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Robust and Resilient State Dependent Control of Discrete-Time Nonlinear 
Systems with General Performance Criteria 

 
Xin Wang*, Edwin E. Yaz* and Yvonne I. Yaz** 

 

*Electrical and Computer Engineering Department, Marquette University,  
Milwaukee, WI 53201, USA (e-mail: xin.wang@marquette.edu; edwin.yaz@marquette.edu ). 

**Mathematics Department, Milwaukee School of Engineering, 
Milwaukee, WI 53202, USA (email: yaz@msoe.edu ) 

Abstract: A novel state dependent control approach for discrete-time nonlinear systems with general 
performance criteria is presented. This controller is robust for unstructured model uncertainties, resilient 
against bounded feedback control gain perturbations in achieving optimality for general performance 
criteria to secure quadratic optimality with inherent asymptotic stability property together with quadratic 
dissipative type of disturbance reduction. For the system model, unstructured uncertainty description is 
assumed, which incorporates commonly used types of uncertainties, such as norm-bounded and positive 
real uncertainties as special cases. By solving a state dependent linear matrix inequality at each time step, 
sufficient condition for the control solution can be found which satisfies the general performance criteria. 
The results of this paper unify existing results on nonlinear quadratic regulator, H∞  and positive real 
control to provide a novel robust control design. The effectiveness of the proposed technique is 
demonstrated by simulation of the control of inverted pendulum.  

 

1. INTRODUCTION 

Optimal control of nonlinear systems is traditionally 
characterized in terms of Hamilton Jacobi Equations (HJEs). 
The solution of the HJEs provides the necessary and 
sufficient optimal control condition for nonlinear systems. 
Furthermore, when the controlled system is linear time 
invariant and the performance index is Linear Quadratic 
Regulator (LQR), the HJEs reduced to Algebraic Riccati 
Equations (AREs). As for ∞H  nonlinear control problem, the 
optimal control solution is equivalent to solving the 
corresponding Hamilton Jacobi Inequalities (HJIs). However, 
HJEs and HJIs, which are first order partial differential 
equations and inequalities, cannot be solved for more than a 
few state variables. In the past few years, it has been shown 
that the problems of quadratic regulation and ∞H  nonlinear 
control can be effectively solved by state dependent Riccati 
equation (SDRE) and nonlinear matrix inequality (NLMI) 
techniques (Huang and Lu 1996). The state dependent LMI 
control of nonlinear systems, as pointed out in (Wang and 
Yaz 2009, Wang and Yaz 2010), synthesizes a controller to 
achieve mixed nonlinear quadratic regulator (NLQR) and 
H∞  control.  

Dissipative control for linear systems has also received 
considerable attention over the past two decades. The concept 
of dissipative system was first introduced in by Willems 
(1972a, b), and further generalized by Hill and Moylan 
(1976, 1980), playing an important role in systems, circuits 
and controls. The theory of dissipative systems generalizes 
the basic tools including the passivity theorem, bounded real 
lemma, Kalman-Yakubovich lemma and circle criterion. 

Dissipativity performance includes ∞H  performance, 
passivity, positive realness, sector bounded constraint as 
special case. Research addressing the problems of ∞H  and 
positive real control systems can be found in (Safonov et al. 
1987, Doyle et al. 1989, Haddad and Bernstein 1991, Sun et 
al. 1994). Control of uncertain linear systems with 2L -
bounded structured uncertainty satisfying ∞H  and passivity 
criteria have been tackled in (Peterson 1987, Khargonekar et 
al. 1990). More recent development involving the quadratic 
dissipative control for linear systems problem has been 
tackled in (Xie et al. 1998, Tan et al. 2000).   

