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Abstract: The ciliated protozoan Tetrahymena has two nuclei: a germ line micronucleus and a 

somatic macronucleus. The transcriptionally active macronucleus has about 50 copies of each 

chromosome. At sexual reproduction (conjugation), the parental macronucleus is degraded and 

new macronucleus develops from a mitotic product of the zygotic micronucleus. Development of 

the macronucleus involves massive genome remodeling, including deletion of about 6000 specific 

internal eliminated sequences (IES) and multiple rounds of DNA replication. A gene encoding a 

putative signal transduction receptor, ASI2, (anlagen stage induced 2) is up-regulated during 

development of the new macronuclei (anlagen). Macronuclear ASI2 is nonessential for vegetative 

growth. Homozygous ASI2 germ line knockout cells with wild type parental macronuclei proceed 

through mating but arrest at late macronuclear anlagen development and die before the first 

post-conjugation fission. IES elimination occurs in these cells. Two rounds of postzygotic DNA 

replication occur normally in progeny of ASI2 germ line knockouts, but endoreduplication of the 

macronuclear genome is arrested. The germ line ASI2 null phenotype is rescued in a mating of a 

knockout strain with wild type cells.  

 

Introduction  

Tetrahymena thermophila is a unicellular eukaryote, with two nuclei (reviewed in Karrer, 

2000). The germ line micronucleus is diploid and transcriptionally silent in vegetatively dividing 

cells. The somatic macronucleus contains about 50 copies of each macronuclear chromosome. It 

is transcriptionally active, and responsible for the phenotype of vegetatively growing cells.  

In rich medium, Tetrahymena cells reproduce by asexual fission, during which the 

micronucleus divides mitotically and the macronucleus divides amitotically. That is, there are no 

functional centromeres in the macronucleus and macronuclear alleles are distributed to asexual 

progeny at random (reviewed in Frankel, 2000).  

Under conditions of starvation, Tetrahymena cells of different mating types pair and initiate 

sexual reproduction, which is called conjugation (Fig. 1). The micronucleus undergoes meiosis. 

Three of the meiotic products degenerate and the fourth undergoes prezygotic mitosis. Mating 
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cells exchange pronuclei and fertilization occurs when the migratory nucleus from the mating 

partner fuses with the stationary pronucleus. The zygotic nuclei undergo two postzygotic mitoses 

to produce four nuclei in each cell, two of which develop into new macronuclei (macronuclear 

anlagen) and two into new micronuclei. The parental macronucleus is degraded apoptotically. 

Finally, one of the new micronuclei degenerates and the other divides mitotically, initiating the first 

vegetative cell division (Reviewed in Karrer, 2000) 

One of the key events in the development of the macronuclear anlagen is the deletion of 

approximately 6000 specific sequences from the macronuclear genome. In most cases this 

deletion is accompanied by the ligation of flanking sequences, and thus the elements are referred 

to as internal eliminated sequences (IES). The protein Pdd1p (for programmed DNA degradation) 

is required for IES elimination (Coyne et al., 1999), which occurs via a RNAi-like mechanism 

(Mochizuki et al., 2002; Yao et al., 2003). Pdd1p appears early in conjugation and first 

accumulates in the parental macronucleus, where it is thought to be associated with small RNAs 

(scRNA) generated by a dicer-like protein (Mochizuki and Gorovsky, 2005; Malone et al., 2005). 

Subsequently, Pdd1p is concentrated in the “conjusome”, a non-membrane bound, 

electron-dense particle in the anterior cytoplasm of postzygotic pairs, (Janetopoulos et al., 1999). 

Eventually, Pdd1p is transferred to the macronuclear anlagen. Staining with anti-Pdd1p reveals a 

punctate pattern showing colocalization of Pdd1p with the IES (Madireddi et al., 1996). This is 

thought to establish a specialized chromatin structure, further characterized by methylation of 

histone H3 at the K9 residue (Liu et al., 2004), that is required for DNA elimination.  

Much of sexual reproduction is driven by transcription in the parental macronucleus. 

Several genes have been shown to be up-regulated during meiosis, before the new 

macronucleus develops (Martindale and Bruns, 1983). Four genes involved in excision of the IES, 

PDD1, PDD2, TWI1, and DCL1, are required in the parental macronucleus. Cells that are somatic 

knockouts of those genes do not complete DNA rearrangement and fail to make viable progeny 

(Coyne et al., 1999; Mochizuki and Gorovsky, 2005; Nikiforov et al., 1999). PDD1 is also 

transcribed in the macronuclear anlagen. The function of the zygotic Pdd1p, if any, is unknown. 

The present study describes a gene, ASI2 (anlagen stage induced gene 2) encoding a putative 

signal transduction receptor. As its name implies, the abundance of ASI2 mRNA peaks at 9 h of 

mating, early in macronuclear anlagen development. ASI2 is required in the macronuclear 

anlagen for sexual reproduction. Cytological analysis of matings between germ line ASI2 

knockouts shows the progeny develop new macronuclei, the parental macronuclei degenerate, 

and the cells separate to produce exconjugants. The molecular events of macronuclear anlagen 
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development leading up to and including IES excision occur normally. However, 

endoreduplication of DNA in the macronuclear anlagen arrests in the early stages and progeny 

die prior to the first vegetative fission.  

 

Materials and methods  

Cell culture  

Tetrahymena thermophila cultures were maintained in 1% or 2% PPYS (proteose peptone, 

yeast extract, and sequestrene) at 30°C (Orias et al., 1999).  

Construction of Tetrahymena ASI2 knockout lines  

Tetrahymena knockout strains were obtained by biolistic transformation with the BioRad 

Particle Delivery System (Cassidy-Hanley et al., 1997). An ASI2 knockout construct was made, 

containing the neo2 cassette (Nikiforov et al., 1999) flanked by approximately 1 kb of genomic 

DNA 5′ and 3′ to ASI2. Cells from a mating between strains CU428 (VII) and B2086 (II) were 

bombarded at the crescent micronucleus stage. Transformants, in which the ASI2 gene was 

replaced with the neo2 cassette, were selected on the basis of resistance to paromomycin. Two 

types of transformants were obtained. Somatic (macronuclear) transformants resulted from 

bombardment of unpaired cells in the mating. A single germ line (micronuclear) transformant was 

identified as a progeny of the mating on the basis of 6-methylpurine resistance and subsequently 

confirmed as a germ line ASI2 knockout. (The genotypes and phenotypes of all strains used in 

this study are provided in Table 1).  

Northern blots  

4–5 µg poly(A) mRNA isolated from Tetrahymena at different stages of conjugation, and 

from log phase and starving cells. RNA samples were treated and run on formaldehyde gels 

according to established protocols (Sambrook et al., 1989). The RNA was transferred to 

GeneScreen Plus nylon membrane (NEN) with 20× SSC for about 4 h. A lane containing 5 µg of 

RNA marker (Promega) was cut from the filter and stained with 0.04% methylene blue in 0.5 M 

sodium acetate pH 5.0 for 15 min, then de-stained for about 10 min in DEPC-treated dH2O. 

