. 
J Appl Physio/99: 2: 757-764, 2005. 

Bianchi M, Sacerdote P, Ricciardi-Castagnoli P, Mantegazza P and Panerai AE. Central 
effects of tumor necrosis factor alpha and interleukin-1 alpha on nociceptive thresholds and 
spontaneous locomotor activity. Neurosci Lett 148: 1-2: 76-80, 1992. 

Cancello R, Taleb S, Poitou C, Tordjman J, Lacasa D, Guerre-Millo M and Clement K. Is 
obesity an inflammatory disease? Journ Annu Diabetol Hotel Dieu 115-128, 2006. 

Cozzolino D, Sessa G, Salvatore T, Sasso FC, Giugliano D, Lefebvre PJ and Torella R. 
The involvement of the opioid system in human obesity: a study in normal weight relatives of 
obese people. J Clin Endocrinol Metab 81: 2: 713-718, 1996. 

Cunha FQ, Poole S, Lorenzetti BB and Ferreira SH. The pivotal role of tumour necrosis factor 
alpha in the development of inflammatory hyperalgesia. Br J Pharmaco/1 07: 3: 660-664, 1992. 

D'arcy Y. Pain and obesity. Nurs Manage 43: 3: 20-25, 2012. 

Stalzman 16 



De Jongh RF, Vissers KC, Meert TF, Booij lH, De Deyne CS and Heylen RJ. The role of 
interleukin-6 in nociception and pain. Anesth Analg 96: 4: 1096-103, table of contents, 2003. 

de Sa Pinto Al, de Barros Holanda PM, Radu AS, Villares SM and Lima FR. 
Musculoskeletal findings in obese children. J Paediatr Child Health 42: 6: 341-344, 2006. 

Deleo JA and Yezierski RP. The role of neuroinflammation and neuroimmune activation in 
persistent pain. Pain 90: 1-2: 1-6, 2001. 

Dinarello CA, Cannon JG, Mancilla J, Bishai I, lees J and Coceani F. Interleukin-6 as an 
endogenous pyrogen: induction of prostaglandin E2 in brain but not in peripheral blood 
mononuclear cells. Brain Res 562: 2: 199-206, 1991. 

Dixit VD, Schaffer EM, Pyle RS, Collins GD, Sakthivel SK, Palaniappan R, Lillard JW,Jr 
and Taub DD. Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine 
expression by human monocytes and T cells. J Clin Invest 114: 1: 57-66, 2004. 

Dray A. Inflammatory mediators of pain. Br J Anaesth 75: 2: 125-131, 1995. 

Ferreira SH, Lorenzetti BB and Poole S. Bradykinin initiates cytokine-mediated inflammatory 
hyperalgesia. Br J Pharmaco/11 0: 3: 1227-1231, 1993. 

Ferris WF and Crowther NJ. Once fat was fat and that was that: our changing perspectives on 
adipose tissue. Cardiovasc J Afr 22: 3: 147-154,2011 . 

Fischer-Posovszky P, Wabitsch M and Hochberg Z. Endocrinology of adipose tissue - an 
update. Horm Metab Res 39: 5: 314-321,2007. 

Givens JR, Wiedemann E, Andersen RN and Kitabchi AE. beta-Endorphin and beta­
lipotropin plasma levels in hirsute women: correlation with body weight. J Clin Endocrinol Metab 
50: 5: 975-976, 1980. 

Hershey AD, Powers SW, Nelson TD, Kabbouche MA, Winner P, Yonker M, Linder Sl, 
Bicknese A, Sowel MK, McClintock Wand American Headache Society Pediatric 
Adolescent Section. Obesity in the pediatric headache population : a multicenter study. 
Headache 49: 2: 170-177,2009. 

Hitt HC, McMillen RC, Thornton-Neaves T, Koch K and Cosby AG. Comorbidity of obesity 
and pain in a general population: results from the Southern Pain Prevalence Study. J Pain 8: 5: 
430-436, 2007. 

Hopkins SJ and Rothwell NJ. Cytokines and the nervous system. I: Expression and 
recognition. Trends Neurosci 18: 2: 83-88, 1995. 

Janke EA, Collins A and Kozak AT. Overview of the relationship between pain and obesity: 
What do we know? Where do we go next? J Rehabil Res Dev 44: 2: 245-262, 2007. 

Junger H and Sorkin lS. Nociceptive and inflammatory effects of subcutaneous TNFalpha. 
Pain 85: 1-2: 145-151,2000. 

