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ABSTRACT 
A NON-RIGID REGISTRATION METHOD FOR ANALYZING MYOCARDIAL 

WALL MOTION FOR CARDIAC CT IMAGES 
 
 

Elizabeth B. Philps, B.S. 
 

Marquette University, 2010 
 

Cardiac resynchronization therapy (CRT) has a high percentage of non-
responders.  Successfully locating the optimal location for CRT lead placement on a 
priori images can increase efficiency in procedural preparation and execution and could 
potentially increase the rate of CRT responders. 

Registration has been used in the past to assess the motion of medical images.  
Specifically, one method of non-rigid registration has been utilized to assess the motion 
of left ventricular MR cardiac images.  As CT imaging is often performed as part of 
resynchronization treatment planning and is a fast and accessible means of imaging, 
extending this registration method to assessing left ventricular motion of CT images 
could provide another means of reproducible contractility assessment.   

This thesis investigates the use of non-rigid registration to evaluate the 
myocardium motion in multi-phase multi-slice computed tomography (MSCT) cardiac 
imaging for the evaluation of mechanical contraction of the left ventricle. 
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ACRONYMS 

 
2D 
Two Dimensional 
Having two dimensional geometry; flat; characterized by Cartesian (x, y) coordinates 
 
3D 
Three Dimensional 
Having three dimensional geometry; characterized by Cartesian (x, y, z) coordinates 
 
4D 
Four Dimensional 
Characterized by Cartesian (x, y, z) coordinates and a dimension of time 
 
AHA 
American Heart Association 
 
BiV 
Bi-Ventricular 
 
CAC 
Cardiac Angiographic Catheterization 
 
CRT 
Cardiac Resynchronization Therapy 
 
CT 
Computed Tomography 
 
DOE 
Design of Experiements 
 
ECG 
Electrocardiogram 
 
ED 
End Diastole 
 
EF 
Ejection Fraction 
 
ES 
End Systole 
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General Electric 
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Inter-Venous  
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Institutional Review Board 
 
LBBB 
Left Bundle Branch Blockage 
 
LV 
Left Ventricle 
 
MI 
Mutual Information 
 
MR/MRI 
Magnetic Resonance Imaging 
 
MSCT 
Multi-Slice Computed Tomography 
 
NYHA 
New York Heart Association 
 
PET 
Positron Emission Tomography 
 
RMS 
Root Mean Squared Error 
 
SAD 
Summed of Absolute Difference 
 
SSD 
Summed of Squared Difference 
 
TDI 
Tissue Doppler Imaging 
 
USD 
United States Dollar 
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Visualization Toolkit 
 
VWMS 
Visual Wall Motion Scoring 
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GLOSSARY 

 
akinesia 
A lack of myocardial wall motion. 
 

dyskinesia 
Fragmented or jerky myocardial wall motion. 
 

hypokinesis 
Slow or diminished myocardial wall motion. 
 

QRS 
The region of an electrocardiogram that signifies the depolarization of the cardiac 
ventricles. 
 



xi 

 

TABLE OF DATASETS 

Synthetic Dataset A 

Description: Elliptical synthetic data.  Intensities increase from the center of the ellipse 

outward.  The synthetic ellipse object was defined over 121x121x121 voxels with a 

dynamic range of approximately 4400 intensities.   

 

Synthetic Dataset B 

Description: This dataset was created by applying a known transformation to Synthetic 

Dataset A.  The prescribed transformation involves increasing radial motion from the 

center of the ellipse outward. 

 

Synthetic Dataset C 

Description: This will be used to refer to an image series created from registering 

Synthetic Dataset A to Synthetic Dataset B. 

 

Clinical Dataset X 

Description: A patient clinical image series with normal left ventricle function.  The 

image series consisted of volumetric reconstructions at 10 cardiac phases. 

