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Abstract: Firms involved in international logistics must develop a system of service attributes 

that give them a way to be profitable and to satisfy customers’ needs at the same time. How 

customers trade-off these various attributes in forming satisfaction with competing international 

logistics providers has not been explored well in the literature. This study explores the ocean 

freight shipping sector to identify the system of attributes that maximizes customers’ satisfaction. 

Data were collected from shipping managers in Singapore using personal interviews to identify 

the chief concerns in choosing and evaluating ocean freight services. The data were then 

examined using neural networks and decision trees, among other approaches to identify the 

system of attributes that is connected with customer satisfaction. The results illustrate the power 

of these methods in understanding how industrial customers with global operations process 

attributes to derive satisfaction. Implications are discussed.  

 

Introduction  

In the 1990’s, the so called “Logistics Renaissance” (Council of Logistics Management 

1995) reflected the new era of supply chain management. This “renaissance” compelled firms to 

examine their supply chain efficiencies to cut costs while simultaneously enhancing customer 

satisfaction. Indeed, Bowersox (1995) argues that “there have been more changes in the 

process of logistics during the past 10 years than in all the decades since the industrial revolution” 

while Fuller, O’Conor and Rawlinson (1993) envision logistics as the next governing element in 

shaping competitive business strategy. Globalization is also dramatically contributing to a 

renewal in thinking as to how the logistics part of the supply chain should be constructed and 

managed (Poirier 1999).  

International logistics operations have become critical in recent years given that about 

one fifth of the output of U.S. firms is produced overseas and one-fourth of U.S. imports are 

between foreign affiliates and U.S. parent companies (Dornier et al. 1998). Moreover, costs 

associated with logistics operations now make up the most significant portion of international 

trade expenses (Rodrigues, Bowersox, & Calentone, 2005). Logistics, once ignored, has now 
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become a key driver of global firms’ competitiveness.  

Amidst this dramatic change, international logistics providers need to identify the most 

important attributes that determine the value of the services they offer to logistics users looking 

to improve their supply chain effectiveness (Dadzie Chelariu, & Winston, 2005; Lambert & 

Burduroglu, 2000). According to Mentzer et al. (2004), the way a service provider performs 

logistics operations significantly affects the service provider’s competitive advantage in both 

efficiency (cost leadership) and effectiveness (customer service). Customer service in how the 

logistics activities are performed has become a key to customer satisfaction, loyalty and market 

share (Daugherty, Stank, & Ellinger, 1998; Innis & La Londe, 1994; Stank et al., 2003). Hence, 

the service provider must maintain its quality of service and ensure the value added by the 

service is worth the cost it charges its clients; otherwise, clients may switch to others or provide 

the service themselves (Fung and Wong 1998).  

The business environment for logistics service providers is notably competitive especially 

as more firms outsource their logistics solutions to third party logistics providers. To operate in 

such an environment, logistics firms need a competitive strategy that is different than their rivals, 

need to perform different activities from rivals, or perform similar activities in different ways 

(Porter 1996). In essence, logistics service providers are compelled to combine various service 

attributes into the right package or system so as to achieve a sustainable competitive advantage. 

Pivotal to achieving such a goal is an accurate understanding of what service attributes are 

important to their (industrial) customers. Yet, how industrial customers (or supply chain 

participants) choose logistics service providers is not well understood. Which service attributes 

have the strongest impact on satisfaction? What combination of service attributes maximizes 

satisfaction?  

The purpose of this paper is to explore this choice process by investigating firms which 

ship their goods using one type of logistics provider, the ocean freight shipping service. We use 

the techniques of neural networks and decision trees as our approach to understand this process. 

The literature reports no application of these techniques to probe the mindset of industrial 

customers. Our study is in response to the dearth of research on what system of service 

attributes affect customer choice of certain logistics companies over others.  

In this paper, we use responses to unstructured (or open-ended) surveys to discover the 

reasons why customers patronize certain shipping companies while avoiding others. Via this 

approach, we identify the relevant service attributes that customers consider when they evaluate 

logistics firms. Subsequently, we use a neural network approach to determine the relative 
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importance of these service features that drive customer satisfaction and how customers 

mentally processes this system of attributes. We then apply decision tree analysis to identify 

what “system” or combination of service features maximizes customer satisfaction. 

Understanding this system via these two approaches sheds light on the calculus that global 

logistics firms may use when allocating their resources to build customer retention and loyalty.  

The paper first begins with a discussion of Porter’s (1996) ideas on how to construct a 

profitable system of attributes and its strategic importance. Subsequently, we examine service 

satisfaction, its antecedents, and its consequences. Next, we offer a brief discussion of the 

features of neural networks and decision trees and their usefulness in our research. We then 

present our research method, including a description of the sample and survey measures 

consisting of structured and unstructured questions. After providing the results, we discuss the 

efficacy of such analytical techniques in understanding the formation of customer satisfaction in 

the logistics industry. The paper concludes with implications for firms that provide international 

logistics services and insight into developing their system of offerings. Our paper contributes to a 

better understanding of international logistics by investigating an important area that has 

received little attention.  

