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Stochastically Resilient Observer Design for a Class of Continuous-Time 
Nonlinear Systems 

 
Chung Seop Jeong*. Edwin Engin Yaz.*Yvonne Ilke Yaz ** 

 

* Marquette University, Department of Electrical and Computer Engineering, Milwaukee, Wisconsin 53201,USA                      
(Tel: 414-288-6820; e-mail: chung.jeong@mu.edu, edwin.yaz@mu.edu). 

** Milwaukee School of Engineering, Math Department, Milwaukee, Wisconsin 53202, USA 
(e-mail: yaz@msoe.edu) 

Abstract: This work addresses the design of stochastically resilient or non-fragile continuous-time 
Luenberger observers for systems with incrementally conic nonlinearities. Such designs maintain the 
convergence and/or performance when the observer gain is erroneously implemented due possibly to 
computational errors i.e. round off errors in computing the observer gain or changes in the observer 
parameters during operation. The error in the observer gain is modeled as a random process and a 
common linear matrix inequality formulation is presented to address the stochastically resilient observer 
design problem for a variety of performance criteria. Numerical examples are given to illustrate the 
theoretical results. 

Keywords: Nonlinear observer and filter design; Robust estimation; Lyapunov methods 

 

1. INTRODUCTION 

An observer whose performance deteriorates considerably or 
diverges easily by a small perturbation in the observer gain is 
referred to as a “fragile” or “non-resilient” observer. 
Resilience refers to the insensitivity to gain changes whereas 
robustness usually implies insensitivity to plant or design 
parameters. The concept of fragility of controllers is 
introduced in (Keel and Bhattacharyya, 1997). It is shown 
that even vanishingly small perturbations in the control 
coefficients may destabilize the closed–loop system. After 
the publication of (Keel and Bhattacharyya, 1997), the 
subject of fragility has gained more attention. A quadratic 
optimal state feedback controller that is resilient against 
perturbations in control gain is proposed in (Jadbabaie, et al., 
1998). In (Dorato, 1998), an overview of the resilient design 
techniques is presented. The resilience of control systems in 
digital implementation of a continuous time controller design 
is investigated in (Keel and Bhattacharyya, 1998). The 
synthesis of a resilient regulator for linear systems is 
described in (Famularo, et al., 1998). In (Takabashi, et al., 
2000), the design of robust non-fragile state feedback 
controllers with controller gains in a given polytope is 
addressed. Robust non-fragile Kalman filter design for a class 
of linear systems with norm-bounded uncertainties and 
multiplicative uncertainties in the filter gain is given in (Yang 
and Wang, 2001). Resilient filtering for a class of linear 
continuous-time systems with norm-bounded uncertainties 
and multiplicative and additive perturbations is investigated 
in (Mahmoud, 2004).  
 In the present paper, different approach to resilience is 
taken for the continuous-time models in that the observer 
gain perturbation is stochastic in nature. In this sense, it is the 
non-trivial continuous-time nonlinear extension of the 
stochastically resilient discrete-time observer design paper by 

the authors (Yaz, et al., 2006). A novel design of stability- 
and performance- resilient observers is introduced in 
continuous-time for a variety of performance criteria. Process 
and measurement disturbances are of finite-energy type and 
the observer gain perturbations are modeled as a broadband 
noise process. Various design formulations are expressed in a 
general linear matrix inequality (LMI) (Boyd, et al., 1994)  
framework. This result is a natural follow up to the result for 
linear models in (Jeong, et al., 2007). This result is also the 
extension of (Jeong, et al., 2008) to the stochastically resilient 
case. Some illustrative examples are also included to depict 
the feasibility regions of the design LMI and the change in 
estimation error behaviour based on different performance 
criteria used in design.  
                                                                                                                    
The following notation is used in this work: nRx∈ denotes 
an n-dimensional vector with real elements and with the 

associated norm 2/1)( xxx T=  where ( )T⋅ represents the 

transpose. nmRA ×∈ denotes an nm× matrix with real 
elements. 1−A  is the inverse of matrix A, )0( 0 <> AA  
means A  is a positive (negative) definite matrix, and  Im is 
an identity matrix of dimension m. ))()(( maxmin AA λλ  
denotes the minimum(maximum) eigenvalue of the 
symmetric matrix A. E{x} denotes the expectation of x. 2L  
is the space of all vector disturbances )(tw  with finite 

energy 
2

0
( )w t dt

∞
< ∞∫ . 