Southern blots  

Tetrahymena macronuclear DNA (2–4 µg) was digested with restriction enzymes and the 

fragments were separated by electrophoreses on 0.7% agarose gels. DNA fragments were 

transferred to GeneScreen Plus nylon membrane (NEN) with 10× SSC overnight. The DNA was 

crosslinked to the membrane in a UV Stratalinker (Strategene). The membranes were 

pre-hybridized and hybridized as described previously (Wuitschick et al., 2002).  
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Inverse PCR  

About 3–5 µg of macronuclear DNA from strain CU428 were digested with the appropriate 

restriction enzymes and circularized by ligation at a concentration of 10 ng/µl. Inverse PCR 

products were gel purified using QIAquick Gel Extraction Kit (QIAGEN) and cloned into the 

pGEM-T Easy vector (Promega). All primers used in this study are listed in Table 2.  

Real-time reverse transcriptase (RT)-PCR  

Real-time reverse transcriptase reactions were performed in triplicate. For the RT reaction, 

1 µg of DNase (RNase-free, Roche) treated total RNA was mixed with 10 pM first strand primers 

p5 for ASI2 and p6 for the 17S rRNA gene (Table 2). 1 µl 25 mM dNTPs and DEPC/dH2O were 

added to bring the volume to 31 µl. The samples were incubated at 65° for 5 min, and then chilled 

on ice. 8 µl 5× RT buffer (5× RT buffer: 250 mM Tris–HCl (pH 8.3), 375 mM KCl, 15 mM MgCl2, 50 

mM DTT) was added and the samples were incubated at 42° for 2 min. 1 µl M-MLV reverse 

transcriptase (Promega) was added and the samples were incubated at 42° for 1.5 h. RT enzyme 

was heat inactivated at 80° for 15 min. A minus RT reaction mix was used as the negative control. 

The PCR reaction was carried out in an iCycler (BioRad) real-time PCR machine with primers p9 

and p10 for ASI22 mRNA and primers p7 and p8 for 17S rRNA. The relative amount of ASI2 

message versus 17S rRNA was determined according to the 2-∆∆Ct method (Livak and Schmittgen, 

2001).  

Single cell PCR  

Single cell PCR reactions were done as described previously (Coyne et al., 1999). Single 

pairs of cells were isolated into drops of 1% PPYS and the cells separated after about 24 h. One 

exconjugant from each single pair was placed in 1 µl of lysis buffer (0.5% NP-40, 0.5% Tween-20, 

20 mM Tris–HCl (pH 8.0), 0.5 mg/ml proteinase K, 50 mM KCl, 1 mM EDTA (pH 8.0)). The mating 

partner was maintained in 1% PPYS to determine whether the pair had completed mating. In the 

case of matings between ASI2 germ line knockouts, the partner cell died. Exconjugants of 

matings between ASI2 wild type cells that were heterokaryons for mutations conferring drug 

resistance survived and were identified as sexual progeny by inheritance of the resistant 

phenotype. A first round PCR reaction of 40 cycles was performed in a total volume of 25 µl. 5 µl 

of the first PCR reaction mixture was used as template in a second round PCR of 40 cycles with 

nested primers.  

Cytology  

A 100 µl aliquot of cells at 2.5 × 105 cell/ml was dried on a slide and fixed with 95% ethanol 

at room temperature for 30 s. The fixed cells were incubated with 100 ng/ml DNA-specific dye 
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4′,6-diamidine-2-phenylindole (DAPI, Roche) in 70% ethanol/300 mM NaCl for 1 min. Excess dye 

was removed by dipping the slide into 70% ethanol for 15 s, and 35% ethanol for 15 s (Stuart and 

Cole, 2000). The slides were air dried and staining was observed with a Nikon E600 upright 

fluorescence microscope (EX 330-380, Barrier filter 435–485).  

Flow cytometry  

Flow cytometry was done as described previously (Nikiforov et al., 1999). In particular, 

Tetrahymena cells were lysed in 0.25 M sucrose, 10 mM MgCl2, and 0.5% NP-40 at a 

concentration of 1.5 × 106
 

cells/ml. The DNA-specific dye propidium iodide was then added to 50 

µg/ml and nuclei were stained for about 1 h before flow cytometry analysis using a Becton 

Dickinson FACSCalibur flow cytometer at the Medical College of Wisconsin.  

Feulgen staining and cytophotometry  

Cells were fixed and Feulgen stained as described previously (Marsh et al., 2001). The 

Schiff's reagent (MP biomedicals, LLC) was prepared according to the supplier's instructions. 

Cells from matings between knockout lines and wild type lines were dropped on the same slide to 

equalize hydrolysis and staining. Staining was quantitated with a Zeiss Axiskop microscope and a 

Zeiss MSP-21 photometer as described previously (Marsh et al., 2001). Ten nuclei were analyzed 

for each stage at each time point.  

Immunochemistry  

Mating cells were fixed for immunochemistry as described previously (Liu et al., 2004). 

Primary antibody for Pdd1p staining was a generous gift from D. Allis (Rockefeller University). The 

secondary antibody was Cy3conjugated goat-anti-rabbit IgG obtained from Jackson 

ImmunoResearch Laboratories.  

 

Results  

ASI2 is up-regulated during sexual reproduction in Tetrahymena thermophila  

The Tetrahymena gene ASI1 (anlagen stage induced 1), was isolated from a cDNA library 

of genes that are up-regulated during development of the macronuclear anlagen (Udani and 

Karrer, 2002). Downstream of ASI1 was a region that was relatively high in GC content, a 

characteristic of exons in Tetrahymena (Wuitschick and Karrer, 1999). To determine whether this 

region was transcribed, poly(A)+
 

mRNA was isolated from starved cells, vegetatively growing cells, 

and from a population of mating cells at 6 h, 9 h, and 12 h post-mixing. Northern blot analysis 

revealed a message of about 2.7 kb that was up-regulated in mating cells, beginning at meiosis 

and with maximal abundance of message early in macronuclear anlagen development (Fig. 2B). 
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The gene encoding this RNA was designated ASI2, for anlagen stage induced 2.  

Because the cloned DNA contained only about 350 bp of the ASI2 open reading frame, 

two rounds of inverse PCR were done to obtain the full ASI2 gene (Materials and Methods). 

Inverse PCR products were cloned and sequenced (GenBank accession no. AF435076). Open 

reading frame analysis showed a single ORF of about 2.3 kb (Fig. 2A), which was in good 

agreement with the size of the mRNA estimated from the northern blot.  

In order to determine the structure of the mature ASI2 mRNA, RT-PCRs were done and 

the cDNAs of ASI2 were cloned and sequenced. Comparison of the cDNA sequence with the 

genomic DNA sequence revealed one intron of 147 bp. The intron has a low GC content (12%), 

characteristic of non-coding DNA in Tetrahymena (Wuitschick and Karrer, 1999) and the 

canonical 5′-GU and AG-3′ splice sites. In order to estimate the length of the 5′ and 3′ UTRs, PCR 

reactions were done using a cDNA library of mRNAs up-regulated during macronuclear anlagen 

development as the template. For the 3′ end, PCR analysis using oligo-dT and a primer in the 

second exon showed a 3′UTR of 441–444 bp with a putative polyA addition signal 30–33 bp 

upstream of the polyA tail. For the 5′ end, one primer was complementary to sequences in the 

cloning vector and the second primer was from the first exon of ASI2. The sequence of the PCR 

cloned product suggested the minimal length of the 5′ UTR for ASI2 is 129 bp.  