 

Strategic Importance of Constructing a Profitable System of Service Attributes  

Porter (1996) argues that firms must understand the tradeoffs that exist in establishing a 

competitive position in the marketplace. The essence of strategic positioning is to choose 

activities that are different from rivals; strategy rests on these unique activities to deliver a unique 

mix of value. It is, therefore, essential that international logistics companies identify what type of 

service attributes or offerings (e.g., price, reputation, delivery speed, claim handling) to focus on 

so that service satisfaction remains high–even if the company does not provide maximum 

service levels in every aspect of the service delivery. In sum, an international logistics company 

must be concerned with how to construct a “system” of attributes that will be attractive and 

satisfying to customers and will be profitable while recognizing that there are tradeoffs in this 

process.  

Unfortunately, extant research in the logistics services area does not provide easy 

solutions to address these concerns. Porter (1996) illustrates an excellent mapping process to 

understand how services attributes and activities are linked to one another to form a system, yet 

he does not recommend a procedure in how to analyze or quantify these linkages. These 

activities, clearly, must be ones that customers value for this combination to be superior to 
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competing offerings. He warns firms that such strategic positioning is not obvious; finding them 

requires creativity and insight. Our research, therefore, is guided by Porter’s exhortation and by 

Behara, Fisher and Lemmnik (2002) who advocate using neural network analysis to identify the 

optimal operation of service attributes.  

Because of its connection to profitability, building customer loyalty has become a major 

preoccupation with firms. The question “What are the key drivers of customer loyalty?” is 

essentially about finding the right combination of activities at various levels that provide superior 

value and high levels of customer satisfaction as Porter (1996) advocates. Unfortunately, there is 

no easy answer to this question, perhaps due to the diversity of customers and industry 

situations. Because a service is intangible, it has properties regarding quality that make it much 

more difficult to identify and, therefore, to quantify drivers of loyalty. Nonetheless, customer 

satisfaction is regarded as a pivotal concept that is considered to be at the core of building this 

loyalty.  

Heretofore, the preponderance of evidence in the service sector suggests that providing 

superior service is the way to increase customer satisfaction, which, in turn, sustains repeat 

purchases and enhances loyalty. Providing superior service, however, can be very expensive 

since it may involve infrastructure development and heavy costs involving human resources. 

Becoming the best service provider may seem initially like the surest route to success if the costs 

are not considered. For international logistics firms with limited resources, key decisions must be 

faced in terms of the tradeoffs involving giving maximum service versus focusing on optimal 

profitability. These tradeoffs in logistics costs are crucial in determining customer service levels 

in supply chain decisions. Given the need to develop a combination of logistics attributes, we 

now examine the role of customer satisfaction in building this combination.  

 

The Importance of Customer Satisfaction  

Customer satisfaction in the B2B sector with services (such as logistics operations) has 

become a key concern as the service sector continues to expand and competition among service 

providers intensifies. Customer evaluation of the service which ultimately determines satisfaction 

involves a plethora of service attributes including quality, service encounters, and value. 

Presently, it is believed that there is a causal sequence where service quality (as reflected in 

these attributes) drives satisfaction, which, in turn, affects attitudinal loyalty (favorable word of 

mouth) and behavioral loyalty (repurchase intentions). Hence, satisfaction is a crucial variable in 

this causal chain. Fung and Wong (1998) view maximizing customer satisfaction as an essential 
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part of a service strategy in logistics.  

Customer satisfaction has been widely studied in consumer research (Yi, 1989), 

economic psychology (Johnson & Fornell, 1991), marketing (Fornell & Werneldt, 1987), and 

service management (Hallowell, 1996). In the marketing literature, satisfaction is argued to have 

impacts on customers’ loyalty intentions (Bearden and Teel 1983; LaBarbera & Mazursky, 1983; 

Oliver, 1996; Yi, 1990), which in turn affects profitability (see for example, Heskett et al., 1994; 

Storbacka, Strandvik, & Gronroos, 1994). Empirical findings have also found supportive 

evidence that satisfaction is associated positively with customers’ repurchase intentions (i.e., 

behavioral loyalty) (Anderson & Sullivan, 1993; Woodside, Frey, & Daley, 1989;) and propensity 

to recommend to others (i.e., attitudinal loyalty) (Hartline & Jones, 1996; Selnes, 1993; Zeithaml, 

Berry, & Parasuraman, 1996). Lovelock (2001) also argues that it can generate positive word of 

mouth, more agreeable customers, and customer retention.  

Since understanding customer satisfaction is crucial, it is essential to identify the 

significant factors that form or drive customer satisfaction. Heretofore, the bulk of research 

investigating these factors has exclusively relied on standard 7-point rating scales to quantify 

satisfaction. A more powerful approach, however, may be to identify the factors customers use to 

evaluate the service and the concomitant satisfaction experienced. It is also crucial to identify the 

reasons customers give in deciding if they should continue their relationship with their preferred 

service provider. Knowing the relative importance of those factors and reasons can provide 

valuable insight for international logistics firms in designing a more satisfying “system” of service 

attributes or features. We discuss below the techniques to map out the attributes that drive 

satisfaction.  