 

Clinical Dataset Y 

Description: This will be used to refer to the image series created from registering the 

systole to diastole image phases of Clinical Dataset X. 
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Clinical Dataset Z 

Description: A patient clinical image series with known pathology.  The image series 

consisted of volumetric reconstructions at 20 cardiac phases. 
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CHAPTER 1 INTRODUCTION 

 

 

 

1.1 Problem Statement 

Heart failure afflicts approximately 5 million Americans, resulting in 300,000 

annual deaths.4    Cardiac resynchronization therapy (CRT) is a used to treat heart failure 

due to cardiac dyssnchrony, for example myocardial conduction system delay due to left 

bundle-branch blockage.   The effectiveness of CRT is limited, as the procedure has a 

high percentage of non-responders (~30-50%).41   

Successfully locating the optimal location for CRT lead placement on a priori 

images can increase efficiency in procedural preparation and execution and could 

potentially increase the rate of CRT responders.  Recent studies suggested that improved 

pacing is possible by placing a pacing lead at the site of the most delayed mechanical 

motion.47   Therefore, identifying the site of the most delayed region prior to lead 

placement is an ongoing challenge.  To address this challenge, previous work 

implemented registration algorithms for cardiac MR and developed statistical models for 

identifying regions of abnormal wall motion.  While promising, MR acquisitions are not 

routinely prescribed prior to CRT, due partly to issues of cost.  As CT imaging is often 

performed as part of resynchronization treatment planning and is a fast and accessible 

means of imaging, developing a registration method for assessing left ventricular motion 

of CT images could be beneficial.  Automated 3D ventricular motion analysis utilizing 

registration and motion transformation evaluation can provide an objective and 
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reproducible means to perform assessment that is currently performed manually on 2D 

images, which causes increased inter- and intra-observer variability. 73  

This thesis investigates the use of a 3D non-rigid registration to evaluate the 

myocardium motion in multi-phase multi-slice computed tomography (MSCT) cardiac 

imaging for the evaluation of mechanical contraction of the left ventricle. 

 

1.2 Project Objectives 

1.2.1 Non-Rigid Registration 

The first objective of this thesis was to develop and validate a 3D non-rigid 

registration technique to extract the motion transformation of a multi-phase CT image 

series.   Chapter 3 summarizes the algorithm design and describes the techniques 

implemented to validate and optimize the algorithm performance including (1) the 

development of a synthetic data series to mimic clinical cardiac images, (2) a design of 

experiments to select optimal algorithm parameters, and (3) the results of the design of 

experiments applied to the synthetic images and to clinical cardiac images. 

 

1.2.2 Motion Analysis 

The second objective of this thesis was to apply the developed algorithm to 

clinical CT time-series datasets.  A preliminary comparison of the transformations 

obtained from the non-rigid registration of a normal and pathological dataset was 

performed to evaluate whether the resulting motion data may be beneficial for analyzing 

wall motion characteristics.  Chapter 4 summarizes the evaluation of the motion 

transformation obtained from the non-rigid registrations of both a normal and 
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pathological clinical data series.  Motion vectors were plotted for both clinical series and 

compared to determine similarities and differences between the motion. 
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CHAPTER 2 BACKGROUND 

 

 

 

2.1 Background 

2.1.1 Heart Failure: An Epidemic 

Cardiovascular disease is one of the leading causes of morbidity and mortality in 

Western civilization, especially the United States.1,2,3   Increased survival rates of 

myocardial infarction due to improved medical and surgical interventions and 

thrombolytic therapies have led to a growing elderly population.75   Consequently, the 

increasing population of patients surviving with reduced cardiac function contributes to 

an increased economical burden on health services from the high costs of longer-term 

drug therapies and hospitalization.2   Approximately 5 million individuals in the United 

States are afflicted by heart failure and nearly 300,000 deaths result each year from heart 

failure and related complications of the disease.  On average, $6,000 USD are spent on an 

annual basis per patient case of cardiac failure.4  For these reasons, earlier and more 

effective treatments are needed to reverse the effects and minimize the costs of medical 

care needed for treatment of chronic heart failure. 

