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The Effect of Movement Rate  
and Complexity on Functional  

Magnetic Resonance Signal Change 
During Pedaling

Jay P. Mehta, Matthew D. Verber, Jon A. Wieser,  
Brian D. Schmit, and Sheila M. Schindler-Ivens

We used functional magnetic resonance imaging (fMRI) to record human brain 
activity during slow (30 RPM), fast (60 RPM), passive (30 RPM), and variable 
rate pedaling. Ten healthy adults participated. After identifying regions of interest, 
the intensity and volume of brain activation in each region was calculated and 
compared across conditions (p < .05). Results showed that the primary sensory 
and motor cortices (S1, M1), supplementary motor area (SMA), and cerebellum 
(Cb) were active during pedaling. The intensity of activity in these areas increased 
with increasing pedaling rate and complexity. The Cb was the only brain region 
that showed significantly lower activity during passive as compared with active 
pedaling. We conclude that M1, S1, SMA, and Cb have a role in modifying 
continuous, bilateral, multijoint lower extremity movements. Much of this brain 
activity may be driven by sensory signals from the moving limbs.

Keywords: locomotion, fMRI, supraspinal, cycling

Many studies have used functional imaging technologies such as positron 
emission tomography (PET) and functional magnetic resonance imaging (fMRI) 
to examine the effects of movement rate and complexity on human brain activity 
(Blinkenberg et al., 1996; Jancke et al., 1998; Jancke, Specht, Mirzazade, & Peters, 
1999; Jenkins, Passingham, & Brooks, 1997; Khushu et al., 2001; Rao et al., 1996; 
Sadato et al., 1996; Sadato et al., 1997; Wexler et al., 1997). These studies, which 
have typically involved finger tapping, have shown that the intensity and volume of 
brain activity vary with task demands and that these activation changes are specific 
to particular brain regions. In comparison with the upper extremity, less is known 
about the way in which brain activity changes across different lower extremity 
movement tasks, particularly tasks that involve continuous, reciprocal, multijoint 
movements of both legs, which is the focus of this paper.
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Observations from the upper limb suggest that the intensity and volume of 
activity in the primary sensory and motor cortices (S1 and M1) and in the cerebel-
lum (Cb) is sensitive to movement rate (Blinkenberg et al., 1996; Jancke et al., 
1999; Jenkins et al., 1997; Khushu et al., 2001; Rao et al., 1996; Sadato et al., 
1996; Sadato et al., 1997; Wexler et al., 1997). Several studies have shown that 
activation intensity in S1 and M1 increases linearly with movement rate at finger 
tapping frequencies up to 5 Hz (Blinkenberg et al., 1996; Rao et al., 1996; Sadato 
et al., 1997; Wexler et al., 1997). The volume of activation in these cortical regions 
also increases with increasing movement rates between 1 and 2 Hz, but movement 
rates beyond 2 Hz produce no further increases in activation volume as measured 
by functional imaging (Khushu et al., 2001; Rao et al., 1996; Sadato et al., 1997). 
Similar effects, albeit not without exception, have also been observed in the Cb 
during tapping and copying geometrical shapes (Jancke et al., 1999; Jenkins et al., 
1997; Lewis et al., 2003; Sadato et al., 1996).

In contrast to M1, S1, and Cb, the effect of upper extremity movement rate 
is less robust in the premotor and supplemental motor areas (PMA and SMA). 
Instead, these structures may be sensitive to changes in task complexity. At least 
two studies have shown no change in activity in the PMA and SMA with tapping 
rates between 0.5 and 4 Hz (Blinkenberg et al., 1996; Wexler et al., 1997). Sadato 
and colleagues showed a “reverse rate effect” in the SMA whereby activity in this 
structure decreased with increasing tapping rate (Sadato et al., 1996). One of the 
few studies that have shown a direct relationship between movement rate and activ-
ity in the SMA and PMA used a joystick task in which volunteers made ballistic 
movements in response to a tone and were asked to freely select the direction of 
movement (Jenkins et al., 1997). Because of the decision making involved in this 
“free selection” task, it may have been a more sophisticated movement paradigm 
than tapping, and the observed rate effect may have reflected an interaction between 
movement rate and task complexity. This conclusion is supported by the observa-
tions of Wexler et al. who compared brain activation patterns during repetitive 
movements of the same finger and sequential movements of different fingers (Wexler 
et al., 1997). They found that the contralateral PMA and SMA showed a significant 
increase in activation volume during sequential as compared with repetitive tapping.