Stalzman 17 



Kandel ER, Schwartz JH and Jessell TM. Principles of neural science. New York: McGraw­
Hill , Health Professions Division, 2000, p. 1414. 

Karayiannakis AJ, Zbar A, Makri GG, Syrigos K, Athanasiadis L, Alexiou D and Bastounis 
EA. Serum beta-endorphin levels in morbidly obese patients: the effect of vertical banded 
gastroplasty. Eur Surg Res 30: 6: 409-413, 1998. 

Kawasaki Y, Zhang L, Cheng JK and Ji RR. Cytokine mechanisms of central sensitization: 
distinct and overlapping role of interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha 
in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci 28: 20: 
5189-5194, 2008. 

Keller C, Keller P, Giralt M, Hidalgo J and Pedersen BK. Exercise normalises overexpression 
ofTNF-a in knockout mice. Biochem Biophys Res Commun 321 : 1: 179-182, 2004. 

Kerns RD, Otis J, Rosenberg R and Reid MC. Veterans' reports of pain and associations with 
ratings of health, health-risk behaviors, affective distress, and use of the healthcare system. J 
Rehabi/ Res Dev 40: 5: 371-379, 2003 . 

• 

Khimich S. Level of sensitivity of pain in patients with obesity. Acta Chir Hung 36: 1-4: 166-167, 
1997. 

Kohno T, Ji RR, Ito N, Allchorne AJ, Befort K, Karchewski LA and Woolf CJ. Peripheral 
axonal injury results in reduced mu opioid receptor pre- and post-synaptic action in the spinal 
cord. Pain 117: 1-2: 77-87, 2005. 

Kojima M and Kangawa K. Ghrelin : structure and function. Physiol Rev 85: 2: 495-522, 2005. 

Lyon CJ, Law RE and Hsueh WA. Minireview: adiposity, inflammation, and atherogenesis. 
Endocrinology 144: 6: 2195-2200, 2003. 

Maffiuletti NA, Morelli A, Martin A, Duclay J, Billot M, Jubeau M, Agosti F and Sartorio A. 
Effect of gender and obesity on electrical current thresholds. Muscle Nerve 44: 2: 202-207, 
2011. 

Manjavachi MN, Motta EM, Marotta DM, Leite DF and Calixto JB. Mechanisms involved in 
IL-6-induced muscular mechanical hyperalgesia in mice. Pain 151: 2: 345-355, 2010. 

Marcus DA. Obesity and the impact of chronic pain. Clin J Pain 20: 3: 186-191 , 2004. 

McCarthy LH, Bigal ME, Katz M, Derby C and Lipton RB. Chronic pain and obesity in elderly 
people: results from the Einstein aging study. JAm Geriatr Soc 57: 1: 115-119, 2009. 

McKendall MJ and Haier RJ. Pain sensitivity and obesity. Psychiatry Res 8: 2: 119-125, 1983. 

Merskey H, Bogduk N and International Association for the Study of Pain. Task Force on 
Taxonomy. Classification of chronic pain: descriptions of chronic pain syndromes and 
definitions of pain terms. Seattle: IASP Press, 1994, p. 222. 

Stalzman 18 



Moore KA, Kohno T, Karchewski lA, Scholz J, Baba H and Woolf CJ. Partial peripheral 
nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of 
the spinal cord. J Neurosci 22: 15: 6724-6731 , 2002. 

Obreja 0, Schmelz M, Poole S and Kress M. Interleukin-6 in combination with its soluble IL-6 
receptor sensitises rat skin nociceptors to heat, in vivo. Pain 96: 1-2: 57-62, 2002. 

Ogden Cl, Carroll MD, Curtin lR, lamb MM and Flegal KM. Prevalence of high body mass 
index in US children and adolescents, 2007-2008. JAMA 303: 3: 242-249, 2010. 

Oka T, Aou Sand Hori T. Intracerebroventricular injection of interleukin-1 beta induces 
hyperalgesia in rats. Brain Res 624: 1-2: 61-68, 1993. 

Pradalier A, Willer JC, Boureau F and Dry J. Relationship between pain and obesity: an 
electrophysiological study. Physiol Behav 27: 6: 961-964, 1981 . 

Ramzan I, Wong BK and Corcoran GB. Pain sensitivity in dietary-induced obese rats. Physiol 
Behav 54: 3: 433-435, 1993. 

Ray l, Lipton RB, Zimmerman ME, Katz MJ and Derby CA. Mechanisms of association 
between obesity and chronic pain in the elderly. Pain 152: 1: 53-59, 2011. 

