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Perceptually motivated wavelet packet transform for bioacoustic

signal enhancement

Yao Ren,? Michael T. Johnson, and Jidong Tao
Speech and Signal Processing Laboratory, Marquette University, P.O. Box 1881, Milwaukee,
Wisconsin 53233-1881

(Received 14 December 2007; revised 18 April 2008; accepted 25 April 2008)

A significant and often unavoidable problem in bioacoustic signal processing is the presence of
background noise due to an adverse recording environment. This paper proposes a new bioacoustic
signal enhancement technique which can be used on a wide range of species. The technique is based
on a perceptually scaled wavelet packet decomposition using a species-specific Greenwood scale
function. Spectral estimation techniques, similar to those used for human speech enhancement, are
used for estimation of clean signal wavelet coefficients under an additive noise model. The new
approach is compared to several other techniques, including basic bandpass filtering as well as
classical speech enhancement methods such as spectral subtraction, Wiener filtering, and Ephraim—
Malah filtering. Vocalizations recorded from several species are used for evaluation, including the
ortolan bunting (Emberiza hortulana), rhesus monkey (Macaca mulatta), and humpback whale
(Megaptera novaeanglia), with both additive white Gaussian noise and environment recording noise
added across a range of signal-to-noise ratios (SNRs). Results, measured by both SNR and
segmental SNR of the enhanced wave forms, indicate that the proposed method outperforms other

approaches for a wide range of noise conditions.

© 2008 Acoustical Society of America. [DOI: 10.1121/1.2932070]

PACS number(s): 43.60.Hj, 43.50.Rq, 43.80.Nd [WWA]

I. INTRODUCTION

The presence of background noise and interfering sig-
nals is a fundamental problem in the collection and analysis
of bioacoustic data, regardless of the specific species under
study or the type of environment. This noise takes a variety
of forms, including ambient background noise due to
weather conditions, continuous interference from nearby ve-
hicular or boat traffic, or the presence of numerous nontarget
vocalizations from other species and individuals. Since the
distance from the acoustic recording device to the individu-
als under study can be quite large leading to significant sig-
nal attenuation, interfering noise can create a substantial ob-
stacle to analysis and understanding of the desired
vocalization patterns.

Common techniques to reduce noise artifacts in bioa-
coustic signals include basic bandpass filters and related
frequency-based methods for spectrogram filtering and
equalization, often incorporated directly into acquisition and
analysis tools (Mellinger, 2002). Other approaches in recent
years have included spectral subtraction (Liu et al., 2003),
minimum mean-squared error (MMSE) estimation (Alvarez
and Garcia, 2004), adaptive line enhancement (Yan er al.,
2005; Yan et al., 2006), and denoising using wavelets (Gur
and Niezrecki, 2007).

In comparison, there are a wide variety of advanced
techniques used for human speech enhancement, some of
which form the basis for the more recent bioacoustic en-
hancement methods cited above. Historically the most com-
mon approaches for speech enhancement have focused on
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spectral subtraction (Boll, 1979), Wiener filtering (Lim and
Oppenheim, 1978), and MMSE and log-MMSE estimations
using Ephraim—Malah (EM) filtering (Ephraim and Malah,
1984; 1985). Added to this in recent years are newer methods
based on subspace estimation and filtering (Ephraim and
Trees, 1995) and wavelet decomposition (Johnson et al.,
2007).

In this paper, we introduce a new bioacoustic signal en-
hancement technique which is based on a perceptually scaled
wavelet packet decomposition, using spectral estimation
methods similar to those used for human speech enhance-
ment. The underlying goal is to obtain higher quality and
more intelligible enhanced signals through the use of more
perceptually meaningful frequency representations. This
method is robust across a wide range of species, needing
only fi, and f.« frequency boundary parameters to gener-
alize for application to a new species of interest.

The new method is compared to a variety of other en-
hancement and denoising techniques, including simple band-
pass filtering, spectral subtraction, Wiener filtering, and the
EM log-MMSE estimation. To evaluate and compare its ap-
plicability across a variety of species, the method is applied
to the animals of the order Passeriformes (ortolan bunting),
Primates (rhesus monkey), and Cetaceans (humpback
whale). Evaluation is done by using both signal-to-noise ra-
tio (SNR) and segmental SNR (SSNR), which is known to be
a more perceptually relevant quality measure for human
speech (Deller er al., 2000).

