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Abstract 

A domination graph of a digraph D, dom (D), is created using thc 
vertex set of D and edge uv E E (dom (D)) whenever (u, z) E A (D) 
or (v, z) E A (D) for any other vertex z E V (D). Here, we consider 
directed graphs whose underlying graphs are isomorphic to their domi
nation graphs. Specifically, digraphs are completely characterized where 
UGc (D) is the union of two disjoint paths. 

1 Introduction 

Domination graphs were first introduced by Merz, Lundgren, Reid and Fisher 
[10] to describe the structure of the domination graphs and competition graphs 
of tournaments. Since that time, further refinements have been made in the 
work on tournaments, including that done by Cho, Doherty, Kim and Lundgren 
([1], [2]) and Merz et al. ([6], [7], [8], [9J, [10], [11]). However, the characteriza
tion of the structure of the domination graph of arbitrary digraphs has remained 
elusive. The authors have added to the knowledge in this area by characterizing 
digraphs D where the underlying graph of D is equal to its domination graph 
[3], and have characterized some digraphs where the graphs are isomorphic ([4], 
[5]). We add to that body of knowledge in this paper by characterizing digraphs 
whose underlying and domination graphs are isomorphic, UG (D) ~ dam (D), 
and UGc (D) is the graph of two disjoint paths. 

Let D be a directed graph, or digraph, with nonempty vertex set V (D) and 
arc set A (D). If (u, v) E A (D), then u is said to dominate v. Further, u is the 
origin of the arc (u, v), and v is the terminating vertex. When for every other 
vertex z in V (D), either (u, z) or (v, z) is an arc in D, then u and v form a 

JCMCC 72 (2010), pp. 3-32 



dominating pair. The domination graph of D, dam (D), is an undirected graph 
with the vertex set V (D), where there is an edge between every dominating 
pair. A digraph D is considered a biorientation of a graph G if for every edge 
uv E E(G), either (u,v) or (v,u) or both are arcs in D, and D contains no 
other arcs. The underlying graph of D, UG (D), is the graph for which D is 
a biorientation. If for edge uv in G, only one of edges (u,v) or (v,u) is in 
D, then the arc is called an orientation of edge uv. When all edges of G are 
bidirected edges in D, then D is a complete biorientation of G, also known as a 
symmetric digraph. Although bidirected edges are allowed in D, there are no 

directed loops. 
When the underlying graph of D is isomorphic to the domination graph of 

D, it is its nature to have many edges. Thus, in most cases, it is easier to obtain 
results regarding UG (D) and dam (D) by observing patterns in UGc (D) and 
domc (D), which are sparse graphs. To relate the results obtained from the 
complements to UG (D) and dam (D), we use the concepts of the union and the 
join of graphs and digraphs. The union of two graphs or digraphs is the graph 
or digraph formed by the union of their vertices as well as their sets of edges or 
arcs. The join of two graphs G and H, G + H, is the graph that consists of 
G U H and all edges joining the vertices in G with the vertices in H. We extend 
this definition to directed graphs as follows. The join of DI and D2 consists of 
DI U D2 together with all bidirectional edges between every vertex of DI and 

every vertex of D2. 
We know that the structure of UG (D) is limited to a small number of 

constructs. It can be summed up by the following three results. 

Theorem 1.1 (4J If DI, ... ,Dk are directed graphs such that UG (Di) ~ dam (Di) 
for i = 1, ... , k and D = DI + D2 + ... + Db then UG (D) ~ dam (D). Also 

1. UG (D) = L:~=l UG (Di) 

2. dam (D) = L:~=l dam (D;) 

3. UGc (D) = U~=l UGc (Di) 

4. domC (D) = U~=l domc (Di) 

Theorem 1.2 (4J If UG (D) is isomorphic to dam (D), then UGc (D) is com
prised of one or more connected components, each either a complete graph, a 

path, or a cycle. 

Corollary 1.3 (4! If UG (D) is isomorphic to dam (D), then D is the join of 
DI ,D2, ... , Db where UG (Di) is isomorphic to an independent set, the comple
ment of a path, or the complement of a cycle. 

Theorem 1.2 gives three basic components that comprise the complement 
of the underlying graph in which we are interested. The structure of D and 
UG (D) where UGc (D) is one component has been completely charactcrizcd [4], 
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as has the case where PI, P2 and C4 are the components [5J. In this paper, we 
further the research by characterizing the underlying graphs and the directed 
graphs wh~re UG (D) '2:' dam (D), and UGc (D) = Pi U Pj. In the next section, 
we deter~llne for what values of j UGc (D) = Pi U Pj exists for the special 
cases of t = 1,2. We then use the information from Section 2 to formulate 
the characterizations of the digraphs D that can be formed for the associated 
underlyin~ ~rap~s. Fin~lly, we conclude the characterizations of UGc (D) and 
D w~ere t, J 2: 3 m SectJO~s 4 and 5. Some of the proofs required are quite long 
and mterrupt the flow of mformation, so have been placed in their own section 
at the end of the paper. 

2 Structure of UGc (D) = ~ U Pj , 1, = 1,2 

?f im~~diate consequence when determining the structure of UGc (D) for any 
t and J IS the edges that are formed in domc (D) regardless of the structure of 
D. The follo:ving lemma lists the paths that are always part of domc (D) when 
Pn, for n 2: 3 IS a ~omponent of UGc (D). These paths are used extensively in 
thiS paper, and Will be referred to as the generated subpaths in domc (D). 

Lemma 2.1 !4! IfUGC(D) = Pn = XI,X2, ... ,Xn forn 2: 3, then 

1. if n is odd, Xl, X3, ... , Xn and X2, X4, ... , Xn-l are paths in domc (D), and 

2. if n is even, Xl, X3, ... , Xn-l and X2, X4, ... , Xn are paths in domc (D). 

Further, we know that a biorientation of UG (D) exists for each of the Pn , 

n 2: 3, where UG (D) '2:' dam (D). This is stated in the following lemma. 

Lemma 2.2 (4! Let D be a directed graph on n 2: 3 vertices and UGc (D) = 
Pn = XI, ... ,Xn . Then domC(D) '2:' P" if and only if for every edge uv E 
E (UG (D», (u, v) and (v, u) are arcs in D except for the following: 

1. if n is odd, exactly one of the following is an orientation of the associated 
edgers) in UG (D): 

(a) (XI,Xn), 

(b) (Xn,XI), 

(c) (XI,X,,) and (Xn,Xn -3), or 

(d) (X",XI) and (Xl,X4), and 

2. if n is even, exactly one of the following is an orientation of the associated 
edgers) in UG (D): 

(a) (XI,Xn-I), 

(b) (xn' X2), 

(c) (xI,xn-d and (Xn,X2), 
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(d) (xn, X2) and (Xl, X4), or 

(e) (xI,xn-d and (Xn,Xn-3). 

Of particular note, the oriented edges (xn, Xn-3) and (Xl, X4) of the preceding 
lemma form edges in domc (D) that are in the generated subpaths of Lemma 
2.1. These serve a special purpose when we characterize D, so the following 
two corollaries are listed here for later use. The first follows from construction 
of domc (D). 

Corollary 2.3 If UGc (D) = Pn, n ~ 4, oriented edges (Xl, X4) and (xn, Xn-3) 
produce edges X2X4 and Xn-IXn-3 in domc (D). 

Further, this guarantees that when we use oriented edges (xn, Xn-3) and 
(Xl, X4), there will be no new edges appearing in domc (D). 

Corollary 2.4 If UGc (D) = Pn, n ~ 4, oriented edges (Xl, X4) and (xn, Xn-3) 
c.,.eate no additional edges in domc (D). 

To show that UGc (D) = PI U Pj can exist for all j ~ 1 such that UG (D) ~ 
dam (D), we need to show that if the component PI is added to the graph 
UGc (D) = ~" an underlying graph will be created where it is possible to 
still create a digraph D preserving isomorphism. We can do that using the 
orientations given in Lemma 2.2. 

Theorem 2.5 Let UGc (D) = PI U Pj . For all j ~ 1, the.,.e exists a bio.,.ienta
tion of the edges of UG (D) such that UG (D) ~ dom (D). 

Proof. Let j = 1. Then UG (D) equals the edge uv. The vertices u and v 
dominate for either orientation of the edge uv or the bidirection of the edge. 
Thus, UG (D) ~ dam (D). 

Let j = 2. Then UG (D) = UVI U UV2. The orientation (u, vd U (u, V2) 
produces edges UVI and UV2 in dom (D). Thus, UG (D) ~ dam (D). 

Let j ~ 3. If DI = PI and D2 = Pj, where UGc (D) = DI U D2, then by 
Theorem 1.1, UG (D) ~ dam (D) where D = DI + D2. • 

Now we turn our attention to characterizing the j for which UG (D) ~ 
dam (D) and UGc (D) = P2 U Pj. To do so, there must be more understanding 
of the orientation of edges to form D and the affect this has on domc (D). We 
work with domc (D) because when UG (D) ~ dam (D), UGc (D) ~ domc (D), 
and it is easier to work with the fewer edges in the complements. 

Given any edge uv in domc (D), we know that vertices u and v cannot form 
a dominating pair in D. Therefore, there must be at least one vertex z in D 
such that neither (u, z) nor (v, z) is an arc. We will call z a SOUTce of edge uv 
in domc (D). Note that an edge in domc (D) may have multiple sources. 

The next few results eliminate certain vertices as candidates for sources, 
and restrict the number of edges for which a vertex may be a source. In our 
construction of a digraph where UGc (D) is the union of two paths, it is natural 
to ask whether it is possible for a vertex to be the source of more than one edge 
in domc (D). 
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Lemma 2.6 [5! If UG (D) ~ dam (D) and y is the sou.,.ce of two 0.,. more edges 
in domc CD), then the set of ve.,.tices which do not dominate y is contained in a 
component isomorphic to K r , .,. ~ 3 in UGc (D). 

