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Abstract: A class of discrete-time nonlinear system and measurement equations having 
incrementally conic nonlinearities and finite energy disturbances is considered. A linear matrix 
inequality based resilient observer design approach is presented to guarantee the satisfaction of a 
variety of performance criteria ranging from simple estimation error boundedness to dissipativity 
in the presence of bounded perturbations on the gain. Some simulation examples are included to 
illustrate the proposed design methodology. 
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SECTION I. 

Introduction 

In recent years, many new nonlinear state observer design techniques have been 
developed: feedback linearization, variable structure, extended linearization, high gain 
observers and Lyapunov-based techniques, among others. In references,1,2,3 several 
feedback linearization techniques for a class of nonlinear systems are proposed. A variable 
structure technique is proposed in reference.4 Performance of several nonlinear state 
observation techniques are compared in.5 A design methodology for state estimation of 
nonlinear stochastic systems and measurement models with colored noise process is 
presented in reference.6 In,7 an extension is given of the variable structure observers to 
unbounded noise and measurement uncertainties. In,8 an adaptive extension of the sliding-
mode observer to state reconstruction of nonlinear systems with uncertainty having 
unknown bounds is presented. An extended linearization technique, a design method based 
on the family of linearizations of the system, parameterized by constant operating points 
for a single input and multiple output nonlinear system model is considered in9 High gain 
observers are introduced for nonlinear systems in.10,11 The Lyapunov-based observer 
design introduced in12 for a class of nonlinear systems is extended and improved further by 
several researchers.13,14,15,16,17,18,19,20 These are only some of the major approaches to 
nonlinear observer design included due to space limitations. 

In this paper, a novel design of resilient observers is introduced for discrete-time 
nonlinear systems with incrementally conic nonlinearities and finite energy type 
disturbances. An observer for which the closed-loop system is destabilized by a small 
perturbation in the observer gains is referred to as a “fragile” or “non-resilient” observer. 
Although, this problem was addressed in the gain margin studies in classical control, the 
topic has regained attention recently.21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36 Since more and 
more implementations of controllers and observers are done digitally, there are numerical 
round off errors in computation. Also, some implementations need manual tuning with 
obtaining the preferred performance of the observer system. For that reason, it is desired 
to design an observer that has tolerance to the readjustment of the gain coefficients. 

In this work, an observer design method is presented to accommodate such 
perturbations in the gain where nonlinearities are allowed in both the state and the 
measurement equations and are more general than the Lipschitz type nonlinearity used 
in.12,13,14,15,16,17 Linear matrix inequality (LMI) techniques30 are used as the main 
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mathematical tool. This result is a natural follow up to the LMI-based robust observer 
design method presented in31 for continuous-time uncertain nonlinear systems with 
integral quadratic constraints and its control counterpart of,32 which is the design of linear 
state feedback controllers for a class of continuous-time nonlinear systems with uncertain 
nonlinear dissipative dynamics in the feedback loop. This result is also generalization of the 
results in.33 In the next section, the problem of nonlinear observer design according to 
various performance criteria is formulated. Then the LMI solutions are introduced in 
Section 3. Simulation examples presented in Section 4 provide validation for the theoretical 
results. 

The following notation is utilized in this work: 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛 denotes an n -dimensional 

vector with real elements and with the associated norm ∥ 𝑥𝑥 ∥= (𝑥𝑥𝑇𝑇𝑥𝑥)
1
2 where (⋅)𝑇𝑇 

represents the transpose. 𝐴𝐴 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛 denotes an m × n  matrix with real elements. A −1 is the 
inverse of matrix A,A>0(A<0) means A  is a positive (negative) definite matrix, and Im  is 
an identity matrix of dimension 𝑚𝑚𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴)�𝜆𝜆𝑚𝑚𝑚𝑚𝑛𝑛(𝐴𝐴)� denotes the maximum(minimum) 
eigenvalue of a symmetric matrix 𝐴𝐴. ℓ2 is the space of vector valued signals with finite 
energy. Rayleigh's inequalities  for a symmetric matrix A will be used in this work. Also the 
following Schur complement results:  

   

[ 𝐴𝐴 𝐵𝐵
𝐵𝐵𝑇𝑇 𝐶𝐶    ] ≥ 0 ⇔ (𝐴𝐴 − 𝐵𝐵𝐶𝐶−1  𝐵𝐵𝑇𝑇   > 0 𝑎𝑎𝑎𝑎𝑎𝑎 

𝐶𝐶 > 0) ⇔ (𝐶𝐶 − 𝐵𝐵𝑇𝑇   𝐴𝐴−1  𝐵𝐵 > 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴 > 0) 
   

for suitably defined matrices will be used. 
 

SECTION II. 

Problem Formulation 

Consider a state space representation of a non-linear system of the general form:  

𝑋𝑋𝑘𝑘+1 = 𝑓𝑓(𝑋𝑋𝑘𝑘 , 𝑢𝑢𝑘𝑘 , 𝑊𝑊𝑘𝑘), 𝑦𝑦𝑘𝑘 = ℎ(𝑋𝑋𝑘𝑘 , 𝑢𝑢𝑘𝑘 , 𝑊𝑊𝑘𝑘)  (1)  
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where 𝑥𝑥𝑘𝑘 ∈ 𝑅𝑅𝑛𝑛 is the state to be estimated from knowledge of the control input 𝑢𝑢𝑘𝑘 ∈
𝑅𝑅𝑚𝑚  and the measurement output 𝑦𝑦𝑘𝑘𝑅𝑅𝑝𝑝. 𝑤𝑤𝑘𝑘 is an ℓ2 disturbance input. The nonlinear 
functions ƒ and h  are assumed to be measurable functions of their arguments. 