 

Techniques to Understand Satisfaction: Neural Networks and Decision Trees  

One way to quantify the importance of various service attributes or features and reasons 

in driving satisfaction is via ordinary regression analysis or path analysis. These analytic 

techniques are constrained by assumptions regarding linearity of relationship between 

satisfaction and its determinants and the possibility of multi-collinearity among the determinants 

of service satisfaction. However, the relationship between service satisfaction and its 

determinants may not always be linear. Moreover, multi-collinearity causes instability among 

parameter estimates, thereby limiting the applicability of traditional analytic methods (Draper & 

Smith, 1981; Hair, Tatham, & Black 1998). In this scenario, other techniques such as neural 

networks or decision trees offer a better promise.  



6  Durvasula, Lysonski, & Mehta 

 

Neural networks can be used when there is a non-linearity in the relationship between 

customer satisfaction and its determinants. These networks, which mimic how the brain may 

work, are helpful in sorting the most important service features that drive customer satisfaction. 

Decision trees, on the other hand, are particularly useful in mapping out the combination of 

service satisfaction attributes that maximize satisfaction. Knowing this combination would allow a 

firm to develop a more profitable “system” of service features or attributes that would lead to 

higher levels of satisfaction among its customers. Neural networks and decision trees, therefore, 

offer an analytic power that regression analysis cannot provide. The discussion below gives 

greater details concerning the features and application areas of neural networks and decision 

trees.  

Neural Networks  

Neural networks complement, or even outperform techniques such as regression 

analysis, path analysis, and discriminant analysis by allowing for nonlinear relationships and 

complex interactions among predictors. Neural network analysis is mainly used for prediction 

purposes. In our study, we use this approach to assess the relative importance of various service 

features of ocean freight shippers in predicting satisfaction of their clients.  

The literature reports many successful uses of neural networks in business settings. In 

particular, the field of financial services has used neural networks for credit card fraud 

determination (Rochester, 1990), bank failure prediction (Tam & Kiang, 1992), mortgage 

underwriting judgments (Collins, Ghosh, & Scofield, 1988), prediction of corporate bond ratings 

(Sukran & Singleton, 1990), among other uses. Application of the neural network methodology in 

other service areas is also growing. Bellandi, Dulmin and Mininnao (1998), for example, used 

neural networks to forecast failure rate of buses for an Italian bus manufacturing company while 

Xu et al. (1999) used the approach to examine the complexities of urban tax services in Hong 

Kong. Neural networks have also been used to forecast service problems of aircraft structural 

components (Nordmann & Luxhoj, 2000). Recently, Rodrigues, Bowersox and Calentone (2005) 

applied neural networks to predict global logistics expenditures.  

Behara, Fisher and Lemmink (2002) point out that researchers are just beginning to 

model the qualitative and intangible aspects of services using this technique. One study by 

Mozer et al. (1999) developed neural models of customers who switch from one cellular 

communications provide to another. The model developed (using customer service variables) 

was able to predict customer churn rates better than the more traditional logit regression models. 

Most recently, Behara, Fisher and Lemmink (2002) used the neural network modeling approach 
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to evaluate service quality. Their model predicted overall service quality, as viewed by customers, 

with a 75 per cent accuracy level. This research demonstrated that neural networks can be a 

valuable method to understand customer evaluation of services so as to develop better service 

quality. Their research used the SERVQUAL dimensions, but it did not look specifically as 

satisfaction levels.  

Given the wide range of applications of neural network analysis, it can also be used to 

examine how customer satisfaction is formed. The neural network in our paper represents 

mental processes of the industrial customers of logistics service providers. We employ this 

technique to understand the relative importance of various drivers of customer satisfaction. 

Appendix A provides a more in depth discussion of the mechanics of neural networks.  

Decision Tree Analysis  

Decision tree analysis is used for predicting the response to a target variable or for 

classifying consumers into mutually exclusive groups based on responses to several predictor 

variables. It does not attempt to model the brain, but instead, tries to identify how various 

attributes are linked to one another in combinations. This technique is particularly suitable over 

traditional regression analysis when the relationship between the target variable and its 

predictors is nonlinear or when there are interactions among the predictor variables. Decision 

tree analysis is a popular analytic tool because of the advantages it offers in terms of ease of use, 

interpretability of results, handling of missing data, robustness to outliers and measurement 

errors, and graphical display of results (cf. Morrison, 1998; Peacock, 1998; Vanecko & Russo 

1999; Witten & Frank 2000). As compared to neural network analysis, results based on decision 

tree analysis are easier to interpret. Appendix A gives more discussion of the technical aspects 

of decision trees.  

 

Method  

Study Location and Sample  

Our study focuses on the ocean freight shipping sector of the logistics industry. Data 

were collected from Singapore based companies that used services of ocean freight shipping 

lines. We chose the Port of Singapore since it is the world’s busiest port in terms of shipping and 

cargo tonnage and the second busiest for container throughput. It handles about one-fifth of the 

world’s total container transshipment throughput. In 2005, Singapore terminals handled 22.28 

million twenty-foot equivalent units (TEUS) of containers through 4 container terminals and 2 

multi-purpose terminals. The Port links shippers to an excellent network of 200 shipping lines 
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with connections to 600 ports in 123 countries. The Singapore Strait is one of the world’s busiest 

waterways used by international shipping. Due to its location, Singapore has become a center of 

multinational operations and a shipping hub with huge transshipment cargo for onward 

movement to many countries in the region including Australasia, China, and the Indian 

subcontinent. Because of its well-managed port operations and excellent infrastructure, 

Singapore has developed into one of the world’s leading ports. It was voted the “Best Container 

Terminal Operator (Asia) for the 16th time at the 2005 Asian Freight & Supply Chain Awards, and 

“Best Container Terminal” at the Lloyd’s List Maritime Asia Awards, for the 5th time. Additional 

details on the importance of this port can be found at the Port of Singapore Authority website.  