Since we have no components isomorphic to K r., r' ~ 3 in UGc (D), we have 
no vertices that are the source of more than one edge in domc (D). There are 
two ways in which a vertex z may be a source of edge uv in domc (D). The 
first is if it is not adjacent to vertices u and v in UG (D). The second is if we 
create the source z by making it the origin of the oriented edge (z, u) if z is not 
adjacent to v, or (z, v) if z is not adjacent to u, or both if z is adjacent to both 
u and v. We can obtain the list of vertices that are candidates for becoming 
the origin of an oriented edge. The following lemma is used as the foundation 
for the choices. 

Lemma 2.7 [4! Let D be a digraph on n veTtices, and (u, v) in D be the orien
tation of edge uv in UG (D), where deg (u) = k in UG (D). If k < n - 2, then 
K3 is a subgraph of domC (D). 

The preceding lemma thus leads to the following set of vertices that may 
serve as the origin for any oriented edge in D when UG (D) ~ dam (D) and 
UGc (D) is comprised of disjoint paths. 

Lemma 2.8 Let D be any digraph such that UG (D) ~ dam (D) and UGc (D) 
is comprised of components U7=1 Pn, where Pni = Xli,X2i,,,,,Xn,i and ni ~ 1 
is the numbe.,. of vertices fo.,. path Pn,. If UG (D) ~ dam (D) and (u, v) in D 
is an o.,.ientation of edge uv in UG (D), then u = Xlj or u = Xnjj fa.,. some j, 
l::;j::;k. 

Proof. Consider UGc (D) = U7=1 Pni where Pn, = Xli, X2i, ... , Xn,i and ni ~ 1, 

and (u, v) is an orientation of edge uv. Let n = L7=1 ni. According to Lemma 
2.7, if deg (u) < n - 2 in UG(D), then K3 is a subgraph of domc (D). Thus, 
deg (u) ~ n - 2. This indicates that in UGc (D), deg (u) ::; 1. So, u must be 
K I , or the end vertex of a path. Therefore, we obtain the list of vertices, which 
are the first and last vertices of each Pn ,. • 

Lemma 2.6 states that a vertex can be the source for at most one edge in 
domc (D). Now we ask whether a vertex z may be the source of one edge uv 
if z is adjacent to both u and v in UG (D). The answer is given in the next 
lemma where we find that if z is the origin of one oriented edge in D, it cannot 
be the origin of another oriented edge in D when the paths have at least three 
vertices. The results are generalized to k paths. 

Lemma 2.9 Let D be any digraph such that UG (D) ~ dom (D) and UGc (D) 
is comp.,.ised of components U7=1 Pni whe.,.e Pn, = Xli, X2i, ... , X"ii and ni ~ 2 is 
the numbe.,. of veTtices fo.,. path P"i' If (z, u) in D is an orientation of edge uz 
in UG (D), then theTe is no ve.,.tex v such that (z, v) in D is an o.,.ientation of 
edge vz in UG (D). 
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Proof. Suppose that there are orientations (z, u) and (z, v) in D. By Lemma 
2.8, z must be one of the end vertices of the path, and there exists a vertex Zk 

that is not adjacent to z in UG (D). So, Zk, u and v do not dominate z and 
form K3 in dome (D), contradicting UG (D) ~ dam (D). Thus, (z, u) or (z, v) 
may be an orientation of an edge in D, but not both. • 

Now we turn our attention to the structure of the paths themselves in 
domc (D). The generated sub paths in domc (D) are only in constructions for 
Pj when j 2: 3. However Lemma 2.1 does give an indication of the length of the 
paths formed automatically in domc (D). As j becomes larger, the generated 
subpaths in dome (D) on the vertices VI, ... , Vj become longer than P2 . Thus, 
it is necessary to know if P 2 = UI U2 in UGe (D) can also form P 2 = UI U2 in 
dome (D). If not, there are only a few possible values for j so that UGe (D) = 
P2 U Pj can yield an isomorphic dome (D). The following lemma states that 
P 2 = UIU2 in UGe (D) is not possible. 

Lemma 2.10 Let UG (D) ~ dam (D), and UGe (D) = P 2 UPj for j 2: 3, where 
P 2 = UIU2 and Pj = VI, ... , Vj. Then UIU2 is not an edge in dome (D). 

Proof. Suppose that UIU2 is an edge in dome (D). Then some vertex z must 
be a source of that edge. Vertices UI and U2 cannot be the source of an edge 
with which they are incident. Thus, z = Vk for some k = 1, ... , j. Since Vk is 
adjacent to both UI and U2, the oriented edges (Vb Ul) and (Vk, U2) must both 
be in D. But Lemma 2.9 states that this cannot be. Therefore, UI U2 is not an 
edge in domc (D) .• 

Corollary 2.11 Let UG (D) ~ dam (D), and UGe (D) = P2 U Pj for j 2: 3, 
where P 2 = UIU2 and P j = VI, ... , Vj' Then P 2 in domc (D) is either equal to 
UiVk for some i = 1,2 and some k = 1, ... ,j or ViVk for some 1 :S i < k :S j. 

Now we can formulate the structure of UGe (D) given the preceding results. 
When it is shown that UGe (D) ~ domc (D), we generally skip directly to the 
consequence of UG (D) ~ dam (D). Figure 1 shows the construction for j = 4 
given in the proof for Theorem 2.12. Bidirectional edges are not shown. The 
dashed lines represent the edges in UGe (D), so are not bidirected edges in D. 
In the figure, P 2 = V2V4 in domc (D). 

Theorem 2.12 Let UGe = P2 U Pj. There exists a biorientation D of the 
edges of UG (D) such that UG (D) ~ dam (D) if and only if j = 1,2,3,4,5. 

Proof. (==}) Theorem 2.5 shows the case where j = 1. For j 2: 2, according 
to Corollary 2.11, we must construct P 2 in domc (D) using UiVk or VkVI. First 
consider P 2 = UiVk in dome (D). Here, Vk must be the generated subpath PI 

so that UiVk = P 2 in dome (D). Therefore, j :S 3. Next consider P 2 = VkVI 

in dome (D). The edge VkVI must be the generated subpath P 2 , so Lemma 2.1 
gives us j :S 5. 

({==) The case where j = 1 is shown in Theorem 2.5. 
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U1 y U2 

.4),1.-__ 
V1 V2 V3 v 4 

D 

7 r
U2 

~4 
domC(D) 

Figure 1: A digraph D where UGe (D) = P 2 U P4 and the associated graph 
domc (D). Dashed lines represent UGe (D), and bioriented edges of D are omit
ted. 

For j = 2, let (UI,Vt} and (U2,V2) be oriented edges of UG(D). Vertex UI 

is the source of edge U2VI in domc (D), and vertex U2 is the source of edge UI V2. 

No other edges are formed, so UG (D) ~ dam (D). 
For j = 3, let (VI, ut} and (UI, V3) be oriented edges of UG (D), and bidirect 

all other edges of UG (D). Here, V2 and VI, V3 are generated subpaths in 
dome (D). Additionally, vertex VI is the source of edge UIV2 in domc (D), and 
vertex UI is the source of edge U2V3. Thus, domC(D) = UIV2U U2,V3,VI, and 
UG (D) ~ dam (D). 

Using similar orientations for j = 4 and j = 5, (UI, V3) with (U2, vt} and 
(UI,V5) with (U2,VI) respectively, we find that these biorientations result in 
UG (D) ~ dam (D). • 

3 Characterization of D where UGc (D) = PiUPj , 

i = 1,2 

As might be expected, the characterization of all digraphs that can be formed 
using the underlying graphs specified in the previous section, is a somewhat 
tedious process. We will place the longer proofs into the final section of the 
paper so that the flow of the results are not interrupted by lengthy construction 
proofs. 

To begin, we consider i = 1. The following lemma provides all of the addi
tional support necessary before characterizing the digraphs D where UG (D) ~ 
dam (D) and UGe (D) = PI U Pj. 

Lemma 3.1 Let UGC(D) = PI UPj , where PI = U, P j = VI, ... ,Vj for j i= 2, 
and UG (D) ~ dam (D). Then U = PI in domc (D). 

Proof. If j = 1, then the edge UVI in UG (D) can be either of the two orien
tations or the biorientation in D. Thus, u and VI form a dominating pair, and 
are nonadjacent in domc (D). 

If j = 3, then VI v3 is a generated subpath in domc (D). Thus, only U or 
V2 can possibly equal PI in dome (D). If V2 is PI, then either UVI or UVa is 
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an edge in dome (D). Say that UVI is an edge. Then there is a source vertex 
z in D such that neither U nor VI dominates z. By Lemma 2.9, z cannot be 
adjacent to both U and VI. Vertex U is adjacent to all other vertices in UG (D), 
so z = V2. This implies that (V2' u) must be an oriented edge so that VI and 
U do not dominate V2. However, V2 cannot be the origin of an oriented edge 
according to Lemma 2.8. Thus, UVI is not an edge in domc (D). With a 
similar argument, we see that UV3 is not an edge in domc (D). Thus, U = PI in 
domc (D) is the only possibility. It can be realized by applying the assignment 
of oriented edges associated with P3 outlined in Lemma 2.2, and bidirecting the 
edges UVi for i = 1,2,3. 

If j ;::: 4, then PI is not a generated subpath in domc (D), so the only 
possibility is vertex u. The graph domc (D) that is isomorphic to UGc (D) 
can be realized by applying the assignment of oriented edges associated with Pj 

outlined in Lemma 2.2, and biorienting the edges UVi for i = 1, ... ,j .• 

This leads to the following characterization of digraphs where UG (D) ~ 
dam (D) and UGc (D) = PI U Pj. 

Theorem 3.2 Let UGc (D) = PI U Pj, where PI 
UG (D) ~ dam (D) if and only if D is of the form: 

1. If j = 1, then D is an orientation of the edge UVI or the biorientation of 
that edge. 

2. If j = 2, then (Vi'U) is an orientation for i = 101' 2, and (Vi"U) is not 
an orientation for i = 1 or 2 and i' the remaining value, or (u, VI) and 
(u, Vj) are orientations. 