In recent years the epidemiology of coronary heart disease has advanced, whereas 

that of heart failure caused by other related cardiac factors is less well known.  Sudden 

cardiac death has demonstrated recent decline since the early 1980s, mainly due to the 

decline in coronary heart disease.5,6  Increases in the incidence of congestive heart failure, 

however, are expected to combat this decline. 6   
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There are several variations on the definition of chronic heart failure.7,8  One  

general definition of heart failure is “a pathophysiological state in which an abnormality 

of cardiac function is responsible for the failure of the heart to pump blood at a rate 

commensurate with the requirements of the metabolizing tissues.” 7  This generalized 

definition suggests that heart failure is characterized by a reduction in the ejection 

volume of each cardiac stroke, leading to a reduction in left ventricular contraction 

efficiency and the reduction of the systolic function despite the same amount of energy 

exerted to contract the muscle.  The New York Heart Association (NYHA) classifies 

heart failure by levels of patient activity:7 

Almost 20% of patients with myocardial failure die within 1 year of initial 

diagnosis of the disease; this accounts for a greater than 80% eight-year mortality rate.  

Fifty percent of these deaths are sudden, suggesting heart failure patients are 6-9 times 

more likely to suffer sudden cardiac death than individuals of the general population. 9,10   
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2.1.2 Heart Failure Causes 

Chronic heart failure may result from one or a combination of factors including, 

but not limited to, myocardial ischemia, myocardial dysfunction, cardiac arrhythmia, 

valvular anomalies, pericardial diseases, or rhythm disturbances.  Valvular anomalies, for 

example, impede the activation of the papillary muscles responsible for the opening and 

closing of the mitral valves; this complicates cardiac hemodynamics and reduces the rate 

at which the heart can mechanically transport blood to the systemic system. 11 Other 

factors, although less commonly the causes of heart failure, may worsen the status of the 

heart failure such as anemia, renal or thyroid dysfunctions, or cardiodepressant drugs. 7   

Figure 1: New York Association (NYHA) Classification of Heart Failure7 
    * Class I:  patients with no limitation of activities; they 

suffer no symptoms from ordinary activities. 

    * Class II:  patients with slight, mild limitation of activity; 

they are comfortable with rest or with mild 

exertion. 

    * Class III: patients with marked limitation of activity; they 

are comfortable only at rest. 

    * Class IV: patients who should be at complete rest, 

confined to bed or chair; any physical activity 

brings on discomfort and symptoms occur at 

rest.  

 

As the survival rate of myocardial infarction increases, more individuals are living 

with reduced ventricular function, which may result in eventual heart failure.  For 
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patients with asymptomatic left ventricular dysfunction, well-defined strategies for 

preventing myocardial and ventricular remodeling are necessary. 4   

This thesis will emphasize the 20 to 30% of New York Heart Association 

(NYHA) patients of classes III-IV heart failure manifested most frequently as left bundle 

branch blockage (LBBB). 12  Bundle branch blockage (BBB) results in contractile 

inefficiency and dyssynchrony (either atrioventricular, being dyssychrony between the 

atrial and ventricular contractions, or intraventricular, being dyssychrony between the 

left and right ventricular contractions), with consequences of further reduction in 

ventricular function.  Both atrioventricular and intraventricular conduction disorders 

contribute to heart failure associated with ischemic and idiopathic (cause unknown) 

dilated cardiomyopathy (enlargement of ventricle resulting in reduced pumping 

efficiency). 13  The conduction delays imposed by LBBB lead to asynchrony inducing 

hemodynamic changes and alterations in systolic and diastolic function. 14  Conduction 

pathways for normal ventricular function are known, but the abnormalities and variations 

associated with BBB have not been adequately characterized.  The extent and 

implications of the impulse conduction delay within the heart, both atrioventricular and 

intraventricular, is not fully understood.   