We assume the following incrementally conic condition on the nonlinearites:  

��
𝐹𝐹(𝑒𝑒 𝑘𝑘 , 𝑤𝑤 𝑘𝑘

𝐻𝐻(𝑒𝑒 𝑘𝑘 , 𝑤𝑤 𝑘𝑘 )�� ≐  ��
𝑓𝑓(𝑥𝑥 𝑘𝑘 , 𝑢𝑢 𝑘𝑘 , 𝑤𝑤 𝑘𝑘 ) − 𝑓𝑓(𝑥𝑥 ^  𝑘𝑘 , 𝑢𝑢 𝑘𝑘 , 0) − (𝐴𝐴𝑒𝑒 𝑘𝑘 + 𝐵𝐵𝑤𝑤 𝑘𝑘
ℎ(𝑥𝑥 𝑘𝑘 , 𝑢𝑢 𝑘𝑘 , 𝑤𝑤 𝑘𝑘 ) − ℎ(𝑥𝑥 ^  𝑘𝑘 , 𝑢𝑢 𝑘𝑘 , 0) − (𝐶𝐶𝑒𝑒 𝑘𝑘 + 𝐷𝐷𝑤𝑤 𝑘𝑘�� 

≤∥ 𝐴𝐴 𝑓𝑓 𝑒𝑒 𝑘𝑘 + 𝐵𝐵 𝑓𝑓 𝑤𝑤 𝑘𝑘 ∥   
(2)  

 for 𝑒𝑒𝑘𝑘 = 𝑥𝑥𝑘𝑘 − 𝑥𝑥�𝑘𝑘  for any two vectors 𝑥𝑥𝑘𝑘 , 𝑥𝑥�𝑘𝑘 ∈ 𝑅𝑅𝑛𝑛 and for some matrices 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, 𝐷𝐷, 𝐴𝐴𝑓𝑓, and 
B f.  This describes in incremental terms the maximum deviation given by the right side of 
(2) of the nonlinearities F  and H  from the central linear system describing the error 
evolution  

𝑒𝑒𝑘𝑘+1 = 𝐴𝐴𝑒𝑒𝑘𝑘 + 𝐵𝐵𝑤𝑤𝑘𝑘 , 𝑦𝑦𝑘𝑘 = 𝐶𝐶𝑒𝑒𝑘𝑘 + 𝐷𝐷𝑤𝑤𝑘𝑘  
   

where (A,C) is a detectable pair. Note that vector functions ƒand h which are globally 
Lipschitz in their arguments used in [12]“[17] are special cases of incremental conicity 
defined in (2) with A=0,B=0,C=0 and D=0, where (A,C) is trivially detectable. 

Let 𝑥𝑥�𝑘𝑘, the estimate of the true state, obey the following nonlinear Luenberger observer 
equation  

𝑥𝑥�𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥�𝑘𝑘 , 𝑢𝑢𝑘𝑘 , 0) + (𝐾𝐾 + Δ𝑘𝑘)�𝑦𝑦𝑘𝑘 − ℎ(𝑥𝑥�𝑘𝑘 , 𝑢𝑢𝑘𝑘 , 0)�  (3)  

 where Δk represents the additive perturbation (due to computational or tuning errors) in 
the observer gain which is bounded as follows: 

Δ𝑘𝑘
𝑇𝑇Δ𝑘𝑘 ≤ 𝑟𝑟𝑟𝑟 for r>0 and for all k≥0. 

The dimension of Δ is identical to the dimension of the gain. Substituting from equations 
(1) – (3), adding and subtracting the same terms and then rearranging, we find that the 
error dynamics obey  
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𝑒𝑒𝑘𝑘+1 = 𝑓𝑓(𝑥𝑥𝑘𝑘 , 𝑢𝑢𝑘𝑘 , 𝑤𝑤𝑘𝑘) − 𝑓𝑓(𝑥𝑥�𝑘𝑘 , 𝑢𝑢𝑘𝑘 , 0) ± (𝐴𝐴𝑒𝑒𝑘𝑘 + 𝐵𝐵𝑤𝑤𝑘𝑘)
−(𝐾𝐾 + Δ𝑘𝑘){ℎ(𝑥𝑥𝑘𝑘 , 𝑢𝑢𝑘𝑘 , 𝑤𝑤𝑘𝑘) − ℎ(𝑥𝑥�𝑘𝑘 , 𝑢𝑢𝑘𝑘 , 0) ± (𝐶𝐶𝑒𝑒𝑘𝑘 + 𝐷𝐷𝑤𝑤𝑘𝑘)}

= (𝐴𝐴 − (𝐾𝐾 + Δ𝑘𝑘)𝐶𝐶)𝑒𝑒𝑘𝑘 + (𝐵𝐵 − 𝐾𝐾𝐷𝐷)𝑤𝑤𝑘𝑘
+𝐹𝐹(𝑒𝑒𝑘𝑘 , 𝑤𝑤𝑘𝑘) − (𝐾𝐾 + Δ𝑘𝑘)𝐻𝐻(𝑒𝑒𝑘𝑘 , 𝑤𝑤𝑘𝑘)

= (𝐴𝐴 − 𝐾𝐾𝐶𝐶)𝑒𝑒𝑘𝑘 + [𝑟𝑟, −(𝐾𝐾 + Δ𝑘𝑘)] �𝐵𝐵𝑤𝑤𝑘𝑘 + 𝐹𝐹(𝑒𝑒𝑘𝑘 , 𝑤𝑤𝑘𝑘)
𝐷𝐷𝑤𝑤𝑘𝑘 + 𝐻𝐻(𝑒𝑒𝑘𝑘 , 𝑤𝑤𝑘𝑘)�

 (4)  

Let Zk denote the performance output where  
 

𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑧𝑧𝑒𝑒𝑘𝑘 + 𝐷𝐷𝑧𝑧𝑤𝑤𝑘𝑘  (5)  

and consider the general performance objective  
 

𝑉𝑉𝑘𝑘+1 − 𝑉𝑉𝑘𝑘 + 𝛿𝛿 ∥ 𝑧𝑧𝑘𝑘 ∥2 +∈∥ 𝑤𝑤𝑘𝑘 ∥2− 𝛽𝛽𝑧𝑧𝑘𝑘
𝑇𝑇𝑤𝑤𝑘𝑘 ≤ 0 (6)  

for an energy function 𝑉𝑉𝑘𝑘 = 𝑒𝑒𝑘𝑘
𝑇𝑇𝑃𝑃𝑒𝑒𝑘𝑘 where P>0. 