Observations from the upper limb provide a framework for understanding 
how brain activity changes across different lower limb movement tasks. However, 
it remains unclear whether upper and lower limb movements are similarly con-
trolled with respect to rate and complexity because few studies have examined this 
issue during locomotor-like tasks of the lower limbs. Moreover, differences in the 
characteristics of arm and leg movements suggest that supraspinal control may 
also be different. Unlike finger tapping and other hand movements that have been 
examined to date, functionally important lower limb movements such as walking 
are characterized by bilateral, continuous, mulitjoint movements. These types of 
movements are strongly influenced by pattern generating circuits in the spinal cord 
(Duysens & Van de Crommert, 1998) and by sensory signals from muscle and joint 
afferents (McCrea, 2001; Van de Crommert, Mulder, & Duysens, 1998). Hence, the 
same supraspinal control strategies that modulate the rate and complexity of upper 
limb movement may not be used in the lower limb. Alternatively, control strategies 
that govern changes in movement rate and complexity may not be influenced by 
the end effectors (i.e., upper versus lower limb), the nature of the task (i.e., discrete 
versus continuous movement), or the number of limbs and/or joints involved. If 
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the latter explanation is correct, then the upper and lower limbs may use the same 
supraspinal control strategies to modulate movement rate and complexity.

The purpose of this study was to elucidate the role of the brain in control-
ling the rate and complexity of locomotor-like movements of the lower limbs. 
To this end, we examined brain activity during pedaling using fMRI. Pedaling is 
not the same as walking, but it involves rhythmic, reciprocal, flexion and exten-
sion movements of multiple joints in both legs, and it can be accomplished while 
lying supine on a scanner bed. We hypothesized that, if the brain employs similar 
control strategies for upper and lower limb movement, then activity in M1, S1 
and Cb would increase with increasing movement rate, while activity in the PMA 
and SMA would increase with increasing movement complexity. Alternatively, if 
the brain has a lesser role in controlling locomotor-like movements of the lower 
extremities, as compared with the upper extremities, then brain activation would 
not be modulated with movement rate and complexity. To our knowledge this is 
the first report describing task-related changes in brain activation, as measured by 
fMRI, during continuous, rhythmic, reciprocal, multijoint movements involving 
both legs. Portions of this work have been reported previously in abstract form 
(Schindler-Ivens, Mehta, Schmit, Verber, & Wieser, 2008).

Material and Methods

Instrumentation and Data Recording

The pedaling device used for this study has been described previously (Mehta, 
Verber, Wieser, Schmit, & Schindler-Ivens, 2009). In brief, it was a direct drive 
apparatus fabricated from nonmetallic materials that could be positioned on an 
MR scanner bed and used to pedal forward or backward against a frictional load 
with rates up to 80 RPM. The device was equipped with a custom designed MR 
compatible optical encoder (model: TD 5207, Micronor Inc., CA) that was coupled 
to the crank shaft and used to measure pedaling velocity to ±100 RPM and crank 
position to a resolution 1.8°. Signals from the encoder were output via a fiber optic 
cable to a controller unit (model: MR 310, Micronor Inc., CA) located outside the 
scanner room. The controller unit converted the optical signals to electrical signals 
and produced analog outputs corresponding to position and velocity. Position and 
velocity data were sampled at 2000 Hz using a laptop computer, a 16 bit analog 
to digital converter, and data acquisition software (micro 1401 mk II and Spike, 
Cambridge Electronic Designs, UK). These data were used to compute mean ped-
aling velocity across subjects and conditions.

A 3.0T GE short bore MR scanner (General Electric Healthcare, Milwaukee, 
WI) and a GE single channel transmit/receive split head coil assembly (GE model 
2376114) were used for all experiments. Audacity (open source software) and 
Presentation (Neurobehavioral Systems, CA) software were used to deliver audio 
output to the subjects via MR compatible earphones (model SRM 212, Stax, Japan).

fMRI images were obtained using a gradient echo, echo planar imaging (EPI) 
pulse sequence (36 contiguous slices in the sagittal plane, 4 mm slice thickness, 
echo time (TE) = 25 ms, interscan period (TR) = 2 s, flip angle = 77°, field of 
view (FOV) = 24 cm, and 64 × 64 matrix). The resolution of the images was 3.75 
× 3.75 × 4 mm. Approximately half way through the pedaling protocol, 148 high 
resolution spoiled GRASS (gradient-recalled at steady state) anatomical images 
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were collected with TE = 3.9 ms, TR = 9.5 ms, flip angle = 12°, matrix of 256 × 
244, and slice thickness of 1 mm.

Subject Selection and Preparation

Ten healthy individuals (6 males, mean age of 31 years, range: 21–53) with no elite 
training in pedaling volunteered to participate. Each subject gave written informed 
consent according to the Declaration of Helsinki and institutional guidelines at 
Marquette University and the Medical College of Wisconsin.