 

2.1.3 Heart Failure Diagnosis 

The most common precursors and symptoms of chronic heart failure include 

coronary artery disease, chronic hypertension, cardiomyopathy, valvular dysfunction, 

cardiac arrhythmia and conduction disturbance (electrophysiology), pericardial disease, 

and infection. 15  Effective identification of the symptoms and signs of heart failure are 
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the first step to proper treatment, but no single investigation can be considered the “gold 

standard” for the confirmation of the clinical diagnosis of heart failure. 2  Currently, 

although electrocardiography has been utilized to aide in the diagnosis of LBBB, few 

studies also include the complimentary investigations of coronary angiography, left 

ventriculography, and hemodynamics to fully characterize the disease. 16  WJ Remme and 

K Swedberg from the Task Force for the Diagnosis and Treatment of Chronic Heart 

Failure have concisely outlined the algorithm for which to guide in the proper diagnosis 

of heart failure utilizing several investigatory techniques. 7  The algorithm, featured in 

Figure 2, demonstrates that a combination of multiple diagnostic tools is necessary for 

proper characterization of the disease. 

Figure 2: Algorithm for Diagnosis of Heart Failure7 

This figure demonstrates the steps typically taken to strategically diagnose 
heart failure. 
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Diagnosis is based on a combination of patient history, clinical examinations, 

physiological testing, electrocardiography, biochemical assays, and imaging studies. 17  

Prognosis of congestive heart failure can be further determined through peak oxygen 

uptake values, left ventricular ejection fraction (LVEF), signal-averaged 

electrocardiography (ECG), and electrophysiologic testing. 3  Many different imaging 

modalities are used in the diagnosis and treatment planning of heart failure, such as x-ray, 

echocardiography, nuclear medicine and magnetic resonance imaging.  For a 

comprehensive evaluation of the heart, an imaging modality should provide the 

following: a high spatial resolution for proper anatomical assessment, the detection and 

quantification of stenotic lesions in the coronary arteries, possible evaluation of LV 

contractility, the detection of abnormal blood flow, and the detection of myocardial 

viability. 18 

 

Computed Tomography (CT) 

The gold standard for assessment of left ventricular ejection fraction continues to 

be ultrasound echocardiography, although the temporal and spatial resolutions of both 

magnetic resonance imaging (MRI) and computed tomography (CT) are improving to 

provide more accurate results. 18,19,20   Developments in the accuracy and consistency of 

CT have significantly improved the morphological, functional, and vascular information 

that can be obtained from a CT cardiac examination. 18   ECG synchronization with the 

CT image acquisition provides detail to delineate images from different segments of the 

ECG cycle, for example the phases of end-diastole and end-systole.  Cardiac CT has a 
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variety of applications.  A majority of these are solely to evaluate anatomical aspects of 

the heart, but other applications that contribute to the functional aspects of the heart are 

also being investigated, for example myocardial perfusion. 18   Anatomical assessments 

include calcium scoring and other coronary artery assessment, morphological analysis, 

ventricular function, vessel run-off, and treatment follow-up. 18   

In general, the procedure for performing a CT acquisition involves the IV 

administration of a contrast agent to the patient to enhance the cardiac vasculature for 

optimal vessel opacification and a series of short x-ray exposures to localize anatomy, 

optimize contrast timing, and acquire multi-phase data at applicable time periods of the 

ECG cycle.  With more recent technology and the introduction of 64-slice and greater 

scanners, these types of CT cardiac scans are acquired in as short as 20 seconds. 21  CT 

cardiac exams can be acquired in one of two modes, “prospectively” gated and 

“retrospectively” gated.  In prospectively gated acquisitions, x-ray output is pulsed to 

acquire axial images at pre-determined ECG time intervals.  In retrospectively gated 

acquisitions, a helical (or spiral) acquisition involving continuous table movement is used 

to acquire cardiac images simultaneously with an ECG signal acquisition and recording; 

views are then retrospectively sorted and reconstructed at the desired intervals of the 

cardiac cycle. 18 

One specific application of anatomic cardiac CT is pre-operative planning of 

electrophysiology interventions.  Visual assessment of CT images for the localization of 

pulmonary veins prior to ablation of the heart muscle in the treatment of atrial fibrillation 

is essential to proper planning of percutaneous radiofrequency ablation catheter 

placement. 21  Variations in pulmonary veins are common and proper placement planning 
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of ablation seeds is necessary to provide familiarity to the physician prior to the 

procedure to assure the therapy is provided as accurately as possible.  CT images provide 

the tools for accurate localization planning of these procedures with minimized effects to 

normal surrounding tissues. 