Two phases (as outlined below) were used to collect data from shipping managers and 

shipping line executives of various organizations in Singapore who regularly use the services of 

ocean freight shipping companies for their exporting requirements.  

Phase 1  

Names of 985 key accounts were obtained from a large shipping company in Singapore. 

Some of the shippers on the list were customers of that shipping company, while others were 

customers of competing shipping lines. From this list, 234 accounts were randomly selected; 222 

of these agreed to participate in the study resulting in a 95% response rate. An important reason 

for the high response rate was the affiliation of one of the researchers with the National 

University of Singapore, an institute highly regarded by the respondents.  

Personal interviews were conducted with these shipping managers. They were asked to 

provide five reasons why they selected a certain shipping line to take care of their logistics 

requirements and to list five reasons why they would avoid such a shipping line. Next, they were 

asked to list three major problems they encountered with shipping lines in general. The shipping 

managers in the sample also described the companies that they represented on several criteria. 

Included among those criteria were company size in terms of annual sales, annual freight 

expenses of these companies, and how often these companies reviewed the shipping lines’ 

performance on a comprehensive basis.  

Results of Data from Phase 1  

Responses to the first phase survey measures were analyzed using SPSS. Results are 

described in Tables 1 and 2. As shown in Table 1, the sample of shipping companies that use 

ocean freight shipping services varies in size, with annual sales turnover ranging from under $10 

million (45.3% of the sample) to over $100 million (9.4%). The annual freight expenses of these 

companies ranged from less than $10000 (7.6%) to over $100000 (31.8%). Responses to the 
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question “How frequently do these companies conduct a comprehensive review of their shipping 

lines’ performance” varied from rarely or never (12.4%) to continuously (56%).  

Table 2 lists the reasons for choosing or avoiding certain shipping lines. It is clear one of 

the primary reasons behind the choice of a shipping line is competitive freight rates indicated by 

sixty nine percent of the sample. 46.2% of the customers would not select a shipping line if it 

does not offer competitive freight rates. Other important reasons for choosing are good service, 

having a regular service (or frequency of operation), maintaining good relationship, how short the 

transit time is, punctuality, reliability, and trustworthiness of the shipping line. At least 20% of the 

customers cited each of these reasons for their choice of a shipping line. Absence of these 

qualities in a shipping line would prevent the customer companies from patronizing that firm. 

Somewhat less significant reasons for selection, but noteworthy reasons nevertheless, are 

speedy documentation, good reputation, and prompt shipment. The significance of these key 

service features can also be gauged from the major problems that customer companies 

experienced with shipping lines. The results presented in Table 2 identify the features that 

shipping lines should focus on to enhance customer satisfaction.  

To find out whether the reasons for choosing shipping lines varied on the basis of 

customer company characteristics, we performed a series of cross tabulations using the “multiple 

response set” feature of SPSS. Results indicate that the same set of key service features as 

identified above are cited by all customer companies, irrespective of their size, annual freight 

expenses, or how frequently they review shipping lines’ performance. In sum, the first phase of 

the survey identified competitive freight rates, good service, regular (or frequent) service, good 

relationship, short transit time, punctuality and reliability, and trustworthiness as key service 

features that customers of ocean freight shipping lines care about and that are likely to have an 

impact on customer satisfaction.  

Phase 2  

In the second phase of the survey, we measured customer evaluations of key service 

features as identified in the first phase along with overall customer satisfaction. Unlike most 

studies that adapt generic rating scales to measure the determinants of satisfaction (e.g., service 

quality), we developed specific scales based on customer input. Such customized measures are 

likely to be more powerful when evaluating logistics service providers since they capture the 

perceptions of shipping line customers. The list below outlines the themes of those service 

features, the number of scale items to measure them, and examples of scale items. Insights 

obtained during preliminary interviews with shipping line executives and a small sample of 
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customer companies facilitated the development of these measures. We verified the face validity 

of these scales by discussions with managers and experts in logistics. For all scale items, 7-point 

rating scales anchored by “poor” and “excellent,” were used. We summed the item responses for 

each dimension to derive a composite score. Parenthetically, factor analysis also supported 

uni-dimensionality of the following seven services features.  

 

1. Competitive freight rates (3 items) (e.g., Competitive rates, Has lowest rates; scale 

reliability as measured by coefficient alpha is .73)  

2. Good Service (3 items) (e.g., emphasize customer satisfaction, good after sales service; 

scale reliability is .80)  

3. Regular Service (1 item) (good frequency of sailings)  

4. Good relationship/cooperation (4 items) (e.g., listens to customers, values customers’ 

input, responsive to customers’ requests; scale reliability is .76)  

5. Short transit time (2 items) (e.g., short transition time; scale reliability is .71)  

6. Punctual (3 items) (e.g., punctuality of sailings, good on-time performance; scale 

reliability is .70)  

7. Reliable and Trustworthy (4 items) (e.g., trustworthy, delivers on promises, gives 

correct/proper information; scale reliability is .76)  

 

The questionnaire also measured subjects’ overall satisfaction with their most preferred shipping 

line’s service on a scale from 1 (Extremely Poor) to 7 (Excellent).  