Before participating, subjects underwent at least three fMRI safety screenings 
and were excluded if they were claustrophobic, pregnant, or had any implants or 
foreign bodies incompatible with fMRI. Subjects were also excluded if they had 
a history of neurological impairments or physical conditions contraindicative to 
pedaling. Each subject participated in a familiarization session outside the MR 
environment where we explained the experimental procedures and taught them to 
pedal at 30 and 60 RPM, cued by a metronome. They also practiced relaxing their 
lower extremities while the experimenter pedaled their legs in the device. During 
this session we also explained the importance of remaining still during fMRI and 
encouraged subjects to keep their head and trunk stationary while pedaling. Subjects 
did not practice the variable rate pedaling task.

Experimental Set-Up

During fMRI scanning, subjects lay supine on the scanner bed with their feet secured 
in a pair of sandals that were fastened to the pedals as shown in Figure 1. Subjects’ 
buttocks rested on the base of the pedaling device. The position of the pedaling 

Figure 1 — Experimental setup with subject positioned inside the scanner bore and ready 
to pedal.
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device was adjusted until subjects were able to pedal comfortably and their legs 
did not touch the scanner. Each subject wore MR compatible ear phones through 
which audio cues were delivered and an additional set of headphones to protect 
against scanner noise. The subject’s head was placed in the head coil and adjusted 
to achieve symmetry in all 6 planes of movement (superior-inferior, left-right, 
anterior-posterior, roll, pitch, and yaw). To minimize head movement, the subject’s 
head rested in a beaded vacuum pillow that enveloped the entire head (except the 
face) and created a firm, comfortable, “brace” around the head. A chin strap was 
used to prevent inferior-superior head movement. The subject’s torso was stabilized 
with a wide Velcro strap to minimize trunk movement. Additional padding under the 
buttocks and shoulders was provided for comfort. Subjects grasped an emergency 
squeeze ball that could be used at any time to signal a problem. Participants were 
monitored for safety and comfort and were able to communicate via intercom with 
the scanner technician.

Experimental Protocol
Participants performed four different tasks, slow (30 RPM), fast (60 RPM), passive 
(30 RPM), and variable rate pedaling (mean rate: 45 RPM) while scanning to obtain 
functional images of the brain. Tasks were presented in a block design consisting of 
3 runs of each pedaling condition. Each run lasted 4 min. In a single run, subjects 
pedaled for 30 s, then rested for 30 s. This sequence was repeated 4 times. During 
the slow, fast, and variable conditions, subjects actively pedaled the bicycle at the 
rate indicated by the metronome. During passive pedaling, both the subject and an 
experimenter listened to the metronome cues. Subjects were instructed to remain 
completely relaxed while the experimenter pedaled the bicycle. During the variable 
task, the pedaling rate varied randomly between 30 and 60 RPM with a mean rate 
of 45 RPM. In all other tasks, pedaling rate was constant. Throughout the experi-
ment, subjects’ pedaling performance was visually monitored through the control 
room window and by examining the position and velocity data from the optical 
encoder. We also had access to real time information about head position. If the 
subject did not perform the task as instructed or if their head moved more than 2 
mm, we checked the subject for comfort, repeated the instructions to remain still, 
and restarted the run.

Data Processing and Statistics
fMRI signal processing was completed using Analysis of Functional NeuroIm-
ages (AFNI) software. Raw fMRI data were converted into 3 dimensional (3D) 
images and were registered to the functional scan obtained closest in time to the 
anatomical scan. Functional datasets were averaged across all runs within a pedal-
ing condition to minimize the effect of noise. Correlation analysis was performed 
on the average signal.

Conventional fMRI signal processing techniques for block designs in which the 
entire BOLD signal is fit with a boxcar function are not appropriate for analyzing 
pedaling-related brain activation because limb movement causes signal distortion 
(Mehta et al., 2009). To overcome this confound, we extracted the portion of the 
signal after movement stopped (i.e., the rest period) and correlated only this por-
tion of the signal with the corresponding portion of the standard model (box car 
convolved with a gamma function). See Figure 2, where the shaded region denotes 
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the rest period during which the BOLD signal (blue) was correlated with the model 
(green). From these data we used standard AFNI functions to calculate the cor-
relation between the model and the data and the percent change in BOLD signal 
from the baseline. This approach is justified because the onset and termination of 
BOLD signals are delayed with respect to a given task (Bandettini & Cox, 2000; 
Blamire et al., 1992). Hence, movement-free BOLD signal should be present when 
pedaling has stopped. The validity of this approach has been described previously 
(Mehta et al., 2009).