© 2008 Acoustical Society of America



Il. CURRENT ENHANCEMENT METHODS
A. Bandpass filtering

Bandpass filtering removes signal energy outside of a
specified frequency range. This can be applied in either the
time domain or the frequency domain (e.g., applied to a
spectrogram) and is effective primarily in cases where sig-
nals are predominately narrow band and are well separated
from the noise spectrum.

B. Spectral subtraction

Spectral subtraction (Boll, 1979) was one of the first
algorithms applied to the problem of speech enhancement. It
is based directly on the additive noise model:

y(n) = x(n) +d(n), (1)

where y(n), x(n), and d(n) denote the noise-corrupted input
signal, clean signal, and additive noise signal, respectively.
The noise spectrum is estimated from the Fourier transform
magnitude of a silence region in the wave form, so that for
each frame of the signal, an estimate for the clean signal in
the frequency domain can be given directly as

X(0) =[|¥(w)] - |D(w)[Je/H), (2)

where ¢,(w) is the phase component of the noisy signal,
used under the assumption that the spectral phase is much
less important than the spectral magnitude for reconstruction.

Note that application of Eq. (2) may result in negative
magnitude values, which are typically set to zero. This often
results in some processing artifacts that are usually described
by listeners as “musical tones.” The presence of such arti-
facts is one disadvantage of the spectral subtraction ap-
proach.

C. Wiener filtering

Wiener filtering is conceptually similar to spectral sub-
traction but replaces the direct subtraction with a mathemati-
cally optimal estimate for the signal spectrum in a MMSE
sense (Lim and Oppenheim, 1978).

The frequency domain formulation of the Wiener filter is
given as

SXX( w)

MO S+ Sl

(3)

where H(w) is the desired filter response and S,.(w) and
S,4(w) are power spectral densities (PSDs) of the desired
clean signal and noise. Since these two PSDs are unknown,
this filter cannot be determined directly and instead needs to
be realized in an iterative fashion. In particular, Sy,(w) is
estimated from a silence region and S, (w) is initialized from
the noisy wave form and then updated from the output of the
filter after each iteration. This process is repeated either a
fixed number of times or until a convergence criterion is
reached.

J. Acoust. Soc. Am., Vol. 124, No. 1, July 2008

D. Ephraim—Malah filtering

The Wiener filter is an optimal linear estimator of the
clean signal spectrum in a MMSE sense. Ephraim and Malah
extended this idea by deriving an optimal nonlinear estimator
of the clean spectral amplitude. This estimator assumes that
the real and imaginary parts of the spectral magnitude have a
zero-mean Gaussian probability density distribution and are
statistically independent. Under this statistical model, a short
time spectral amplitude estimator was derived by using the
MMSE optimization criteria (Ephraim and Malah, 1984).
This work was then modified to use log spectral amplitude
(LSA) rather than spectra as an optimization criterion
(Ephraim and Malah, 1985) since the log spectral distance is
a more perceptually relevant distortion criteria, resulting in
improved overall enhancement results. This estimator,
known as the EM filter, can be summarized by using the
following estimation formula for the clean signal Fourier

transform coefficient Ak in each frequency bin:

Ak _ & e(1/2)f°u°k(e*i/t)dtRk’ (4)
1+ &

In this equation, &=\ (k)/\ k), y=[&/(1+&) ]y and
¥=Ri/\y(k), where R, is the noisy speech Fourier transform
magnitude in the kth frequency bin, and A,(k) and A\, (k) are
the average noise and signal powers in each bin. Similar to
the spectral subtraction method, the noise power is estimated
from silence regions in the wave form, while \ (k) is a mov-
ing average of spectrally subtracted noisy spectra [Ri
—Ny(k)]. The a priori SNR &, is estimated via the EM well-
known “decision-directed method,” which is updated from
the previous amplitude estimate using a forgetting factor « as
follows:

B = a2 oy pln) 1] 5)
= + — —_ s
\n a)\d(k’n_l) o Yi\n
where the indicator function P is given by
(n) =1, n(n)-1=0
Ply(n)-1]& . (6)
0 otherwise.