In phase 2, the same managers again provided responses to the 20 scale items 

measuring the 7 service features and overall service satisfaction as identified above. A total of 

117 useful responses were available for analysis. To keep the survey length manageable, 

customers were asked to evaluate the service features of only their most preferred shipping lines. 

We used this data to perform neural network analysis and decision tree analysis.  

Results of Neural Network Analysis  

Responses to the second phase of the survey enabled us to examine the relationship 

between the key service features and overall service satisfaction. The seven service features 

that we measured in the second phase serve as the predictors of satisfaction. Correlations 

among the predictors varied from .53 to .82. In view of the potential for multi-collinearity among 

the predictors, possibility of interaction effects among predictors, and the likelihood of a 

non-linear relationship between those variables and satisfaction, traditional regression analysis 
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or path analysis is not appropriate. For this reason, we analyzed the data using neural network 

analysis and decision trees. Clementine 6.5, a data mining package marketed by SPSS, was 

used for this purpose.  

We first performed a neural network analysis using the simple multi-layer Perceptron 

model. This model consists of one hidden layer besides one input layer and one output layer. 

There are seven input nodes (or neurons), one for each predictor variable, with customer 

responses serving as inputs. Customer satisfaction is the target variable that served as the 

output node. The number of hidden layer nodes is determined by the software program. In our 

case, the model used four hidden layer nodes to fit the data. The neural network detects the best 

relationship between the seven service features and satisfaction based on supervised learning. 

Considering our sample size (n = 117), we used 85% of the sample for training the network and 

the other 15% for validation purposes. Results of the analysis, presented in Table 3, are very 

encouraging; the prediction accuracy of the model is 83.5%. The difference between the mean 

customer satisfaction score for the original data and the predicted mean are fairly close, 

indicating that the performance of the neural network is satisfactory.  

Table 3 also indicates the relative importance of the service features. Clearly, the key 

drivers of satisfaction are reliability and trustworthiness of the shipping line, quality of relationship 

the shipping line maintains with its customers, good service, and regular (or frequent) service. 

Relatively less important features are punctuality, competitive freight rates, and short transit time. 

These results offer important insights for shipping lines as to how to maximize satisfaction. It is 

likely that there were no differences in customer responses with respect to features such as 

punctuality because all shipping lines are adequate in these areas; hence, these attributes are 

not differentiating drivers of satisfaction in the minds of customers.  

Results of Decision Tree Analysis  

When unlimited resources are available, a shipping line would be able to significantly 

enhance its service offering in every aspect, whether it involves competing more aggressively on 

freight rates, offering superior quality service, or reducing the transit time. When faced with 

resource constraints, however, the shipping line would have to make trade-offs in terms of what 

service features to devote most of its resources. In this scenario, the question is what 

combination of service features either enhances or undermines customer satisfaction? To 

address this issue, we performed a decision tree analysis.  

As with neural network analysis, the target variable for decision tree analysis is 

satisfaction, and the predictor variables are the seven service features. Prior to performing 
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decision tree analysis, we dichotomized responses to the predictor variables using the “mean 

split” criterion whereby those customers who rated the shipping lines above the mean on freight 

rates were recoded as 1 (i.e., “stronger” rating) and those below the mean were recoded as 0 

(i.e., “weaker” rating). Next, we used the C&R (classification and regression) tree technique for 

generating the decision tree (cf. Breiman et al., 1980), as this technique is considered to be 

robust in the presence of problems of missing data and large numbers of predictor variables. 

Also, the tree that is developed using this technique is considered to be easier to understand. It 

is a binary tree growing algorithm.  

As with any tree growing algorithm, C&RT technique splits the root node (or parent node) 

consisting of all data records into a number of branches and sub-branches (or child nodes) 

consisting of more homogeneous data records. C&RT tree starts by examining the input fields 

(i.e., the seven service features) to find an input field that offers the best split. The input field that 

provides the best split is one that gives the largest reduction in an impurity index. On the basis of 

this best input field, the root node is split into two child nodes or branches. For each child node, 

then, the program identifies the next input field that provides the best split. The child node is then 

split into two more nodes, and so on until one of the stopping criteria is reached. The stopping 

rule for C&RT depends on the minimum change in impurity. If splitting a node results in a change 

in impurity that is less than the minimum, the node is not split any further.  

For any branch of a decision tree, the child nodes are “more” pure (or they have smaller 

within group variances) than their parent node. Here, purity refers to the values of the target 

variable (i.e., customer satisfaction). When a node is completely pure, then all of the data 

records in that node have the same value for satisfaction. This result indicates that within-group 

variance of that node is zero.  