3. If j ;::: 3 and VpVq is the edge in domc (D) connecting the generated sub
paths, then D is the digraph where all edges of UG (D) are bidirected in 
D except for one of the following: 

(a) the only oriented edges are as described in Lemma 2.2, or 

(b) (u, vp) and (u, vq ) are orientations of edges uVp and uVq respectively, 
or 

(c) the edges are oriented as described in Lemma 2.2, and u is the origin 
of at most two oriented edges (u, Vk) and (u, vt), k < l, where 

i. u is the origin of only one oriented edge, (u, Vk) , of edge uVk for 
k = 1, ... ,j, or 

ii. u is the origin of two oriented edges where k = 1, ... ,j - 2 and 
l = k + 2, or k = p and l = q. 

The proof of Theorem 3.2 can be found in the final section of this paper. 
When i = 1, it is possible for a single vertex, namely u, to be the origin of 

two oriented edges. However, once i, j ;::: 2, that possibility is eliminated, as was 
outlined in Lemmas 2.8 and 2.9. Although there are similarities in UGc (D) = 
P2 U Pj for j = 2,3,4, 5, the differences are enough that we list the results 
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separately. First, we use the following lemma and its corollary to establish 
source vertices for UGc (D) = UIU2 U VIV2. The set of vertices adjacent to a 
vertex V is the neighborhood of v, n (v). 

Lemma 3.3 (5/ If UG (D) ~ dam (D) and n (y) = {x} in UGc (D), then y is 
a source of at most one edge in domc (D), and this edge will be incident to x. 

Corollary 3.4 If UG (D) ~ dam (D) and UGc (D) = UI U2 U VI V2, then each 
vertex in D can be the source of at most one edge in domc (D). Furthermore, 
UI may only be the source of an edge incident with U2, U2 the source of an edge 
incident with UI, and similarly for VI and V2. 

Since there are only two edges in UGc (D), we desire only two edges in 
domc (D). Therefore, we pick only two of the vertices in UIU2 U VIV2 to be the 
origin of the oriented edges in D. Although it might seem possible to orient all 
four edges in UG (D) in such a way that only two edges are formed in domc (D), 
this cannot be done. Following, all digraphs D where UGc (D) := P2 U P2 and 
UG (D) ~ dam (D) are characterized. 

Theorem 3.5 Let UGc (D) = P2 U P2. Further, let U be a vertex of one of 
the paths and let u' be the other vertex of that path. Let V be a vertex of the 
other path and v' its second vertex. U G (D) ~ dam (D) if and only if (u, v) 
and (u', v') are oriented edges, and all other edges of U G (D) are bidirected in 
D. 

Proof. (==}) Let U be UI or U2 and v be VI or V2. Further, suppose that 
(u,v) is an oriented edge in D. This creates edge u'v in domc (D). Since 
UG (D) ~ dam (D), domc (D) must contain only one more edge, uv'. According 
to Corollary 3.4, only vertex u' or vertex v may be the source of this edge. 
Therefore, (u',v') or (v,u) are the possible oriented edges in D that will create 
the edge in dom C (D) = P2 U P2. Since (u, v) is an oriented edge, (v, u) is not a 
viable choice. Thus, (u', v') must be an oriented edge in D. Suppose that there 
are other oriented edges. No additional edges can be formed in dome (D). The 
only arc that has not been discussed earlier is (v', u'), but it would bidirect edge 
u'v', which is oriented in creating domc (D). Thus, there are no other oriented 
edges possible in D. Since u is any of the four vertices in UG (D), this holds 
for all cases 

( <==) If (u, v) and (u', v') are oriented edges, then u'v and uv' are edges in 
domc (D). The number of vertices in each path is less than 3, so there are no 
generated subpaths in dome (D). Thus, domc (D) = P2 U P2, so UGc (D) ~ 
domc (D), and UG (D) ~ dam (D). • 

Now we characterize D where UGc (D) = P2UP3. We begin by determining 
what vertices cannot be the sources of edges in dome (D) outside of the edges 
in the generated subpaths. 

Lemma 3.6 Let UGc (D) = UI U2 U P3 where P3 = VI, V2, V3. If UG (D) ~ 
dam (D), then (VI,V3) and (v3,vd are both arcs in D. 
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Proof. If (VI, Va) or (va,vd is an oriented edge, then by Lemma 2.2, ver
tices VI, V2 and V3 form P3 in dome (D). Since UI and U2 cannot form P2 in 
dome (D), according to Lemma 2.10, there is no way to create P2 in dome (D), 
and UGC(D) ~ domC(D). Thus, both (VI,V3) and (v3,vd must be arcs in D. 

• 
One characteristic that begins to appear now and will follow the construc

tions through all of the pairs of paths, concerns multiple sources for an edge. 
If more than one vertex in these digraphs can be the source of the same edge 
in domc (D), then we can use any combination of the oriented edges in D that 
create the edge without creating new edges in domc (D). However, we must be 
careful that each vertex is the source of at most one edge. 

It is now possible to characterize all digraphs where UGc (D) = P2 U P3. 
Figure 2 shows a possible construct using the vertex labeling convention adopted 
in the theorem and its proof. The figure shows a digraph where the oriented 
edges are formed using part (1) of Theorem 3.7. The random choice of u and 
V allows the characterization of all digraphs without listing each isomorphic 
labeling. 

f!jJ
U' U 

. , 
v V v 

D 

Figure 2: D shows a maximum number of oriented edges when UGC(D) = 
P2 U Pa. Vertex labeling is arbitrary. 

Theorem 3.7 Let UGc (D) = P2 U Pa. Further, let u be a vertex of P2 and 
let u' be the other vertex. Let v be an end vertex of P3 and v' be the other end 
vertex. UG (D) ~ dam (D) if and only if every edge of UG (D) is bidirected in 
D except for the following. 

1. (a) (U' ,V2), (v,u) or (v',u) or any combination of these are oriented 
edges of UG (D) in D, and 

(b) (u, V2), (v, u') or (v', u') or any combination of these are oriented 
edges of UG (D) in D such that u, u' , v and v' are the origin of at 
most one 01'iented edge, or 

2. (u,v) is an 01'iented edge ofUG(D) in D, and (U',V2) or.(v',u) or both 
are oriented edges of UG (D) in D. 

The proof of Theorem 3.7 can be found in the final section of this paper. 
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When UGc (D) = P2 U P4 , we have the first instance where there are two 
nontrivial generated subpaths in domc (D). Either of these paths will be the 
one to form P2 in domc (D). Again, there is much symmetry here, so the 
labeling we choose gives us all possible digraphs. Figure 3 represents just one 
of the selections that the labeling can produce, and aids in the understanding 
of the proof to the theorem. 

UyU' 

.4~.--. 
I I 

v VI VI V 

D 

Figure 3: Example of labeling used where UGc (D) = P2 U P4 . 

Theorem 3.8 Let UGc (D) = P2 U P4 . Further, let P2 = u, u' and P4 = 
V, VI, v;' v' for arbitrary selections of end vertices u, u' , v, and v' in UGc (D). 
UG (D) ~ dam (D) if and only if every edge of UG (D) is bidirected in D except 
for the following. 

1. (u' , v') is an oriented edge of UG (D) in D, and 

2. (U,VI) or (v,u' ) or both are oriented edges of UG(D) in D, and 

3. (v, v') or (v', v) or both are arcs in D such that v and v' each are the origin 
of at most one oriented edge. 

The proof for Theorem 3.8 can be found in the final section of this paper. 

D 

/ ~, 
v~V 

domC(D) 

Figure 4: D shows a maximum number of oriented edges when UGc (D) = 
P2 U P5' Dashed edges are UGc (D), and bidirectional edges are omitted for 
simplicity. 

For the final characterization in this section, we have domc (D) generated 
with very little choice of what vertices form P2. The generated subpaths are 
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P 2 and P 3 . Since UIU2 f= P 2 in domc (D), only V2V4 can fill that function. 
Figure 4 shows a digraph with the maximum number of oriented edges where 
UGc (D) = P2 U P5 and UG (D) ~ dam (D). 

Theorem 3.9 Let UGc (D) = P 2 U P 5 . Further, let P 2 = U, u' and P 5 = 
V, VI, V3, v;' v' for arbitrary selections of end vertices u, u', v, and v' in UGc (D). 
UG (D) ~ dam (D) if and only if every edge of UG (D) is bidirected in D except 
for the following. 

1. (u', v) and (u, Vi) are both oriented edges of UG (D) in D, and 

2. (v,vn or (V', VI) or both or neither are oriented edges ofUG(D) in D. 

Proof. Paths v, V3, Vi and VI, vi are generated subpaths in domc (D). 
(~) Since UU' cannot be an edge in dam C (D), P2 = VI vi. Thus, P5 = 

U, V, V3, Vi, u' in domc (D). Edges uv and u'v' need to have a source in D. 
Since V is an end vertex, there is no Vk that can be used as a source of the edge 
for reasons explained in the proof of Theorem 3.8. Therefore, (u' , v) is the only 
oriented edge that will form uv in domc (D), so it must be in every biorientation 
of UG (D). For similar reasons, (u, Vi) is the only oriented edge generating u'v' 
in domc (D), so must be in every biorientation of UG (D), proving part (1). 

Corollary 2.4 allows that we may use oriented edges (v, vf) and (Vi, VI) with
out creating new edges in domc (D). Since these oriented edges are not nec
essary for the production of an additional edge in domc (D), if they are used, 
then they can appear in a biorientation singly or together, proving part (2). 
Since U and V are arbitrary selections of the end vertices, we obtain all possible 
biorientations. 