The key characteristics of this estimator are that it tends
to do less enhancement (i.e., less change to the noisy signal
spectrum) when the SNR is high, and that musical noise
artifacts are significantly reduced.

E. Wavelet denoising

Spectral subtraction, Wiener filtering, and EM filtering
are all based on the same mathematical tool, the short time
Fourier transform (STFT), with the waveform divided into
short frames during which the signal is assumed to be sta-
tionary. The STFT is a compromise between time resolution
and frequency resolution: a shorter frame length results in a
better time resolution but poorer frequency resolution. The
wavelet transform (WT) by comparison has the advantage of
implicitly using a variable window size for different fre-
quency components. This often results in better handling of
broadband nonstationary signals, including speech and bioa-
coustic data.
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FIG. 1. (a) Discrete WT. (b) Wavelet packet decomposition tree.

Whereas the STFT is a function of frequency for each
individual signal frame, the WT is a function of two vari-
ables, time and scale. Scale is used rather than frequency
because depending on the wavelet basis being used, each
scale may actually represent information across a range of
frequencies. Like the Fourier transform, the WT has both
continuous WT and discrete WT (DWT) implementations. A
DWT can be efficiently implemented by using a quadrature
mirror filter decomposition, resulting in scales that are pow-
ers of 2, called a dyadic transform. A further generalization
of the DWT is the wavelet packet transform (WPT). In the
WPT, the filtering process is iterated on both the low fre-
quency and high frequency components, whereas the DWT
iterates only on the low frequency components. Filter de-
composition structures for the DWT and WPT are shown in
Fig. 1. In the decomposition tree, each node is labeled (I,n),
where [ is the decomposition level and n represents a sub-
band node index. The root of the tree, (/,n)=(0,0), refers to
the entire signal space. The left and right branches denote
low-pass and high-pass filterings followed by 2:1 downsam-
pling, respectively.

The application of wavelets for signal enhancement,
sometimes referred to as denoising, is a three step procedure
involving wavelet decomposition, wavelet coefficient thresh-
olding, and wavelet reconstruction. Given an appropriate
choice of the wavelet basis function, the signal energy will
be concentrated in a small number of relatively large coeffi-
cients while ambient noise will be spread out, allowing co-
efficients to be thresholded.

Threshold selection and implementation are two factors
which significantly impact wavelet denoising methods. Com-
mon methods include hard, soft, and nonlinear thresholding
approaches. Hard thresholding sets all coefficient values be-
neath the threshold to zero, leaving the others unchanged
(Jansen, 2001); soft thresholding additionally reduces all co-
efficient values to maintain continuity; while nonlinear
thresholding typically enforces a smoothness constraint on
the coefficient mapping function as well. Typical threshold
selection methods include universal thresholding and the
Stein unbiased risk estimator (Donoho, 1995), both imple-
mented by using soft thresholding.

Recently, the EM suppression rule (Ephraim and Malah,
1984) for speech enhancement has been applied to the wave-
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let domain as a more advanced time-varying thresholding
approach (Cohen, 2001). This method helps reduce the “mu-
sical noise” artifacts caused by uniformly applied thresholds.

lll. PROPOSED METHOD

The method introduced here is based on a modified
wavelet packet decomposition using a MMSE coefficient es-
timation for thresholding. The key element of the technique
is the use of the Greenwood warping function to determine
the WPT decomposition structure based on a perceptually
motivated frequency axis.

Greenwood (1961) has shown that many land and
aquatic mammals perceived frequency on a logarithmic scale
along the cochlea, which corresponds to a nonuniform fre-
quency resolution. This relationship can be modeled by the
equation

A(10% = k), (7)

where «, A, and k are species-specific constants and x is the
cochlea position. Transformation between true frequency f
and perceived frequency f), can be obtained through the fol-
lowing equation pair:

Fp(f) = (l/a)IOgIOU/A+k), (8)

)

The constants «, A, and k can be found if frequency-
cochlear position data are available. However, since cochlear
information has never been measured for many species, an
approximate solution is needed. Lepage (2003) has shown
that k can be estimated as 0.88 based on both theoretical
justification and experimental data acquired on a number of
mammalian species. By assuming this value for k, @ and A
can be solved for a given approximate hearing range,
Smin—Smax» Of the species (Clemins, 2005; Clemins and
Johnson, 2006; Clemins et al., 2006):

F,'(f,) =A010 — k).