Although ASI2 mRNA was not seen in RNA from starved cells in the blot shown in Fig. 2B, 

it was clearly detected in later experiments (data not shown). Due to the low abundance of ASI2 

mRNA, it was necessary to isolate poly(A)+ RNA for the northern blots. However, Tetrahymena 

rRNA is very AT-rich and a significant (and variable) amount of the rRNA is retained in the 

poly(A)+ mRNA isolations. In order to avoid this problem, real-time RT-PCR was performed using 

total RNA as template. The relative abundance of ASI2 mRNA at different stages of development 

was determined, setting the signal in vegetatively growing cells at 1 (Fig. 2C). The result 

confirmed the presence of ASI2 message in the starved cells, at a level about 3.3-fold higher than 

that in vegetatively growing cells. The abundance of ASI2 message decreased early in the mating, 

but increased again during meiosis. In agreement with the Northern analysis, the major peak in 

mRNA abundance was at 9 h post-mixing, when there was about 14 times as much ASI2 mRNA 

as in vegetatively growing cells. Thus, ASI2 mRNA abundance peaks during macronuclear 

anlagen development, suggesting that Asi2p may play a role in that process.  

Sequence analysis of the deduced Asi2p suggests that ASI2 may encode a signal 

transduction receptor  

The deduced Asi2p is a 719 amino acid protein with a molecular weight of 84 kDa. 
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BLASTp analysis (Altschul et al., 1997) of the NCBI database indicated that Asi2p is similar to a 

group of hypothetical Cache domain containing proteins of Tetrahymena which includes Asi1p 

(Udani and Karrer, 2002). Asi1p and Asi2p have 22% identity and 40% similarity over a region of 

684 amino acids (Fig. 3A). A BLASTp search of the NCBI data base detects a Cache domain in 

Asi1p and suggests that Asi1p has some similarity to bacterial methyl-accepting chemotaxis 

proteins (MCPs), at an expect value of 6e-6. There were no highly significant similarities between 

ASI2 and other known proteins.  

Sequence analysis of the deduced Asi2p suggests it may be a signal transduction 

receptor. A domain search of the predicted gene product using the SMART program (Letunic et 

al., 2004) suggested there are two transmembrane domains and two coiled coil domains in Asi2p 

(Fig. 3A). Pfam analysis (Bateman et al., 2004) detected a partial Cache domain between the 

transmembrane domains. Cache domains with a consensus sequence of ~80 amino acids are 

found in bacterial MCPS, a class of prokaryotic chemotaxis receptors. Although it is not clear what 

the function(s) of these domains are, it was proposed that they bind small molecules in a pocket 

formed by the predicted β sheet and function as the sensory domains in the chemotaxis receptors 

(Anantharaman and Aravind, 2000). Alignment of Asi1p and Asi2p with the first 41 amino acids of 

the consensus Cache domain and with four MCPs is shown in Fig. 3B. There was an additional 

block of 18 conserved amino acids that Asi1p and Asi2p shared with the MCPs that was not 

included as part of the Cache domain in the bioinformatics analysis. This region with similarity to 

Cache domains is proposed to be the sensory domain of Asi2p.  

The deduced Asi2p does not contain a MCP signaling domain, nor were any putative 

protein kinase domains identified in Asi2p. However, Asi2p does have a motif 

DQEDEDDYDENGSNQ (amino acids 600–614) that is among the 0.074% best matches to Nck 

SH2 (Src homology group 2) binding sites in Scansite (Obenauer et al., 2003); and Y607 of that 

motif is a predicted target for phosphorylation, with a score of 0.994 (Blom et al., 1999). This 

suggests that phosphorylated Asi2p may interact with the SH2 domain of a noncatalytic SH2/SH3 

adaptor protein of the Nck1 class. These adaptor proteins typically link cell surface receptors, via 

their SH2 domains, with downstream effectors, bound to the SH3 domains (Wei et al., 2001). 

Taken together, these structural features suggest that Asi2p may function as a signal transducer.  

ASI2 is not essential for vegetative growth  

The function of Asi2p was analyzed in gene knockout strains. An ASI2 knockout construct 

was made, containing the neo2 cassette (Nikiforov et al., 1999) flanked by approximately 1 kb of 

genomic DNA 5′ and 3′ to ASI2 (Fig. 4A). The construct was introduced into starved cells by 
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biolistic bombardment. Several independent somatic knockout cell lines were obtained, three of 

which were used for further study. Line MU111 was obtained by transformation of the 

heterokaryon line CU428, transformant lines MU112 and MU113 were obtained by transformation 

of the wild type strain B2086. The genotypes of cell lines used in this study are listed in Table 1. 

Insertion of the neo2 cassette at the ASI2 locus was confirmed by PCR analysis of transformant 

lines using one primer in the 5′ flanking region of ASI2 and one primer within the neo2 cassette 

(p11 and p12 in 4A). The expected 1.6 kb PCR products were obtained from somatic knockout 

cell lines (data not shown).  

The macronucleus of Tetrahymena contains about 50 copies of the genome and divides 

amitotically, without disassembly of the nuclear membrane. There are no functional centromeres 

in the macronucleus and macronuclear alleles are distributed to asexual progeny at random 

(Reviewed in Frankel, 2000). Due to the inability to partition alleles equally, individual cells assort 

to purity for one allele or the other over 100–200 vegetative fissions, a phenomenon known as 

phenotypic assortment (Orias and Flacks, 1975). Somatic transformation replaces one or a few 

wild type alleles with the neo2 cassette via homologous recombination. The neo2 cassette 

confers resistance to the drug paromomycin. Thus, in the presence the paromomycin, cells that 

have a higher proportion of an allele that confers drug resistance are favored in growth. 

Nonessential genes can be identified as those that assort to purity of the knockout allele.  

Somatic knockout ASI2 transformants were grown in increasing concentrations of 

paromomycin until all the wild type ASI2 alleles were replaced by the knockout allele. Complete 

replacement of endogenous ASI2 genes was confirmed by Southern blot analysis of 

macronuclear DNA isolated from the wild type CU428 and ASI2 knockout strains MU111, MU112 

and MU113 (Fig. 4B). Macronuclear DNA from somatic knockout strains contained only the 

ASI2: :neo2 allele (1.3 kb) and undetectable amount of the wild type allele (3.1 kb), suggesting 

that the wild type ASI2 allele in macronuclear DNA was completely replaced by the neo2 cassette 

in the somatic knockout strains.  

To ensure that all wild type alleles had been lost from the somatic knockouts strains, 

cultures which had been maintained in the absence of drug for 10 months were examined to 

determine whether any cells had assorted back to paromomycin sensitivity. Forty single cell 

clones were established from each strain (MU111, MU112 and MU113). The clones were plated 

into 500 µg/ml paromomycin. This concentration of drug killed two control paromomycin sensitive 

strains within 1 day, whereas all of the somatic knockout cell clones continued to divide rapidly.  