Notice that upon summation, inequality (6) yields  

𝑒𝑒𝑁𝑁
𝑇𝑇𝑃𝑃𝑒𝑒𝑁𝑁 ≤ 𝑒𝑒0

𝑇𝑇𝑃𝑃𝑒𝑒0 − � (𝛿𝛿|𝑧𝑧𝑘𝑘 ∥2 +∈∥ 𝑤𝑤𝑘𝑘 ∥2− 𝛽𝛽𝑧𝑧𝑘𝑘
𝑇𝑇𝑤𝑤𝑘𝑘)𝑁𝑁

𝑘𝑘=0  (7)  

or by using Rayleigh's inequalities, we obtain  
 

 
𝜆𝜆𝑚𝑚𝑚𝑚𝑛𝑛(𝑃𝑃) ∥ 𝑒𝑒𝑁𝑁 ∥2≤ 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃) ∥ 𝑒𝑒0 ∥2

− � (𝛿𝛿 ∥ 𝑧𝑧𝑘𝑘 ∥2 +∈∥ 𝑤𝑤𝑘𝑘 ∥2− 𝛽𝛽𝑧𝑧𝑘𝑘
𝑇𝑇𝑤𝑤𝑘𝑘)𝑁𝑁

𝑘𝑘=0
 (8)  

that allows several optimization possibilities in a unified eigenvalue problem30 framework. 
We can design different observers for a variety of performance criteria for this class of 
systems. 

First of all, in the absence of noise 𝑤𝑤𝑘𝑘 ≡ 0, 𝑘𝑘 ≥ 0 if we take 𝛿𝛿 = 0, 𝛽𝛽 = 0, and ∈=0, (8) 
yields  

∥ 𝑒𝑒𝑁𝑁 ∥2≤ 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃)
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃) ∥ 𝑒𝑒0 ∥2   
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This means that by minimizing λmax (P) and maximizing λmin (P), we can lower the bound 
on the norm of the estimation error, which will guarantee a faster response for the 
observer. Note that this implies boundedness of the estimation error (stability). 

By taking δ>0, β=0, and ∈=0, (8) will yield a bound on the energy of the performance 
output in terms of the initial estimation error e 0 

� ∥ 𝑧𝑧𝑘𝑘 ∥2≤
1
𝛿𝛿

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚(𝑃𝑃) ∥ 𝑒𝑒0 ∥2

𝑁𝑁

𝑘𝑘=0

 

 

Minimizing λmax (P) and maximizing δ will give us a smaller bound on the energy of the 
performance output. This is suboptimal H2 observer.30 

In the noisy case, by setting δ=1, β=0, and, ∈<0 for e 0 =0, gives the result  

� ∥ 𝑧𝑧𝑘𝑘 ∥2≤ −∈
𝑁𝑁

𝑘𝑘=0

� ∥ 𝑤𝑤𝑘𝑘 ∥2
𝑁𝑁

𝑘𝑘=0

 

which means a bound on the ℓ2 to ℓ2 gain of the estimator (Suboptimal H ∞ observer). 
Maximizing ∈ will minimize the energy of the performance output. 

When e 0 =0, if we use this formulation, we can design several dissipative controllers by 
using different values of δ,β, and ∈. 

If we take δ=0,β=1, and, ∈>0, it yields the input strict passivity result:  

� 𝑧𝑧𝑘𝑘
𝑇𝑇𝑤𝑤𝑘𝑘 ≥∈

𝑁𝑁

𝑘𝑘=0

� ∥ 𝑤𝑤𝑘𝑘 ∥2
𝑁𝑁

𝑘𝑘=0

 

Maximizing ∈ will maximize the lossy nature of this observer. 

Similarly, other dissipativity results can be obtained by changing δ,β, and ∈ values. For 
example, taking e 0 =0δ=0,β=1, and ∈=0 gives passivity  
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� 𝑧𝑧𝑘𝑘
𝑇𝑇𝑤𝑤𝑘𝑘 ≥ 0

𝑁𝑁

𝑘𝑘=0

 

If we set δ>0,β=1, and ∈=0, we get output strict passivity:  

� 𝑧𝑧𝑘𝑘
𝑇𝑇𝑤𝑤𝑘𝑘 ≥ 𝛿𝛿

𝑁𝑁

𝑘𝑘=0

� ∥ 𝑧𝑧𝑘𝑘 ∥2
𝑁𝑁

𝑘𝑘=0

 

 

Very strict passivity, which is the strict passivity both in the terms of the input and the 
output, can be obtained if we set δ>0,β=1, and ∈> 0:  

� 𝑧𝑧𝑘𝑘
𝑇𝑇𝑤𝑤𝑘𝑘 ≥∈

𝑁𝑁

𝑘𝑘=0

� ∥ 𝑤𝑤𝑘𝑘 ∥2+ 𝛿𝛿
𝑁𝑁

𝑘𝑘=0

� ∥ 𝑍𝑍𝑘𝑘 ∥2
𝑁𝑁

𝑘𝑘=0

 

 

Again maximizing ∈ and δ will maximize the dissipative nature of the observer. 