In this paper, we further consider the problem of optimal, 
robust and resilient linear matrix inequality control of 
discrete-time nonlinear systems with general performance 
criteria. The controller is robust for model uncertainties and 
resilient for gain perturbations. As for the uncertain nonlinear 
systems, we consider a general form of 2l -bounded 
uncertainty description, without any standard structure, 
incorporating commonly used types of uncertainty, such as 
norm-bounded and positive real uncertainties as special 
cases. The purpose behind this novel approach is to convert a 
nonlinear system control problem into a convex optimization 
problem which is solved by state dependent LMI. The recent 
development in convex optimization provides very efficient 
algorithms for solving LMIs. If a solution can be expressed in 
a LMI form, then there exist optimization algorithms 
providing efficient global numerical solutions (Boyd 1994). 
Therefore if the LMI is feasible, then LMI control technique 
provides asymptotically stable solutions satisfying various 
general performance criteria. We further propose to employ 
general performance criteria to design the controller 
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guaranteeing the quadratic sub-optimality with inherent 
stability property in combination with dissipativity type of 
disturbance attenuation. The general performance criteria is a 
generalization of the nonlinear quadratic regulator, H∞ , 
positive realness and sector bounded constraint. The results 
of the paper unify existing results on nonlinear quadratic 
regulator, H∞  and positive real control and provide a novel 
robust control design. The paper is organized as follows: in 
section 2, we will present the general performance criteria 
including the performance of nonlinear quadratic regulator, 
H∞ , positive realness and sector bounded constraint. Section 
3 presents state dependent LMI based control for nonlinear 
systems achieving general performance criteria. Finally, 
inverted pendulum on a cart system is used for to examining 
the effectiveness and robustness of the new approach in 
section 4. 

2. SYSTEM MODEL AND GENERAL PERFORMANCE 
CRITERIA 

The following notation is used in this work: +ℜ  stands for 
the set of non-negative real numbers, nℜ  stands for the n-
dimensional Euclidean space. n

kx ∈ℜ  denotes n-dimensional 

real vector with norm 1/2( )T
k k kx x x=  where T)(⋅  indicates 

transpose. n m×ℜ  is the set of n m×  real matrices. nI  is the 
n n×  identity matrix. 0A ≥  for a symmetric matrix denotes 
a positive semi-definite matrix. 2l  is the space of finite 

dimensional vectors with finite energy: 2

0 kk
x∞

=
< ∞∑ . The 

inner product on nℜ  is defined by 
1

, n
i ii

u v u v
=

=∑ .  

Consider the nonlinear dynamical system and performance 
output equation as following: 

( )
( ) ( )

( ) ( )( )
( ) ( ) ( )

1 , ,

( ) ( ) ( ) ( )
k k k k

k A k k k B k k

k E k k

k A k k B k k E k

x f x u w

A x x x B x x u

E x x w

A x B u E w

+ =

= + Δ + + Δ ⋅

+ + Δ

= + Δ + + Δ + + Δ

         (1) 

( ),k k k k k k kz g x u C x D w= = ⋅ + ⋅                                 (2) 
where  

n
kx ∈ℜ   state of the dynamical system 

m
ku ∈ℜ   applied input 

p
kw ∈ℜ  2l  type of disturbance 

r
kz ∈ℜ   performance output  
,f g   nonlinear vector functions 

n n
kA ×∈ℜ , n m

kB ×∈ℜ , n p
kE ×∈ℜ , r n

kC ×∈ℜ , r p
kD ×∈ℜ  

state dependent coefficient matrices 
n n

A
×Δ ∈ℜ , n m

B
×Δ ∈ℜ , n p

E
×Δ ∈ℜ  

  state dependent uncertainty matrices 

It is assumed that the full state is available for feedback and 
the state feedback control input is given by 

( ) ( )( ) ( )k k K k k k K ku K x x x K x= + Δ = + Δ              (3) 

where there is additive (possibly state dependent) 
perturbation on the feedback gain. Introducing the quadratic 
energy supply function E associated with the system 
equations, defined by (Hill and Moylan 1976, 1980) as: 