_ Jmin
A= (10)
o= loglo(fr:;ax + k) . (1 1)
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FIG. 2. Center frequencies of the Greenwood scale (solid line) and WPD critical bands. (a) Ortolan bunting. (b) Rhesus monkey. (c) Humpback whale.

Thus, a frequency warping function can be constructed
by using the species-specific values of f;, and f .-

A perceptually motivated WT can be designed to mimic
the auditory frequency scale by using decomposition critical
bands. This implementation was originally proposed by
Black for coding (Black and Zeytinoglu, 1995) and has been
widely used for perceptual speech enhancement (Cohen,
2001; Fu and Wan, 2003; Shao and Chang, 2006). To gener-
alize this technique to bioacoustic signal enhancement, we
propose to decompose a wavelet packet tree into the critical
bands with respect to the species-specific Greenwood fre-
quency warping curve.

Figure 2 shows an approximation of the Greenwood
scale by critical-band WPD for three distinct species: ortolan
bunting (Emberiza hortulana) downsampled to 20 kHz,
rhesus monkey (Macaca mulatta) downsampled to 20 kHz,
and the humpback whale (Megaptera novaeanglia) sampled
at 4 kHz. The corresponding decomposition trees are illus-
trated in Fig. 3. The perceptual WPD splits the frequency
range corresponding to different species data into critical

J. Acoust. Soc. Am., Vol. 124, No. 1, July 2008

bands: ortolan bunting, 0 Hz—10 kHz, 36 critical bands;
rhesus monkey, 0 Hz—10 kHz, 30 critical bands; humpback
whale, 0 Hz—2 kHz, 31 critical bands. The bands are estab-
lished automatically by optimally matching the subband cen-
ter frequencies to the perceptual scale curve in the mean
error sense. For the Greenwood scale calculation, the f,.;,
and f,,x used in Egs. (10) and (11) are 400 and 7200 Hz for
the ortolan bunting (Edward, 1943), 20 and 42 000 Hz for
the rhesus monkey (Heffner, 2004), and 2 and 6000 Hz for
the humpback whale (Helweg, 2000).

Given this perceptual decomposition structure, a MMSE
estimator for performing thresholding can be derived in the
wavelet domain (Cohen, 2001; Cohen and Berdugo, 2001).
Using an additive time-domain model, the resulting wavelet
domain model is

Yl,n(k) = Xl,n(k) + Dl,n(k) ’ (12)
where Y, ,=(y, @11 Xp(k)=Cx, @105 Dpu(k)=(d, @10, k
is the index of the coefficients in each subband, [ is the

Ren et al.: Bioacoustic signal enhancement 319
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FIG. 3. Perceptual wavelet decomposition tree. (a) Ortolan bunting. (b) Rhesus monkey. (c) Humpback whale.

decomposition level, n is the node index, and ¢, is the
scaled and shifted mother wavelet. The notation {x, ¢) repre-
sents the WT of signal x by using ¢ as the mother wavelet.

The optimally modified LSA estimator (Cohen and Ber-
dugo, 2001) is used to perform wavelet denoising. Under this
approach, the clean speech wavelet packet coefficients are

H] =Xl,n(k) +Dl,n(k)' (14)

Under this framework, a parameter of signal presence
uncertainty is calculated through the equation (Cohen and
Berdugo, 2001)

estimated by using a MMSE criterion under the assumptions
that both speech and noise are complex Gaussian variables.
Speech presence uncertainty is also incorporated by using
the hypothesis testing framework given by

H0=D],n(k)’ (13)
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L+£,(k) -
+ qll(T exp[- v, (K/2]

where &,(k) is the a priori SNR, v,(k) is from Eq. (4), and
q;.,(k) is the a priori probability for signal absence, which is
estimated by

pia(k) = (15)

Ren et al.: Bioacoustic signal enhancement
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Wiener filtering, EM log-MMSE filtering, and perceptual WPT filtering (the left column is for white noise and the right is for environment noise).

QI,n(k) =1
log[gl,n(k)/gmin]
log(gmax/ gmin)
0 if gl,n(k) = gmin
1 otherwise,

if gmin = gl,n(k) = fmax

(16)

where &, and &, are empirical constants, &.,;,=—10 dB,
and &,,,=-5 dB.