Decision tree analysis results are presented in Figure 1. As shown in the root node of the 

tree, overall mean satisfaction is 5.97. The first split of the tree is made on the variable “good 

relationship and cooperation.” This demonstrates that “good relationship” is the most determining 

feature (of the seven features we measured) of service satisfaction. This split gives a reduction in 

impurity of .11. For those customers that have a weaker perception of shipping lines on “good 

relationship,” the next determining feature is freight rates. Customers of this group who had a 

stronger rating of shipping lines on freight rates experienced a higher level of customer 

satisfaction (average value = 6.10) as compared to the entire sample. For this group, there is a 

gain in satisfaction of 102%. When we interpret the results this way, the largest gain (6.50 or 

109%) in customer satisfaction occurs when customers provide strong ratings of shipping lines 



13  Durvasula, Lysonski, & Mehta 

 

on cooperation, transit time, and freight rates. Clearly, results of the decision tree show what 

steps a shipping line must take in order to enhance customer satisfaction.  

 

Discussion  

For all types of ocean freight shipping line customers, irrespective of their size, annual 

freight expenses, or how frequently they perform a comprehensive review of various shipping 

lines, “competitive freight rate” is the number one listed reason for choosing a certain shipping 

line, followed by “good service.” Other notable reasons are “regular service,” “good relationship,” 

“short transit time” and “reliability and trustworthiness.” These results suggest that ocean freight 

shipping firms cannot trade off price/wider network for service. Exclusively focusing on some 

service attributes may not be attractive to customers if the freight line operates a small fleet with 

fewer destination choices. Highly competitive rates coupled with poor service will also turn away 

customers. So, it is clear that logistics companies should either offer everything (e.g., best price 

& service) or offer a small network with great service, but integrate operations with partner lines 

so that customers see a seamless connection (as in Star Alliance for airlines). These results 

confirm the logic suggested by Porter (1996) in how to develop effective strategy.  

When comparing the neural network and decision tree results, we find some similarities 

as well as some differences. For example, both techniques identify good 

relationship/cooperation and reliability/trustworthiness as important for customer satisfaction. In 

the case of neural networks, good relationship and reliability/trustworthiness are the most 

important predictors of satisfaction followed by quality of service and “regular service” (or service 

frequency). In decision tree analysis, customers’ perception of good relationship is the basis for 

segmenting them into two groups–those who rated service providers as low on good relationship 

and those who rated service providers as high on good relationship. For the first group, the 

overall satisfaction decreased, while it increased for the later group.  

The primary objectives of the two techniques are different, however. For this reason, we 

find some differences in the results for these two techniques. The purpose of neural network 

analysis is to identify the relative importance of factors when the objective is to predict customer 

satisfaction. For logistics providers in the shipping industry, the factors that are the most 

important for predicting satisfaction are reliability/trustworthiness of the service provider and 

good relationship with the service provider. The purpose of decision tree analysis is to segment 

customers into several sub groups based on their perceptions of various service features and 

their overall satisfaction. This technique is applicable when the objective is to find out what 
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combination of service feature perceptions maximizes customer satisfaction. For example, 

customer satisfaction is the maximum when customers rate logistics providers highly on 

reliability/trustworthiness, transit time, and freight rates. For this group of customers, there is an 

increase in customer satisfaction of almost 9% (i.e., 6.5/5.96) when compared to the overall 

mean satisfaction for the entire sample. Customer satisfaction is the lowest for the segment of 

customers which rated the service providers low on reliability/trustworthiness, freight rates, and 

punctuality. For this segment, there is a decrease in satisfaction of about 9% (i.e., 5.43/5.96) as 

compared to the overall mean. The decision tree model provided an accurate prediction of 

service satisfaction given that the correlation of .77 between the original and predicted values of 

service satisfaction is high.  

Since the two techniques provide different insights into the data, it is important for service 

providers to use results from both techniques when formulating a marketing strategy. 

Nonetheless, it is important to note that relationship quality surfaced as important in both types of 

analysis. Relationship quality is highly intangible and subject to marketing control. Ocean freight 

shippers firms could potentially use this quality as a way of differentiating themselves to enhance 

customer loyalty.  

Analysis of customer complaints (or problems) with ocean freight shipping companies 

provides clues concerning the attributes that may enhance customer satisfaction. For example, 

customers frequently cited shipping delays, document delays, and communication breakdown as 

the major problems; suggested possible solutions that logistics firms could use were more 

knowledgeable staff and advance notification of shipping delays.  

 

Implications and Conclusion  

Our study provides ideas that contribute to understanding the dynamics of the service 

attributes in logistics that have not been explored well in the literature. We can offer several 

implications for logistics service providers in general and ocean freight shipping lines in particular 

based on our analysis. Neural networks and decision trees provide a powerful lens into the 

workings of these attributes. First, research on satisfaction can be deceptive depending on the 

method used. In particular, responses to open ended questions would suggest that freight rates 

as the most important factor. Yet, such a conclusion may hide what is happening under the 

surface (in the minds of users). Using neural network we can see that trust, cooperation, etc. are 

relatively more important. Why the difference? On a basic level, freight rates are clearly a key 

driver. Yet, a firm cannot easily differentiate itself as the low cost provider if others can offer 



15  Durvasula, Lysonski, & Mehta 

 

similar low prices as Porter (1996) would argue. Providing low cost rates is not likely to be a 

sustainable competitive advantage. If all customers provided the same ratings to shipping lines 

on freight rates then there is very small variation in freight rates vis a vis customer satisfaction. 