( -¢:=) Vertices u' and U are sources of edges uv and u'v' respectively in 
domC(D) when (u',v) and (u,v') are oriented edges of UG(D) in D. Vertices 
V and v' are both sources of edge vivi when (v, vf) and/or (v', vc) are oriented 
edges in D, and V3 is the only source of that edge otherwise. Thus, domc (D) = 
VI, vi U u, V, V3, Vi, u' , and UG (D) ~ dam (D) .• 

4 Structure of UGc (D) = ~ U Pj for i,j > 3 

If we were interested in seeing only what pairs of paths can comprise UGc (D) 
so that UG (D) ~ dam (D), the answer would be simple. 

Theorem 4.1 Let UGc (D) = Pi U P j where i,j 2: 3. There exists a biorien
tation of the edges of UG (D) such that UG (D) ~ dam (D) for every value of 
i,j 2: 3. 

Proof. This follows directly from Theorem 1.1 and Lemma 2.2. • 

However, we are interested in much more than just existence. The main 
goal is to characterize all digraphs where UGc (D) = Pi U P j and UG (D) ~ 
dam (D). Therefore, we must also consider the structure of UGc (D) when 
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paths in domc (D) are formed using vertices from both V (Pi) and from V (Pj ). 

We therefore continue the discussion of the underlying graph by expanding upon 
Lemma 2.8. Because only the end vertices of the paths in UGc (D) may be 
used as origins of oriented edges in D, certain edges cannot occur in domc (D). 
The following lemma details the edges that will never appear in that graph. 

Lemma 4.2 Let Pi = UI, ... , Ui and Pj = VI, .•. , Vj be paths that are components 
of UGC (D) for i,j 2: 3. If UG ~ dam (D), then UIVI, UIVj, UiVI and UiVj are 
not edges in domc (D). 

Proof. Lemma 2.8 states that only UI, Ui, VI or Vj can be the origin of an 
oriented edge in D. A vertex can also not be the source of more than one 
edge or an edge with which it is incident in domc (D). Thus, to form ul VI in 
domc (D), either Ui or Vj must be the source. Both Ui and Vj are adjacent to 
UI and VI, so the oriented edges (Ui, ur) and (Ui, vr) or (Vj, ur) and (Vj, vr) need 
to be in D for either of the two vertices to be the source of the edge UI VI' This 
contradicts Lemma 2.9, so ul Vl does not have any possible source and cannot 
be produced in domc (D) when UG (D) ~ dam (D). Similar arguments hold 
for the other three edges between the end vertices of the paths. • 

The previous lemma has important consequences for UGc (D) when both i 
and j are odd. Recall that when i is odd, UI, U3, ... , Ui is a generated subpath 
in dome (D). When we have two such paths, they can never be connected to 
form a larger path in domc (D), since we cannot form edges between the end 
vertices. 

Corollary 4.3 Let Pi = UI, ... , Ui and P j = VI,' .. , Vj be paths that are com
ponents of UGC(D) for odd i,j 2: 3. Further, let U1 = UI,U3,···,Ui, U2 = 
U2,U4, ... ,Ui-l, VI = VI,V3,···,Vj and V 2 = V2,V4""Vj-1 be the generated sub
paths in domc (D), where UI VI denotes the path UI, U3, .•. , Ui, VI, V3, ... , Vj. If 
UG (D) ~ dam (D), then UI VI is not a path in domc (D). 

Now we have the information necessary to further characterize UGc (D) 
where we expect domc (D) to be formed using vertices from both V (Pi) and 
V (Pj ). 

Theorem 4.4 Let Pi = Ul, ... ,Ui and P j = VI, ... ,Vj be paths that are compo
nents of UGC (D) for 3 ~ i ~ j. There exists a biorientation D of the edges 
of UG (D) such that UG (D) ~ dam (D) and UkVI is an edge in domc (D) for 
some k and I if and only if 

1. j = i, 

2. j = i + 1, 

3. j = 2i - 1, 

4. j = 2i, or 

S. j = 2i + 1. 

The proof of Theorem 4.4 can be found in the final section of this paper. 
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5 Characterization of D where UGc (D) = Pt, U Pj 

for i,j > 3 

In building digraphs as biorientations of their underlying graphs, Theorems 4.1 
and 4.4 separate the characterization into two parts. The first is where Pi and 
Pj are created in domc (D) using V (Pi) and V (Pj ) respectively from UGc (D). 
The second is where generated subpaths from V (Pi) and V (Pj ) are connected 
to form the paths. Now, to characterize all D where Pi and Pj are formed in 
domc (D) using Lemma 2.2, we need the following result. 

Lemma 5.1 Let Pi = UI, ... , Ui and Pj = VI, ... , Vj be paths that are components 
of UGC (D) for i, j ? 3. Also, let U = UI or Ui and V = VI or Vj. Any oriented 
edge (u, vd or (v, Uk) for 1 :::; k :::; i and 1 :::; l :::; j, creates an edge in domc (D) 
between V (Pi) and V (Pj ). 

Proof. If U = UI or Ui, then U2VI or Ui-l VI respectively is an edge in domc (D). 
The same argument holds for v .• 

This result makes it clear that in the case where Lemma 2.2 is used to 
produce paths Pi and Pi in domc (D), all edges in UG (D) between the vertices 
of PiC and PJ must be bidirected. 

Theorem 5.2 Let UGc (D) = Pi U Pi for i,j ? 3 where Pi = Ul, ... , Ui and 
Pi = VI, .. ·,Vj. UG(D) 9! domeD) and UkVI is not an edge in domC(D) for 
any 1 :::; k :::; i, 1 :::; l :::; j, if and only if the edges of UG (pn and UG (pJ) are 
bioriented as stated in Lemma 2.2 and all other edges are bidirected to form D. 

Proof. (==}) Since UG (D) 9! dam (D) and UkVI is not an edge in domc (D), 
Lemma 5.1 indicates that no oriented edge may exist between UI, .... ,Ui and 
VI, ... ,Vj. So all edges between V (Pi) and V(Pj ) in Dare bidirected. Thus, 
the paths must be formed in domc (D) as outlined in Lemma 2.2. This produces 
Pi on the vertices UI, ... ,Ui and Pj on the vertices vI,,,,,vi in domC(D). 

(-¢=) Given a biorientation ofthe edges in UG (pn and UG (PiC) pursuant to 
Lemma 2.2, we know that Pi and Pi are formed on vertices UI, ... , Ui and VI, ... , Vj 
respectively in domc (D). Since all other edges are bidirected, all other pairs 
of vertices dominate, and no additional edges are created in domc (D). Thus, 
domc (D) = Pi U Pj so that UG (D) 9! dam (D), and UkVI is not an edge for any 
1 :::; k :::; i, 1 :::; l :::; j. • 

Now we turn to the more interesting characterization. That where domc (D) 
contains at least one edge between V (P;) and V (Pi)' We know that only four 
vertices may be the origin of oriented edges in D, and each is the source of 
at most one edge in domc (D). In order to construct domc (D) so that it is 
isomorphic to UGc (D) where vertices from both V (P;) and V (Pj ) are used in 
each path, it is helpful to detail what edges are created in domc (D) given an 
oriented edge. 
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Lemma 5.3 Let Pi = UI"",Ui and Pj = VI, ... ,Vj be components of UGC (D) 
where i, j ? 3. 

1. If (UI, Vk) for 1 :::; k :::; j is an oriented edge in D, then U2Vk is an edge in 
domc (D). 

2. If (Ui, Vk) for 1 :::; k :::; j is an oriented edge in D, then Ui-l Vk is an edge 
in domc (D). 

3. If (VI, Uk) for 1 :::; k :::; i is an oriented edge in D, then Uk v2 is an edge in 
domc (D). 

4. If (Vj, Uk) for 1 :::; k :::; j is an oriented edge in D, then UkVj-1 is an edge 
in domc (D). 

Proof. In each case, the edge created in dome (D) is between the one vertex 
not adjacent to the origin of the oriented edge and the vertex dominated by that 
same vertex. They do not dominate, and thus form an edge in domc (D) .• 

A consequence of this lemma is that some edges between the paths Uk Vi 
can be formed in domc (D) in two ways, or one way, or cannot be formed. An 
example of edges that cannot exist was given in Lemma 4.2. The previous 
lemma only addresses edges formed between the two sets of vertices. Sources 
for edges within each set were given in Lemma 2.2. The following corollary 
restates the results in Lemma 5.3 in terms of the number of ways in which 
edge in domc (D) can be formed using oriented edges in D. This is important 
information for proving the final characterizations. 

Corollary 5.4 Let Pi = UI, "',Ui and Pj = VI, ... ,Vj be components,ofUGc (D) 
where i, j ? 3. If (Uk, VI) is an edge in domc (D) where k = 2 od -1 and l = 2 
or j -1, then there are two possible sources for the edge. All other edges of the 
form (us, Vt) in dam C (D) have at most one source. 

The structure of D supersedes the possible labelings of the vertices, so the 
focus is on the relationships of the oriented edges to each other. In this way, 
the isomorphic labelings are incorporated into the final results. Of course, to 
be able to indicate which vertices are involved with the oriented edges in D and 
the edges in domc (D), some labeling convention must be adopted. Thus, we 
will let U and u' be the end vertices of one path, with V and v' the end vertices of 
the other path. At times, we will need to discuss the vertices that are adjacent 
to U, u' , V, and/or v' in UGc (D). Thus, if U = UI or Ui, then Uk = U2 or 
Ui-l respectively. Likewise, if V = VI or Vj, then VI = V2 or Vj-l respectively. 
Similar labelings will be utilized for u~ and v;. 

From Theorem 4.4, the cases we need to consider in our characterization of 
D where UGc (D) = Pi U Pj, are 1) j = i , 2) j = i + 1, 3) j = 2i - 1, 4) 
j = 2i, and 5) j = 2i + 1. First, we consider the case where i = j is odd. The 
only oriented edges will be between the end vertices of the original two paths. 
Therefore, there are two oriented edge formations possible. These are shown 
in Figure 5. 
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1'" • v. or 1 ... i 
Figure 5: The only two possible oriented edge formations between V (Pi) and 
V (Pi) when i = j ~ 3 are odd. 