Group activity maps were obtained as follows. After overlaying the functional 
data on the anatomical images and identifying standard landmarks, data from each 
subject were transformed into the standardized coordinate system of Talairach and 
Tournoux (Talairach & Tournoux, 1988). Functional data were blurred using a 4 
mm full width half maximum Gaussian filter. These data were then entered into 
a t test to identify voxels containing BOLD signal that was significantly different 
from baseline. A threshold for the t test was selected using a Monte Carlo simula-
tion (AlphaSim) that set an appropriate individual voxel p-value (p < .000001) and 
cluster size threshold to maintain a familywise error rate of p < .05. The values for 
percent change in BOLD signal for each significant voxel were displayed as a group 
color map superimposed on the Talairach reference brain. The spatial coordinates 
for the Brodmann areas and cerebellar lobules that were significantly activated 
were also determined from the Talairach atlas.

Values for volume and intensity of activation were calculated for each subject 
as follows. We applied the standard Talariach atlas to the group activation maps 
and identified regions that were commonly activated for all subjects and across all 
4 pedaling conditions. The spatial coordinates of commonly active regions, referred 
to as regions of interest (ROIs), were then obtained from a standard Talairach and 
Tournoux maximum probability map (TT-MPM) atlas and transformed into each 

Figure 2 — Time series voxel from a single subject taken from the sensorimotor cortex. 
Gray shaded region shows portion of the data (blue) fit to the model (green). Black line 
represents the block design of the pedaling task. The x-axis represents time, and the y-axes 
represent the amplitude of the BOLD signal (left) and the model (right).
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subject’s original space. After transformation we visually inspected the position 
of the ROIs in each individual subject’s map and confirmed that the group coor-
dinates represented the same anatomical regions in individual subjects as in the 
group maps. Individual subject values from each ROI were entered into a t test 
to identify voxels containing BOLD signal that was significantly different from 
baseline. A threshold for the t test was selected using a Monte Carlo simulation to 
maintain a familywise error rate p < .05. Individual voxel p-values were 0.0002 
for M1/S1, 0.0001 for SMA, and 0.0006 for Cb. Voxels that passed this threshold 
were included in subsequent analyses.

The number of significantly active voxels in each ROI was counted to obtain a 
value for activation volume. The mean percent change in BOLD signal from baseline 
was computed from these volumes. This analysis was performed on each subject for 
each ROI activated in the group dataset for each pedaling condition. These values, 
which were used for the group statistics explained below, described the spatial 
extent and intensity of activation during different conditions and within each ROI.

One way analysis of variance with repeated measures was used to identify dif-
ferences in activation volume and intensity across pedaling conditions in each ROI. 
Differences were considered significant at p < .05. When significant main effects 
of condition were identified, Dunnett’s post hoc procedure was used to compare 
the slow condition to every other pedaling condition. Comparisons between slow 
and variable pedaling and slow and fast pedaling allowed us to examine changes in 
brain activation associated with changing task demands. The comparison between 
slow and passive pedaling allowed us to distinguish between brain activation asso-
ciated with producing movement and activation arising from passive movement 
of the limbs.

We further examined Brodmann area 6, which contains both the SMA and 
premotor area (PMA), to understand the extent to which each of these regions was 
active during pedaling, and we found that nearly all the activity in Brodmann area 
6 was in the SMA. This processing was completed as follows. Before applying a 
threshold for brain activation to the group maps, the full range of t values in the 
combined SMA and PMA region for each pedaling condition was examined. There 
were two peaks in the t values. One peak corresponded to the known anatomical 
location of the SMA and the other to the PMA (Jenkins et al., 1997; Kandel E.R., 
Schwartz J.H., Jessell T.M., 1991; Wexler et al., 1997). Manual editing was per-
formed to remove the “valley” between the peaks, allowing separation of SMA and 
PMA. Thresholds were applied to each pedaling condition as reported above, and 
the thresholded maps were divided along the boundary established in the previous 
step. Upon completing this processing, we saw that more than 98% of the significant 
voxels were in the SMA. Less than 2% were in the PMA.

To extract individual subject voxel counts and intensity of activation values, 
the separated maps for each of the four pedaling conditions were combined (OR 
operation). This thresholded group-level, separated SMA/PMA, combined pedal-
ing condition map (in Talairach space) was converted to each subject’s original 
space. To maintain the size of the regions in original space, and because the original 
space voxels are larger than the Talairach voxels (3.75 × 3.75 × 4 mm vs. 1 × 1 × 
1 mm), only original space voxels that were overlapped 50% or more by Talairach 
space voxels were included. Because of this step, the small PMA areas were lost 
for many of the individual subjects. These observations indicate that the results for 
Brodmann area 6 were driven predominantly by the SMA.
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Results

Task Performance

All subjects were able to perform the pedaling tasks as evidenced by group mean 
(SD) pedaling rates of 30.4 (0.4), 45.0 (1.0), 59.7 (0.6), and 29.9 (0.7) RPM for 
the slow, variable, fast, and passive conditions, respectively. On average, subjects 
displayed less than 0.5 mm of translational head movement and less than 0.5° of 
head rotation during all pedaling conditions except the passive condition where the 
head moved 1.4 (2.0) mm in the inferior direction. There was no significant effect 
of pedaling condition on head movement (p > .06).