2. SIGNAL AND ERROR DYNAMICS 
Consider the continuous-time nonlinear system  
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=                      (1-a)     

and the linear measurement equation                                                        
      
  = + +y Cx Du Gw                    (1-b)      

where mRx∈ is the state to be estimated from the 
knowledge of the measurement pRy∈  and  control input 

nRu∈ . w  is an 2L  disturbance input.   

The nonlinear vector function f is assumed to be a 
measurable function of its arguments, and it satisfies the 
following incrementally conic condition 
                                    
 
                                                                                          (1-c)     
 
 
for some matrices A,F, Cf, and Df, and 1 2 1 2, , nx x x x x R= − ∈ . 
Note that the Lipschitz condition is a special case of the 
condition (1-c) where A=0, F=0, Cf=αI (α>0), Df=0 
resulting in 

1 2 1 2( , , ) ( , ,0)  f x u w f x u x xα− ≤ −  
Consider also the formal representation (Arnold, 1974), 
(Gard, 1988) of a stochastic state observer in the Luenberger 
form:                                                   

       ˆ ˆ ˆ( , ,0) ( ( ))( )dx f x u K t y Cx Du
dt

= + + Δ − −                    (2) 

where )(tΔ  represents the time-varying error either in 
computing the observer gain K or during the operation of the 
observer. In this work, a formal stochastic description of the 
error in the filter gain is given as follows: 

          
1

( )( )
N

ii

i

d tt K
dt
α

=

Δ =∑                                  (3) 

where 
( )id t

dt
α

 are standard (zero mean, and unit variance), 

normally distributed, mutually uncorrelated,  scalar, white 
noise processes and iK are known perturbation matrices. 
The zero mean property chosen for the gain perturbation 
represents the realistic situation where the perturbations can 
be positive or negative in an equally likely manner.  The 
general time varying property is attributed to the gain 

perturbations by assuming 
( )id t

dt
α

as a random process 

because this allows models where, in addition to an original 
computational error mode in the gain, different amounts of 
perturbations that may occur during operation. This is the 
generalized form of the random constant perturbation model, 
which has been used in robustness studies involving 
structured parameter perturbations (Yaz, 1995). 
Let ˆe x x−  denote the state estimation error. Substituting 
from equation (1-a), (1-b) and (2), we find that the error 
dynamics obey the following Ito differential equation (Gard, 
1988):        

 
                                                                                              (4)  
 
 
 
where ),..,1( Nii =α  are mutually uncorrelated standard 
Wiener processes. Note that on (4), the third term on the right 
hand side is added and subtracted, where A  and F are 
defined in (1-c). 
 

3. PERFORMANCE CRITERIA 
Let z denote the performance output where 
 wDeCz zz +=                                      (5) 
Consider the stochastic differential inequality 

2 2 0TL V z w z wδ ε β+ + − <               (6) 

for a )()()( tPetetV T=  where 0>P  and L denoting the 
infinitesimal generator (Arnold, 1974), (Gard, 1988) of (4). It 
will be later shown that satisfaction of this inequality will 
make it possible to realize various design objectives. For the 
chosen V, this yields:         
 
 
 
 
 
                                                                                             (7) 
 
 
 
 
 
 
for  0γ > , because 

2 1 2

1 2

2 ( , )

( ) ( )

γ γ

γ γ

−

−

≤ +

≤ + + +

T T

T T
f f f f

e w Pe e P e

C e D w C e D w e P e

F F
 

after using (1-c). 
Let us now interpret inequality (6). Substituting ( )V t into (6), 
integrating and taking the expectation using stochastic 
calculus (Arnold, 1974), (Gard, 1988) gives            