Theorem 5.5 Let UGc (D) = Pi U Pj, where i = j ~ 3 are odd. Further, let 
Pi = U, Uk, ... , u~, u' and Pj = v, VI, ..• , vL Vi in UGc (D). UG (D) 2:' dam (D) 
where there is an edge between V (Pi) and V (Pi) in domc (D) if and only if 
every edge of UG (D) is bidirected in D except for the following. 

1. (u,v) is an oriented edge of UG (D) in D, and 

2. exactly one of (v, u ' ) or (Vi, u' ) is an oriented edge of UG (D) in D, and 

3. for i,j ~ 5, oriented edges may be formed as stated in Corollary 2.3 such 
that u, u' , v, and Vi are each the origin of at most one oriented edge. 

Proof. (===:}) Pursuant to Lemma 2.1, there is one odd generated subpath and 
one even generated subpath on each of V (Pi) and V (Pi) in domc (D). To 
create two paths of length i, each odd path must have an edge to an even 
path. Since edges must exist between V (Pi) and V (Pi) in domc (D), the odd 
subpath generated on V (Pi) must have an edge to the even subpath generated 
on V (Pi), and similarly for their counterparts. Say that UVk is any such an 
edge in domc (D), forming path u', ... , U, Vk, ... , v~. Then (u, v) must be an 
oriented edge in D. This results in UVI never being an edge in domc (D) when 
UG (D) 2:' dam (D). To create the other path in domc (D), we must form edge 
uv;, u' VI, or u' v;. Edges uv; and u' VI are formed by oriented edges (v', u) and 
(v, u') in D respectively. These correspond to isomorphic digraphs. Thus, we 
only need list (v, u'). This relationship is shown in the first digraph of Figure 
5. Finally, if edge u'vf is in domc (D), (v', u' ) must be an oriented edge of D. 
Thus, within isomorphic labeling, (u, v) must be an oriented edge along with 
one of (v, u' ) or (v', u') since UG (D) 2:' dam (D). Additionally, oriented edges 
listed in part (3) may be created as stated in Corollary 2.4 as long as no vertex 
is the origin of more than one oriented edge. 

(¢=) If (u,v) and (v,u' ) are oriented edges in D, then edges UkV and U'VI 

are formed in domc (D), creating two paths with i vertices each. If (u, v) and 
(v', u' ) are oriented edges in D, then edges UkV and u'vf are formed in domc (D), 
creating two paths with i vertices each. In both cases, UG (D) 2:' dam (D). Any 
directed edge in part (3) that does not create a vertex that is the origin of more 
than one oriented edge is allowed, with no additional edges formed. Therefore, 
domc (D) = Pi U Pi where i = j are odd, and UG (D) 2:' dam (D). • 
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Next we examine the case where i = J IS even. To do so, it is easiest 
to separate possible orientations into classes determined by the structure of 
domc (D). We will describe digraphs where the paths in domc (D) have edges 
where 1) two end vertices are used in the two adjoining edges, 2) no end vertices 
are used in the two adjoining edges, and 3) one end vertex is used in the two 
edges. 

In determining the digraphs that result in isomorphic underlying and domi
nation graphs, we find that there is one formation that is not allowed in D when 
we look at the first case listed above. That where two end vertices are in the 
two edges of domc (D). The following lemma shows that in this case in D, the 
oriented edges will always be from one set of vertices, V (Pi)' to the other set, 
V (Pj ), where the paths are arbitrarily labeled. 

Lemma 5.6 Let UGc (D) = Pi U Pi with i = j even and UG (D) 2:' dam (D). 
Further, let x and w be end vertices in UGc (D). If xy and wz are edges between 
V (Pi) and V (Pi) in domc (D), then x and ware both end vertices of Pi or both 
end vertices of Pi' 

Proof. Suppose that x and ware in separate vertex sets. Let x = u in Pi 
and u' be the other end vertex. Also, let v = w in Pj and Vi be the other end 
vertex. Then u, ... , u~, Uk,"" u' , v, ... , v; and vl, ... , Vi are the four generated 
subpaths in domc (D). Since xy = uy and wz = vz are edges in domc (D), 
y =I- v; and z =I- u~, else paths u~, ... u, vL ... , v and v;, ... , v, u~, ... , u are formed, 
and u and/or v appears in more than one path in domc (D). Thus, y = VI and 
z = Uk. But then there is only one way to create edge UVI in domc (D), and 
that is with oriented edge (v, u) in D. Likewise, the one way to form edge UkV 

in domc (D) is with oriented edge (u,v) in D. They cannot be used together, 
as they form a bidirected edge. Thus, both x and w must be end vertices of 
either Pi or Pi' • 

With the preceding lemma, it is now possible to list the oriented edges that 
may occur in D when i = j is even. Figure 6 illustrates the possible oriented 
edges that may occur in D given the number of end vertices in UGc (D) that 
are used to connect the paths in damc (D). 

Theorem 5.7 Let UGc (D) = Pi U Pj, where i,j ~ 3 are even. Further, let 
Pi = U, Uk, ... , u~, u' and Pj = v, VI, ... , vf, v' in UGc (D). UG (D) 2:' dam (D) 
where there is an edge between V (Pi) and V (Pj ) in domc (D), if and only if 
every edge of UG (D) is bidirected in D except for the following. 

1. (a) (u, v) and (u' , v') are both oriented edges in D, or 

l. (u,vd or (V,Uk) aT both are oriented edges in D, and 

ii. (u', vD or (Vi, uU aT both are oriented edges in D, aT 

i. (u, v) is an oriented edge in D, and 

ii. (u', Vk) aT (v, Uk) or both aTe edges in D, and 
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1"'1 or or 

• • 
(a) (c) 

Figure 6: Digraphs where Pi and Pj are formed in domc (D) using (a) two, 
(b) zero, and (c) one of the end vertices from UGC(D). All are shown with 
the maximum number of oriented edges between V (Pi) and V (Pj ). Bidirected 
edges are omitted. 

2. for i, j :::: 4, oriented edges may be formed as stated in Corollary 2.3 such 
that u, u', v, and v' are each the origin oj at most one oriented edge. 

The proof of Theorem 5.7 can be found in the last section of this paper. 
To continue the characterization, we observe the case where j = i + 1. The 

values for i and j alternate odd and even, which in practice does not make a 
difference with the results. However, it is important to understand when we 
are dealing with the even path and when the odd path is discussed. While we 
could split the results into odd and even, that is not necessary if we generalize 
the paths. So for this case, we will let Pe = e, ek, "., e~, e' be the even path 
in UGc (D), and Po = 0, 01, "., 01' 0' be the odd path. Thus, one generated 
subpath in domc (D) has end vertices e and e'. They can only be joined to an 
interior vertex, 01 or 01' of the other path to create the odd path in domc (D). 
There is only one distinct way to do that. This narrows down the choices. 
Once the choice is made, as represented by the directed edge from the upper 
left to the lower left corner of every digraph in Figure 7, there is a variety of 
ways to produce the even path in domc (D). 

I ... · 
.~ 

(a) 

or 
1· .. · V 
•• A 

or v.: 
(c) 

Figure 7: Digraphs where Pi and Pj are formed in domc (D) when j = i + 1 and 
there is an edge between V (Pi) and V (Pj ). All are shown with the maximum 
number of oriented edges between V (Pi) and V (Pj ). The even set of vertices 
is on the top, and bidirected edges are omitted. 
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Theorem 5.8 Let UGc (D) = Pi U Pj, where i :::: 3 and j = i + 1. Further, let 
Pe = e,ek,,,.,e~,e' be the even path in UGC(D), and Po = 0,01,,,.,01,0' be the 
odd path. UG (D) ~ dam (D) where there is an edge between V (Pi) and V (Pj ) 
in dome (D), if and only if every edge of UG (D) is bidirected in D except for 
the following. 

1. (e, 0) is an oriented edge in D, and 

(a) (a', e) is an oriented edge in D, or 

(b) (e', aD or (0', e~) or both are oriented edges in D, or 

(c) (e', 01) or (0, eU or both are oriented edges in D, and 

2. oriented edges may be formed as stated in Corollary 2.3 such that e, e', 0, 

and a' are each the origin of at most one oriented edge. 

Proof. Part (2) is valid by Corollary 2.4. The remaining arguments deal with 
part (1). 

(==» If we let a be either of the end vertices of the odd path in UGc (D), 
then let eko be the edge formed in domc (D), we obtain an arbitrary labeling 
similar to that in the proof of Theorem 5.7. Path p} = a', "., 0, ek, ".e' is the 
odd path formed in domc (D). The arguments here follow the same logic as the 
proofs in Theorems 5.5 and 5.7. However, once we have chosen a and ek, there 
is a selection for how to form the remaining path in domc (D). Figure 7(a) 
illustrates the option of having the one end vertex, e, that is not in p} as one of 
the vertices incident with the edge that connects the remaining two subpaths. 
The only way for this to occur is for (0', e) to be an oriented edge in D. The 
remaining two possible connecting edges, e~ol and e~ol' can be formed in two 
ways each, as listed in parts 1 (b) and 1 (c) of the theorem statement. These 
two options are not isomorphic, as the relationships of the oriented edges are 
different, as seen in Figure 7(b) and (c). 

(~) By Lemma 5.3, if(e, 0) is an arc, then edge ekO is in domc (D), and each 
of parts (a) through (c) creates an edge connecting the remaining two subpaths 
in domc (D). This results in domc (D) consisting of two disjoint paths with i 
and j = i + 1 vertices. Thus, UGc (D) ~ domC (D) and UG (D) ~ dam (D) .• 

All of the previous cases have dealt with paths Pi and Pj in domC(D) that 
were created by connecting two subpaths for each. Now we turn our attention 
to those cases where Pi is one of the generated subpaths in domc (D), and Pj 
is created by connecting the remaining three subpaths. 

Remark 5.9 If j = 2i - 1, 2i or 2i + 1, where UG (D) ~ dam (D), then Pi in 
dome (D) is a generated subpath on V (Pj ). 