( ), , 2 , ,k k k k k k k kE z w z Qz z Sw w Rw= + +         (4) 

where r rQ ×∈ℜ , r pS ×∈ℜ , p pR ×∈ℜ are the chosen weighing 
matrices. Next, from the definition of dissipativity, we have: 

Definition 1: Given matrices r rQ ×∈ℜ , r pS ×∈ℜ , p pR ×∈ℜ  
with ,Q R symmetric, the system (1), (2) with energy function 
(4) is said to be ( , ,Q S R )-dissipative if for some real function 

( )β ⋅ with (0) 0β = , 

0 2( , ) ( ) 0, , 0k kE z w x w l kβ+ ≥ ∀ ∈ ∀ ≥               (5) 
Furthermore, if for some scalar 0α > , 

0 2( , ) ( ) , , , 0k k k kE z w x w w w l kβ α+ ≥ ∀ ∈ ∀ ≥      (6) 

The system (1) (2) is said to be strictly ( , ,Q S R )-dissipative.  

Theorem 1: Consider the quadratic function 
0T

k k k kV x P x= > , matrices r rQ ×∈ℜ , r pS ×∈ℜ , p pR ×∈ℜ with 
,Q R symmetric, , 0n nM M×∈ℜ > , , 0m mN N×∈ℜ >  with 
,M N symmetric, the system (1) (2) control will achieve 

mixed NLQR and dissipative performance if the following 
condition holds: 

( )1 2 0,

0

T T T T T
k k k k k k k k k k k kV V x Mx u Nu z Qz z Sw w Rw

k
+ − + + − + + <

∀ ≥
 

(7) 
Proof: 
Note that upon summation over k, we have 

1

0

1
00

2N T T T
k k k k k ki

N T T
k k k k Ni

z Qz z Sw w Rw

x Mx u Nu V V

−

=

−

=

⎡ ⎤+ + >⎣ ⎦

⎡ ⎤+ + −⎣ ⎦

∑
∑

                 (8) 

Let ( )0 0x Vβ = , ( ) T
k k k kV x x P x= , 0NV ≥ , (8) implies 

( ) ( )1
00

2 0N T T T
k k k k k ki

z Qz z Sw w Rw xβ−

=
+ + + >∑         (9) 

which is the condition for ( , ,Q S R )-dissipativity.  

Remark 1: By adding the terms T T
k k k kx Mx u Nu+ , we include 

the nonlinear quadratic regulator control performance into the 
original ( , ,Q S R )-dissipative criteria.  

Remark 2: Notice that both H∞ and passivity are special 
cases of ( , ,Q S R )-dissipativity.  

The special cases are summarized as follows: 

Case 1: 2, 0,Q I S R Iγ= − = = , the strict ( , ,Q S R )-
dissipativity reduces H∞  Design (Doyle et al. 1989). The 
overall control design satisfies mixed NLQR- H∞  
performance. 
Case 2: 0, , 0Q S I R= = = , the strict ( , ,Q S R )-dissipativity 
reduces to strict positive realness (Sun et al. 1994). The 
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overall control design satisfies mixed NLQR-strict positive 
realness performance. 
Case 3: ( ) 2, 1 ,Q I S I R Iθ θ θγ= − = − = , the strict ( , ,Q S R )-
dissipativity reduces to mixed H∞  and positive real 
performance design, when ( )0,1θ ∈ . The overall control 
design satisfies mixed NLQR- H∞ -positive real performance. 

Case 4: ( ) ( )1 2 1 2 2 1
1 1, ,
2 2

TT T TQ I S K K R K K K K= − = + = − + , 

where 1K  and 2K  are constant matrices of appropriate 
dimensions, the strict ( , ,Q S R )-dissipativity reduces to a 
sector-bounded constraint (Gupta and Joshi 1994). The 
overall control design satisfies mixed NLQR-sector bounded 
constraint performance. 

Before introducing the main result of the paper, the following 
model of uncertainties is introduced. 