In order to determine whether ASI2 somatic knockout cells were defective in vegetative 
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growth, the fission rate of ASI2 somatic knockout cells was measured and compared to that of the 

ASI2 wild type cell line CU428. Cultures were inoculated with log phase cells at a density of 104 

cells per milliliter and incubated at 30°C for 9 h. The cell density was measured every 2.5 h (data 

not shown). The growth curves indicated that the somatic ASI2 knockouts and the wild type cells 

had similar fission times of 3.5 and 3.6 h respectively. Thus ASI2 is not essential for vegetative 

growth, which is consistent with the low abundance of the ASI2 message in vegetatively growing 

cells (Figs. 2B and C).  

ASI2 germ line knockout cells do not produce viable progeny  

The abundance of the ASI2 transcript in wild type cells is maximal in mating cells at about 

9 h after mixing of the two mating types (Fig. 2). At this time the cells are in the early stages of 

macronuclear anlagen development, and the new macronucleus is becoming transcriptionally 

active (Bruns and Brussard, 1974; Mayo and Orias, 1986; Stargell et al., 1990). Germ line 

(micronuclear) ASI2 knockout strains were constructed to determine whether transcription of 

ASI2 in the developing macronucleus is required to complete conjugation.  

A single heterozygous ASI2 germ line knockout line MU114 was obtained by replacement 

of the endogenous ASI2 gene with a neo construct via homologous recombination. Homozygous 

germ line Tetrahymena strains are constructed by a mating known as Round I genomic exclusion 

(Allen, 1967; Doerder and Shabatura, 1980). This is a specialized mating between a cell line that 

is heterozygous for the allele of interest and a “star” strain. (Fig. 5). Star strains have a defective 

micronucleus which degenerates in the first round of genomic exclusion mating. The 

heterozygous partner undergoes meiosis and three of the haploid nuclei degenerate (Fig. 1). 

Since the selection of the surviving micronucleus is random, it can have either of the two alleles; in 

this case, the wild type ASI2 allele or the knockout allele. It divides mitotically to produce two 

gametic pronuclei, one of which is transferred to the star cell. Since the star cell has no 

micronucleus to transfer in return, both cells are haploid. At this point, the cells separate, retaining 

the parental macronuclei and their micronuclei endoreduplicate. Thus the progeny of Round I 

genomic exclusion pair are identical whole genome homozygotes in their micronuclei, and they 

are sexually mature since they have retained their parental macronuclei. Cell lines designated 

synclones can be established from isolated pairs of cells. After expanding the synclone, the cells 

can be starved a second time to induce the Round II genomic exclusion. In wild type cells, this 

mating goes to completion and produces progeny that are whole genome homozygotes.  

In order to produce strains homozygous for the germ line ASI2 knockout allele, the 

heterozygous germ line knockout with a somatic knockout macronucleus MU114 was crossed to 
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strain B*7 and synclones were established from Round I pairs (Fig. 5). Clonal cell lines derived 

from four pairs were designated Clones D–G.  

As a preliminary test for the ability of ASI2 germ line knockouts to produce progeny, the 

synclones were tested in a Round II cross for the ability to produce sexual progeny. Single pairs 

were isolated from each of the Round II crosses. For two synclones, D and E, the viability of 

isolated pairs was high (82% and 95% respectively). In addition, all of the clones established from 

those pairs were paromomycin sensitive (Table 3), indicating that the progeny of the Round II 

cross had degraded the parental macronuclei and produced new macronuclei, as expected for a 

Round II genomic exclusion mating (Fig. 5). Since all of the progeny were paromomycin sensitive, 

the micronuclei in the Round I clones were deduced to be homozygous for the wild type ASI2 

allele.  

In the case of Round I synclones F and G, the viability of pairs isolated from the Round II 

mating was very low (3% and 0% respectively) (Table 3). This was consistent with the hypothesis 

that Round I clones F and G were homozygous for the ASI2 knockout allele, and that ASI2 germ 

line knockouts are zygotic lethal. The single surviving Round II clone, which was paromomycin 

resistant, could be explained in two ways. One possibility was that the ASI2 zygotic lethal 

phenotype was not completely penetrant. More likely, the pair that produced the viable clone was 

paired only a short time before the pairs were isolated. If refed within an hour of pairing, early pairs 

of Tetrahymena abort mating, retain the parental macronucleus, and resume vegetative growth.  

The hypothesis that the null allele of ASI2 is zygotic lethal predicted that Round I clones D 

and E were homozygous for the wild type ASI2 allele in the mic and that clones F and G were 

homozygous for the asi2::neo2 knockout allele. The genotype of the Round I clones deduced 

from the experiment shown in Table 3 was confirmed genetically. Individual cells were isolated 

from the Round I clones and descendents of the non-B* cell were identified on the basis of 

paromomycin resistance. Strain MU120 was derived from clone D, which produced viable Round 

II progeny in the genomic exclusion mating (Fig. 5). The micronuclear genotype of MU120 was 

determined by crossing it to strain CU427 (Fig. 6A). Mating pairs were isolated into individual 

drops of medium. True progeny of the test cross all inherit the dominant chx1-1 allele from CU427 

and were identified on the basis of cycloheximide resistance. All of the cycloheximide resistant 

progeny from the mating of MU120 with CU427 were paromomycin sensitive. Since the neo allele 

in the knockout cassette is dominant, this confirmed that MU120 was homozygous for the wild 

type ASI2 allele in the micronucleus (Table 4). Strains MU119.1 and MU119.2 were established 

as single cell clones of Round I synclone G (Fig. 5), which did not produce viable progeny in 
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Round II genomic exclusion. All of the cycloheximide resistant progeny from the mating between 

these strains and CU427 were also paromomycin resistant. Thus the MU119 lines were 

homozygous for the ASI2 knockout allele in the micronucleus (Fig. 6B, Table 4).  

In the test crosses between the MU119 clones and strain CU427, the micronucleus of one 

cell (CU427) is homozygous for the wild type ASI2 allele and the mating partner (MU119) is 

homozygous for the asi2::neo2 knockout allele (Fig. 6B). Since the viability of the clones from 

these crosses was very similar to the viability of pairs from the cross between cells with wild type 

alleles in both micronuclei (Table 4), the germ line wild type allele shows cytoplasmic dominance 

to the null allele of ASI2.  

In the Round II genomic exclusion cross with strain MU119 (Fig. 5), both of the mating 

partners were germ line ASI2 knockouts but one of them (MU119) was a somatic knockout as well. 

In order to determine whether lack of ASI2 in the germ line was sufficient to account for the 

lethality without the contribution of the somatic knockout, strain MU121.3 was constructed that 

was a homozygous germ line ASI2 knockout with the wild type ASI2 allele in the macronucleus 

(Fig. 7). Strain MU119 was crossed to CU427. This resulted in a strain that was heterozygous for 

the wild type and knockout ASI2 alleles in the micronucleus with mixed alleles in the 

macronucleus. The cells were allowed to mature and a progeny clone was identified with a mating 

type different from that of the parents. This clone was crossed to B*7 in a Round I genomic 

exclusion mating to bring the micronucleus to homozygosity. Pairs of mating cells were isolated 

from the Round I cross. The clones were expanded and progeny that were homozygous for the 

asi2::neo allele were tentatively identified as those that were unable to produce Round II progeny. 

