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Automatic Identification of Time Series Features for Rule-Based 

Forecasting 

By Monica Adya, Fred Collopy, J. Scott Armstrong, and Miles Kennedy 

 

Rule-based forecasting (RBF) is an expert system that uses features of time series to 

select and weight extrapolation techniques. Thus, it is dependent upon the identification of 

features of the time series. Judgmental coding of these features is expensive and the reliability of 

the ratings is modest. We developed and automated heuristics to detect six features that had 

previously been judgmentally identified in RBF: outliers, level shifts, change in basic trend, 

unstable recent trend, unusual last observation, and functional form. These heuristics rely on 

simple statistics such as first differences and regression estimates. In general, there was 

agreement between automated and judgmental codings for all features other than functional 

form. Heuristic coding was more sensitive than judgment and consequently, identified more 

series with a certain feature than judgmental coding. We compared forecast accuracy using 

automated codings with that using judgmental codings across 122 series. Forecasts were 

produced for six horizons, resulting in a total of 732 forecasts. Accuracy for 30% of the 122 

annual time series was similar to that reported for RBF. For the remaining series, there were as 

many that did better with automated feature detection as there were that did worse. In other 

words, the use of automated feature detection heuristics reduced the costs of using RBF without 

negatively affecting forecast accuracy. 

 

1. Introduction 

Rule-based forecasting (RBF) is an expert system developed by Collopy and Armstrong 

(1992a) (hereon referred to as C&A). Its original version consisted of 99 rules that combine 

forecasts from four simple extrapolation methods (random walk, linear regression, Holt’s 

exponential smoothing, and Brown’s exponential smoothing). RBF relies on the identification of 

up to 28 features of time series to weight forecasts from these four methods. Based on empirical 

comparisons conducted on 36 time series, C&A concluded that RBF provided more accurate 

forecasts than could be obtained from an equal-weights combination of the four methods.  

Rule-based forecasting is based on the premise that the features of time series can be 

reliably identified. Eight of these features are identified by analytical procedures coded in RBF 

while the rest rely on an analyst’s knowledge of the domain or visual inspection of plots. 

Judgmental identification of these remaining features is time-consuming, relies on scarce and 
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expensive expertise, and has only a modest inter-rater reliability. 

The identification of time series features has already been automated in one study. 

Vokurka, Flores and Pearce (1996) automated three features from RBF: irrelevant early data, 

outliers, and functional form. Their extension differed in a number of ways from C&A. They 

allowed for user interventions at several points in the forecasting process. The base methods — 

simple exponential smoothing, Gardner’s damped trend exponential smoothing (Gardner, 1999), 

and classical decomposition — differed from those used in RBF. Finally, they used only a subset 

of the features identified in C&A. Their results were similar to those reported in C&A. Forecasts 

were, in general, more accurate than those from equal-weights as well as from a random walk.  

Improved reliability of feature identification may improve accuracy (Stewart, 2001). In this 

study, we developed and validated heuristics for the identification of six features used in RBF. 

We expected that automating the feature detection process would reduce the inconsistencies in 

feature coding that result from differences in the experiences, abilities, and biases of expert 

coders. From a practical standpoint, automatic identification is less expensive because it 

automates time-consuming judgments. This is important for coding large data sets. From a 

research point of view, it should also aid replication and extension. 

The next section describes the features used in RBF to characterize time series. We then 

discuss the six feature detectors. Judgmental and automatic codings are used to produce 

rule-based forecasts. These forecasts are compared with those from common benchmark 

methods. The paper concludes with an evaluation of the forecast accuracies from judgmental 

and automatic codings. 