This understanding does not mean that freight rates can be ignored. Freight rates, in general, are 

not the differentiating factor in enhancing satisfaction when you look at the entire data. However, 

for subgroups of customers, freight rates are still very crucial in enhancing satisfaction. This 

understanding comes across clearly when we look at the decision tree results. Since we limited 

our data collection to customers’ perceptions of their most preferred shipping lines, these results 

are useful because they could serve as the bench mark.  

The results of this study clearly illustrate that neural networks used in tandem with 

decision trees offer a powerful procedure to identify elements that can maximize satisfaction and 

the sequence or combination in the way they may operate. Trying to understand how satisfaction 

develops through the conventional methods of surveys and descriptive statistical analysis does 

not penetrate the complexity involved in the way the human brain may function. Using simple 

frequencies for reasons for preferring or rejecting shipping lines only scratches the surface. 

Neural networks facilitate our understanding of how humans process information to derive an 

emotional response, namely satisfaction.  

There is a clear implication of these findings in terms of Porter’s (1996) framework of 

strategy. Firms that are highly successful learn how to develop attributes that other firms cannot 

imitate easily. Sustainable competitive advantage comes from developing a unique position in 

the market place. For example, Southwest Airlines in the USA has developed a unique position 

in the marketplace that emphasizes less service, frequent departures, and low fares (Porter 

1996). Although such a combination of attributes may seem obvious or easily copied, Southwest 

continues to maintain its strategic position despite imitators. Porter (1996) says a firm needs to 

concentrate on deepening a strategic position rather than broadening and compromising it and to 

make the firm’s activities more distinctive, strengthening fit and communicating the strategy 

better to those customers who should value it. Relationship quality is likely to be one of those 

characteristics that would allow for a deeper strategic position.  

In the case of ocean freight shipping services, the results indicate that it is not enough to 

provide a good price, i.e., freight rates. Instead, firms must realize that there is a sequence or 

combination of service factors that maximizes service satisfaction. Discovering the best 

sequence depends in part on the segment that the firm is pursuing or the extent to which firms all 

seem alike. Differentiating the offering by providing specific levels of attributes is more likely to 
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lead to higher levels of satisfaction. Such satisfaction is likely to lead to higher levels of loyalty. 

Deepening this differentiated position is likely to give a firm a strong advantage in the 

marketplace. The key is to understand how to make the right tradeoffs in the way the system of 

attributes is combined. Indeed the goal is to pursue the right combination of attributes that gives 

a firm a unique position that cannot be easily copied.  

In sum, our exploratory study finds important results related to developing a system of 

attributes that are of value to customers of logistics services. By using cross tabulations, decision 

trees and neural network analyses, we show how ocean freight shipping firms in the logistics 

sector should go about in identifying the sequence or combination of service factors that 

maximizes service satisfaction and, in turn, loyalty–this is exactly what Porter (1996) suggests 

firms should do to find a sustainable competitive advantage in the marketplace.  
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Appendix  
Neural Networks  

The concept of a neural network is based on a mathematical abstraction of the way the 
human brain works (McMillen & Henley, 2001). In the human brain, information is processed by 
cells which are also called neurons. Each neuron collects information from other neurons that are 
attached to it, and it aggregates that information and passes it along to other neurons. In an 
artificial neural network, elements called nodes function similarly to the neurons in our brain. 
Each node sums information that it receives from nodes connected to it, and it passes the 
processed information to the nodes that it connects to. When several nodes are connected 
together, they process information in parallel, allowing the system to find complex relationships 
quickly. Information in a neural network is represented in the strengths (or weights) of the 
connections between nodes (Berry & Linoff, 2000).  

Figure 2 shows a simple neural network, also known as the multi-layer perceptron or the 
back-propagation network. In this network, the “neurons” or “nodes” are organized into “layers.” 
There are typically three layers in a network: the input layer, the hidden layer, and the output 
layer. Each layer consists of several nodes or neurons. Further, each node is linked to every 
neuron in the preceding layer by connections that have strengths or weights attached to them. 
The first layer is called the input layer since it consists of nodes that uniquely represent each 
input or predictor variable. Input values for the predictor variables are presented to these input 
nodes. The information then flows through the network and is processed by nodes in the second 
layer, also known as the hidden layer. The hidden layer represents a sort of black box in that the 
nodes of this layer are hidden from the input and output. This layer is essential for mapping 
nonlinear relationships between the target output and the predictor inputs. It is important to point 
out that the hidden layer is an intervening layer and it facilitates the propagation of information 
from the input layer to the output layer. The third layer (called the output layer) consists of one 
or more output nodes. These output nodes combine information from the hidden nodes to 
generate predictions for the target variables.  

Once a neural network is set up by defining a set of nodes and how they are connected, 
the network has to be trained. The network trains itself by looking at one record at a time. For 
each record, it makes a guess against the actual value for that case. It then adjusts the weights 
so that its next guess will be better. This implies that the network learns from its mistakes. Initially 
all weights are randomly set to small values and the predictions that come out of the network are 
likely to be nonsensical. However, as the network processes more and more data, it gets better 
and better at making predictions. Eventually, when the network learns all it can from the input 
data, it stops training. At this stage, it is ready to be tested on new data.  