We begin now with the case where j = 2i - 1. Figure 8 shows examples 
of part (1) in the following theorem. The digraphs are shown on the same 
set of vertices as their associated dome (D) graphs. Edges shown are those for 
dome (D), and bidirected edges of D are omitted for simplicity. Labeling on 
part (a) shows the labeling convention adopted. 
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Figure 8: Examples of digraphs and their associated domc (D) graphs where i 
is odd, j = 2i - 1, and Pi is a generated subpath on V (Pj ). Edges shown are 
in domC(D), while arcs are in D. Bidirected edges are omitted. 

Theorem 5.10 Let uec (D) = PiUPj , where i ~ 3 and j = 2i-1. Further, let 
Pi = U,Uk,oo" u~,u' and Pj = V,Vi, 00', vf,v' in UeC(D). Ue(D) ~ dam (D) 
where there is an edge between V (Pi) and V (Pj ) in domc (D), if and only if 
every edge of ue (D) is bidirected in D except for the following. 

1. If edges are oriented in V (pn as stated in Lemma 2.2, then 

(a) (v, u) is an oriented edge in D, or 

(b) if i is odd, then (u', Vi) or (v, uU or both are oriented edges in D. 

2. If edges are not oriented in V (pn as stated in Lemma 2.2, then 

(a) (v, u) is an oriented edge in D, and 

i. (u, vD or (v', Uk) or both are oriented edges in D, or 

ii. if i is odd, then (u', vD or (v', u~) or both are oriented edges in 
D, or 

iii. if i is even, then (v', u') is an oriented edge in D, or 

(b) if i is even, then 

i. (u, VI) or (v, Uk) or both are oriented edges in D, and 

ii. (u', vD or (v', uk) or both are oriented edges in D. 

3. If i is odd or even, oriented edges stated in Corollary 2.3 may be used in 
addition to the required arcs in (l) and (2) as long as u, u', v, and v' are 
each the origin of at most one oriented edge in D. 

The proof of Theorem 5.10 can be found in the final section of this paper. 
Continuing with the cases where Pi in dome (D) is a generated subpath, 

we proceed to j = 2i. Unlike the cases where j = 2i + 1 or 2i - 1, here Pj 

is on an even number of vertices. This allows the choice of which generated 
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subpath, VI or V2, will be Pi in domc (D). Generally, we will let Pi = V2 = 
VI, 00., V'. Figure 9 shows a digraph and its associated domC (D) graph on the 
same set of vertices. It illustrates part 2(b)(ii) of the following theorem, and 
uses the minimum number of oriented edges. In the figure, Pi = V2 and Pj = 
UI , vf, 00', V, U2, where UI = U, u~ and U2 = Uk, u'. 

v v' 

Figure 9: A digraph D where j = 2i on the same set of vertices as domc (D). 
Edges shown are those in domc (D), while arcs are in D. Bioriented edges of 
D are omitted. 

Theorem 5.11 Let Uee (D) = Pi U Pj, where i ~ 3 and j = 2i. Further, let 
Pi = U, Uk, 00., u~, u' and Pj = v, vI, 00., vf, v' in uec (D). ue (D) ~ dam (D) 
where there is an edge between V (Pi) and V (Pj ) in dome (D), if and only if 
every edge of ue (D) is bidirected in D except for the following. 

1. If edges are oriented in V (pn as stated in Lemma 2.2, then 

(a) (v',u) is an oriented edge in D, or 

(b) if i is odd, then (u' v) is an oriented edge in D. 

2. If edges are not oriented in V (Pie) as stated in Lemma 2.2, and 

(a) if i is odd, then (v', u) is an oriented edge in D, and 

i. (u, v) is an oriented edge in D, or 

ii. (u', v) is an oriented edge in D, or 

(b) if i is even, then (u, v) is an oriented edge in D and 

i. (v', u) is an oriented edge in D, or 

ii. (u', vD or (v', u~) or both are oriented edges in D. 

3. If i is odd or even, oriented edges stated in Corollary 2.3 may be used in 
addition to the required arcs in (l) and (2) as long as 'U, u', v, and v' are 
each the origin of at most one oriented edge in D. 
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The proof of Theorem 5.11 can be found in the final section of this paper. 
To conclude the characterization of D where UGc (D) = PiUPj and UG (D) Q:! 

dam (D), the case where j = 2i+ 1 is examined. With j being odd, the choice for 
Pi in domc (D) is set, and VI = V, ... , v' must be connected to the two generated 
subpaths UI and U2 to form Pj in domc (D). There are very few nonisomorphic 
ways in which this can be done, so the final theorem has few options. 

Theorem 5.12 Let UGc (D) = PiUPj , where i 2: 3 and j = 2i+1. Further, let 
Pi = U,Uk, .. " uk'u' and Pj = V,VI, ... , v{,v' in UGC(D). UG(D) Q:! dam (D) 
where there is an edge between V (Pi) and V (Pj ) in domc (D), if and only if 
every edge of UG (D) is bidirected in D except for the following. 

1. If i is odd, then edges are oriented in V (pn as stated in Lemma 2.2, and 
(u' v) is an oriented edge in D. 

2. If i is even, then (u, v) and (u' , v') are oriented edges in D. 

3. If i is odd or even, oriented edges stated in Corollary 2.3 may be used in 
addition to the required arcs in (1) and (2) as long as u, u', v, and v' are 
each the origin of at most one oriented edge in D. 

Proof. Let VI = v, ... , v' and V2 = VI, ... , VI' The only choice for Pi in domc (D) 
is Pi = V2. 

(~) UG(D) Q:! dam (D) and Pi = V2 in domC(D), so subpaths UI, U2 
and VI must be connected to form Pj in dome (D). VI has end vertices v and 
v', which can only form edges with interior vertices Uk and uk in V (Pi). If i 
is odd, then UI = U, ... , u' cannot connect to VI since U and u' are not interior 
vertices. Thus, UI must connect to U2 = Uk, ... , Uk' which must be connected 
to VI. Thus, Lemma 2.2 must be used to connect UI and U2 , forming path 
u, ... , u' , Uk, ... Uk' The only edge that can connect this path to VI is uk v, where 
v is either end vertex of VI. So oriented edge (u' , v) in D is the only option 
when i is odd. 

If i is even, then Lemma 2.2 creates path u, ... , uk' Uk, ... , U' on V (Pi), which 
cannot be connected to VI in domc (D) since U and u' cannot form an edge 
with v or v'. Thus, UI and U2 must each be connected to VI, and Lemma 2.2 
cannot be used. Only Uk and uk can be connected to v and v'. Choose U and 
v arbitrarily. Then UkV and ukv' are the edges needed in domc (D). Thus, 
edges (u, v) and (u', v') are oriented edges in D. 

From Corollary 2.4, we are guaranteed that the arcs in part 3 will not alter 
the relationship UG (D) Q:! dam (D) as long as vertices u, u', v, and v' are each 
the origin of at most one oriented edge in D. 

(~) In all constructions for parts (1) and (2), Pi = V2 . Pj is formed as 
follows, creating UG (D) Q:! dam (D) with an edge between V (Pi) and V (Pj ). 

In part (1), Pj = UIU2 VI. In part (2), Pj = UI ,v' , ... ,V,U2' In all cases, the 
oriented edges in Corollary 2.3 may be used and create no new edges. Since 
u, u' , v, and v' are each the origin of at most one oriented edge, UG (D) Q:! 

dome (D) .• 
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., .. 
6 Proofs of Selected Results Omitted Ear Her 

Following is the proof for Theorem 3.2. 
Proof. ( ~) The case where j = 1 is obvious as the two vertices always 
dominate in D. 

When j = 2, E(UG(D)) = {UVI,UV2}. If (VI,U) is an orientation and 
(V2,U) is not, then U and V2 do not dominate, and form P2 in domc (D) with 
VI = Pl. Likewise, if (V2,U) is an orientation and (VI,U) is not, then U and VI 

form P2 in domc (D) with V2 = Pl. If (u, vI) and (u, V2) are oriented edges, 
then VIV2 forms P2 in dome (D) with U = Pl. Thus, UG (D) Q:! dam (D). 

When j 2: 3, for part (a), Lemma 2.2 gives us constructions that result in the 
formation of Pj in dome (D). Since U dominates all of the Vi, no relationships 
between the Vi are changed, and UVi is an edge in dam (D). Thus, U = PI 
and the Vi form Pj in dome (D), giving UGc (D) Q:! domc (D) and UG (D) Q:! 

dam (D). 
For part (b), if (u, vp ) and (u, vq ) are the only orientations of the edges of 

UG (D), then the only edges formed in dome (D) without the source U are the 
generated subpaths. The vertex U is the source for edge VpVq in domc (D). 
There is no vertex in Pj that is not adjacent to u, so only the edge VpVq is 
formed. Since VpVq joins the two subpaths in dome (D), forming Pj, and u is 
PI for reasons explained in part (a), UG (D) Q:! dam (D). 

For part (c), let the edges between vertices Vi be oriented as in Lemma 
2.2. First, consider the additional orientation (U,Vk) for k = 1, ... ,j. The 
vertex u is not the source for any edge in dome (D) since every vertex other 
than Vk dominate it. Thus, only the edges in dome (D) formed by oriented 
edges specified in Lemmas 2.2 and 2.1 are created, and u is an isolated vertex. 
Therefore, damc (D) = PI U Pj and UG (D) Q:! dam (D). Now consider that U 
is the origin of two oriented edges (u, Vk) and (u, VI) where k = 1, ... , j - 2 and 
l = k + 2. Then U is a source of the edge VkVk+2 in dome (D), for which vertex 
Vk+l is also a source since it is not adjacent to either vertex. Or, if k = p and 
l = q, then u is a source for the edge VpVq in damc (D), for which a vertex Vi 
is also a source, as determined in Lemma 2.2. In either case, no new edges 
are formed in domC(D), u is an isolated vertex in domc (D), and the vertices Vi 
form the path Pj. Thus, UG (D) Q:! dom (D). 