An estimate for the clean speech, which minimizes the
mean-square error, results in

J. Acoust. Soc. Am., Vol. 124, No. 1, July 2008

(k) + a7, (k)

where the signal variance is given by using the decision-
directed method of Ephraim and Malah:

X, (k) = Y(k), (17)

Nn(k) = @|X,, (k= 1) + (1 = @)max[| Y, (k)| = 07,,(k),0].
(18)

IV. EXPERIMENTAL SETUP AND RESULTS

The proposed method and comparative baseline ap-
proaches were applied to ortolan bunting (Emberiza hortu-
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Wiener filtering, EM log-MMSE filtering, and perceptual WPT filtering (the left column is for white noise and the right is for environment noise).

lana), thesus monkey (Macaca mulatta) and humpback
whale (Megaptera novaeanglia). Norwegian ortolan bunting
vocalization data were collected from County Hedmark, Nor-
way in May of 2001 and 2002 (Osiejuk et al., 2003). Rhesus
data were recorded on the island of Cayo Santiago, Puerto
Rico by Joseph Solitis and John D. Newman (Li et al.,
2007). Humpback whale data (Payne and McVay, 1971) was
provided by MobySound (Mellinger and Clark, 2006), a da-
tabase for research in automatic recognition of marine animal
calls. These data were collected in March 1994 off the north
coast of the island of Kauai, HI. Ten clean vocalizations from
each species were segmented from the original recording
data.

322  J. Acoust. Soc. Am., Vol. 124, No. 1, July 2008

Both white noise and true environment noise were added
to the clean data at SNR levels of —15, —10, -5, 0, +5, and
+10 dB. The environment noise came from ambient noise
regions of appropriate domain recordings for each species,
spectrally flattened with a low order filter to preserve the
basic noise characteristics while ensuring that the energy is
spread through the entire frequency band. For the rhesus
monkey vocalizations, background noise was taken from a
Vervet monkey data set (Seyfarth and Cheney, 2004). For the
ortolan bunting vocalizations, background noise came di-
rectly from the data set. For the humpback whale, marine
noise was taken from a Beluga whale vocalization data set
(Scheifele er al., 2005), downsampled to 4000 Hz.

Ren et al.: Bioacoustic signal enhancement
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Based on visual examination of the clean data from Figs.
4-6, tight passbands are chosen around the vocalizations.
Selected ranges are 2600-5600, 1000-10000, and
200-2000 Hz for the ortolan bunting, rhesus monkey, and
humpback whale data, respectively. For the spectral subtrac-
tion, Wiener filter, and EM filter approaches, the signal is
divided into 32 ms windows with 75% overlap between
frames. This frame length was chosen empirically, as it is
sufficiently long for good spectral estimation in each frame
but not so long as to affect temporal change in the signals,
and adjustments to this value cause only minor changes to
the overall enhancement results. Frequency analysis is done
using a Hanning window and noise estimation is accom-
plished using the first three frames of the signal. For wavelet

J. Acoust. Soc. Am., Vol. 124, No. 1, July 2008

analysis, the discrete Meyer wavelet is used as the mother
wavelet, which was chosen to provide good separation of
subbands due to their regularity property (Cohen, 2001). The
decomposition was done as illustrated in Fig. 3. The forget-
ting factor « wused in Egs. (5 and (18) s
set to 0.98 for the EM filter and 0.92 for the wavelet denois-
ing.

SNR and SSNR are used as objective measurement cri-
teria for all sets of experiments. SSNR is computed by cal-
culating the SNR on a frame-by-frame basis over the signal
and averaging these values. This permits the measure to as-
sign equal weights to the loud and soft portions of the signal,
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FIG. 7. SNR and SSNR results for white noise at —15, =10, =5, 0, +5, and +10 dB SNR levels.

which has been shown to have a higher correlation with per-
ceived quality in human speech evaluation (Deller er al.,
2000). The formulas for SNR and SSNR are

>,x2(n)

SNR =101 —_— Y,
O8I0 S [x(n) — ()

(19)
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where M is the number of frames, each of length N, and x(n)
and x(n) are the original and enhanced signals, respectively.
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FIG. 8. SNR and SSNR results for environment noise at —15, —10, =5, 0, +5, and +10 dB SNR levels.