A single cell clone, MU121, from the non-B* side of the Round I cross was identified on the basis 

of the dominant paromomycin resistance phenotype.  

The progeny of the Round I genomic exclusion was assorted to purity and clones were 

identified with either the wild type or knockout allele of ASI2 in the macronucleus as determined by 

sensitivity to paromomycin. These strains, designated MU121.3 and MU121.1, respectively, were 

shown to be homozygous in the micronucleus for the asi2::neo allele in test crosses to CU427. 

That is, all of the progeny of the test crosses, identified on the basis of cycloheximide resistance, 

were also resistant to paromomycin.  

A genomic exclusion cross was done to determine whether MU121.3 could produce 

Round II progeny. The clonal lines MU119, MU120 (Fig. 5) and strain CU427, which is wild type 

for ASI2, were crossed to strain B*7 as controls. MU119 produced no viable Round II progeny, as 

observed previously. Similarly, no viable Round II progeny were produced in a cross between 
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MU121.3 and B*7 (Table 5). Control Round II genomic exclusion matings resulted in high survival 

of the isolated pairs. The percentage of true progeny from these matings was determined on the 

basis of cycloheximide resistance for CU427 × B*7 and paromomycin sensitivity for MU120 × B*7. 

These experiments suggested that transcription of ASI2 in the developing macronuclear anlagen 

is required to complete sexual reproduction. A full complement of wild type ASI2 alleles in the 

parental macronuclei is not sufficient to rescue the zygotic lethal knockout phenotype.  

In order to ensure that the B* macronucleus did not contribute to the zygotic lethal 

phenotype, strain MU121.3 was crossed to MU119. In this cross, somatic ASI2 was supplied by 

MU121.3, but both cells in the pair were null for micronuclear ASI2. Of the 89 pairs isolated from 

this cross, none produced viable clones, as compared to 53% of the pairs from the control cross 

between CU427 and CU428 (Table 5). Thus the zygotic lethal phenotype observed in the 

genomic exclusion matings could not be attributed to the B* macronucleus.  

Matings between ASI2 germ line knockouts produce exconjugants with macronuclear 

anlagen  

Cytological analysis was done to determine at what stage of conjugation zygotic ASI2 was 

required. Under conditions of continuous starvation, wild type cells proceed through all of the 

cytological stages of mating and arrest as exconjugants with two macronuclear anlagen and a 

single micronucleus. This was confirmed in a control mating between strains CU428 and B2086 

(Fig. 8B). The experimental cross was a genomic exclusion mating between MU119 and B*7. A 

Round I pair was isolated. The clone was expanded and the cells were starved to induce Round II 

mating. The kinetics of the experimental cross were somewhat delayed relative to the wild type 

control because the wild type cells were starved before mixing and the cells derived from the 

Round I clone required a period of starvation to initiate Round II mating. However, the Round II 

mating produced a distribution of cells at very similar stages to that observed in wild type cells by 

24 h after starving, including exconjugants with two anlagen and a single micronucleus (Fig. 8A). 

Thus, the cytological events of the Round II mating were normal, including development of 

macronuclear anlagen, resorption of the parental macronucleus and the degradation of one of the 

micronuclei.  

Single pairs of ASI2 germ line knockout Round II mating pairs were isolated into drops of 

1% PPYS medium. At about 16 h after refeeding, the cells in the pairs had separated, but no more 

than two cells were present in the drops, whereas cells from Round II matings with wild type ASI2 

micronuclei had completed the first cell division. Exconjugants from Round II matings of ASI2 

germ line knockouts did not undergo cytokinesis; they rounded up and died within 48 h.  
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Macronuclear anlagen development in matings between ASI2 germ line knockouts  

Cytological analysis showed development of macronuclear anlagen in matings between 

germ line ASI2 knockouts, but did not reveal which, if any, of the molecular events of 

macronuclear anlagen development were completed. One well-studied hallmark of macronuclear 

anlagen development is the elimination of IES and the events leading up to it, including the 

synthesis of Pdd1p. A Round II genomic exclusion mating between MU121.3 and B*7 was done 

and aliquots of cells were removed every 3 h. The cells were stained with DAPI to visualize the 

nuclei and with antibody to Pdd1p. The synthesis and accumulation of Pdd1p in the ASI2 germ 

line knockout mating was very similar to that previously described for wild type cells (Coyne et al., 

1999)(Fig. 9). The macro- and micronuclei of unpaired cells and premeiotic pairs showed no 

staining for Pdd1p. (An unpaired cell is in the same field as the pair shown at early anlagen stage 

in Fig. 9. The macronucleus is stained with DAPI, but not anti-Pdd1p.) There was faint, punctate 

staining with anti-Pdd1p in the parental macronucleus of cells in meiosis I. The staining of the 

parental macronucleus increased in intensity as the cells progressed through prezygotic mitosis. 

During the postzygotic mitosis the conjusome stained intensely. At the stage of early anlagen 

development, the parental macronucleus no longer stained with αPdd1p, but there was bright 

staining of the macronuclear anlagen. The Pdd1p staining in the anlagen took on a punctate 

appearance by the time the parental macronucleus had degenerated. In some cells, the staining 

was particularly intense around the periphery of the macronuclear anlagen.  

As a second test for macronuclear anlagen development, elimination of an IES, the M 

element, was assayed directly. Single mating pairs of Round II genomic exclusion mating 

between MU119 and the B*7 were isolated into 1% PPYS medium. The exconjugants were 

allowed to separate. One of the cells was placed into lysis medium for single cell PCR and the 

mating partner was maintained in growth medium to determine whether mating was complete. 

Exconjugants from a mating between wild type cells were isolated as a control.  

Elimination of the M element produces two different products in wild type cells. The 

deletions have a common right boundary, but there are two alternative left boundaries, resulting in 

elimination of 600 bp or 900 bp of DNA respectively (Fig. 10A) (Austerberry et al., 1984). Single 

cell PCRs were done on exconjugants from a mating between strains CU427 and CU428 as a 

control. Both parental strains had the 560 bp band characteristic of the 600 bp deletion in the 

macronucleus. The appearance of the 250 bp band in DNA from the exconjugants showed that 

the 900 bp deletion in the developing macronuclei was detectable by this procedure (Fig. 10B). In 

a Round II genomic exclusion mating between ASI2 germ line knockout strain MU119 and B*7, 
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the PCR reaction produced only the 250 bp product, showing that the parental cells contained 

only the allele with the 900 bp deletion. However, the 560-bp band characteristic of the 600-bp 

deletion was detected in DNA from the exconjugants (Fig. 10B). This suggested that the M 

element was deleted from the developing macronuclei of ASI2 germ line knockout exconjugants. 

Replication of DNA in the macronuclear anlagen of ASI2 germ line knockout progeny 

Endoreplication of the DNA late in macronuclear anlagen development increases the DNA 

content of the macronucleus to 128C when exconjugants are fed (Marsh et al., 2001). The 

macronuclear DNA content diminishes over the next dozen divisions, producing the 45–50C 

characteristic of postdivision, vegetatively growing cells (Woodard et al., 1972). The intensity of 

the signals in single cell PCR experiments on exconjugants from Round II genomic exclusion 

matings of ASI2 knockouts was consistently weaker than the signals from exconjugants of control 

matings between wild type cells (Fig. 10). This suggested that there was less DNA in the anlagen 

of the mutant cells, possibly due to a failure of the ASI2 knockout cells to replicate the DNA in the 

macronuclear anlagen.  