Figure 3 — Functional data (% change values) overlaid on reference brain showing 
group activity (N = 10) for slow, fast, variable, and passive pedaling conditions. Images 
are snapshots from the sagittal and axial planes, the location of which are represented by x 
and z coordinates. Color maps indicate percent change in BOLD signal with red being the 
maximum change from baseline.
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Brain Activation During Active Pedaling

All four pedaling conditions produced significant bilateral activation in M1, SI, 
SMA, and the Cb vermis (lobules IV, V, and VIII). There was no significant activ-
ity in PMA. Figure 3 displays active brain regions for the entire group during each 
condition. Table 1 displays the spatial coordinates and volume of activation for 
each condition as measured from the group data.

Table 1  Areas of Activation with Coordinates of Center of Mass for 
Each Pedaling Condition.

Condition Regiona

Coordinates for  
center of mass

Volume 
(μL)

R-L 
(mm)

A-P 
(mm)

I-S 
(mm)

Slow 

(30 RPM)

B. Primary sensorimotor cortex 
(1,2,3,4)

-1.1 36.2 59.6 9299

B. SMA (6) -0.7 18.5 59.8 10708

B. Cerebellar vermis (IV/V) 1.1 44.3 -9.7 6194

B. Cerebellar vermis (VIII) 2.5 60.0 -34.3 516

Fast 

(60 RPM)

B. Primary sensorimotor cortex 
(1,2,3,4)

0.2 37.0 58.7 10857

B. SMA (6) 0.5 16.5 59.1 12762

B. Cerebellar vermis (IV/V) 0.8 44.9 -14.9 4298

Variable 

(45 RPM)

B. Primary sensorimotor cortex 
(1,2,3,4)

0.0 36.6 58.5 10906

B. Primary sensorimotor cortex 
(1,2,3,4)

-53.3 17.2 30.2 201

B. SMA (6) -0.4 13.8 57.5 17919

R. SMA (6) -31.6 11.7 47.2 185

B. Cerebellar vermis (IV/V) -0.9 45.7 -14.3 5483

Passive 

(30 RPM)

B. Primary sensorimotor cortex 
(1,2,3,4)

-1.0 36.1 58.6 10645

B. SMA, (6) -0.6 14.3 57.6 14038

B. Cerebellar vermis (IV/V) -3.5 27.5 -13.1 2084

R = Right, L = left, A = anterior, P = posterior, I = inferior, S = superior, B = bilateral, SMA = supple-
mental motor area. Negative values represent right, inferior, and anterior. aBrain regions are described 
by name, Brodmann area (cortex), and cerebellar lobule (cerebellum).

In comparison with the slow condition, fast and variable pedaling produced a 
higher intensity of activation in M1, S1, SMA, and Cb (p ≤.02) (Figure 4). Increased 
pedaling rate and variability in pedaling rate had no effect on the volume of activa-
tion in any region examined (p ≥ .18).
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Figure 4 — Graphs represent the intensity (percent signal change) and spatial extent (volume) of 
activation across pedaling conditions in each region of interest. Asterisks indicate significant differ-
ences between conditions.

Effect of Passive Movement

In M1, S1, and SMA, there was no significant difference in the intensity or volume 
of activation during slow and passive pedaling (p ≥ .23). In the Cb, the volume of 
activation was significantly lower during passive as compared with slow pedaling 
(p = .045). The intensity of activity in the Cb was not different during active and 
passive pedaling (p = .28).
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Discussion
This study showed that M1, S1, Cb, and SMA were active during pedaling and that 
the intensity of activity in these areas increased with increasing pedaling rate and 
complexity. Responses to changing task demands were similar in primary (M1, S1) 
and secondary (SMA) sensory and motor areas. There was no significant difference 
in the intensity or volume of brain activity in M1, S1, or SMA during passive and 
active pedaling. Only the volume of activity in the Cb was lower during passive as 
compared with active pedaling. These observations demonstrate that cortical and 
subcortical brain regions are active during continuous, rhythmic, lower extremity 
movements and that activity in these regions is related to movement rate and complex-
ity. Our data also suggest that this brain activity may be driven by sensory feedback.