For visualization, spectrograms of the enhanced signals
for the white noise and environment noise conditions at
—10 dB SNR can be seen in Figs. 4-6.

SNR and SSNR results for the white noise and environ-
ment noise are shown in Figs. 7 and 8. The SNR and SSNR
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values are given as amount of improvement over the original
input noisy values. The methods shown in these figures in-
clude bandpass filtering, spectral subtraction, Wiener filter-
ing, EM filtering, the proposed perceptual wavelet packet
transform (P-WPT), as well as a uniform band wavelet
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packet transform (U-WPT), which is identical to the pro-
posed method except that it utilizes uniformly spaced fre-
quency bands rather than the perceptual scaling.

From reviewing the spectrograms and the SNR and
SSNR plots, several conclusions can be drawn. It is clear that
the proposed perceptual wavelet denoising method and the
EM filtering method have the best overall performance in
both the white noise and the environment noise conditions.
The proposed method shows better enhancement perfor-
mance for the higher noise (lower original SNR) cases, in
particular. By comparing the SNR improvement to the SSNR
improvement in Figs. 7 and 8, it can be seen that the SSNR,
which is generally considered to be a more perceptually
meaningful metric, shows greater superiority for the pro-
posed method over the other methods than does SNR.
Wiener filtering and spectral subtraction have moderate en-
hancement performance overall, while bandpass filtering re-
sults are a little sporadic, giving generally moderate results
with good results in a few specific environment cases. Spe-
cifically, as expected, bandpass filtering works relatively well
in the ortolan case where the vocalization frequency range is
narrow and has limited overlap with the environment noise
spectrum. By comparing the P-WPT and U-WPT results, it
can be seen that the use of the perceptual scale has little
overall impact. In the white noise case, the SNR is slightly
higher for the uniform scaling, and SSNR measures show
little difference. For environmental noise, the SNR is again
slightly higher for the uniform scaling, and SSNR is again
similar, showing a slight benefit for the perceptual scaling in
two of the three examples. Under the noisiest conditions, the
two wavelet-based enhancement techniques significantly out-
perform all of the baseline methods.

One interesting thing to note is that each of the different
enhancement methods has unique characteristics, as seen in
the spectrograms of Figs. 4-6. Bandpass filtering has the
expected look, keeping all noise in the target range and
eliminating nearly everything out of band. Spectral subtrac-
tion shows some temporal streaking due to the fact that the
noise spectrum being removed is fixed. Wiener filtering and
EM filtering have similar looks, except that the EM provides
better overall results. The proposed method has the best
noise removal but can also be seen to possess an artifact
(most noticeable in Fig. 5), seen as a faint reflection of the
primary signal. This artifact, which is not audible and does
not contain enough energy to significantly impact the SNR or
SSNR metrics, illustrates some of the processing differences
between a frequency domain approach such as the EM and a
wavelet domain approach such as the proposed method. Be-
cause the mother wavelet used for analysis is somewhat
broadband, each of the nodes in the decomposition trees
shown in Fig. 3 contains more than a single frequency com-
ponent. Thus the nodes that are given primary emphasis for
reconstruction have energy at more than one frequency.
However, since the nature of this wavelet representation is
also more compact, coefficients not given primary emphasis
can be more strongly thresholded, yielding less energy
throughout the entire background frequency range, as can
also be seen in the spectrograms. The selection of the mother
wavelet also impacts the degree of this artifact. The overall
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effect is that while the residual noise for the EM and percep-
tual wavelet approaches have similar total energy (with the
perceptual wavelet having a little less in high noise situa-
tions), this residual noise in the EM approach is spread more
evenly across the frequency range, while in the perceptual
wavelet approach, it is more concentrated.

V. CONCLUSIONS

Enhancement techniques taken from the field of speech
processing have been generalized and applied to noise reduc-
tion of bioacoustic vocalizations. Four baseline methods, in-
cluding spectral subtraction, Wiener filtering, and EM filter-
ing, as well as simple bandpass filtering, were compared to a
new technique based on perceptual wavelet decomposition.
Results indicate improved performance of the new method,
particularly for the most noisy conditions. The new approach
can be easily applied to any species, requiring only upper
and lower frequency limits for the species to create the ap-
propriate Greenwood function frequency warping curve.
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