(~) The case where j = 1 is obvious as UG (D) = K2 and the two vertices 
always dominate in D. 

When j = 2 and UG (D) Q:! dam (D), then there must be a source to one 
edge in dome (D). A vertex cannot be the source of any edge with which it is 
incident. Therefore, if it is possible, u must be the source for VIV2, VI must be 
the source for UV2 and V2 must be the source for UVI. For the first case, U must 
dominate both VI and V2 in order to be the source. In the second case, VI and 
V2 are not adjacent, so the orientation (VI, u) of edge UVI makes UV2 an edge 
in dam C (D) since neither U nor V2 dominates VI' However, (u, V2) must be an 
oriented edge in D, so that UVI is an edge in UG (D). A similar argument holds 
for the case where V2 is the source for UVI. 

When j 2: 3, Lemma 2.2 shows a construction that creates an isomorphic 
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copy of Pj in dome (D) for j 2: 3. Lemma 3.1 guarantees that U must be equal 
to Pl in dome (D) since UG (D) 9:! dam (D). Therefore, no Vi will be the origin 
of an oriented edge with terminal vertex u, since edge UVi+l or UVi-l would be 
created in dome (D). Thus, U will be the only possible origin for any additional 
oriented edges outside of those created by Lemma 2.2. The vertex U will either 
be a source vertex, or it will not be. If it is not, since U is adjacent to all vertices 
in UG (D), either all edges UVi for i = 1, ... ,j will be bidirected, proving part 
3(a) above, or exactly one will have the orientation (U,Vi). If not, U would be 
a source of an edge in dome (D). This proves part 3(c)(i) above. 

If U is a source for an edge in dome (D) and we do not use Lemma 2.2 to 
create path Pj in dome (D), then U must be the source for edge VpVq so that Pj 

is created in dome (D). Since U is adjacent to both vertices in UG (D), both 
(u, vp) and (u, vq) must be oriented edges in D, proving part (2). 

If U is a source for an edge in dome (D) and we use Lemma 2.2 to create Pj 

in dome (D), then U must be the source for an edge that is in Pj' Thus, U must 
be the source of an edge ViVi+2, for i = I, ... ,j - 2, or v must be the source of 
edge VpVq' Since U is adjacent to all vertices in UG(D), (U,Vi) and (U,Vi+2) or 
(u,vp ) and (u,vq ) must be oriented edges in D, proving part 3(c)(ii). 

Lemma 2.6 guarantees that u cannot be the source of more than one edge 
in dome (D), so it is the origin of at most two oriented edges in D. • 

Following is the proof for Theorem 3.7. 
Proof. (=}) By Lemma 2.10, when U G (D) 9:! dam (D), uu' is not an edge in 

dome (D). Therefore, either vv', UlV2, or U2V2 must be P2 in dome (D). Since 
u can be either vertex Ul or U2, the second two choices reduce to UV2. Edge 
vv' is a generated subpath in domc (D), so if VV' = P2 in dome (D), edges UV2 

and U'V2 must also be in dome (D) forming P3 . From Lemma 2.8 we know 
that only vertices u, u', v, and v' may be the sources of additional edges in 
dome (D). Edge UV2 can be generated with oriented edges (u', V2), (v, u) or 
(v', u). Likewise, edge U'V2 can be generated with oriented edges (u, V2), (v, u') 
or (v'u'). We may use any combination of the oriented edges to create each of 
the edges in dome (D). So at least one from each group must be in D so that 
the associated edge is created in dome (D). However, Lemma 2.9 restricts the 
number of edges we may orient. Therefore, only digraphs where u, u', v and v' 
are the origin of at most one oriented edge of the preceding form are possible 
when UG (D) 9:! dam (D). Additionally, according to Lemma 3.6, edge VV' must 
be bidirected in D. There are no other sources for the given edges in dome (D), 
so all other edges in UG (D) must be bidirected in D. 

If UV2 = P2 in domc (D), then u'v or u'v' must also be edges in dome (D). 
Within isomorphic labeling, we will generate edge u'v'. This may be done only 
by using oriented edge (u, v'). Note that (v, u') will not produce the desired 
edge in this case, and there are no other vertices that may serve as the origin 
of an oriented edge since u' and v' cannot be the source of their own edge. 
To generate the edge UV2, possible oriented edges are (U',V2), (v,u) and (v',u). 
However, since (u, v') must be an oriented edge in every biorientation of UG (D), 
and UG(D) 9:! dam (D), (v',u) can never be used. Thus, we must have(u,v') 
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and any selection of the other two directed edges. 
( {==) The edge VV' is generated as stated in Lemma 2.1. Vertices u', 

V and/or v' are sources for the edge UV2 in domc (D) when D has oriented 
edges (u', V2), (v, u) and/or (v', u) respectively. No other edges in domc (D) 
are generated by these directed edges. Likewise, vertices u', v and/or v' are 
sources for the edge U'V2 in domc (D) when D has oriented edges (u, V2), (v, u') 
and/ or (v', u') respectively. As long as each of u, u', v and v' are the origin 
of at most one oriented edge in D, any combination of these oriented edges 
with at least one from each group results in domc (D) = vv' U U,V2,U', and 
UG (D) 9:! dam (D). 

If (u, v) is an oriented edge in D, then u'v is an edge in domc (D), and 
u', v, v' is a path on three vertices. When D has oriented edges (u', V2) and/or 
(v', u), edge UV2 is formed in domc (D). Any digraph D with one or both of 
these oriented edges of UG (D) will have the edge UV2. Thus, domc (D) = 
UV2 Uu',v,v', and UG(D) 9:! dam (D) . • 

Following is the proof for Theorem 3.S. 
Proof. (=}) Paths v,vf and V',VI are generated subpaths in domc (D). Since 
uu' cannot be an edge in domc (D), either vvf or V'VI form P2 when UG (D) 9:! 

dam (D). Since the choice of v is arbitrary, say that v, vf = P2 in domc (D). 
Then U,V',VI,U' = P4 in domC(D). Thus, edges uv' and U'VI must be formed. 
The vertex v' is an end vertex. The only vertex not adjacent to v' in UG (D) 
cannot be used as the source of an edge in domc (D). Therefore, the only 
directed edge that can be used to form uv' is (u', v'). So (u', v') must be an 
oriented edge in every biorientation of UG (D), proving part (1). 

To form edge U'VI in domc (D), we are not restricted in the same way as 
that for edge uv'. Here, VI is an interior vertex. Vertex v is not adjacent 
to VI in UG (D), and may be the origin of an oriented edge in D. Therefore, 
the oriented edges that can be used separately or together to form edge U'VI in 
dome (D) are (u, VI) and (v, u'), proving part (2). 

Part (3) follows from Corollaries 2.3 and 2.4 as well as Lemma 2.9. 
({==) Paths vv; and V' VI are generated subpaths in domc (D). Vertex u' is 

the source for edge UV' in domc (D) when (u', v') is an oriented edge in D. If 
(U,VI) and/or (v,u') are oriented edges in D, edge U'VI is created in domC(D). 
Vertex v is a source of edge V'VI in domc (D) when (v, v') is an oriented edge in 
D, and V'VI also has the source vf, as neither vertex is adjacent to v; in UG (D). 
Likewise, v' is a source of edge vv; when (v', v) is an oriented edge in D, where 
VI is always a source for vv;. Thus, if either or both of these edges is in D, no 
new edges appear in dome (D). Since all other edges of UG (D) are bidirected 
in D, there are no other edges formed in domc (D). Thus, domc (D) = v, vfU 
U,V',VI,U', and UG(D) 9:! dam (D) . • 

Following is the proof for Theorem 4.4. 
Proof. (=}) If i or j is even, then there are two generated subpaths, each of 
length ~ or ~ in domc (D). If i or j is odd, then the two generated subpaths 
in domc (D) are of length i¥ and i;l, or i¥ and y respectively. When 
UG (D) 9:! dam (D) and we want ed!!;e UkVI to be in domc (0), we must be 
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able to connect each path formed with vertices Ul, ... , Ui to a path formed with 
vertices Vl, ... , Vj. 

First, we concentrate on each subpath on V (P;) being connected to a dif
ferent subpath on V (Pj ). Consider i and j both even. Then we must have 
4 + ~ = i or j, so j = i. 

Consider i and j both odd. From Corollary 4.3, we know that we cannot 
connect the two odd paths in domc (D). Therefore, the odd subpath generated 
on vertices Ul, ... , Ui must augment the shorter even subpath generated on ver
tices Vl, ... , Vj. The same holds true for the other odd subpath. Thus, the only 
time that i¥ + ~ = i and L¥ + 4 = j (or vice versa) is when i = j. 

Consider one of i or j odd. Say that i is odd. Since UkVI is in domc (D), 
Ul, U3, ... , Ui must be connected to a path that is the same length as the path that 
U2, U4, ... , Ui-l must be connected to, namely Vl, V3, ... , Vj-l and V2, V4, ... , Vj' 

Thus, j = i + 1. 
Now we concentrate on the possibility that one subpath is not connected to 

another subpath. Since i ::; j, this subpath must form Pi in domc (D). Thus, 
it is one of the generated subpaths formed on V (Pj ). The length of subpaths 
on V (Pj ) is ~ if j is even, or ~ and L}! if j is odd. Thus, j = 2i, 2i + 1, or 
2i - 1 respectively. 

( {:=) Constructions that do not depend upon this theorem are given in 
Theorems 5.5, 5.7, 5.8, 5.10, 5.11, and 5.12, which take the values for i and j 
given in the statement of Theorem 4.4 and give biorientations of the underlying 
graph resulting in UG (D) ~ dam (D) with an edge between V (Pi) and V (Pj ). 

Thus, there are biorientation of the edges of UG (D) such that UG (D) ~ 
dam (D) where there are edges between the Ui and the Vj' • 

Following is the proof for Theorem 5.7. 
Proof. Part (2) is valid by Corollary 2.4. The remaining arguments deal with 
part (1). 