2 2

0

{ ( ) ( )} { (0) (0)}

{ ( ( ) ( ) ( ) ( )) }

T T

t T

E e t Pe t E e Pe

E z w z w dδ τ ε τ β τ τ τ

≤

− + −∫
 (8a) 

or  the generalized performance criteria 
2 2

min max

2 2

0

( ) { ( ) } ( ) { (0) }

{ ( ) }
t T

P E e t P E e

E z w z w d

λ λ

δ ε β τ

<

− + −∫
            (8b) 

by using Rayleigh’s inequality 

(
2

max
2

min )()( ePPeeeP T λλ ≤≤ ) twice, that will be 
shown to allow several optimization formulations possible in 
a unified eigenvalue problem (Boyd, et al., 1994)  framework. 

1

1
1 2

2[( ) ( ) ] 2 ( , )

( ) ( )

2[( ) ( ) ]

( ) ( )

( ) ( )γ γ

=

=

−

= − + − +

+ + +

≤ − + −

+ + +

+ + + +

∑

∑

T T

N
T iT i

i

T

N
T iT i

i
T T

f f f f

LV A KC e F KG w Pe e w Pe

Ce Gw K PK Ce Gw

A KC e F KG w Pe

Ce Gw K PK Ce Gw

C e D w C e D w e P e

F
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2

0 0
{ ( ) ( ) } ( )

t tTE z w d w dτ τ τ ε τ τ>∫ ∫

First of all, we take 0,0 == GF , and 0=zD  to 
eliminate the additive disturbance dependence. In this case, if 
we let 0δ ε= = , and ,0=β  (8b) yields  

                     
2 2max

min

( ){ ( ) } { (0) }
( )

PE e t E e
P

λ
λ

<    (9a) 

This means that by minimizing )(max Pλ and 

maximizing )(min Pλ , we can lower the bound on the mean 
square (m.s.) value of the estimation error. 

   For m.s. asymptotic stability, we take 0>δ , ,0=β and  
0ε =  with Cz square and nonsingular, to yield                    

2
min

2 2 2
min max 00

( ) { ( ) }

( ){ ( ) } { ( ) } ( ) { }
t

P E e t

P e t E z d P E e

λ

λ δ τ τ λ< + <∫
so      

})0({
)(
)(

})({ 2

min

max2 eE
P
P

teE
λ
λ

<                           (9b) 

Therefore, minimizing )(max Pλ and maximizing )(min Pλ  
will result in a faster rate of decrease of error to zero for 
asymptotic stability. 

 For the same choice of parameter matrices except for an 
arbitrary Cz, taking 0>δ , ,0=β and  0ε = , (8b) will 
yield a bound on the energy of the performance output in 
terms of the initial m.s. estimation error )0(e : 

   
2 2

max0

1{ ( ) } ( ) { (0) }
t

E z d P E eτ τ λ
δ

<∫           (10) 

 Minimizing )(max Pλ  and maximizing δ will give us a 
smaller bound on the energy of the performance output. This 
is a m.s.  H2 observer.. 

 In the case of additive disturbance w , and for nonzero values 
of ,,GF  and zD , by setting 1=δ , ,0=β and 0ε <  
for 0)0( =e , gives the result                      

               
2 2

0 0
{ ( ) } ( )

t t
E z d w dτ τ τ τ< −∈∫ ∫                (11) 

 which means a bound on the m.s. 2L  to 2L  gain of the 
estimator, or a H∞ design. 

 Again when 0)0( =e , if we use this formulation, we can 
design several m.s. dissipative observers by using different 
values of  δ , β , and ε . All of these cases will require the 

choice 0>+ T
zz DD  in the performance output in (5). 

 For example, taking 0=δ , ,1=β  and 0ε =  will give 
m.s. passivity 

         
0

{ ( ) ( ) } 0
t TE z w dτ τ τ >∫                          (12) 

 If we take 0=δ , ,1=β and 0ε > , it will yield the m.s. 
input strict passivity result:                            

                                                    
                                                                                          (13)  

 If we set 0>δ , ,1=β  and 0ε = , we will get m.s. 
output strict passivity: 

      
2

0 0
{ ( ) ( ) } { ( ) }

t tTE z w d E z dτ τ τ δ τ τ>∫ ∫ (14)  

M.s. very strict passivity, which is the m.s. passivity both in 
the terms of the input and the output, will be obtained if we 
set  0>δ , ,1=β  and 0ε > :  

              
0

22

0 0

{ ( ) ( ) }

( ) { ( ) }

t T

t t

E z w d

w d E z d

τ τ τ

ε τ τ δ τ τ> +

∫

∫ ∫
        (15)   

As described above, the LMI formulation to be given below 
enables us to design various observers according to different 
performance criteria in a common framework. 
 