Ventricular functional analysis is used for the visualization and quantification of 

different phases of the cardiac cycle and at different stress levels.  Both the global indices 

of cardiac function, such as stroke volume, ejection fraction, and cardiac output, and the 

local indices of cardiac function, such as wall thinning and thickening, can be obtained 

from CT images. 22  From CT multi-phase datasets, regional wall motion can be evaluated 

by visual ranking of dyskinesia and akinesia of certain segments of the heart wall. 23  

More sophisticated functional analysis, whether global or local, may require 

segmentation of the epi- and endocardial boundaries of the cardiac muscle, most often the 

left ventricle.  Segmentation of these boundaries is used to determine the volumes and the 

motion characteristics of the ventricle on a more objective quantitative level.  Boundaries 

of these volumes can be determined manually by the operator24 or semi-automatically or 

automatically using software algorithms to detect the ventricle contours. 25 

New advancements in CT are also being made to extend the capabilities of this 

imaging modality beyond anatomical-only analysis into the realm of functional analysis.  

Investigations are being made into using contrast-enhanced CT to assess myocardial 

perfusion and viability with early and late contrast enhancement protocols. 26  Similar to 

recent MRI techniques, CT techniques are being evaluated that demonstrate 

microvascular occlusion on late perfusion images of individuals with re-perfused acute 

infarcts. 27  These techniques involve well-timed imaging of the myocardial during first-
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pass imaging (as the contrast agent first flows through the ventricle) and during late 

enhancement periods (as the contrast agent has had time to transfer into the myocardial 

muscle tissue).  These studies of myocardial perfusion and viability present similar 

information as from nuclear medicine perfusion and viability scans pertaining to the 

blood flow capabilities and the metabolic functionality of the myocardial muscle tissue. 

 

ECG 

One of the less invasive investigations, electrocardiography, aides in the 

assessment of the electrical impulses of the heart, which, in patients with LBBB, most 

often demonstrates a prolonged QRS duration. 16  Figure 3 below shows a typical, normal 

physiological electrocardiogram waveform as read on the right arm to left leg lead 

voltages. 

Figure 3: Typical Echocardiogram 

 

 

The QRS complex of a normal ECG heart cycle waveform represents the 

depolarization of the ventricular muscle cells, typically lasting between 60 and 100 

milliseconds.  Atrial cell repolarization often occurs during this same period, but this 

signal is overshadowed by that of the ventricular depolarization signal. 39  Figure 4 

demonstrates a typical result of an ECG for a LBBB patient.  Activation from the 
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atrioventricular node cannot effectively be sent through the left bundle-branch of the 

heart, and, therefore, the electrical impulse does not travel through the left ventricle 

directly, but only by proceeding first through the right ventricle, then to the left ventricle.  

This inefficient transfer from the right ventricle through the intraventricular septum and, 

eventually, to the left ventricular muscle causes a delay in the QRS complex of the ECG 

trace by > 0.12 seconds.  This contributes to a very broad S wave in ECG leads V1 and 

V2 and broad R wave in V5 and V6, as demonstrated in Figure 4. 40 

Figure 4: LBBB QRS Duration and Associated Cardiac Electrical 
Propagation40 

 

X-RAY 

X-ray angiographic catheterization also plays a large role in the evaluation of a 

variety of heart failure precursors, most prevalently, coronary artery disease and 

electrophysiology.  Cardiac angiographic catheterization (CAC) is a clinical gold 

standard for assessment of coronary disease, providing accurate depictions of coronary 

artery stenosis and occlusion.  This modality also provides a means for physicians to 

deploy specialized catheters to different locations of the heart to assess the electrical 

impulses and pathways and a similar deployment method is used to deliver cardiac 
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resynchronization therapies in the form of cardiac pacing directly to the muscles of the 

heart.   