Raymond NC, de Zwaan M, Faris Pl, Nugent SM, Achard OM, Crosby RD and Mitchell JE. 
Pain thresholds in obese binge-eating disorder subjects. BioI Psychiatry 37: 3: 202-204, 1995. 

Roane OS and Porter JR. Nociception and opioid-induced analgesia in lean (Fa/-) and obese 
(fa/fa) Zucker rats. Physiol Behav 38: 2: 215-218,1986. 

Rothwell NJ. Functions and mechanisms of interleukin 1 in the brain. Trends Pharmacal Sci 12: 
11: 430-436, 1991. 

Rothwell NJ and Hopkins SJ. Cytokines and the nervous system II: Actions and mechanisms 
of action. Trends Neurosci 18: 3: 130-136, 1995. 

Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, Bonventre JV and 
Woolf CJ. Interleukin-1 beta-mediated induction of Cox-2 in the CNS contributes to inflammatory 
pain hypersensitivity. Nature 410: 6827: 471-475, 2001 . 

Satoh T, Nakamura S, Taga T, Matsuda T, Hirano T, Kishimoto T and Kaziro y. Induction of 
neuronal differentiation in PC 12 cells by B-cell stimulatory factor 2/interleukin 6. Mol Cell BioI 8: 
8: 3546-3549, 1988. 

Schaible HG and Schmidt RF. Time course of mechanosensitivity changes in articular 
afferents during a developing experimental arthritis. J Neurophysio/60 : 6: 2180-2195, 1988. 

Schaible HG and Schmidt RF. Effects of an experimental arthritis on the sensory properties of 
fine articular afferent units. J Neurophysiol 54: 5: 1109-1122, 1985. 

Stalzman 19 



Sibilia V, Lattuada N, Rapetti 0, Pagani F, Vincenza 0, Bulgarelli I, Locatelli V, Guidobono 
F and Netti C. Ghrelin inhibits inflammatory pain in rats: involvement of the opioid system. 
Neuropharmacology 51 : 3: 497-505, 2006. 

Sinha R, Dhungel S, Sinha M, Paudel BH, Bhattacharya N and Mandai MB. Obesity 
attenuates formalin-induced tonic pain in British Angora rabbits . Indian J Physiol Pharmacal 53: 
1: 83-87, 2009. . 

Sluka KA and International Association for the Study of Pain. Mechanisms and 
management of pain for the physical therapist. Seattle: IASP Press, 2009, p. 411. 

Smith SL, Harrold JA and Williams G. Diet-induced obesity increases mu opioid receptor 
binding in specific regions of the rat brain. Brain Res 953: 1-2: 215-222, 2002. 

Sommer C. Cytokines in neuropathic pain. Anaesthesist 50: 6: 416-426, 2001. 

Stoll G, Jung S, Jander S, van der Meide P and Hartung HP. Tumor necrosis factor-alpha in 
immune-mediated demyelination and Wallerian degeneration of the rat peripheral nervous 
system. J Neuroimmuno/45: 1-2: 175-182, 1993. 

Stone AA and Broderick JE. Obesity and Pain Are Associated in the United States. Obesity 
(Silver Spring) 2012 . 

Stovitz SO, Pardee PE, Vazquez G, Duval S and Schwimmer JB. Musculoskeletal pain in 
obese children and adolescents. Acta Paediatr 97: 4: 489-493, 2008. 

Szelenyi J. Cytokines and the central nervous system. Brain Res Bull 54: 4: 329-338, 2001. 

Taylor ED, Theim KR, Mirch MC, Ghorbani S, Tanofsky-Kraff M, Adler-Wailes DC, Brady 
S, Reynolds JC, Calis KA and Yanovski JA. Orthopedic complications of overweight in 
children and adolescents. Pediatrics 117: 6: 2167-2174, 2006. 

Umpaichitra V. Roles of adipose tissue-derived factors in obesity. Pediatr Endocrinol Rev 3 
Suppl 4: 537-543, 2006. 

Wachholtz A, Binks M, Suzuki A and Eisenson H. Sleep disturbance and pain in an obese 
residential treatment-seeking population. Clin J Pain 25: 7: 584-589, 2009. 

Weisberg SP, McCann 0, Desai M, Rosenbaum M, Leibel RL and Ferrante AW,Jr. Obesity 
is associated with macrophage accumulation in adipose tissue. J Clin Invest 112: 12: 1796-
1808,2003. 