To determine whether DNA replication is affected in the anlagen of ASI2 germ line 

knockout exconjugants, the relative DNA content of nuclei in mutant and wild-type cells were 

compared using flow cytometry. Cells were collected at 24 h post-mixing, by which time most of 

the mating cells had separated to produce exconjugants. The cells were lysed in buffer containing 

the DNA-specific dye propidium iodide, and subjected to FACS analyses. Micronuclei were 

isolated from strain CU428 as standard for DNA micronuclear ploidy (data not shown). Because 

replication of micronuclear DNA coincides with micronuclear anaphase preceding cytokinesis, 

micronuclei from vegetatively growing cells are typically at G2 of the cell cycle with 4C DNA 

content (Allis and Dennison, 1982; Charret, 1969, Doerder, 1980 #434). Since Tetrahymena are 

starved to induce mating, nuclei from starved, nonmating, cells of strain CU428 were examined as 

a second control (Fig. 11A). The two peaks in the analysis of starved cells correspond to the 4C 

micronucleus and the 50C postdivision macronucleus.  

In two matings between ASI2 wild-type cells, two peaks with intermediate DNA contents 

were observed. One of the experiments is shown in Fig. 11B. These data suggested that under 

conditions of continuous starvation, the macronuclear anlagen from wild type cells undergo at 

least two rounds of DNA replication. In these experiments the pairing was very efficient (∼ 95%). 

By this late stage of conjugation the parental macronuclei in wild type cells were resorbed. Thus, 

the peak corresponding to the DNA content expected for mature macronuclei was very small.  

In four independent experiments, the peaks characteristic of early rounds of DNA 
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replication were not detected in matings between ASI2 germ line knockout cells at 24 h after 

mixing. Two of the experiments are shown in Fig. 11C. In each case, there was a peak 

corresponding to the 4C micronuclei and the ∼ 50C macronuclei. The micronuclear peaks were 

somewhat broader than those in the control experiments, suggesting that this peak may include 

macronuclear anlagen that have initiated endoreduplication. Large peaks with DNA content 

expected for mature macronuclei were also observed. The efficiency of pairing was only ∼ 80% in 

these experiments. This was probably due to somewhat unequal growth rates of the progeny from 

the two cells from the Round I pair during expansion of the Round I clones. Thus, a relatively large 

peak representing the macronuclei from unpaired cells was expected. The notable absence of 

peaks representing the early rounds of DNA replication in the FACS analysis was consistent with 

the hypothesis that the progeny of ASI2 germ line knockouts failed to replicate the DNA in the 

macronuclear anlagen.  

In order to avoid the ambiguities created by the background of nuclei from unpaired cells in 

the FACS analysis, the DNA content of individual nuclei was determined. A Round II genomic 

exclusion mating was done between strains MU121.3 and B*7. The exconjugants were fixed and 

stained quantitatively with the Feulgen reaction and the relative DNA contents of micronuclei and 

macronuclear anlagen were analyzed cytophotometrically. The staining intensity of micronuclei 

from exconjugants of matings between ASI2 wild type cells was measured as a control and their 

DNA content was set at 4C.  

The DNA content of developing macronuclear anlagen under conditions of continuous 

starvation was assessed at four cytological stages (Fig. 12). During stage 1, the two nuclei located 

in the anterior of the cell after the second postzygotic division begin to swell and differentiate into 

macronuclear anlagen. At stage 2, the macronuclear anlagen and the new micronuclei take up a 

more central location in the cell. The parental macronucleus condenses and moves toward the 

posterior of the cell. Anlagen in pairs of cells in which the parental macronucleus was degraded 

were designated as stage 3, and macronuclear anlagen in exconjugants were stage 4.  

In wild type cells under continuous starvation, stage 1 macronuclear anlagen were not 

significantly different in DNA content from the postzygotic nuclei, suggesting that the increase in 

size of the nuclei precedes detectable DNA replication (Fig. 12). By stage 2, when the anlagen 

have moved toward the center of the cell, endoreduplication of the macronuclear genome has 

begun such that the average DNA content of stage 2 nuclei from cells at 10–14 h of mating was 

about 6.5C. A similar DNA content of 6.6C was measured in stage 3 nuclei at 14 h of mating, but 

by 18 h the stage 3 nuclei were at 9.4C. This was in good agreement with a previous FACS 
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analysis of purified macronuclear anlagen, showing that replication from 4C to 8C occurs between 

12 h and 15 h after mixing of mating cells (Madireddi et al., 1994).  

The mean DNA content of stage 4 nuclei in wild type cells was 10.6C at 18 h, and it 

increased to a maximum of 14.3C by 24 h. Since ∼ 15% of the germ line DNA sequences are 

eliminated during the first round of endoreduplication, the expected C value after 2 rounds of DNA 

replication is 13.6C (16C minus 15%). This is in good agreement with our FACS analysis, and 

supports the conclusion that wild type cells under conditions of continuous starvation complete 

about 2 rounds of DNA replication in the anlagen. By 30 h of mating, the mean DNA content 

decreased to 9.3C and by 36 h to 7.2C (data not shown). This suggested that by 40 h of 

continuous starvation (starving and mating), the cells begin to cannibalize the macronuclear 

anlagen.  

The postzygotic nuclei in matings between ASI2 knockouts had a DNA content very 

similar to the micronuclei of wild type cells. The DNA content of micronuclei in the ASI2 knockout 

exconjugants was 3.99C after the first postzygotic division and 4.75C after the second postzygotic 

division, indicating that DNA replication was normal in the two postzygotic mitoses.  

The DNA content of stage 1 and stage 2 macronuclear anlagen in progeny of matings 

between ASI2 germ line knockouts was also similar to that of wild type cells (Fig. 12). However, no 

further increase in the C value was detected in stage 3 or stage 4 nuclei even as late as 24 h of 

mating. This suggested that replication of the genome may be initiated in the macronuclear 

anlagen, which is consistent with the broadening of the micronuclear peak in the FACS analysis. 

However, endoreduplication ceased in ASI2 germ line knockout progeny during the first round.  

 

Discussion  

ASI1 and ASI2 may have evolved from a gene duplication  

ASI1and ASI2 have similarities in amino acid sequence and are located within 1.5 kb of 

each other on the right arm of chromosome 3 (E. Hamilton and E. Orias, personal communication). 

One possibility is that they evolved from a gene duplication. Although these two genes have 

similar developmental expression profiles, they are not redundant in function, because the ASI2 

phenotype is observed in a wild-type ASI1 background.  

A small family of potential signal transduction receptors in the Tetrahymena genome  

The linear arrangement of predicted transmembrane, Cache, and coiled coil domains in 

Asi2p (Fig. 3A) is similar to the order of those domains in methyl-accepting chemotaxis receptors 

in bacteria (Stock et al., 1992), suggesting the Asi2p is a signal transduction receptor. Although 
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we have no experimental data regarding the subcellular localization of Asi2p, we propose that it is 

a plasma membrane protein. In analogy to the MCPs, the Cache domain may be the extracellular 

sensory domain. The coiled coils and the SH2 domain of Asi2p are proposed to be cytoplasmic. 