Assumption 1: The following general form of 2l -bounded 
unstructured uncertainties is considered: 

T
A A A

T
B B B

T
E E E

T
K K K

I

I

I

I

γ
γ
γ
γ

⎧Δ Δ ≤
⎪

Δ Δ ≤⎪
⎨

Δ Δ ≤⎪
⎪Δ Δ ≤⎩

                          (10) 

for n
kx∀ ∈ℜ and 0k ≥ . 

3. STATE DEPENDENT LINEAR MATRIX INEQUALITY 
CONTROL  

Lemma 1: 1T T T TAB BA AA BBα α −+ ≤ +                         (11) 
This can be proven easily by considering 

( )( )1/ 2 1/ 2 1/ 2 1/ 2 0
T

A B A Bα α α α− −− − ≥                 (12) 

Also, by choosing A, B matrices as
0

,
0

T

T

a
A B

b
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

, we 

have 

 1

0 0
0 0

T T

T T

a b a a
b a b b

ζ
ζ −

⎡ ⎤ ⎡ ⎤
≤⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
                   (13) 

The following theorem summarizes the main results of the 
paper: 

Theorem 2: Given the system equation (1), performance 
output (2) and control input (3), if there exist matrices 

1 0k kX P−= >  and kY  for all 0k > , such that the following 
state dependent linear matrix inequality holds: 

If 0Q < ,  

12 13 15

22

33

44

55

66

* 0 0 0
* * 0 0 0

0
* * * 0 0
* * * * 0
* * * * *

T
k k k

T

X Y X
E

⎡ ⎤ϒ ϒ ϒ
⎢ ⎥ϒ⎢ ⎥
⎢ ⎥ϒ

>⎢ ⎥
ϒ⎢ ⎥

⎢ ⎥ϒ⎢ ⎥
ϒ⎢ ⎥⎣ ⎦

                              (14) 

If 0Q = ,  

12 13

22

33

44

66

* 0 0
0* * 0 0

* * * 0
* * * *

T
k k k

T

X Y X
E

⎡ ⎤ϒ ϒ
⎢ ⎥ϒ⎢ ⎥
⎢ ⎥ >ϒ
⎢ ⎥

ϒ⎢ ⎥
⎢ ⎥ϒ⎣ ⎦

                                       (15) 

where 

( )

( )

12

13

15

22

33

1
44

1
55

11
66

2 1

2

T T
k k k k k

T T T
k k k k

T
k k
T T T
k k k k

T
k B E k k

A K

X C QD X C S

X A Y B

X C

D S S D D QD R I

X I B B

N

Q

M I

γ γ

γ γ

−

−

−−

ϒ = +

ϒ = +

ϒ =

ϒ = + + + +

ϒ = + + + +

ϒ =

ϒ = −

ϒ = − +

                                 (16) 

Then the performance index inequality (7) is satisfied. The 
nonlinear feedback control gain is given by  

k k kK Y P= ⋅                                   (17) 
Proof: 
In the proof below, the time and state argument will be 
dropped for notational simplicity. By applying system and 
performance output equations (1), (2), and state feedback 
input equation (3), the performance index can be formed as 
follows: 

( )( ) [ ]{ }
( )( ) [ ]{ }

[ ] [ ]
[ ] [ ]
[ ]

1

2 0

T TT T
k k A k B k K k k E k

k A k B k K k k E k

TT T T
k k k k k k k K k K k

T
k k k k k k

T T
k k k k k k k

x A B K w E P

A B K x E w

x P x x Mx x K N K x

C x Dw Q C x Dw

C x D w Sw w Rw

++ Δ + + Δ + Δ + + Δ ⋅ ⋅⎡ ⎤⎣ ⎦

+ Δ + + Δ + Δ + + Δ +⎡ ⎤⎣ ⎦

− + + + Δ + Δ

− + +

− + − <

 