Wisse BE. The inflammatory syndrome: the role of adipose tissue cytokines in metabolic 
disorders linked to obesity. J Am Soc Nephro/15: 11: 2792-2800, 2004. ~ 

Woolf CJ and Costigan M. Transcriptional and posttranslational plasticity and the generation of 
inflammatory pain. Proc Nat! Acad Sci USA 96: 14: 7723-7730, 1999. 

Stalzman 20 



Wright LJ, Schur E, Noonan C, Ahumada S, Buchwald D and Afari N. Chronic pain, 
overweight, and obesity: findings from a community-based twin registry. J Pain 11: 7: 628-635, 
2010. 

Yang K, Kumamoto E, Furue H and Yoshimura M. Capsaicin facilitates excitatory but not 
inhibitory synaptic transmission in substantia gelatinosa of the rat spinal cord. Neurosci Lett 
255: 3: 135-138, 1998. 

Zahorska-Markiewicz B, Kucio C and Pyszkowska J. Obesity and pain . Hum Nutr Clin Nutr 
37:4: 307-310, 1983. 

Zahorska-Markiewicz B, Zych P and Kucio C. Pain sensitivity in obesity. Acta Physiol Pol 39: 
3: 183-187, 1988. 

Zigman JM, Jones JE, Lee CE, Saper CB and Elmquist JK. Expression of ghrelin receptor 
mRNA in the rat and the mouse brain. J Comp Neuro/494 : 3: 528-548, 2006. 

Stalzman 21 



Table 1 E tal Pain Alt d in Obesitv? 

Animal Human Pain or Pain or No 
Author Year Study Study Noc t Noc 

'" 
Change Results 

.../ .../ Higher pain thresholds to mechanical stimulus on 
the forearm in subjects with excessive body 

Khimich 1997 weight compared to normal weight controls. 

.../ ,./' Decreased mechanical pain thresholds in obese 
McKendall & Haier 1983 individuals. 

,./" ,./' Lower sural nerve nociceptive-flexion reflex in 
Pradalier et al. 1981 obese women. 

,./" .../ Increased thermal pain threshold as observed by 
Ramzan et al. 1993 increased tail flick latency in obese animals. 

J" 
Elevated pain detection thresholds to mechanical 

~ ../ stimulus on fingers in obese compared to 
controls. No significant differences in pain 

Raymond et al. 1995 tolerance thresholds between the groups. 

.../' '" 
Decreased latency to nociceptive mechanical 
stimuli by Zucker (obese) rats than normal weight 

Roane & Porter 1986 rats. 

,./' ,./' 
Increased thermal threshold by decreased time in 
pain behaviors in response to formalin test with 

Sinha et al. 2009 obese rabbits . 

,./' .../' 
Elevated pain thresholds in obese subjects over 
normal lean controls in response to electrical 

Zahorska-Markiewicz 1983 stimulus on forearm and arm. 

.../' .../ 
Sensory and pain thresholds were higher in 
obese versus lean controls from electrical 

Zahorska-Markiewicz 1988 stimulus on forearm. 



Table 2: Are TNFa or IL-6 a Possible Mechanism that Alters Nociception/Pain in the PNS or CNS? 
I 

Animal Human CNS PNS 
Author Year Study Study TNFa IL-6 Effect Effect Notes 

Baba H et al. 2003 ~ ~ ~ Central Sensitization 

Bianchi M et al. 1992 ~ .../ .../ Opioid system 

Cunha, FQ et al. 1992 .../ .../ ~ Peripheral Sensitization 

De Jongh RF et al. 2003 .../ ~ .../ .../ Central & Peripheral Sensitization 

Deleo JA & Yezierski RP 2001 .../ .../ .../ .../ Central Sensitization 

Dinarello CA et al. 1991 ../ .../ ~ Prostoglandins role 

Dixit VD et al. 2004 ~ ~ ~ .../ Ghrelin as mediator 

Ferreira SH et al 1993 .../ ../ .../ .../ .../ Central & Peripheral Sensitization 

Junger H & Sorkin lS 2000 .../ .../ ../ Peripheral Sensitization 

Kawasaki Y et al. 2008 .../ .../ .../ ~ Central Sensitization 

Manjavachi MN et al. 2010 .../ .../ .../ Peripheral Sensitization 

Obreja 0 et al. 2002 ~ .../ .../ Peripheral Sensitization 

Samad TA et al. 2001 ~ ~ J' .../ ~ Ghrelin as mediator 

Stoll G et al. 1993 .../ .../ .../ Demyelination & Axonal Degeneration 
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