 

2. Features of Rule-Based Forecasting 

Forecasting experts report that they base their selection of a method in part on patterns in 

the data. In a survey of forecasters (Yokum & Armstrong, 1995), 72% of the 319 respondents 

agreed that ‘experts can, by examining a time series and its characteristics, improve the 

accuracy of forecasts by selecting the best among available extrapolation methods’. Only 12% 

disagreed, the rest being undecided. Historically, forecasters have characterized time series on 

broad patterns that represent the level, trend, seasonal variation, and uncertainty. A variety of 

features have been used to characterize each of these. To develop a comprehensive list of the 

conditions to describe historical time series, Collopy and Armstrong (1992b) examined the 

literature, surveyed experts, and conducted protocol sessions with forecasting experts. 

Armstrong, Adya and Collopy (2001) describe 28 features of time series. Table 1 

summarizes these features. C&A used 18 of these features to describe statistical characteristics 
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of the historical data and domain knowledge about future events. Of these, eight were identified 

by statistical procedures contained within the RBF rules. For instance, the direction of the basic 

trend is obtained by fitting a linear regression to the historical data and that for the recent trend is 

determined by fitting Holt’s exponential smoothing model to the same data. Six of the remaining 

features such as level discontinuity, changing basic trend, unusual last observations, and 

unstable recent trends were identified by the features analyst based on visual inspection of the 

series. The remaining features relied on the analyst’s knowledge of the domain, including 

information about the expected functional form, cycles, whether the series represents a start-up, 

and the causal forces impacting the series. 

 

3. Automatic Feature Detectors 

C&A relied on the judgment of its authors for the identification of features. Agreement on 

these codings ranged from 75 to 100% and averaged 89%. Coding a single series took about 5 

minutes. This was a deterrent for further enhancement and validation of RBF across large 

samples of time series. In this paper, we develop heuristics for the identification of some features 

of RBF. 

We determined that not all features of RBF could be automated. Features that relied on 

domain knowledge could be better identified by domain experts based on their expectations 

about the future. Once identified, domain-based features seldom change over time. While we did 

attempt to identify one domain-based feature, functional form, for the most part we focused our 

efforts on (a) instability features, and (b) features that were originally identified by viewing plots of 

the time series. These include level discontinuities, unusual last observation, changing basic 

trend, and unstable recent trend. In addition, we simplified the procedures for one feature, outlier, 

that was already automated in C&A. 

The detection of features is a sequential process. The order of detection was partly 

motivated by the procedural requirements for RBF. In addition, through a process of trial and 

error, we found that certain features were better detected if other instabilities were not presented. 

For instance, a change in slope was easier to identify if no outliers and level discontinuities were 

present, because the heuristic for changing trend relies on a good fit for the regression line. 

Similarly, RBF procedures rely on the identification of the functional form of a series before any 

models can be fitted. 

Our automatic features detector proceeds in the following sequence. Firstly, the 

functional form of a series is determined. Then, instability features are examined by first looking 

for outliers and level discontinuities. If an outlier is detected, its value is replaced by the average 
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of the adjacent points. If a level discontinuity is encountered, the historical data before the level 

discontinuity is equalized with the current level. For instance, if at t20, the level were 60 and at t21 

it increased to 100, then the level from t1 to t19 would be adjusted to 100. This adjustment for level 

discontinuities is only used to aid detection of the remaining features since several of them rely 

on a good regression fit. For producing final forecasts, the level for t0 to t19 reverts back to its 

original. Adjustments to outliers, however, are retained for the remaining procedures. 

After this, the last observation is examined to determine if it is unusual (an outlier). If so, it 

is replaced by the average of the previous observation and a forecast obtained from fitting a 

regression line through data points up to t – 1. Finally, possible slope changes and instabilities in 

the recent trends are identified by fitting regression lines and examining the direction and 

magnitudes of the slopes.1 

 

4. Development of the Heuristics 

C&A used 126 time series from the M-Competition data (Makridakis et al., 1982) to 

develop, refine, and validate RBF. For this study, we used 122 of these 126 time series to 

develop and test the automatic feature detector. The remaining four series had regressing causal 

forces, indicating that the forces acting on these series tended to regress to a mean. Since we 

have not encountered any regressing series in our further work with RBF, these series were not 

considered in this study. For testing and refining the heuristics, the 122 series were split into two 

subsamples — the development sample and the validation sample. Series whose identifiers 

ended with 6, 5, 3, and 2 (a total of 70 series) were used to develop and refine the procedures. 