(18) 
 By grouping the terms, we have 

[ ] 11 12

22

0
*

T kT T T T
k k k k k k

k

x
x w x w x w

w
Ψ Ψ ⎡ ⎤⎡ ⎤

⎡ ⎤ ⎡ ⎤Ψ = <⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ Ψ⎣ ⎦ ⎣ ⎦
 

(19) 
where 

( ) ( )( ){ }
( ) ( )( ){ }

[ ] [ ]

11 1
T

k A k B k K k

k A k B k K k

T T
k K k K k k

A B K P

A B K M P

K N K C QC

+Ψ = + Δ + + Δ + Δ ⋅ ⋅

+ Δ + + Δ + Δ + − +

+ Δ + Δ −

                     

( ) ( )( ){ } [ ]12 1
T

k A k B k K k k E

T T
k k k

A B K P E

C QD C S
+Ψ = + Δ + + Δ + Δ + Δ

− −
 

[ ] [ ]
( )
22 1

T T
k E k k E k k

T T
k k

E P E D QD

D S S D R
+Ψ = + Δ + Δ −

− + −
                

        (20) 
Denote the following terms: 
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( ) ( )( )k A k B k K

k K

k E

A B K
K
E

Α = + Δ + + Δ + Δ
Κ = + Δ
Ε = + Δ

                                (21) 

Then (19) is equivalent to 

1 1

1*

0
*

T T
k k k

T
k

T T T T
k k k k k

T T T
k k k k

P P P
P

M N C QC C QD C S
D S S D D QD R

+ +

+

⎡ ⎤Α Α − Α Ε
+⎢ ⎥Ε Ε⎣ ⎦

⎡ ⎤+ Κ Κ − − −
<⎢ ⎥− − − −⎣ ⎦

    

(22) 
By adding and subtracting kP  term, we have 

( )[ ] [ ]1 0
0

0
*

T

k k k kT

T T T T
k k k k k

T T T
k k k k

I
P P P P I

M N C QC C QD C S
D S S D D QD R

+

⎡ ⎤Α ⎡ ⎤− + Α Ε −⎢ ⎥ ⎢ ⎥Ε⎢ ⎥ ⎣ ⎦⎣ ⎦
⎡ ⎤+ Κ Κ − − −

+ <⎢ ⎥− − − −⎣ ⎦

 

(23) 
Imposing the property 1k kP P+ ≤ , the sufficient condition for 
(23) is given as follows: 

[ ] [ ]0
0

0
*

T

k kT

T T T T
k k k k k

T T T
k k k k

I
P P I

M N C QC C QD C S
D S S D D QD R

⎡ ⎤Α ⎡ ⎤Α Ε −⎢ ⎥ ⎢ ⎥Ε⎢ ⎥ ⎣ ⎦⎣ ⎦
⎡ ⎤+ Κ Κ − − −

+ <⎢ ⎥− − − −⎣ ⎦

 

(24) 
 Equivalently, we obtain 

[ ]

*

0

T T T T
k k k k k k

T T T
k k k k

T

kT

P M N C QC C QD C S
D S S D D QD R

P

⎡ ⎤− − Κ Κ + +
⎢ ⎥+ + +⎣ ⎦
⎡ ⎤Α

− Α Ε >⎢ ⎥
Ε⎢ ⎥⎣ ⎦

 

(25) 
Applying the Schur complement (Boyd, et al, 1994), we have 

1

* 0

* *

T
k T T T

k k kT
k k

T T
k k T

T
k k

k

P M N
C QD C S

C QC

D S S D

D QD R
P−

⎡ ⎤⎛ ⎞− − Κ Κ
+ Α⎢ ⎥⎜ ⎟⎜ ⎟+⎢ ⎥⎝ ⎠

⎢ ⎥
⎛ ⎞+⎢ ⎥Ε >⎜ ⎟⎢ ⎥⎜ ⎟+ +⎝ ⎠⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

               (26) 

Taking 0Q <  (the case where 0Q =  will be considered 
later), we apply Schur complement twice to (26), then 