Changes in Brain Activity Associated  
with Increasing Pedaling Rate

Our results agree partially with previous work examining the effects of upper 
extremity movement rate on brain activity. Consistent with our hypothesis and in 
accordance with finger tapping studies (Blinkenberg et al., 1996; Jancke et al., 1999; 
Jenkins et al., 1997; Rao et al., 1996; Sadato et al., 1996; Sadato et al., 1997; Wexler 
et al., 1997), increased pedaling rate resulted in increased intensity of activity in 
M1, S1, and Cb. However, unlike upper limb tapping studies, increasing movement 
rate did not increase activation volume (Jancke et al., 1999; Khushu et al., 2001; 
Rao et al., 1996; Sadato et al., 1997). Our findings are also in line with studies 
involving copying geometric shapes that have shown a direct relationship between 
movement rate and activation intensity in the medial Cb (Lewis et al., 2003) and 
with studies demonstrating that activity in M1 can be used to predict hand veloc-
ity during tracing (Schwartz, 1993; Schwartz, 1994; Schwartz & Moran, 1999). 
Moreover, Christensen et al. used PET to show that regional cerebral blood flow 
in M1 and Cb increased with increasing pedaling rate (Christensen et al., 2000). 
This group was unable to assess changes in activation volume, per se, because 
PET cannot make distinctions between intensity and volume changes (Fox, Fox, 
Raichle, & Burde, 1985).

It is thought that increased BOLD responses detected with fMRI are function-
ally meaningful and caused by increased synaptic activity and elevated neuronal 
firing frequencies in the brain (Logothetis, Pauls, Augath, Trinath, & Oeltermann, 
2001). Specific to motor tasks, Lutz et al. have suggested that increased BOLD 
signals are caused by increased neuronal firing rates that are required to generate 
higher muscle forces to increase movement velocity (Lutz, Koeneke, Wustenberg, 
& Jancke, 2005; Rao et al., 1996). This idea is supported by single cell recordings 
in monkeys that have shown that firing rates of M1 neurons were positively corre-
lated with the increased force and velocity that was needed to produce faster finger 
movements (Humphrey, 1972). Hence, our observations suggest that neurons in 
M1, S1, and Cb increase their synaptic activity and/or firing frequency to increase 
pedaling rate. Moreover, the same brain regions that increase their neuronal activ-
ity to produce faster finger movements (M1, S1, and Cb) also modulate the rate of 
continuous, bilateral, multijoint movements of the lower limbs, suggesting shared 
supraspinal control strategies for the upper and lower limb.
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We were surprised that increased pedaling rate did not increase activation 
volume in M1, S1, or Cb because others have shown rate-dependent increases in 
the activation volume in these structures during finger movements (Jancke et al., 
1999; Khushu et al., 2001; Rao et al., 1996; Sadato et al., 1997). Perhaps, unlike 
the upper limb, the entire network of neurons involved in pedaling was active even 
at the lowest demand condition. However, this observation must be considered in 
the context of the reliability and validity of fMRI measurements of brain activity.

In comparison with other quantitative measures of brain activity derived from 
BOLD fMRI, such as activation intensity, volume is less reliable (Aron, Gluck, & 
Poldrack, 2006; Kimberley, Birkholz, Hancock, VonBank, & Werth, 2008; Kim-
berley, Khandekar, & Borich, 2008; Lim, Choo, & Chee, 2007; Loubinoux et al., 
2001; Marshall et al., 2004). Hence, our failure to see between-condition differ-
ences in activation volume may have been due to measurement variability. Poor 
reliability of activation volume has been attributed to the “all or none” nature of 
the calculation (Kimberley, Khandekar et al., 2008). Because a voxel is considered 
active based on a given threshold, subtle changes in activation can be magnified 
if a voxel is hovering around threshold. Intensity is not dependent on a threshold, 
which may make it a more stable measure than volume and more sensitive to 
changes in neural activity.

It is also possible that activation volume did not change because, in comparison 
with signal intensity, the volume of the BOLD fMRI signal may be a less valid 
measure of brain activity. Rao et al. suggested that increased brain activation volume 
with increased movement rate is not due to a widening of the area of activation, 
but rather, enhanced signal-to-noise ratio that leads to better detection of voxels 
on the fringe of the primary activation site (Rao et al., 1996). This conclusion was 
based on the observation that, during finger tapping, activation volume increased 
from the nominal to the next fastest condition, but did not increase further with 
increasing movement rate; whereas, activation intensity increased linearly with 
increasing tapping rate across all rates examined.

Finally, the pedaling rates used in this study may account for no change in the 
volume of brain activity. Previous studies showed that activation volume increased 
most substantially in M1 as finger movement rate increased from 1 to 2 Hz (Rao et 
al., 1996) and in the Cb as movement rate increased from 1 to 3 Hz (Jancke et al., 
1999). In the current study, pedaling rate increased twofold, but never exceeded 
1 Hz (i.e., 60 RPM). The slower movement rates used in this study, as compared 
with finger tapping studies, were selected to minimize head movement. At these 
relatively slow rates, subjects may not have pedaled fast enough to reveal rate-
dependent volume changes.