Since each node in any layer is connected to every node in the previous layer of the 
network, it is important to recognize that a single input predictor can influence the output through 
a variety of paths, which allows for greater model complexity. Another important feature of the 
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neural network is that the input for each hidden neuron is the weighted sum of data values from 
the input nodes that are transformed using a nonlinear function. Typically, such a function is the 
logistic function, though other transformation functions can also be applied. Thus, there is a 
nonlinear mapping of data values that occurs in the hidden layer before the next set of weights 
(relating the hidden layer to the output layer) is applied. This way, the neural network captures 
complex interactions among inputs and nonlinear relations between the inputs and the output. 
Further, increasingly complex relationships between the inputs and outputs can be captured by 
specifying a higher number of neurons for the hidden layer or by specifying more than one 
hidden layer during the model setup stage.  
 
Decision Trees  

In simple terms, a decision tree is a tree in which each branch node represents a choice 
between a number of alternatives, and each leaf node represents a classification or decision. 
The tree shows how the value of a target variable can be predicted by using the values of a set of 
predictor variables. The graphical representation of the tree shows a number of inter-connected 
“nodes.” Each node represents a set of records (rows) from the original dataset. Nodes that have 
child nodes are called “interior” or “branch” nodes. Nodes that do not have child nodes are called 
“terminal” or “leaf” nodes. The topmost node is called the “root” node. While a real tree has its 
root at the bottom, decision trees are represented in such a way that the root node is always at 
the top. The root node in a decision tree represents all of the rows in the dataset.  

A decision tree is constructed by a binary or non-binary split that divides the rows of the 
root node into two or more groups (child nodes) based on categories of the “best” predictor. The 
same procedure is then used to split the child groups based on other predictor variables. This 
process is called “recursive partitioning.” The splitting process continues until no more 
statistically significant predictors can be found.  

Decision trees can be applied to solve both regression type problems and classification 
type problems. Regression-type problems are those where the objective is to predict the values 
of a continuous variable from one or more continuous and/or categorical predictor variables. For 
example, one may be interested in predicting service satisfaction with a logistics service provider 
based on how the service provider is evaluated on several service variables. In this example, 
service satisfaction and its determinants are all measured using Likert-type scales. In contrast, 
classification-type problems are those where the objective is to predict values of a categorical 
dependent variable (class, group membership, etc.) from one or more continuous and/or 
categorical predictor variables. For example, one may be interested in predicting whether or not 
consumers patronize a logistics service provider depending on how they evaluate that firm on a 
number of service related factors. In this example, decision to patronize a service provider is 
categorical.  

Among the decision tree based techniques, CHAID (chi-squared automatic interaction 
detector) (Biggs, de Ville, & Suen, 1991; Kass, 1980) and C&RT (classification and regression 
trees) (Brieman et al., 1980) have been widely applied in segmentation, stratification, and 
interaction identification studies in the areas of direct mail, credit scoring, human resources, 
market analysis, and health care (Sargeant & McKenzie, 1999, Sargeant & Msweli, 1999, Wyner, 
1995). Recent studies have found that both techniques provide similar set of results, making 
them popular tools in marketing research applications (Berry & Linoff, 2000; Haughton & Oulabi, 
1997).  

In this study, our aim is to determine what combinations of features of service features 
enhance customer satisfaction with logistics firms. Because satisfaction is a continuous variable, 
we face a regression-type problem. We employed the C&RT technique to obtain the decision 
tree.   
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Table 1  
Profile of Shipping Lines’ Customers Annual Turnover in Singapore Dollars  
 

 
 
  



23  Durvasula, Lysonski, & Mehta 

 

Table 2  
List Five Reasons Why You Chose a Particular Shipping Line? Responses Across the 
Five Reasons Are Summarized as Shown Below 
 

 
 
Note: Service features identified by “→” are used as input to Neural Network and Decision Tree Analysis  
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Table 3  
Importance Weights of Predictor Variables Based on Neural Network Analysis (Dependent 
Variable: Service Satisfaction)  
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Figure 1 
Decision Tree Analysis  
 

 
 
Note:  
1. The figure shows mean service satisfaction score and sample size for various nodes of the tree. For 

example, the mean service satisfaction for the root node consisting of a sample of 117 customers is 
5.97.  

2. The improvement statistic shows the reduction in impurity when a parent node is split into child nodes.  
3. As shown in the figure, there are 7 terminal nodes for this tree.  
4. Mean satisfaction is the highest when customers have rated shipping firms favorably on 

relationship/cooperation, transit time, and freight rate.  
5. Mean satisfaction scores for nodes 3, 5, 6, and 7 are higher than the mean satisfaction for the entire 

sample.  
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Figure 2 
Simple Neural Network  
 

 
 
Note: In this study, input nodes represent customer evaluations of ocean freight shipping lines’ service 
features. The output node represents customer satisfaction. The hidden layer is responsible for a 
nonlinear mapping of the relationship between customer satisfaction and its predictor.  
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