Therefore, this LMI formulation enables us to design different observers according to a 
variety of performance criteria in a common framework. 

SECTION III. 

LMI Solution 

Let us first consider the case where there is no noise with B=0, D=0, Bƒ =0, DZ =0, ∈=0 and 
β=0  . Substituting for the terms in inequality (6), we obtain  

 

http://dx.doi.org/10.1109/CCA.2011.6044470
http://epublications.marquette.edu/
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�(𝐴𝐴 − (𝐾𝐾 + Δ𝑘𝑘)𝐶𝐶)𝑒𝑒𝑘𝑘 + [𝑟𝑟, −(𝐾𝐾 + Δ𝑘𝑘)] �𝐹𝐹(𝑒𝑒𝑘𝑘)
𝐻𝐻(𝑒𝑒𝑘𝑘)��

𝑇𝑇

× 𝑃𝑃 �(𝐴𝐴 − (𝐾𝐾 + Δ𝑘𝑘)𝐶𝐶)𝑒𝑒𝑘𝑘 + [𝑟𝑟, −(𝐾𝐾 + Δ𝑘𝑘)] �𝐹𝐹(𝑒𝑒𝑘𝑘)
𝐻𝐻(𝑒𝑒𝑘𝑘)��

−𝑒𝑒𝑘𝑘
𝑇𝑇𝑃𝑃𝑒𝑒𝑘𝑘 + 𝛿𝛿𝑒𝑒𝑘𝑘

𝑇𝑇𝐶𝐶𝑍𝑍
𝑇𝑇𝐶𝐶𝑧𝑧𝑒𝑒𝑘𝑘 ≤ 0

 

(9)  

The following is true for any α>0   
 

𝑒𝑒𝑘𝑘
𝑇𝑇𝑃𝑃[𝑟𝑟, (𝐾𝐾 + Δ𝑘𝑘)] �𝐹𝐹

𝐻𝐻� + [𝐹𝐹𝑇𝑇 , 𝐻𝐻𝑇𝑇] � 𝑟𝑟
−(𝐾𝐾 + Δ𝑘𝑘)𝑇𝑇� 𝑃𝑃𝑒𝑒𝑘𝑘

≤ 𝛼𝛼𝑒𝑒𝑘𝑘
𝑇𝑇𝑃𝑃[𝑟𝑟, (𝐾𝐾 + Δ𝑘𝑘)] � 𝑟𝑟

−(𝐾𝐾 + Δ𝑘𝑘)𝑇𝑇� 𝑃𝑃𝑒𝑒𝑘𝑘 + 𝛼𝛼−1[𝐹𝐹𝑇𝑇 , 𝐻𝐻𝑇𝑇] �𝐹𝐹
𝐻𝐻�

≤ 𝛼𝛼𝑒𝑒𝑘𝑘
𝑇𝑇𝑃𝑃(𝑟𝑟 + (𝐾𝐾 + Δ𝑘𝑘)(𝐾𝐾 + Δ𝑘𝑘)𝑇𝑇)𝑃𝑃𝑒𝑒𝑘𝑘 + 𝛼𝛼−1(𝐴𝐴𝑓𝑓𝑒𝑒 + 𝐵𝐵𝑓𝑓𝑤𝑤)𝑇𝑇(𝐴𝐴𝑓𝑓𝑒𝑒 + 𝐵𝐵𝑓𝑓𝑤𝑤)

 

(10)  

where we have used (2). 

Using (10), a sufficient condition for (9) is  

𝑒𝑒𝑘𝑘
𝑇𝑇[(𝑃𝑃 − 𝛿𝛿𝐶𝐶𝑍𝑍

𝑇𝑇𝐶𝐶𝑍𝑍 − 𝛼𝛼𝐴𝐴𝑓𝑓
𝑇𝑇𝐴𝐴𝑓𝑓) − (𝐴𝐴 − (𝐾𝐾 + Δ𝑘𝑘)𝐶𝐶)𝑇𝑇

× (𝑃𝑃 − 𝛼𝛼−1𝑃𝑃(𝑟𝑟 + (𝐾𝐾 + Δ𝑘𝑘)(𝐾𝐾 + Δ𝑘𝑘)𝑇𝑇)𝑃𝑃)−1𝑃𝑃(𝐴𝐴 − (𝐾𝐾 + Δ𝑘𝑘)𝐶𝐶)]𝑒𝑒𝑘𝑘 ≥ 0
 

(11)  

Using the Schur complement result given in the introduction twice for the quadratic terms 
in (11), we obtain the following sufficient condition for (9):  

𝑄𝑄 = �

𝑞𝑞11 𝑞𝑞12 𝑞𝑞13 𝑞𝑞14
∗ 𝑞𝑞22 𝑞𝑞23 𝑞𝑞24
∗ ∗ 𝑞𝑞33 𝑞𝑞34
∗ ∗ ∗ 𝑞𝑞44

� ≥ 0 

(12)  

for 
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𝑞𝑞11 = 𝑃𝑃 − 𝛿𝛿𝐶𝐶𝑧𝑧
𝑇𝑇𝐶𝐶𝑧𝑧 − 𝛼𝛼𝐴𝐴𝑓𝑓