1

1

1

* 0 0
0* * 0 0

* * * 0
* * * *

T T T T T
k k k k k

T T T T
k k k k

k

P M C QD C S C
D S S D D QD R

P
N

Q

−

−

−

⎡ ⎤− + Α Κ
⎢ ⎥+ + + Ε⎢ ⎥
⎢ ⎥ >
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 

(27) 
Let 1

k kX P−= , by pre- and post-multiplying the above matrix 

inequality by { }kdiag X I I I I , we have 

1

1

* 0 0
0

* * 0 0
* * * 0
* * * *

T T T T T
k k k k k k k k k k

T T
k k T
T
k k

k

X X MX X C QD X C S X X X C

D S S D

D QD R
X

N
Q

−

−

⎡ ⎤− + Α Κ
⎢ ⎥

⎛ ⎞+ +⎢ ⎥Ε⎜ ⎟⎢ ⎥⎜ ⎟+⎝ ⎠⎢ ⎥ >
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

(28) 
By applying the Schur complement again, we have 

1

1

1

* 0 0 0

0* * 0 0 0
* * * 0 0
* * * * 0
* * * * *

T T T T T
k k k k k k k k k k

T T
k k T
T
k k

k

X X C QD X C S X X X C X

D S S D

D QD R
X

N
Q

M

−

−

−

⎡ ⎤+ Α Κ
⎢ ⎥

⎛ ⎞+ +⎢ ⎥Ε⎜ ⎟⎢ ⎥⎜ ⎟+⎝ ⎠⎢ ⎥
>⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦

(29) 
Denote k k kY K X=                                                               (30)  
By replacing the variables with (21) and applying Lemma 1 
and Assumption 1, the sufficient condition for inequality (29) 
is given below 

1

1

1

11

22

33
1

1

* 0 0 0

* * 0 0 0
* * * 0 0
* * * * 0
* * * * *

0 0 0 0 0
* 0 0 0 0
* * 0 0 0
* * * 0 0
* * * * 0 0
* * * * * 0

T T
k k k k k T T

k k k k k kT T T
k k k k

T T
k k T

kT
k k

k

X C QD X A
X X K X C X

X C S Y B

D S S D
E

D QD R
X

N
Q

M

Iα

−

−

−

−

⎡ ⎤⎛ ⎞ ⎛ ⎞+ +
⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠
⎢ ⎥

⎛ ⎞+ +⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟+⎝ ⎠ +⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥
⎢ ⎥⎣ ⎦
Ω⎡
⎢ Ω

Ω

⎣

0

⎤
⎥

⎢ ⎥
⎢ ⎥

>⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

(31) 
where 

( )11 1 1 4 2
T

K A K k k k kX X Y Yα γ α γ α γ αΩ = + + +  

22 2 IαΩ =  

( )1 1 1 1
33 1 2 3 4

T
B B E k kI I I B Bα γ α γ γ α α− − − −Ω = + + + +               (32) 

Finally, by applying Schur complement twice, we have 

12 13 15

22

33

44

55

66

* 0 0 0
* * 0 0 0

0
* * * 0 0
* * * * 0
* * * * *

T
k k k

T

X Y X
E

⎡ ⎤ϒ ϒ ϒ
⎢ ⎥ϒ⎢ ⎥
⎢ ⎥ϒ

>⎢ ⎥
ϒ⎢ ⎥

⎢ ⎥ϒ⎢ ⎥
ϒ⎢ ⎥⎣ ⎦

                              (33) 
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where 

( )
( )

( )

12

13

15

22 2
1 1 1 1

33 1 2 3 4

1 1 1
44 1 2

1
55

11
66 1 2 4

T T
k k k k k

T T T
k k k k

T
k k
T T T
k k k k

T
k B B E k k

A K K

X C QD X C S

X A Y B

X C

D S S D D QD R I

X I I I B B

N I

Q

M I

α
α γ α γ γ α α

α α

α γ α γ α γ

− − − −

− − −

−

−−

ϒ = +

ϒ = +

ϒ =

ϒ = + + + +

ϒ = + + + + +

ϒ = + −

ϒ = −

ϒ = − + +

      (34) 