The remaining 52 series, with identifiers ending in 7, 4, and 8, were used to test effectiveness of 

these heuristics. The series were normalized so that historical values were between 0 and 100 

before being used for feature detection. 

For each feature, we used statistical tests to identify a heuristic. For example, we tested 

linear regression residuals to determine trend-based discontinuities, such as a change in basic 

trend or an unstable recent trend. Similarly, we examined first and second differences in a series 

to identify outliers and level discontinuities. We tested the heuristics on the development sample 

by comparing them with the judgmental coding implemented in C&A. Our objective was to 

minimize the disagreements between judgmental and heuristic codings. If disagreement was 

high, we refined the parameters of the heuristics. Typically these parameters related to the 

magnitude of first or second differences (as in outliers and level discontinuities), or to the 

standard deviation in a series (as in unstable recent trends), or to the magnitude of residuals 

from a linear regression fit. If adjusting these parameters did not produce improvements, we 
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considered alternative heuristics. When there was a reasonable agreement between judgmental 

and heuristic codings on the development sample for a particular feature, we retained the 

heuristic. We did not have a threshold acceptance level for the classifications on the 

development sample but used our judgment on what constituted a reasonable agreement. 

(Identification of such acceptance thresholds was not possible without a very large sample of 

time series. For instance, for the 70 series in the development sample, the judgmental coders 

had identified only five series with a changing basic trend. Consequently, we were calibrating our 

heuristics to these five series in the development sample.) 

We typically developed a two-step approach for the identification of most features. The 

first step screened all observations for the likely occurrence of an instability. Where an instability 

was suspected, a second test was used to identify the nature of the instability. For instance, in 

the detection of an outlier, the heuristic first compared each data point in the series to determine 

where the deviation existed. However, such a deviation could signal either an outlier or a level 

discontinuity. Therefore, the second test examined the nature of the deviation to clearly identify if 

it were an outlier or a level discontinuity. The first test was intended to bring attention to any 

suspicious patterns in the data and the second test was used to confirm the nature of this pattern. 

We next describe and illustrate the specific heuristics for feature identification. 

 

4.1. Functional Form 

The functional form of a series represents the pattern of growth in the trend of the series. 

C&A shows that it is an area in which domain knowledge and historical data each play a role. 

The two forms used in RBF are multiplicative (exponential growth or decay) and additive (linear). 

While examining results from C&A’s judgmental coding, we found that the identification of 

functional form led to substantial forecast errors on certain series. These were primarily start-up 

series with only about 8 to 10 historical observations available. Often these series were 

characterized as multiplicative; however, when the exponential growth of the early years was 

extrapolated, it produced large forecast errors since the rate of growth for the early years could 

not be sustained. 

For the automatic identification, we assumed all series to be growing multiplicatively 

except when the series was (a) a start-up, (b) a short series (defined as a series with fewer than 

eight observations), (c) expressed in percentage terms, (d) contained negative observations, or 

(e) had a growth rate that appeared to be unsustainable in the long run. We assumed an annual 

growth rate of 20% or more to be unsustainable. We made this assumption since, in our 

experience, most business and economic series are multiplicative (Armstrong, 1985).  
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4.2. Outliers 

Outliers are isolated observations that deviate substantially from the pattern in the rest of 

the series. Such deviations can be due to an unusual, non-recurring event or, sometimes, simply 

due to mistakes during data transcriptions. 