The presence of the coiled coil domains suggests Asi2p is involved in protein–protein interactions. 

In the bacterial MCPs, these domains are thought to facilitate the formation of homodimers (Stock 

et al., 1992).  

A tBLASTn search of the annotated Tetrahymena genome data base found seven genes 

(including ASI1 and ASI2) that were identified as encoding Cache domain containing proteins. 

The deduced proteins encoded by these genes were all moderately large, ranging in size from 

666 to 984 amino acids, and they all contain putative transmembrane domains. In five cases, the 

putative Cache domain lies between two putative transmembrane domains. We propose that at 

least some of these genes may encode a class of signal transduction receptors in Tetrahymena. 

A search of the Paramecium genome data base (http://paramecium.cgm.cnrs-gif.fr/ptblast) 

suggested there may be at least one protein with a Cache domain in Paramecia.  

ASI2 and development in Tetrahymena thermophila  

Homozygous ASI2 germ line knockout cells do not produce viable progeny. Exconjugants 

were observed in cytological analysis of matings between germ line ASI2 knockouts (Fig. 8), but 

the progeny cells rounded up and died without completing the first cell division. This showed that 

expression of zygotic ASI2, most likely in the developing macronuclear anlagen, is required to 

make the transition from the program of sexual reproduction to vegetative growth.  

ASI2 is the second gene shown to be required in the macronuclear anlagen in order for 

Tetrahymena to produce sexual progeny. RAD51 germ line knockouts have a phenotype similar 

to the ASI2 knockouts in that they cannot make the transition from conjugal development to 

vegetative cell division (Marsh et al., 2001). However, there are important differences between 

the two mutants. First, exconjugants of the ASI2 germ line knockout cells usually die within 48 h, 

whereas the progeny of RAD51 nulls survive as exconjugants for up to 2 weeks. More importantly, 

DNA replication in RAD51 exconjugants brings the cells to normal ploidy levels whereas 

endoreduplication does not occur in the anlagen of the progeny of ASI2 germ line knockouts. This 

implies that the requirement for ASI2 may be upstream of the cell cycle block in RAD51 

exconjugants.  

Another important difference between RAD51 and ASI2 is that somatic RAD51 is required 

for maintenance of the micronucleus. In a RAD51 somatic knockout strain, the micronuclear 

chromosomes undergo rapid deterioration (Marsh et al., 2000). Round I clones D and E, derived 
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from a genomic exclusion mating between MU114 and B*7 (Fig. 5) showed high viability and 

fertility in the Round II crosses (Table 3). Since the micronucleus of the B*7 strain makes no 

contribution to the progeny of these crosses, the development of the macronuclei of the progeny 

is entirely dependent on the micronucleus that was maintained in the presence of the somatic 

ASI2 knockout macronucleus. Thus, macronuclear ASI2 is not required for maintenance of the 

micronucleus.  

The nature of the putative signal transmitted by Asi2p and its role in macronuclear anlagen 

development is unknown. It is important to note that Asi2p is not required for DNA replication in 

vegetatively growing cells, because the somatic knockouts are viable and divide at a rate 

comparable to that of wild type cells. Thus, ASI2 is not required for DNA replication per se. It may 

be that Asi2p is required to make the transition from the program of sexual reproduction to 

vegetative growth.  

It has long been known that DNA rearrangements occur at the early stages of 

endoreduplication, when the developing macronuclear anlagen are between 4C and 8C (Brunk 

and Conover, 1985; Yokoyama and Yao, 1982). Deletion of IES occurs when DNA replication is 

inhibited with aphidicolin (Nikiforov et al., 1999), suggesting that IES excision is independent of 

DNA replication. The converse question is whether IES excision is required for Tetrahymena to 

complete endoreduplication of the macronuclear DNA. This was suggested by the observation 

that in matings between somatic knockouts of PDD1 or PDD2, two genes required for efficient IES 

elimination, the DNA fails to replicate in the macronuclear anlagen. The experiment described 

here show that IES excision is not sufficient for triggering endoreduplication of anlagen DNA and 

suggests that the cells monitor additional components of the developmental program before 

making the transition to vegetative growth.  
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Appendix 
Table 1  
Genotypes and phenotypes of T. thermophila strains  

Strain Miconuclear genotype Macronuclear 
genotype 

Phenotype 

CU427 chx1-1/chx1-1 CHX1 cy-s, VI 
CU428 mpr1-1/mpr1-1 MPR1 mp-s, VII 
B2086 Wild type Wild type cy-s, mp-s, II 
B*7 Star Wild type cy-s, mp-s, VII 
MU114 ASI2/asi::neo, CHX1/CHX1, 

mpr1-1/MPR 
asi2::neo, mpr 1-1 pm-r, mpr-r, II 

MU 119 asi2::neo/asi2::neo, 
CHX1/CHX1, MPR1, MPR1 

asi2::neo, mpr 1-1 pm-r, mp-r, II 

MU120 ASI2/ASI2, CHX1/CHX1 asi2::neo, mpr 1-1 pm-r, mp-r, II 
MU121.1 asi2::neo/asi2::neo, 

chx1-1/chx1-1, MPR/MPR 
asi2::neo pm-s, cy-s, other II, 

VI, VII 
MU121.3 asi2::neo/asi2::neo, 

chx1-1/chx1-1, MPR/MPR 
ASI2 pm-s, cy-s, other II, 

VI, VII 
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Macronuclear phenotype designations: -r: resistant, -s: sensitive. Phenotypes of mutant genes are as 
follows: mpr1-1: 6-methylpurine (mp) resistant; chx1-1: cycloheximide (cy) resistant; : Asi2::neo, 
paromomycin (pm) resistant. Mating types are designated by Roman numerals.  

 

Table 2  
Primers  

p1 5′ AATAAACATTCCATTCACAATAATAC 3′ 
p2 5′ ATTAGGGTGTTTTGTGTTCTACTT 3′ 
p3 5′ TCATTCCAATTTTCAAGTGTAA 3′ 
p4 5′ AAAGTATAACAAGCACGATGA 3′ 
p5 5′ ACCAAATCCAAGAACCAATAA 3′ 
p6 5′ AGAAATATGAAAAGAACCACAA 3′ 
p7 5′ TCATCTAAGTTTCTGCCCTAT 3′ 
p8 5′ GTTTCTCAGGCTCCTTCTCC 3′ 
p9 5′ TACAATTACCAGTCCCTATCC 3′ 
p10 5′ ATTCACCATCTTTTTCCTGC 3′ 
p11 5′ TATTGAGTTGTTTATTCTGAA 3′ 
p12 5′ TATTTATCTTCTTTTCTGCTA 3′ 
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Table 3  
Determination of micronuclear genotype of Round I progeny from ASI2 germ line 
heterozygotes  

Round I synclone Viability of round II synclones pm-s round II synclones 
D 90/110 (82%) 90/90 (100%) 
E 37/39 (95%) 37/37 (100%) 
F 1/33 (3%) 0/1 (0%) 
G 0/116 (0%) N.A. 

N.A., not applicable. 