Notice that (33) is derived under the condition that 0Q < . 
However, when strict positive realness criteria are chosen for 
control design, then condition 0Q =  must be satisfied. In this 
case, matrix inequality (33) should be replaced by 

12 13

22

33

44

66

* 0 0
0* * 0 0

* * * 0
* * * *

T
k k k

T

X Y X
E

⎡ ⎤ϒ ϒ
⎢ ⎥ϒ⎢ ⎥
⎢ ⎥ >ϒ
⎢ ⎥

ϒ⎢ ⎥
⎢ ⎥ϒ⎣ ⎦

                                       (35) 

Since positive constants 1 5,...,α α are arbitrary, choosing all 
of them as 1, we obtain (14) and (15). Therefore, if LMI (14) 
or (15) holds under different conditions on Q, the inequality 
(7) is satisfied. This concludes the proof.                                                     
Remark 3: At this point, it is to be noted that other choices 
of constants 1 4,...,α α  are possible and can be tried if the 
value 1 for all these constants does not work.    

4. INVERTED PENDULUM CONTROL WITH GENERAL 
PERFORMANCE CRITERIA 

The inverted pendulum on a cart problem is a classical 
control problem used widely as a benchmark for testing 
control algorithms. The control objective is to find the state 
dependent LMI control to set cart position x, velocity of the 
cart x , angle of the beam θ  and angular velocity θ  all to 
zero while satisfying some chosen optimality criteria. A 
model of the inverted pendulum problem dynamical equation 
is given as follows:  

2

2

( ) cos( ) sin( )

( ) sin( ) cos( ) 0

M m x bx mL mL F

I mL mgL mLx

θ θ θ θ
θ θ θ

⎧ + + + − =⎪
⎨

+ + + =⎪⎩
              (36) 

The following system parameters are assumed 
2sec0.5 , 0.5 , 0.1 , 0.3 , 0.06M kg m kg b N L m I kg m

m
= = = ⋅ = = ⋅

Sampling Time: 0.01secT =  
The control performance results are shown in the Fig.1-5, in 
comparison with the traditional Linear Quadratic Regulator 
(LQR) technique based on linearization. From these figures, 
we find that the novel state dependent LMI control has better 
performance compared with the traditional LQR technique 
based on linearization. Especially, Fig.1 and Fig.2 show that 
the traditional LQR technique loses control of the position 

and velocity of the cart, respectively. It should also be noted 
that predominant NLQR and predominant ∞H  control 
techniques lead to faster response times than the NLQR-
passivity technique.  

5. CONCLUSION 
This paper has addressed nonlinear control system design 
with general nonlinear quadratic regulator and quadratic 
dissipative criteria to achieve asymptotic stability, quadratic 
optimality and strict quadratic dissipativeness. For systems 
with unstructured but bounded uncertainty, the linear matrix 
inequality based sufficient conditions are derived for the 
control solution. These results unify the existing results on 
State Dependent Riccati Equation control, robust H∞ , 
positive real control. The relative weighting matrices of these 
criteria can be achieved by choosing different coefficient 
matrices. The optimal control can be obtained by solving 
LMI at each time step. The inverted pendulum on a cart is 
used as an example to demonstrate the effectiveness and 
robustness of the proposed method. The simulation studies 
show that the proposed method provides a satisfactory 
alternative to the existing nonlinear control approaches.   
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Fig.1. Position trajectory of the inverted pendulum 
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Fig.2. Velocity trajectory of the inverted pendulum 
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Fig.3. Angle “theta” trajectory of the inverted pendulum 
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Fig.4. Angular velocity trajectory of the inverted pendulum 
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Fig.5. Control input 
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