Brain Activity During Variable Rate Pedaling

Our hypotheses predicted that activity in the PMA and SMA would increase 
during variable rate pedaling, as compared with the slow condition, but that activ-
ity in these structures would not be sensitive to changes in pedaling rate. We also 
predicted that activity in M1, S1, and Cb would not increase with increasing task 
complexity. These hypotheses were based on observations from the upper extremity 
(Blinkenberg et al., 1996; Wexler et al., 1997; Sadato et al., 1996; Jenkins et al., 
1997). Consistent with these predictions, the SMA showed an increase in activation 
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intensity during variable rate pedaling as compared with slow pedaling. However, 
the intensity of activity in the SMA was similarly sensitive to changes in pedaling 
rate. Moreover, M1, S1, and Cb showed increases in activation intensity during 
variable rate pedaling that were similar to those observed during fast pedaling. 
One possible explanation for these observations is that, during rhythmic, multijoint 
movements of the legs, movement rate and complexity may not be controlled by 
different brain regions, like they are in the hand. Instead, all active brain regions 
may modulate pedaling rate and complexity.

Alternatively, the variable rate condition may not have been sufficiently chal-
lenging to reveal complexity-related changes in signal intensity in the SMA. In the 
upper limb, task complexity has been manipulated by comparing repetitive move-
ments of the same finger to sequential movements of different fingers (Elsinger, 
Harrington, & Rao, 2006; Wexler et al., 1997). Authors demonstrate that one task 
is more complex than another by showing increased performance errors, reaction 
times, and/or movement times. Our subjects were equally capable of producing 
the desired pedaling rate during all conditions, suggesting that the variable rate 
task may not have been more difficult than the other conditions. We may have 
inadvertently examined the effect of three different pedaling rates on brain activity. 
During the variable condition, pedaling rate varied between 30 and 60 RPM with 
a mean rate of 45 RPM, which was the midpoint between the slow and fast condi-
tion. Therefore, the increase in brain activation during the variable rate condition 
may be due to rate effects. The observation that there was no additional increase 
in signal intensity between the variable and fast condition may mean that the effect 
of pedaling rate saturates somewhere between 45 and 60 RPM.

Another factor that may have influenced our results was the type of cue used 
to guide pedaling. All tasks were externally cued to ensure that subjects produced 
the desired pedaling rates. During slow and fast conditions, cues were predictably 
paced. During the variable condition, cues were unpredictably paced. A common 
finding is that the SMA is preferentially activated during predictable movements, 
whether externally cued or self-initiated (Deiber, Honda, Ibanez, Sadato, & Hallett, 
1999; Jenkins, Jahanshahi, Jueptner, Passingham, & Brooks, 2000). The PMA is 
most active during externally cued, unpredictable movements (Elsinger et al., 2006). 
These findings suggest that the SMA is important for planning and executing actions 
from memory; while the PMA is important for planning movements that are guided 
by sensory cues. Hence, we might have expected to see more activity in the SMA 
during slow and fast pedaling as compared with variable pedaling and more activity 
in the PMA during variable as compared with fast and slow pedaling. However, 
the SMA showed more activity during variable and fast pedaling as compared with 
slow pedaling, which points to a rate-related and not a cue-related trigger. Perhaps 
the functions ascribed to the PMA and SMA based on discrete movements of the 
upper limb do not apply to continuous, bilateral movements of the legs.

Brain Activity During Passive Pedaling

The brain activation observed in this study may have been induced by sensory 
signals from the moving limbs. Our data suggest that supraspinal structures, par-
ticularly the cerebral cortex, do not produce the fundamental pattern of muscle 
output associated with locomotor-like leg movements. Instead, these structures 
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may monitor sensory information from the moving limbs and use this information 
to respond to external perturbations or to maintain, reinforce, or shape the pattern 
of ongoing locomotor output.