𝑇𝑇𝐴𝐴𝑓𝑓 , 𝑞𝑞12 = 𝐴𝐴𝑇𝑇𝑃𝑃 − 𝐶𝐶𝑇𝑇𝑌𝑌𝑇𝑇 − 𝐶𝐶𝑇𝑇Δ𝑘𝑘
𝑇𝑇𝑃𝑃

𝑞𝑞13 = 0, 𝑞𝑞14 = 0, 𝑞𝑞22 = 𝑃𝑃, 𝑞𝑞23 = 𝑃𝑃, 𝑞𝑞24 = −𝑌𝑌 − 𝑃𝑃Δ𝑘𝑘 ,
𝑞𝑞33 = 𝑞𝑞44 = 𝛼𝛼𝑟𝑟, 𝑞𝑞34 = 0

 

for Y=PK By arranging (12)  
 

�

𝑃𝑃 − 𝛿𝛿𝐶𝐶𝑧𝑧
𝑇𝑇𝐶𝐶𝑧𝑧 − 𝛼𝛼𝐴𝐴𝑓𝑓

𝑇𝑇𝐴𝐴𝑓𝑓 𝐴𝐴𝑇𝑇𝑃𝑃 − 𝐶𝐶𝑇𝑇𝑌𝑌𝑇𝑇 0 0
∗ 𝑃𝑃 𝑃𝑃 −𝑌𝑌
∗ ∗ 𝛼𝛼𝑟𝑟 0
∗ ∗ 𝛼𝛼𝑟𝑟

�

≥ �
0 𝐶𝐶𝑇𝑇Δ𝑘𝑘

𝑇𝑇𝑃𝑃 0 0
∗ 0 0 𝑃𝑃Δ𝑘𝑘
∗ ∗ 0 0
∗ ∗ ∗ 0

�

 (13)  

 
and from  

  

[0Δ𝑘𝑘
𝑇𝑇 𝑃𝑃00]𝑇𝑇[𝐶𝐶00𝑟𝑟] + [𝐶𝐶00𝑟𝑟]𝑇𝑇[0Δ𝑘𝑘

𝑇𝑇 𝑃𝑃00]
≤ [0Δ𝑘𝑘

𝑇𝑇 𝑃𝑃00]𝑇𝑇[0Δ𝑘𝑘
𝑇𝑇𝑃𝑃00] + 𝑏𝑏−1[𝐶𝐶00𝑟𝑟]𝑇𝑇[𝐶𝐶00𝑟𝑟]

 

 
for any b>0, we can derive the upper bound of the right hand side of (13). By replacing the 
right hand side of (13) with the upper bound, and by substituting b=r −1, and using Schur's 
complement on the resulting matrices, we obtain  
 

⎣
⎢
⎢
⎢
⎡𝑃𝑃 − 𝛿𝛿𝐶𝐶𝑧𝑧

𝑇𝑇𝐶𝐶𝑧𝑧 − 𝛼𝛼𝐴𝐴𝑓𝑓
𝑇𝑇𝐴𝐴𝑓𝑓 − 𝑟𝑟𝐶𝐶𝑇𝑇𝐶𝐶 𝐴𝐴𝑇𝑇𝑃𝑃 − 𝐶𝐶𝑇𝑇𝑌𝑌𝑇𝑇 0 −𝑟𝑟𝐶𝐶𝑇𝑇 0

∗ 𝑃𝑃 𝑃𝑃 −𝑌𝑌 𝑃𝑃
∗ ∗ 𝛼𝛼𝑟𝑟 0 0
∗ ∗ ∗ (𝛼𝛼 − 𝑟𝑟)𝑟𝑟 0
∗ ∗ ∗ 0 𝑟𝑟 ⎦

⎥
⎥
⎥
⎤

≥ 0 (14)  

The LMI (14) needs to be solved for P>0,Y and r>0 in the non-noisy case and K  is found 
from K=P −l Y   

In the presence of noise, (6) yields  
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�(𝐴𝐴 − 𝐾𝐾𝐶𝐶)𝑒𝑒𝑘𝑘 + [𝑟𝑟, −(𝐾𝐾 + Δ𝐾𝐾)] �𝐵𝐵𝑤𝑤𝑘𝑘 + 𝐹𝐹(𝑒𝑒𝑘𝑘, 𝑤𝑤𝑘𝑘)
𝐷𝐷𝑤𝑤𝑘𝑘 + 𝐻𝐻(𝑒𝑒𝑘𝑘, 𝑤𝑤𝑘𝑘)��

𝑇𝑇

× 𝑃𝑃 �(𝐴𝐴 − 𝐾𝐾𝐶𝐶)𝑒𝑒𝑘𝑘 + [𝑟𝑟, −(𝐾𝐾 + Δ𝑘𝑘)] �𝐵𝐵𝑤𝑤𝑘𝑘 + 𝐹𝐹(𝑒𝑒𝑘𝑘, 𝑤𝑤𝑘𝑘)
𝐷𝐷𝑤𝑤𝑘𝑘 + 𝐻𝐻(𝑒𝑒𝑘𝑘, 𝑤𝑤𝑘𝑘)��

−𝑒𝑒𝑘𝑘
𝑇𝑇𝑃𝑃𝑒𝑒𝑘𝑘 + 𝛿𝛿(𝐶𝐶𝑧𝑧𝑒𝑒𝑘𝑘 + 𝐷𝐷𝑧𝑧𝑤𝑤𝑘𝑘)𝑇𝑇(𝐶𝐶𝑧𝑧𝑒𝑒𝑘𝑘 + 𝐷𝐷𝑧𝑧𝑤𝑤𝑘𝑘)+∈ 𝑤𝑤𝑘𝑘

𝑇𝑇𝑤𝑤𝑘𝑘 − 𝛽𝛽(𝐶𝐶𝑧𝑧𝑒𝑒𝑘𝑘 + 𝐷𝐷𝑧𝑧𝑤𝑤𝑘𝑘)𝑇𝑇𝑤𝑤𝑘𝑘 ≤ 0

 (15)  