We considered a large second difference to be indicative of the occurrence of an 

instability. We then used a regression trend line to specify the nature of this instability. A large 

second difference at any point in the historical data suggests the presence of an outlier or a level 

shift immediately preceding it. The pattern of the regression residuals from this point to the end of 

the series, however, confirms the nature of this instability. Specifically, the presence of an abrupt 

though temporary increase or decrease in residuals at a point before the large second difference 

indicates the presence of an outlier. This change in residuals should revert back to approximately 

the same range as before the outlier. On detection, outliers are replaced by the average of the 

preceding and subsequent data points. 

Fig. 1 illustrates outlier detection. In that series, an outlier occurs at t40. A large second 

difference is indicated at t41. A regression line is fitted through from t0 to t38 to avoid fitting the 

regression line to an extreme point. The parameters from this fit are used to predict the 

remaining time periods (i.e. from t39 to t47). This fitted line indicates a large and temporary change 

in residuals at the point of the outlier (i.e. at point t40). Notice that within the next two periods, the 

pattern of residuals reverts back to the same range as before the occurrence of the outlier. 

 

4.3. Level Discontinuities 

Level discontinuities are defined here as permanent shifts in the level of a series. For 

instance, sales may abruptly increase as a result of an increase in plant capacity that was 

provided to meet latent demand.  

The initial screening for level discontinuities is the same as for outliers; both are identified 

by the presence of large second differences. The point before a large second difference is a 

possible discontinuity. Just as for outliers, a regression trend line is fit up to the point where this 

large difference occurs and residuals are obtained for the remaining periods. Because a level 

change is assumed to have lasting effects, both the magnitude and the direction of residuals 

must be examined. Two conditions must then be satisfied for qualifying an instability as a level 

discontinuity. Firstly, the large increase or decrease in residuals should be sustained for at least 

three periods after the indicated point of discontinuity. Residuals for these three points should be 

of similar magnitude. Secondly, the direction of the residuals after the discontinuity point should 
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be opposite to that of the periods before the discontinuity. If the residuals are positive before the 

level shift, they should now become negative. 

The identification of a level discontinuity is illustrated in Fig. 2. A level shift occurs at t9. 

This discontinuity is indicated by the presence of a large second difference at t10. Notice that the 

second differences also indicate a relatively large change at t9 and t11. Our interest though is in 

the largest difference and that occurs at t10 here. A regression line is run through t0 to t7 and 

residuals are produced for the periods t8 to t12. The residuals decrease abruptly at t9 from positive 

to negative and this negative pattern of residuals is maintained till the end of the series. 

 

4.4. Unusual Last Observation 

An unusual last observation occurs when the last data point deviates substantially from 

the previous pattern. The detection of this instability is important because it has a strong effect on 

the level and trend estimates of most extrapolation methods. An unusual last observation can be 

regarded as a special case of outliers. This feature is detected using first differences. If the first 

difference for the last data point, tn, is greater than three standard deviations from tn-3, then an 

unusual observation exists at the last data point. An unusual last observation is replaced by the 

average of its original value and the forecast from regression. 

 

4.5. Changing Basic Trend 

A change in the basic trend of a series is identified by comparing the slope in the early 

part of the historical data with that in the more recent past. If there is a large difference in slopes, 

a change in the basic trend could have occurred. 

Fig. 3 illustrates the concepts behind this heuristic. In this series, the basic trend is 

changing although the change is masked by the instability in the trend of the series. A regression 

line is fitted on the first third and the last third of the series that is from point t1 to t5 and from t10 to 

t13. The fit indicates a significant difference between the slopes as is evidenced from the fit lines. 

Results from this procedure, however, may be biased if either of the two regression lines runs 

through extreme points or if the number of observations is low, as in this example. A second test 

is then conducted by fitting another pair of regressions — this time in the first half and the second 

half of the series, from t1 to t7 and from t8 to t13. If the second test also indicates the presence of a 

slope change, then the slope change is confirmed. Both of the conditions must be met to classify 

the series as one with a changing basic trend. 