(=» The four generated subpaths are of the same length in domc (D). 
Since there is an edge between V (Pi) and V (Pj ) in domc (D), each of these 
paths on a subset of V (Pi) must be connected to a path from V (Pj ) to form 
the isomorphic graph. We know that UV, uv' , u'v, and u'v' cannot be edges in 
domc (D). Thus, only two, zero or one of u, u' , v and Vi can be incident with 
an edge connecting the two sets of vertices in domc (D). We will separate the 
characterization into these three possibilities. 

If two end vertices are used, let v be one of them. From Lemma 5.6, Vi 
must be the other of the two vertices since they must be from the same set of 
vertices, V(Pi ) or V(Pj ). Any edge containing v or Vi in domC(D) will have 
U or u' as a source. Let u be either vertex, and (u, v) an oriented edge in D. 
Then (u' , Vi) must be the other oriented edge so that two edges incident to v 
and Vi are created in domc (D). The arbitrary selection of u and v includes all 
possible labelings that produce this. Thus, edges UkV and U~V' are in domc (D), 
creating two paths that are disjoint, with i vertices each. Figure 6(a) shows 
the generic orientation of the only two edges that can accomplish this. 

If there are no end vertices connecting Pi and Pj in domc (D), then all of the 
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vertices Uk, u~, vI, and vf must be incident with the two edges between vertex 
sets. Arbitrarily pick Uk to label one of the four possible interior vertices. 
Arbitrarily label one of the other interior vertices of the other vertex set as VI. 
SO, in UGc (D), we have paths u, Uk, ... , U~, u' and v, VI, ... , vf, Vi. Say that UkVI 
and u~vf are the two edges in domc (D). This selection includes all possible 
edges between the two sets where no end vertices are used. Two paths with 
i vertices each are created. To form these edges in domc (D), Corollary 5.4 
indicates that two oriented edges may be used, and we can use one or both of 
them in D. Oriented edges (u, VI) or (v, Uk) or both may be used to create edge 
Uk VI, while oriented edges (u' , vI) or (Vi, uk) or both may be used to create edge 
u~v;' The possibility where all of these arcs are used is shown in Figure 6(b). 

If there is one end vertex that is incident with an edge connecting V (Pi) and 
V (Pj ) in domc (D), let us call that vertex v. Choose u to be either end vertex 
of the other vertex set. Oriented edges (u, v) and (u' , v) are the only ones that 
will produce an edge in dome (D) that is incident with v. The arbitrary nature 
of the labeling of u, allows us to reduce this to (u,v), producing edge UkV in 
domc (D) and path u' , ... , Uk, v, ... v;. So, (u, v) must be an oriented edge in D. 
There are only two remaining interior vertices that are not on the path created 
by edge UkV in domc (D). They are the vertices u~ and VI. They must form 
the second edge, creating the second path of i vertices. This can be done if D 
contains oriented edges (u' , vd or (v, uk) or both. Figure 6(c) gives the example 
where (u, v) and both of the other two oriented edges are in D. 

({:=) By Lemma 5.3, parts l(a), (b) and (c), when used separately, create 
edges in domc (D) between V (Pi) and V (Pj ) that result in domc (D) consisting 
of two disjoint paths with i = j even vertices each. Thus, UGc (D) ~ dome (D) 
and UG (D) ~ dam (D). • 

Following is the proof for Theorem 5.10. 
Proof. The arbitrary selection of U and v generates all nonisomorphic digraphs. 

(=» If UG(D) ~ dam (D), then Pi in domC(D) must be the generated 
subpath Vl = v, ... , Vi on V (Pj ). Thus, subpaths V2 = VI, ... , vi, Ul and U2 

must form Pj in domc (D). Either Ul and U2 are connected by an edge or they 
are not. 

1. Say that Ul and U2 are connected by an edge. This implies that oriented 
edges must be used as stated in Lemma 2.2. When i is odd, path Uo = 
u, ... , u ' , Uk, ... , u~ is formed. When i is even, path Ue = U, ... , u~, Uk,,," U' 
is formed. In both Uo and Ue , the arbitrary vertex U is an end vertex, so 
the edge UVI can be created in both cases. Oriented edge (v, u) in D is 
the only one that creates edge UVI in domc (D). For Ue , there is no other 
nonisomorphic edge that connects it to V2 • However, in Ua , U~VI is an 
option. It is non isomorphic since u~ is an interior vertex, and u is not. 
Oriented edges (u' , VI) or (v, u~) create edge u~ VI in dome (D), and can be 
used simultaneously. This gives us part (1) of the theorem. 

2. If Uj and U2 are not connected, this implies that V2 must have one end 
vertex adjacent to Ul and the other to U2. Whether i is odd or even, 
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the edge uVI can be used to connect UI to V2 , so (v,u) can be an oriented 
edge in D. When it is, U2 must be connected to VI' When i is either 
odd or even, the edge Uk vf does this, so (u, vf) or (v', Uk) or both may be 
oriented edges in D. Additionally, if i is odd, using u~v{ instead of UkV{ 
is a nonisomorphic construction connecting U2 and V2 , where (u', vf) or 
(v', u~) or both are oriented edges in D. Likewise, if i is even, using u'v{ 
instead of ukvf connects U2 and V2, where (v',u') is an oriented edge of 
D. This gives us part (2)(a) of the theorem. 

All other choices when i is odd are isomorphic within the labeling. How
ever, UVI does not have to be an edge if i is even. Both interior vertices, 
Uk and u~, may be used to connect UI and U2 to V2 respectively. Thus, 
edges UkVI and u~vf in domc (D) will create path Pj' To do this, D must 
have oriented edges (u, VI) or (v, Uk) or both, and oriented edges (u', vD 
or (v',uU or both. This gives us part (2)(b) of the theorem. 

3. From Corollary 2.4, we are guaranteed that the arcs in part 3 will not 
alter the relationship UG (D) ~ dam (D) as long as vertices u, u', v, and 
v' are each the origin of at most one oriented edge in D. 

(~) In all constructions for parts (1) and (2), Pi = VI in domc (D). Pj is 
formed as follows, creating UG (D) ~ dam (D) with an edge between V (Pd and 
V (Pj ). In part (1)(a), Pj = vL ... , VI, UIU2. In part (1)(b), Pj = UIU2V2· In 
part (2)(a)(i), Pj = u', ... , U, V2U2. In part (2)(a)(ii), Pj = u', ... , U, V2, u~, ... , Uk· 
In part (2)(a)(iii), Pj = U2,vf, ... ,V/,UI. In part (2)(b), Pj = UI,vf, .. ·,V/,U2 . 

In all cases, the oriented edges in Corollary 2.3 may be used and only generate 
edges already in the generated subpaths. Since u, u', v, and v' are each the 
origin of at most one oriented edge, UG (D) ~ domc (D). • 

Following is the proof for Theorem 5.11. 
Proof. The arbitrary selection of u and V generates all nonisomorphic digraphs. 

(==}) UG (D) ~ dam (D) so Pi in domc (D) must be the generated subpath 
VI = V, ... , vf or V2 = VI, ... , V'. Without loss of generality, say Pi = V2. Thus, 
subpaths VI, UI and U2 must form Pj in domc (D). Either UI and U2 are 
connected by an edge or they are not. 

1. Say that UI and U2 are connected. This implies that oriented edges 
must be used as stated in Lemma 2.2. When i is odd, path Uo = 
u, ... , u', Uk, ... , u~ is formed. When i is even, path Ue = U, ... , u~, Uk,"" u' 
is formed. To connect VI to Uo or Ue , edge uvf can be formed when 
arbitrarily choosing U and v. In both instances, oriented edge (v', u) in 
D will create uVI in domc (D). There is no other way to connect VI to 
Ue since the only other vertex choices are end vertices that cannot form 
edges in domc (D). However, VI can be connected to Uo using edge u~v. 
Oriented edge (u', v) in D is the only way to create that edge, and gives 
us part (1) of the theorem. 
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2. If UI and U2 are not connected, this implies that VI must have one end 
vertex adjacent to UI and the other to U2 . When i is odd, this can be 
done nonisomorphically in two ways. In each, we create edge uVI by using 
oriented edge (v', u) in D. In addition, either Uk or u~ can be connected 
to v. These are nonisomorphic choices since Uk is adjacent to our chosen 
U in UGc (D), and u~ is not. We obtain edge UkV or edge u~v only by 
creating oriented edges (u, v) or (u' v) respectively in D. This gives us 
part (2)(a) of the theorem. When i is even, at least one of Uk or u~ 
must be connected to v since neither U nor u' can be. Without loss of 
generality, say that UkV is the edge, which implies the (u, v) is an oriented 
edge in D. The remaining subpath may connect to vf using either vertex 
U or u~. Edge uvf is formed in one way, and that is by creating oriented 
edge (v', u) in D. Edge u~ vf can be formed in two ways, using oriented 
edge (u', vI) or (v', uU or both. This gives us part (2)(b) of the theorem. 

3. From Corollary 2.4, we are guaranteed that the arcs in part 3 will not 
alter the relationship UG (D) ~ dam (D) as long as vertices u, u', v, and 
v' are each the origin of at most one oriented edge in D. 

(~) In all constructions for parts (1) and (2), Pi = V2 is an arbitrary 
choice. Pj is formed as follows, creating UG (D) ~ dom (D) with an edge 
between V (Pi) and V (Pj ). In part (1)(a), Pj = VIUIU2 • In part (1)(b), 
Pj = UIU2VI. In part (2)(a)(i), Pj = u~, ... ,Uk' VIU2. In part (2)(a)(ii), 
Pj = U2VIUI. In part (2)(b)(i), Pj = u', ... ,Uk, VIUI. In part (2)(b)(ii), 
Pj = UI,v;, ... ,V,U2. In all cases, the oriented edges in Corollary 2.3 may be 
used and only generate edges already in the generated subpaths. Since u, u', 
v, and v' are each the origin of at most one oriented edge, UG (D) ~ domc (D). 
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