Using inequality (10) in a similar manner, a sufficient condition for (13) to hold is given by  
 

[𝑒𝑒𝑘𝑘
𝑇𝑇 𝑤𝑤𝑘𝑘

𝑇𝑇] �
𝑟𝑟11 𝑟𝑟12
∗ 𝑟𝑟22

� �
𝑒𝑒𝑘𝑘
𝑤𝑤𝑘𝑘

� ≥ 0   (16)  

for α>0, where 
  

𝑟𝑟11 = 𝑃𝑃 − 𝛿𝛿𝐶𝐶𝑧𝑧
𝑇𝑇𝐶𝐶𝑍𝑍 − 𝛼𝛼𝐴𝐴𝑓𝑓

𝑇𝑇𝐴𝐴𝑓𝑓 − (𝐴𝐴 − (𝐾𝐾 + Δ𝑘𝑘)𝐶𝐶)𝑇𝑇

× 𝑃𝑃(𝑃𝑃 − 𝛼𝛼−1𝑃𝑃(𝑟𝑟 + (𝐾𝐾 + Δ𝑘𝑘)(𝐾𝐾 + Δ𝑘𝑘)𝑇𝑇)𝑃𝑃)−1𝑃𝑃(𝐴𝐴 − (𝐾𝐾 + Δ𝑘𝑘)𝐶𝐶)
𝑟𝑟12 = −𝛿𝛿𝐶𝐶𝑧𝑧

𝑇𝑇𝐷𝐷𝑧𝑧 + 𝛽𝛽
2

𝐶𝐶𝑧𝑧
𝑇𝑇 − 𝛼𝛼𝐴𝐴𝑓𝑓

𝑇𝑇𝐵𝐵𝑓𝑓 − (𝐴𝐴 − (𝐾𝐾 + Δ𝑘𝑘)𝐶𝐶)𝑇𝑇

× 𝑃𝑃(𝑃𝑃 − 𝛼𝛼−1𝑃𝑃(1 + (𝐾𝐾 + Δ𝑘𝑘)(𝐾𝐾 + Δ𝑘𝑘)𝑇𝑇)𝑃𝑃)−1𝑃𝑃(𝐵𝐵 − (𝐾𝐾 + Δ𝑘𝑘)𝐷𝐷)
𝑟𝑟22 = −𝛿𝛿𝐷𝐷𝑧𝑧

𝑇𝑇𝐷𝐷𝑧𝑧−∈ 𝑟𝑟 + 𝛽𝛽
2

(𝐷𝐷𝑧𝑧
𝑇𝑇 + 𝐷𝐷𝑍𝑍) − 𝛼𝛼𝐵𝐵𝑓𝑓

𝑇𝑇𝐵𝐵𝑓𝑓 − (𝐵𝐵 − (𝐾𝐾 + Δ𝑘𝑘)𝐷𝐷)𝑇𝑇

× 𝑃𝑃(𝑃𝑃 − 𝛼𝛼−1𝑃𝑃(1 + (𝐾𝐾 + Δ𝑘𝑘)(𝐾𝐾 + Δ𝑘𝑘)𝑇𝑇)𝑃𝑃)−1𝑃𝑃(𝐵𝐵 − (𝐾𝐾 + Δ𝑘𝑘)𝐷𝐷)

 

By using the Schur complement twice, we obtain  

 𝑆𝑆 =

⎣
⎢
⎢
⎢
⎡
𝑠𝑠11 𝑠𝑠12 𝑠𝑠13 𝑠𝑠14 𝑠𝑠15
∗ 𝑠𝑠22 𝑠𝑠23 𝑠𝑠24 𝑠𝑠25
∗ ∗ 𝑠𝑠33 𝑠𝑠34 𝑠𝑠35
∗ ∗ ∗ 𝑠𝑠44 𝑠𝑠45
∗ ∗ ∗ ∗ 𝑠𝑠55⎦

⎥
⎥
⎥
⎤

≥ 0 (17)  

for  
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𝑠𝑠11 = 𝑃𝑃 − 𝛿𝛿𝐶𝐶𝑧𝑧
𝑇𝑇𝐶𝐶𝑧𝑧 − 𝛼𝛼𝐴𝐴𝑓𝑓

𝑇𝑇𝐴𝐴𝑓𝑓 ,

𝑠𝑠12 = −𝛿𝛿𝐶𝐶𝑧𝑧
𝑇𝑇𝐷𝐷𝑧𝑧 + 𝛽𝛽

2
𝐶𝐶𝑧𝑧

𝑇𝑇 − 𝛼𝛼𝐴𝐴𝑓𝑓
𝑇𝑇𝐵𝐵𝑓𝑓 ,

𝑠𝑠13 = 𝐴𝐴𝑇𝑇𝑃𝑃 − 𝐶𝐶𝑇𝑇𝑌𝑌𝑇𝑇 − 𝐶𝐶𝑇𝑇Δ𝑘𝑘
𝑇𝑇𝑃𝑃, 𝑠𝑠33 = 𝑠𝑠34 = 𝑃𝑃,

𝑠𝑠14 = 𝑠𝑠15 = 𝑠𝑠24 = 𝑠𝑠25 = 𝑠𝑠45 = 0, 𝑠𝑠44 = 𝑠𝑠55 = 𝛼𝛼𝑟𝑟
𝑠𝑠22 = −𝛿𝛿𝐷𝐷𝑧𝑧

𝑇𝑇𝐷𝐷𝑧𝑧−∈ 𝑟𝑟 + 𝛽𝛽
2

�𝐷𝐷𝑧𝑧 + 𝐷𝐷𝑧𝑧
𝑇𝑇� − 𝛼𝛼𝐵𝐵𝑓𝑓

𝑇𝑇𝐵𝐵𝑓𝑓

𝑠𝑠23 = 𝐵𝐵𝑇𝑇𝑃𝑃 − 𝐷𝐷𝑇𝑇𝑌𝑌𝑇𝑇 − 𝐷𝐷𝑇𝑇Δ𝑘𝑘
𝑇𝑇𝑃𝑃, 𝑠𝑠35 = 𝑌𝑌 − 𝑃𝑃Δ𝑘𝑘

   

where Y=PK. 