4. LMI FORMULATION 
The non-noisy and noisy cases will be treated separately in 
the following development. First, consider inequality (6) with 

0,0,0 === zDGF , and 0ε β= = . Inequality (7) 
yields  

 
 
 
 
Using the Schur’s complement (Boyd, et al., 1994) for the 
matrix in brackets yields  

0Te Qe >  
for  

                              
11 12

12 22

0T

q q
Q

q q
⎡ ⎤

= >⎢ ⎥
⎣ ⎦

                        (16) 

where 
 

 
with PKY = . Therefore, we have:  
Theorem 1. Let (16) hold for P > 0, 0γ > , and Y. Then, for 

0=δ , this implies inequality (9a) or  m.s. error 
boundedness.  For  0>δ , this implies (9b) for Cz square 
and nonsingular or m.s. asymptotic convergence and (10) or 
m.s. H2 performance for an arbitrary Cz. The necessary 
resilient observer gain K is found by K=P-1Y.  
 
In the noisy case, similar arguments will lead to 
 

11

1

12 22,

T T T

N
T iT i T T

z z f f
i

q PA YC A P C Y

C K PK C C C C C

q P q I

δ γ

γ
=

= − + − +

− − −

= =

∑

1
1 2

[2( )

] 0

N
T T T iT i

i
T T

z z f f

e A KC P C K PK C

C C C C P eδ γ γ
=

−

− +

+ + + <

∑
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1

[( ) ( ) ]
[( ) ( ) ]
( ) ( )

(( ) ( )

( ) ( )

( ) 0

T

T

T T
f f f f

N
T iT i

i
T

z z z z
T T

z z

e P A KC e F KG w
A KC e F KG w Pe

C e D w C e D w e P e

Ce Gw K PK Ce Gw

C e D w C e D w

w w C e D w w

γ γ

δ

ε β

−

=

− + −

+ − + −

+ + + +

+ + +

+ + +

+ − + <

∑              (17)                                                                         

 
Using the Schur’s complement result (Boyd, et al., 1994), 
(17) is found to be equivalent to 

           

11 12 13

12 22 23

13 23 33

0T

T T

s s s

S s s s

s s s

⎡ ⎤
⎢ ⎥

= >⎢ ⎥
⎢ ⎥
⎣ ⎦

                             (18) 

for  

11

12

22

13 23 33

2

( )
2

, 0,

T T T

T iT i T T
z z f f

T iT i T T T
z z z f f

T iT i

T T T
z z z z f f

s PA YC A P C Y

C K PK C C C C C

s PF YG

C K PK G C D C C D

s G K PK G

I D D D D D D
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δ γ

βδ γ

βε δ γ

γ

=− + − +

− − −

=− +

− − + −

=−

− − + + −

= = =

∑

∑
∑

 

So, in the noisy case, we have: 
 
Theorem 2. Let the LMI (18) hold for P > 0, 0γ > , and Y. 
Then for different choice of design parameters δ, β, and ε , 
the inequalities (11)-(15) hold (i.e. H∞ and various m.s. 
passivity criteria are satisfied). The necessary resilient 
observer gain K is found from K=P-1Y.  
 

5.  NUMERICAL STUDIES 
Example 1. This example shows the feasibility regions in the 
P and Y coordinates for LMIs (16) and (18) for a one-
dimensional system and various design parameters. After 
finding values for Y and P, the corresponding resilient 
observer gains can be found from K=P-1Y. The design 
parameters are given in Table 1. for two different 
performance indices  m.s. H2 and m.s. input strict passivity.  
 