Multiple imaging modalities are pertinent in the diagnosis of heart failure, as 

described above.  Another goal of imaging techniques is to provide a more accurate 

depiction of how to tailor treatments and therapies of heart failure to the needs of each 

individual patient.  

 

2.1.4 Treatments 

Ultimate aims of chronic heart failure treatments are shown in the following 

figure. 7,12 

Figure 5: Aims of Treatment of Chronic Heart Failure7 
1. Prevention 

(a) Prevention and/or controlling of diseases leading to 

cardiac 

dysfunction and heart failure 

(b) Prevention of progression to heart failure once 

cardiac 

dysfunction is established 

2. Morbidity 

Maintenance or improvement in quality of life 

3. Mortality 

Increased duration of life 
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Any treatment methods deployed to treat chronic heart failure must control the 

disease from further dysfunction of the heart’s mechanical capabilities, they must not 

reduce the quality of life of the individual, and they must have a positive increase in the 

duration of the life of the afflicted individual.  Once myocardial dysfunction is present, 

the cause of the dysfunction must first be removed or reduced as much as possible.  

Causes of ventricular dysfunction may include ischemia, alcohol, drugs, or, in some 

cases, thyroid disease.  Once the present underlying cause has been removed, therapy 

must be deployed to reduce any progression from the current state of dysfunction to 

chronic heart failure. 7    

One method of treatment of cardiac dyssynchrony, known as cardiac 

resynchronization therapy (CRT), is applicable to patients with myocardial conduction 

system delay, often manifest as left bundle branch blockage (LBBB). 12  This 

nonpharmacologic therapy is assumed to correct the electrical component of the 

underlying electromechanical delay in the left and right ventricular activation, thus 

counterbalancing the delay in activation of the left ventricle caused by LBBB. 41  There 

are convincing results that demonstrate the positive effects of biventricular pacing (one 

specific method of CRT) including an increase in the left ventricular ejection fraction, a 

decrease in mitral regurgitation, and an improvement in other related symptoms of heart 

failure. 41,42  Two main mechanisms are vital to the therapy of this type of heart failure, as 

proposed by Ansalone et al., (1) an increase in preload after the optimization of the 

atrioventricular delay with right sequential pacing, and (2) cardiac resynchronization with 

biventricular (BiV) pacing in patients with left ventricular (LV) asynchrony caused by 

LBBB.42  CRT has been evaluated in many trials and has shown positive effects such as 
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improved quality of life, improved exercise capacities, and improved left ventricular 

functional parameters. 42  The MIRACLE trial (mutlicenter InSync randomized clinical 

evaluation) was one of these trials, in which a large placebo controlled trial confirmed the 

beneficial effects of CRT.  In 2002, biventricular cardiac resynchronization therapy (BiV-

CRT) was supplemented to the American Heart Associations guidelines for Pacing and 

Electrophysiology42, which indicate that BiV-CRT be limited to patients with drug 

refractory, symptomatic NYHA classes III-IV with a prolonged QRS ECG, LV end 

diastolic (ED) diameter greater than 55mm, and LV ejection fraction (EF) less than 35%. 

 

CRT Procedure 

During a cardiac catheterization procedure, pacemaker leads are introduced into 

the body via a vein in the chest and snaked up through the main blood vessels to reach the 

heart.  The pacemaker leads are then navigated to the right ventricle and also into the 

coronary sinus vein.  Three leads are implanted in total - one to regulate the right 

ventricle, one to regulate the left ventricle (via implantation in the coronary sinus), and 

one to regulate the right atrium (near the sinoatrial node).  From these locations, the 

pacemaker device can sense the heart’s electrical impulses as well as send impulses to 

synchronize the leads as specified by the clinician.  The leads can be programmed to send 

an electrical impulse at specified time intervals.  In patients with chronic heart failure due 

to LBBB, both interventricular dyssynchrony and intraventricular dyssynchrony can be 

managed by selecting an ideal timing of pacing impulses between right and left 

ventricular activation.43   
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Improved Diagnosis and Treatment 

Cardiac resynchronization therapy has a high percentage of nonresponders - as 

high as 30-50% of heart failure patients with LBBB. 41  Reducing the number of 

nonresponders or, at minimum, identifying and characterizing the nonresponders apart 

from the positive responders can contribute to personalized cardiac resynchronization 

therapies for responders and to determining an alternative therapy or optimized 

resynchronization therapy for nonresponders.   