 

Table 4  
Test crosses to determine the genotype of Round I clones  

Strains Viability cy-r pm-r, cy-r 

MU120 X CU427 37/54 (69%) 35/37 (95%) 0/35 (0%) 

MU119.1 x CU427 76/114 (67%) 66/76 (87%) 66/66 (100%) 
MU119.2 x CU427 41/65 (63%) 35/41 (85%) 35/35 (100%) 

 

Table 5  
ASI2 germ line knockout cells do not produce viable progeny  

Cells lines Pair survival Progeny 
MU119 x B*7 0/116 (0%) N.A. 
MU121.3 x B*7 0/71 (0%) N.A. 
MU120 x B*7 90/110 (82%) 90/90 (100%) 
CU427 x B*7 63/76 (83%) 59/63 (94%) 
MU119 x MU121.3 0/89 (0%) N.A. 
CU427 x CU428 48/91 (53%) 36/48 (75%) 

N.A., not applicable.  
 

Figure 1 
Sexual reproduction in Tetrahymena 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Black and white indicate two different alleles of a gene. Gray represents mixed alleles in the macronuclear 

anlagen. 
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Figure 2  
ASI2 mRNA abundance during the development  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(A). Genomic map of ASI1 and ASI2. The transcripts are represented as angled arrows: open bars, exons; 
filled bars, introns. The sequence of the ASI2 gene was obtained by sequencing PCR products from two 
rounds of inverse PCR, using primers p1 and p2 on DNA digested with ClaI in the first round and primers p3 
and p4 on DNA digested with BglII in the second. The RT-PCR product generated with primers p5 and p6 
revealed the intron. The primers for real-time PCR were p7 and p8 for ASI2 and p9 and p10 for 17S rRNA 
(Table 5). The Northern blot in panel B was probed with Probe 1. B, BglII; C, ClaI; H, HindIII. (B). Northern 
blot. Poly(A)

+
 RNA was isolated from Tetrahymena cells that were S, starved; conjugating cells at 6 h, 9 h, 

and 12 h post-mixing of the two complementary mating types; and V, in vegetative growth. (C). Real-time 
RT-PCR. Total RNA was isolated from vegetatively growing cells, starved cells and conjugating cells at 3 h, 
6 h, 9 h, and 12 h post-mixing. The data are the average of two experiments, each done in triplicate.  
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Figure 3  
Structure of the deduced Asi2p  
 

 
 
 
(A) Asi1p and Asi2p domain comparison. TM, transmembrane domains; Cache, putative Cache sensory 
domain; CC, coiled coil domains; SH2, SH2 receptor binding site. (B) Alignment of the Cache domains of 
ASI1 and ASI2 with the consensus Cache domain and the domains of four methyl-accepting chemotaxis 
proteins. Cache, Cache consensus from the Pfam program. The genes, organisms and accession numbers 
are: ASI1, AAL37738 and ASI2, AAR83913; Tt, Tetrahymena thermophila; MCP, Methyl-accepting 
chemotaxis protein; Ca, Clostridium acetobutylicum, B96999; Oi, Oceanobacillus iheyensis, BAC14058; Vc, 
Vibrio cholerae, L25660.1; Pa, Pseudomonas aeruginosa, BAA29579. Shaded letters are conserved in the 
majority of the sequences. Black, identical amino acids; gray, similar amino acids. ASI1 and ASI2 were 
aligned by placing gaps in two locations where they also occur in the alignment of the signature proteins. 
The signature proteins are the first five in the CDD alignment of ASI1. The Cache domain of ASI2 was 
identified in Pfam with an expect value of 6.4e–05 for the first 40 amino acids (300–339 in ASI2). The expect 
value for ASI1 is 4e–04 over 80 amino acids.  
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Figure 4 
Somatic ASI2 is not essential for vegetative growth  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(A). A knockout construct containing neo2 cassette with about 1 kb of flanking DNA from the ASI2 locus on 
each side was introduced into T. thermophila by biolistic bombardment. The neo2 cassette replaced the 
endogenous ASI2 gene by homologous recombination, producing the knockout chromosome. p11 and p12, 
primers used in PCR to confirm the location of the neo2 cassette; C, ClaI. The Southern blot in panel B was 
probed with probe 2. (B). Macronuclear DNA was isolated from somatic knockout cell lines MU111, MU112 
and MU113 (lanes 1– 3) and wild-type cell line CU428 (lane 4) and a Southern blot of the DNA digested with 
ClaI was done. Probe 2 detected the fragment of 3.1 kb expected for the endogenous gene in wild type cells, 
and a 1.3 kb fragment expected for the knockout allele in DNA from the transformants.  
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Figure 5  
Genomic exclusion matings between ASI2/asi2::neo2 heterozygote with strain B*7  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Black, asi2::neo2 knockout allele; white, ASI2 wild type allele; * star strain macronucleus.  

 

Figure 6  
Test crosses for genotype of Round I clones of the mating between MU114 and B*7  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Micronuclear genotypes are shown followed by the phenotype expressed by the macronuclei in 
parentheses.  
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Figure 7  
Construction of ASI2 germline knockout strain with a wild type macronucleus  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Black, asi2::neo2; white, ASI2 wild type allele; shaded, macronuclei with mixed alleles.  
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Figure 8 
Cytology of (A) a Round II genomic exclusion mating of ASI2 germ line knockouts and (B) 
a control mating between ASI2 wild type cells 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The drawing below the histogram depicts the various cytological stages. Black, germ line micronuclei of the 
parental cells and zygotic nuclei of the exconjugants; white, parental macronuclei. 
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Figure 9  
Immunostaining of matings between ASI2 germ line knockout strains for Pdd1p  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To facilitate identification of the nuclei, phase contrast photographs were taken with filters to show both 
DAPI staining and immunostaining with αPdd1p. Mi, micronucleus; C, conjusome. 
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Figure 10  
Deletion of the M element from the macronuclei of ASI2 germ line knockout exconjugants  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(A) Two alternative deletions of the M element from the micronuclear chromosome eliminate the region 
depicted by the black box or the region including both the black box and the open box. Single cell PCR was 
done with primers p1 and p2 in the first reaction and the nested primers p3 and p4 in the second reaction, 
producing PCR fragments of 250 bp or 560 bp from the macronuclear chromosome with the corresponding 
deletion. (B) Single-cell PCR products. CU427 and CU428, parental strains for the control cross; MU119 
and B*7, parental strains for the ASI2 knockout Round II genomic exclusion mating; E1–E3, exconjugants; 
M, Hi-Lo DNA marker (Minnesota Molecular).  
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Figure 11  
FACS analysis of matings between germ line ASI2 knockout cells  

 
 
(A) Nuclei from wild type, starved cells. (B) Nuclei isolated from a mating between wild type cells. (C) Nuclei 
isolated from a Round II genomic exclusion mating of ASI2 germ line knockouts with B*7.  
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Figure 12 
DNA content of macronuclear anlagen in a Round II genomic exclusion matings of an ASI2 
germ line knockout strain and in wild type controls 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Error bars indicate the standard error *, statistically significant difference from wild type progeny at a 
confidence level of P<0.02; ***, statistically significant difference at a confidence level of P<0.001. 
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