 

4.6. Unstable Recent Trend 
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Occasionally, short-term trends become unstable, making it difficult to estimate 

parameters for short-term exponential smoothing methods. For the feature detector, we 

developed two tests to identify an unstable recent trend. Firstly, we examine the standard 

deviation of residuals for the recent trend. For annual series, we estimate that the last 20% of the 

series would be an appropriate representation of the recent trend. If this were less than five data 

points, we used a default value of 5. If the standard deviation of residuals for the recent trend 

was beyond a threshold, the series was assumed to be unstable in the recent period.  

In the second test, we compare standard deviation of the residuals from the recent trend 

with that for the previous trend. If residual for the recent trend is greater than that for the first half 

of the series by a certain threshold, then the recent trend is determined to be unstable. 

Fig. 4 illustrates application of the unstable recent trend heuristic using a series for which 

the trend is fluctuating and the series is noisy. The standard deviation of the residuals for this 

series is greater than 5.0, which is the threshold determined for the first part of this test. If this 

condition is not met, then a regression trend line is fit from t to t and another from t to t .If the 

residuals for the second half of the series are greater than 2.5 standard deviations from that of 

the first half, the series would pass the second test of the heuristic and thus be classified as a 

series with an unstable recent trend. 

 

5. Comparison of Classifications from Heuristic and Judgmental Codings 

We compared the heuristic identification of time series features on 122 series from C&A 

with judgmental classifications from C&A. Tables 2 and 3 provide details of this comparison for 

the development and validation samples. In these tables, ‘judgment’ indicates features identified 

by the judgmental codings, ‘automatic’ indicates features identified by the heuritistics. ‘Both’ 

indicates series for which there was agreement between the judgmental feature detection 

heuristics. For instance, in the development sample the heuristics identified a total of 27 

changing basic trends (slope changes). The experts identified 24. The two approaches agreed 

on 14 codings (‘both’). Another 10 series that were coded judgmentally as having slope changes 

were missed by the heuristics. The heuristics identified 15 series as having a slope change that 

the coders did not. 

There was wide variation in the agreement between expert and automated codings. The 

highest agreement occurred on the coding of changing basic trend. On the other hand, codings 

of functional form differed greatly. Of the 122 series used in this study, 24 were coded as having 

an additive functional form by the automated procedures. While the experts had coded 22 series 

as additive, there was no agreement between the automatic and judgmental codings. 
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Of the eight series identified judgmentally as having a level discontinuity, the heuristic 

identified three. The heuristic identified six additional series as having discontinuities. An 

examination of plots for those series with differences between judgmental and automatic 

identification indicated that these were often noisy series. Sometimes the nature of the series 

was confounded by the presence of other features. For instance, in series 46, the level 

discontinuity identified judgmentally occurred over several time periods. Consequently, instead 

of being identified as a level discontinuity, the feature detector identified a slope change. 

Differences at the ‘automatic’ coding indicated the presence of a small level discontinuity that 

might have been overlooked at the time of visual inspection. At other times, the sensitivity of the 

test appears to have identified a slight deviation in an otherwise smooth series as a level 

discontinuity. 

The heuristic for identification of unusual last observation agreed with all three series 

coded judgmentally. The heuristic identified nine additional series that were not identified. Eight 

of these 12 observations were in the development sample and four in the validation sample. The 

test appears to be sensitive to small deviations that were not noticed by experts. 

Slope changes were identified judgmentally for 41 of the 122 series. The heuristic 

identified 24 of these but missed 17. An additional 15 series were identified by the heuristic as 

having a slope change. On examination of plots, it appeared in several cases that the judgmental 

process had identified slope changes in series that were relatively smooth (e.g. 16, 168). In other 

cases, what appeared to be a slope change in the recent periods was rectified as a result of 

adjustment of previously identified features (e.g. in series 53 adjustment for an unusual last 

observation removes a slope change). Conversely, ‘automatic’ coding differences were 

influenced by detection and adjustment of features such as outliers and level discontinuities. 