This study showed that activity in M1, S1, and SMA was not significantly 
different during passive and active pedaling. Comparable brain activation during 
active and passive movement is a counterintuitive observation, as one might assume 
that the observed activity represents an internally generated, descending locomo-
tor command. We cannot rule out the possibility that some of the brain activity 
observed during passive pedaling may have been due to unintended muscle activ-
ity. However, our result is not surprising in light of other studies that have shown 
comparable activity in motor areas of the brain during active and passive movements 
(Christensen et al., 2000; Radovanovic et al., 2002; Terumitsu, Ikeda, Kwee, & 
Nakada, 2009; Weiller et al., 1996). Weiller et al. (Weiller et al., 1996) showed that 
during active and passive elbow movements there was a strong increase in regional 
cerebral blood flow (rCBF) in the contralateral sensory and motor cortices and in 
the SMA. Christensen et al. (Christensen et al., 2000) also showed that passive 
pedaling activated areas of the brain that were similar to and nearly as extensive 
as active pedaling. Both groups concluded that sensory feedback from the moving 
limbs may explain a substantial part of cerebral activation, and Christensen et al. 
suggested that sensory feedback to the cortex may help maintain rhythmic, alter-
nating movements.

Further support for the assertion that the cortical activity during pedaling was 
caused by sensory input used to modify locomotor output comes from studies 
demonstrating a transcortical contribution to stretch and cutaneous reflexes elic-
ited during sitting and walking (Christensen, Morita, Petersen, & Nielsen, 1999; 
Christensen, Andersen, Sinkjaer, & Nielsen, 2001; Nielsen, Petersen, & Fedirchuk, 
1997; Petersen, Christensen, Morita, Sinkjaer, & Nielsen, 1998; Zuur, Christensen, 
Sinkjaer, Gray, & Nielsen, 2009). Zurr et al. showed that the late component of 
the tibialis anterior (TA) stretch reflex elicited during the swing phase of gait was 
suppressed after 20 min of repetitive transcranial magnetic stimulation (rTMS), a 
technique that inhibits motor cortex output (Zuur et al., 2009). The authors con-
cluded that the TA stretch reflex was partially mediated via the motor cortex and 
suggested that the motor cortex interacts with proprioceptive feedback to deal with 
the complex demands of walking.

The animal literature also suggests that sensory signals modulate activity of 
M1 neurons. Cheney and Fetz (Cheney & Fetz, 1984) showed that corticospinal 
cells in the monkey cortex respond at short latency to stretch of their target muscles. 
Others have demonstrated that corticospinal neurons in the motor cortex of standing 
and walking cat are modulated at short latency by afferent input (Karayannidou 
et al., 2008; Marple-Horvat, Amos, Armstrong, & Criado, 1993). Comparable 
observations have been made in humans where cutaneous and proprioceptive input 
enhances motor responses to TMS of M1 during sitting and walking (Christensen 
et al., 1999; Christensen et al., 2001; Nielsen et al., 1997; Petersen et al., 1998).

The Cb was the only structure observed in this study to demonstrate a lower 
level of activity during passive as compared with active pedaling. Christensen and 
colleagues (Christensen et al., 2000) also showed a decrease in activity in the Cb 
during passive versus active pedaling. However, it must be emphasize that, in both 
studies, there was a substantial amount of activity in the medial aspect of the Cb 
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during the passive condition. Again, we cannot completely rule out motor contri-
butions to this observation; however, these data suggest that the Cb may have a 
role in producing locomotor movement and processing locomotor-related sensory 
feedback. Mori et al. (Mori, Matsui, Mori, Nakajima, & Matsuyama, 2000) have 
shown that, in the decerebrate cat, stimulation of the hook bundle of Russell, which 
is located in the white matter of the medial Cb, produces well-coordinated tread-
mill locomotion that is similar to that evoked by stimulating the mesencephalic 
locomotor region. White matter tracts in the hook bundle of Russel originate in the 
fastigial nucleus of the Cb and project to reticulospinal and vestibulospinal neurons 
in the brainstem and to areas 4 and 6 of the cortex. Hence, portions of the Cb may 
initiate and regulate locomotion via cortical and brainstem pathways. Information 
from nearly all sensory systems converges on the Cb (Brodal, 1978), and it can be 
activated by tactile and proprioceptive stimuli in the absence of movement (Fox, 
Raichle, & Thach, 1985; Gao et al., 1996; Naito et al., 2002). Some authors have 
even suggested that the Cb is involved in sensory discrimination and not movement, 
per se (Gao et al., 1996). Others have reported movement-related Cb activation in 
the absence of sensory input (Weeks, Gerloff, Honda, Dalakas, & Hallett, 1999). 
Our data point to both a sensory and motor role of the Cb during pedaling.

Conclusions
In conclusion, this study demonstrated significant activity in M1, S1, SMA, and 
Cb during pedaling that increased with increasing pedaling rate and complexity, 
suggesting that these structures have a role in modifying continuous, bilateral, 
multijoint lower extremity movements. Similar levels of cortical and Cb activity 
were present during active and passive pedaling, which suggests an important role 
for sensory signals in producing brain activity during pedaling. Additional studies 
are needed to further elucidate the relationships among brain activity and pedaling 
rate, task complexity, and sensory feedback.
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