Then, by proceeding in a similar manner to the non-noisy case, leads to  

 

𝑆𝑆𝑆𝑆 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑠𝑠𝑎𝑎11 𝑠𝑠𝑎𝑎12 𝑠𝑠𝑎𝑎13 𝑠𝑠𝑎𝑎14 𝑠𝑠𝑎𝑎15 𝑠𝑠𝑎𝑎16 𝑠𝑠𝑎𝑎17

∗ 𝑠𝑠𝑎𝑎22 𝑠𝑠𝑎𝑎23 𝑠𝑠𝑎𝑎24 𝑠𝑠𝑎𝑎25 𝑠𝑠𝑎𝑎26 𝑠𝑠𝑎𝑎27
∗ ∗ 𝑠𝑠𝑎𝑎33 𝑠𝑠𝑎𝑎34 𝑠𝑠𝑎𝑎35 𝑠𝑠𝑎𝑎36 𝑠𝑠𝑎𝑎37
∗ ∗ ∗ 𝑠𝑠𝑎𝑎44 𝑠𝑠𝑎𝑎45 𝑠𝑠𝑎𝑎46 𝑠𝑠𝑎𝑎47
∗ ∗ ∗ ∗ 𝑠𝑠𝑎𝑎55 𝑠𝑠𝑎𝑎56 𝑠𝑠𝑎𝑎57
∗ ∗ ∗ ∗ ∗ 𝑠𝑠𝑎𝑎66 𝑠𝑠𝑎𝑎67
∗ ∗ ∗ ∗ ∗ 𝑠𝑠𝑎𝑎76 𝑠𝑠𝑎𝑎77⎦

⎥
⎥
⎥
⎥
⎥
⎤

≥ 0

for
𝑠𝑠𝑎𝑎11 = 𝑃𝑃 − 𝛿𝛿𝐶𝐶𝑧𝑧

𝑇𝑇𝐶𝐶𝑧𝑧 − 𝛼𝛼𝐴𝐴𝑓𝑓
𝑇𝑇𝐴𝐴𝑓𝑓 − 𝑟𝑟𝐶𝐶𝑇𝑇𝐶𝐶,

𝑠𝑠𝑎𝑎12 = −𝛿𝛿𝐶𝐶𝑧𝑧
𝑇𝑇𝐷𝐷𝑧𝑧 + 𝛽𝛽

2
𝐶𝐶𝑧𝑧

𝑇𝑇 − 𝛼𝛼𝐴𝐴𝑓𝑓
𝑇𝑇𝐵𝐵𝑓𝑓 − 𝐶𝐶𝑇𝑇𝐷𝐷,

𝑠𝑠13 = 𝐴𝐴𝑇𝑇𝑃𝑃 − 𝐶𝐶𝑇𝑇𝑌𝑌𝑇𝑇 , 𝑠𝑠15 = −𝑟𝑟𝐶𝐶𝑇𝑇

𝑠𝑠𝑎𝑎14 = 𝑠𝑠𝑎𝑎16 = 𝑠𝑠𝑎𝑎17 = 𝑠𝑠𝑎𝑎24 = 𝑠𝑠𝑎𝑎25 = 𝑠𝑠𝑎𝑎27
= 𝑠𝑠𝑎𝑎45 = 𝑠𝑠𝑎𝑎46 = 𝑠𝑠𝑎𝑎47 = 𝑠𝑠𝑎𝑎56 = 𝑠𝑠𝑎𝑎57 = 𝑠𝑠𝑎𝑎67 = 0,
𝑠𝑠𝑎𝑎22 = −𝛿𝛿𝐷𝐷𝑧𝑧

𝑇𝑇𝐷𝐷𝑧𝑧−∈ 𝑟𝑟 + 𝛽𝛽
2

�𝐷𝐷𝑍𝑍 + 𝐷𝐷𝑧𝑧
𝑇𝑇� − 𝛼𝛼𝐵𝐵𝑓𝑓

𝑇𝑇𝐵𝐵𝑓𝑓

𝑠𝑠𝑎𝑎23 = 𝐵𝐵𝑇𝑇𝑃𝑃 − 𝐷𝐷𝑇𝑇𝑌𝑌𝑇𝑇, 𝑠𝑠𝑎𝑎26 = 𝑃𝑃, 𝑠𝑠𝑎𝑎33 = 𝑃𝑃 − 𝑟𝑟𝐷𝐷𝑇𝑇𝐷𝐷,
𝑠𝑠𝑎𝑎34 = 𝑃𝑃, 𝑠𝑠𝑎𝑎35 = 𝑌𝑌, 𝑠𝑠𝑎𝑎36 = 0, 𝑠𝑠𝑎𝑎37 = 𝑃𝑃, 𝑠𝑠𝑎𝑎44 = 𝛼𝛼𝑟𝑟

𝑠𝑠𝑎𝑎55 = (𝛼𝛼 − 𝑟𝑟)𝑟𝑟, 𝑠𝑠𝑎𝑎66 = 𝑠𝑠𝑎𝑎77 = 𝑟𝑟,

 (18)  

 
The LMI (18) needs to be solved for P>0,Y and r>0 in the non-noisy case and K is found 
from K=P −1 Y   

http://dx.doi.org/10.1109/CCA.2011.6044470
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The above development is summarized in the following theorem: 