Seventeen of the 26 series identified by the experts as having an unstable recent trend 

were also identified automatically as such. Twelve more series were identified by automatic 

procedures but not by judgment. Patterns in ‘judgment’ and ‘automatic’ differences were similar 

to those for slope change detection. 

 

6. Validation and Testing Procedures 

As expected, the differences between judgmental and automatic codings were more 

serious in the specification of functional form. Therefore, we compared the forecast accuracy of 

heuristic and judgmental codings to gain a better understanding of the impact of automating the 

feature identification process. We expected that the gains made in terms of cost savings and 

reliability might compensate for a small decline in forecasting accuracy. 
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We integrated the heuristics with the original RBF rules into an expanded version of RBF, 

RBF(A). We then produced forecasts for 122 of the 126 time series used by C&A and compared 

their accuracy to those from RBF as reported in C&A. RBF was originally calibrated on 36 series, 

then tested on validation sample V1 which contained 18 series. V1 was then combined with the 

calibration sample and RBF was re-calibrated. This procedure was repeated with V2 which 

contained 36 series. The final validation of RBF was then done only on 36 series in sample V3. 

We present our validations of RBF(A) on the same samples used in C&A — V1 to V3. Forecasts 

were produced for 1 to 6-ahead horizons, resulting in 732 forecasts across all 122 series. 

Furthermore, as in C&A, we used equal-weights and random walk for comparisons. If RBF(A) 

suffered no serious loss in accuracy as compared to RBF and these benchmarks, then the case 

for using automated feature detection would be fairly strong. However, if RBF(A) declined in 

performance, then the heuristics would need to be subjected to further validations. 

While implementing RBF(A), 10 corrections were made to the original rule-base as 

presented in C&A. These corrections are described in Adya (2000) and the corrected rules are 

available on the web site hops.wharton.upenn.edu/ forecast. Consequently, original feature 

codings from C&A were rerun on the updated version of RBF. Results from this run indicated no 

improvements in accuracy on validation sample V3 from C&A. Future references to RBF in the 

paper apply to this corrected version of RBF. 

We used multiple error measures for assessing the performance of RBF(A) as 

recommended by Armstrong and Collopy (1992). One of these, the relative absolute errors 

(RAEs), relates the performance of a method to that of the random walk. Armstrong and Collopy 

(1992) found that both mean and median RAEs and absolute percentage errors (APEs) were 

reliable and had good construct validity. The geometric mean of RAEs (GMRAEs) and mean 

APEs (MAPEs) are sensitive to the impact of parameter changes but do not provide sufficient 

outlier protection. Median RAEs and APEs are relatively less sensitive to small changes. The 

insensitivity is, however, valuable in protecting against outliers. Consequently, in this study, all 

four measures are reported. Both RAEs and APEs are computed for each horizon in each series. 

Cumulative RAEs and cumulative APEs summarize performance across horizons. Geometric 

mean of RAEs (GMRAEs), median RAEs (MdRAEs), mean APEs (MAPEs), and median APEs 

(MdAPEs) are used to summarize across series. 

Table 4 presents summary results using multiple error measures for the 1-ahead, 

6-ahead, and cumulative forecasts for the three validation samples. 

Over all the horizons, RBF(A) performed about as well as RBF. For validation samples 

V1 and V3, GMRAEs for RBF(A) improved over RBF for all horizons. MdAPEs indicate equal or 
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better performance as summarized in Table 5. 

Table 6 summarizes the forecast accuracy of judgmental and automatic identification on 

series in which their features differ. Since the samples are small, the conclusions here are only 

suggestive. 

 

6.1. Changing Basic Trend 

For series where automatic identification did not identify a change in basic trend but 

judgement did, forecast accuracy suffered. When the detectors identified a series that 

judgmental coding missed, forecast accuracy for the short periods improved slightly. 

 

6.2. Unstable Recent Trend 

For series where the heuristics identified an unstable recent trend, typically the 1-ahead 

forecasts were better than those for judgment. Judgmental coding yielded same or better 

forecasts for the long horizon. 