 H2-Observer Input Strict Passivity 
A 0.5 0.5 
C 1 1 
Cz 1 1 
Dz 0 1 
Cf 1 1 

Df 0 1 
F 0 1 
G 0 0.1 
Ki 1 1 

γ 1 3 
δ 0.1,1,3,5 0 
β 0 1 
ε 0 0.1,0.5,0.7,0.9 

Table 1. Design parameter values 

The corresponding areas are shaded differently to indicate 
how the shape of the regions changes as the design 
parameters change. Large areas should be interpreted as 
containing the small areas inside.  

Fig. 1.  M.s. H2 observer feasibility regions 
 

Fig. 1 shows how the feasibility region for the H2 sub – 
optimal resilient observer gets smaller as δ increases, as 
expected. This is because it becomes more difficult to satisfy 
the bound on the output energy which keeps getting smaller 
in (10). 

 

Fig. 2. M.s. input strictly passive observer feasibility regions 

Fig. 2. shows the feasibility region of the input strictly 
passive resilient observer. As ε  increases from 0.1 to 0.9, 
the feasibility region becomes smaller as expected. This is 
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because the dissipation rate increases with ε  and it becomes 
more difficult to satisfy (13) with increasing ε  .  
 

Example 2. This example contains a comparative study of the 
error responses of observers for various performance criteria.  
Consider the following unstable nonlinear system 

1 1

12 2

00 1
sin0 0

x x
Fw

xx x
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤

= + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦
, [ ] Gwxy += 01  

which is simulated with the resilient observer using randomly 
generated (standard normally distributed white noise) )(tΔ  
to test the resilience of our design. A first-order discretized 
equivalent (Gard, 1988), with the sampling period T = 0.01 
sec, of the stochastically perturbed estimation error equation 
is used in simulations. The m.s. H2 observer 
(for 0,0)( ≥≡ ttw ), m.s. input strict passivity, and m.s. 
output strict passivity were chosen to show the differences in 
response for these different performance criteria using the 
proposed design methodology. 
Table 2. shows the design parameters used in simulation 
studies. 
 
 

 H2- 
Observer 

Input Strict 
Passivity 

Output Strict 
Passivity 

Cz [1 1] [1 1] [1 1] 
Dz 1 1 1 
Cf 0.5 0.7 0.7 
Df 0 0 0 
F 0 [1;1] [1;1] 
G 0 0.2 0.2 
Ki [1;1] [1;1] [1;1] 
δ 1 0 0.5 
β 0 1 1 
ε  0 0.5 0 

w(t) 0 5·(0.99) t 5·(0.99) t 
∥e0∥ 0.14 0 0 

Table 2. Design parameter values 

For the simulation of the m.s. H2 observer, the observer gain 
is found to be [ ]851.7027;1.5=K . For the case of the 
input strict passivity, K is found to be 

[ ]5.5907;5.5416K = , and the gain K  for the output 

strict passivity case is found to be [ ]6.0669; 6.0724K = . 
Each simulation result was averaged over 30 runs.  The states 
variables and estimation error norm plots for each case vs. 
time in seconds are given in Fig.s 3-5. Notice the change in 
the response magnitude and shape for different criteria. Fig. 6 
is the comparison of the norm of the error for the same three 
performance criteria. The H2-Observer seems to produce the 
fastest response due to the absence of the external disturbance. 

 
 

Fig. 3. Plot of  States and ( )e t for the m.s.  H2 observer 

 
Fig. 4. Plot of  States and ( )e t for the Input strict passivity 

 
Fig. 5. Plot of  States and ( )e t  for the Output strict 

passivity 
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Fig. 6. Comparison of ( )e t for the Different Performance 
Criteria 

6. CONCLUSIONS 

This paper has presented a simple solution to the problem of 
stochastically non-fragile or resilient observer design for 
continuous-time nonlinear systems with finite energy type 
additive disturbances where the observer gain is randomly 
perturbed due possibly to computational errors or changes 
during operation. An LMI based approach has been proposed 
to design observers with guaranteed stochastic performance 
and/or stability and the theoretical results introduced have 
been accompanied by numerical studies.  
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