Theorem: 

Given the nonlinear system and measurement scheme in (1) and (2) where 𝑤𝑤𝑘𝑘 ∈ ℓ2, 
the use of the observer (3) leads to the satisfaction of the general performance objective 
(6) for zk  given by (5) if LMIs (14) and (18) are feasible, respectively for the non-noisy 
(𝑤𝑤𝑘𝑘 ≡ 0, 𝑘𝑘 ≥ 0) and noisy cases, for P>0,Y and r>0. The necessary gain is found from 
K=P −1 Y   

Remark: 

The magnitude of maximum perturbation that the designed observer can tolerate for any 
directions can be calculated from (14) for non-noisy case, and (18) for additive noise case. 
However, the actual magnitude of the perturbation as a function of the direction can be 
calculated from (12) and (17) for the noisy-free and noisy cases, respectively. 

SECTION IV. 

Illustrative Examples 

Chaotic synchronization is chosen to demonstrate one of the possible applications of 
the proposed observer design. Chua's circuit37 has become almost a benchmark for design 
involving chaotic systems because of its strong nonlinear dynamical behavior. The 
discretized (with sampling time T=0.01 sec) version of the example in38 is chosen for this 
demonstration. The simulation is done for the case of boundedness of the estimation error. 
The state and measurement equation of this model in37 is written as follows:  

⎣
⎢
⎢
⎡𝑥𝑥

˙
1

𝑥𝑥
˙

2

𝑥𝑥
˙

3⎦
⎥
⎥
⎤

= �
−𝛼𝛼𝑐𝑐 𝛼𝛼𝑐𝑐 0

1 −1 1
0 −𝛽𝛽𝑐𝑐 −𝜇𝜇

� ⋅ �
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3

� − �
𝛼𝛼𝑐𝑐𝑓𝑓(𝑥𝑥1)

0
0

�

𝑦𝑦 = [111] ⋅ [𝑥𝑥1𝑥𝑥2𝑥𝑥3]𝑇𝑇

where𝑓𝑓(𝑥𝑥1) = 𝑏𝑏𝑥𝑥1 + 0.5(𝑎𝑎𝑛𝑛 − 𝑏𝑏𝑛𝑛)(|𝑥𝑥1 + 1| − |𝑥𝑥1 − 1|).

      (19)  

and we use the following parameters in the simulation with a randomly chosen initial state:  
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𝛼𝛼𝑐𝑐 = 9.1, 𝛽𝛽𝑐𝑐 = 16.5811, 𝜇𝜇 = 0.138083, 𝑎𝑎𝑛𝑛 = −1.39386, 𝑏𝑏𝑛𝑛 = −0.75590

’𝐴𝐴𝑓𝑓 = 0.0094, 𝐶𝐶𝑧𝑧 = [100], and 𝛼𝛼 = 0.3.  

For the given system and the performance criterion, the observer gain from LMI (14) is 
found to be: 𝐾𝐾 = [0.7798,1.4067,4.5295]T with √𝛾𝛾 = 0.2062 which is the maximum bound 
on the perturbation for which (14) holds. With this obtained gain, the LMI (12) is solved 
for individual Δ = Ω∗[cos 𝜑𝜑cos 𝜃𝜃, sin 𝜑𝜑cos 𝜃𝜃, sin 𝜃𝜃]𝑇𝑇to calculate the magnitude Ω of the 
actual (constant) perturbation. This value varies according to the changes in the direction 
of perturbation. ϕ and θ are the angles from the horizontal and vertical axes, respectively. 
To obtain a more detailed picture of the magnitude of the perturbation with respect to the 
direction, the computations of Ω in LMI (12) were conducted for 0 ≤ 𝜙𝜙, 𝜃𝜃 ≤ 360∘ with an 
increment of 2°. Magnitudes of allowable perturbations in the observer gain for various 
ϕ and θ values are depicted in Fig. 1. From this figure, the minimum over these ranges of 
angles of the maximum allowable perturbations is found to be 0.206235 which is very close 
to the value of √𝛾𝛾 = 0.2062 found from (14), therefore the conservatism introduced when 
going from (12) to (14) in the derivation has been kept to a minimum and the sufficient 
conditions are close to being necessary also.  
 

 
Fig. 1. Magnitude of perturbations for different Φ and θ. 

The maximum constant gain perturbation magnitude found from (12) for system (19) is: 
Δ = 2.6679∗[cos 74∘cos 74∘, sin 74∘cos 74∘, sin 74∘]𝑇𝑇and this perturbation is applied for the 
simulation. 

The simulation results involving co-plots of state variables together with their estimates 
(Fig.s 2(a)–(c)) and the norm of the error vector (Fig. 2(d)) show that the proposed 
observer is able to estimate the state successfully.  
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The calculated gain and perturbation are applied to the system in (17), with the observer 
equation (3).  

 

 
Fig. 2. Plots of state variables, their estimates and the norm of the error vector vs. time 
(sec). 

Fig.s 3(a)–(c) are included to clearly depict the transient response of the observer state 
variable estimates. Fig. 4 not only indicates that the original system shows chaotic 
behavior, but also that the suggested observer successfully estimates the state.  

 

 
Fig. 3. Plots of state variables, their estimates and the norm of the error vector vs. time 
(sec) 
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Fig. 4. Three-Dimensional plots of state variables and their estimates. 
 

SECTION V. 

Conclusions 

A resilient discrete-time observer design procedure based on linear matrix inequalities has 
been presented for a class of nonlinear system and measurement models. A common 
framework is provided to design observers according to a variety of performance criteria. 
The results of a chaotic synchronization simulation illustrate the effectiveness of the 
proposed methodology. 
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