 

6.3.  Functional Form 

Forecasts for series that were coded as additive by the automatic feature detectors but 

multiplicative by experts were at least as good as those reported for RBF on the 1-ahead, 

6-ahead, and cumulative horizons. Similar gains were not observed for series that were coded as 

multiplicative by the heuristics and as additive by the experts. This raises questions about the 

sensitivity and completeness of the functional form heuristic which must be subject to further 

examination. There is also an argument that functional form is essentially a domain-based 

feature that does not benefit from identification of patterns in the historical data. 

Considering all features, there were 78 series where heuristic and judgmental codings 

differed on one or more features. For almost 30% of the series, judgmental and heuristic codings 

yielded similar error measures for 1-ahead, 6-ahead, and cumulative horizons. Of the remaining 

series, there were as many series that did better with automated feature detection as there were 

that did worse. Decreased accuracy in some series were offset by gains in others. In general, 

then, the introduction of automated heuristics for feature detection in RBF did not reduce forecast 

accuracy. 

 

7. Some Issues Related to Automatic Feature Identification 

The detection and correct of outliers, level discontinuities, and unusual last observations 

occasionally either induced another feature or removed other features that had been identified in 
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the judgmental codings. For instance, in series 56, a level discontinuity was identified. When the 

heuristic corrected for this, it resulted in highlighting a slope change that had otherwise been 

masked by the more prominent level discontinuity. 

It is possible that when features were judgmentally coded, judges were unable to 

anticipate the effects of corrections or adjustments that the rules would make in response to 

other features. Therefore, the automatic process may be beneificial over the more wholistic 

judgment employed by experts in C&A. We do not know how it would compare to a more 

decomposed judgment. 

A major challenge was to apply the heuristic to series that differed in terms of variation 

and noise. For instance, the heuristics should be able to identify a changing basic trend or a level 

discontinuity for series that are smooth as well as those that are noisy. We used different 

threshold levels. For instance, a noisy series would have to meet more rigorous threshold 

requirements. 

Our heuristics were developed on 70 time series and were tested on 52. Further work is 

required to validate them with larger samples of data. In particular, further analysis is required to 

better understand the causes for and the effects of differences in judgmental and automatic 

coding of the functional form. 

 

8. Conclusion 

Automatic feature identification significantly reduced the costs of forecasting large data 

sets with no appreciable loss in forecast accuracy in this study of 732 forecasts. The most 

significant contribution of this study is that it has automated forecasting decisions that are time 

consuming. Analysts are required to code only the domain-based features that typically take 

under a minute to identify. Moreover, these features tend to stay stable over longer periods of 

time thereby further reducing costs of recoding. Automating feature detection has also 

introduced consistency and reliability into the forecasting process. The added reliability could 

contribute to further efforts in the validation and refinement of rule-based forecasting. More 

importantly, it is now possible to apply RBF to a large number of series, such as the M3-IJF 

competition (Adya, Armstrong, Collopy and Kennedy, 2000). 
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Appendix 

Figure 1: Detection of an Outlier: An Example 
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Figure 2: Detecting a Level Discontinuity: An Example 
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Figure 3: Detecting a Changing Basic Trend: An Example 
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Figure 4: Detecting an Unstable Recent Trend: An Example 
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Table 1: Rule-based Forecasting Relies on 28 Time Series Features 
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Table 2: Agreement of Judgmental and Heuristic Coding: Development 

Sample 
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Table 3: Agreement of Judgmental and Heuristic Coding: Validation Sample 
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Table 4: Ex-ante Forecast Errors for Validation Samples V1-V3 
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Table 5: Ex-ante Forecast Errors for Extrapolation Procedures, Median 

APEsa 

 

 

 

a Cumulative forecasts from RBF were not available for comparison. 
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Table 6: Comparison of Automatic with Judgmental Coding Series with 

Different Codings: Relative Absolute Errors 
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