Many factors may contribute to the significantly large category of nonresponders 

including suboptimal simultaneous activation of each of the right and left ventricular 

walls.  Other variables contribute to the lower than desired percentage of positive 

responders to resynchronization therapy, among these are pacing lead placement sites, 

conduction delay intervals, and appropriate tradeoff between atrioventricular timing 

optimization. 43,44  Proper placement of the left ventricular pacemaker lead is key for 

successful resynchronization of the electrical and resulting mechanical activation of the 

left ventricle.  The activation of the left ventricle is necessary for ventricular systole for 

optimal contraction and efficiency of the heart.  Typically, this lead is placed at the free 

wall of the LV, consistent with the location of the lateral cardiac vein of the coronary 

sinus. 44  This site was shown to provide positive results in cardiac contractility for BiV 

patients as per the work of Auricchio et al. 45,46  Further study suggested that anterior or 

anterolaterial wall positioning provided superior LV ejection fraction and NYHA 

functional classification over positioning in lateral or posterolateral lead placement. 43  

More recently, a Tissue Doppler study by Ansalone et al. demonstrated positive results 

with lead placement at the site of most delayed mechanical contraction, often times being 
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the lateral wall, but not in all cases. 47  These findings support the hypothesis that the 

anatomical lateral wall may not be optimal for every patient, being that not every 

patient’s cardiac anatomy and pathophysiology is the same from one case of LBBB to the 

next. 47  Heart failure patients often die prematurely despite the attempts to provide an 

“optimal” therapy.  CRT is seen as currently addressing the need for improving heart 

failure therapy, 12 bringing electrophysiologists and pharmacotherapists together to treat 

the debilitating disease.  However, improved methods of delivery and therapy 

optimization of ventricular synchronization is key for further development. 

 Further optimization of the placement of biventricular lead placements can, 

theoretically, continue to improve the mechanical parameters of heart failure patients.  

Currently, assessment of the mechanical status of the heart for determination of lead 

placement is performed utilizing echocardiography and x-ray cardiac catheterization.  

Tissue Doppler Imaging (TDI) has been shown to be helpful in determining the severity 

of LV dyssynchrony and for determining the effects of different pacing on the 

mechanical functionality of the heart during biventricular procedures. 47,48  A standard 

transthoracic echocardiogram was obtained for these measurements, providing images of 

the heart through the chest wall to assess LV end diastolic volume (EDV), LVEDV 

index, LV end systolic volume (ESV), LVESV index, and LV ejection fraction (LVEF) 

using a modified biplane Simpson rule, a method of determining the volume of the LV 

using additive Riemann sum of multiple volume disks that represent small incremental 

portions of the LV volume. 49 

Although currently the gold standard for the diagnosis of heart failure50 and left 

ventricular function analysis, echocardiography is being challenged by the functional 
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assessment capabilities provided by magnetic resonance imaging, nuclear medicine, and 

computed tomography.  Whereas left ventricular functional analysis using 

echocardiography is based mainly on two-dimensional image analysis and is susceptible 

to interobserver bias and operator experience, mutli-phase computed tomography images 

are now used to analyze two-dimensional and three-dimensional wall-motion and 

function of cardiac images. 20,22,24,25,42,51  The spatial and temporal resolution of CT 

imaging is improving, potentially beyond that of echocardiography. 19  Although 

computed tomography uses ionizing radiation, it has become an integral part in pre-

operative planning for cardiac catheterization electrophysiological procedures involving 

ablation and lead placement. 52  Therefore, more information could be extracted from 

these computed tomography images without necessarily imparting more dose to the 

patient than is already required and without additional investigatory examination. 

Computed tomography images have been used to assess regional and global wall 

motion and estimate left ventricular functional parameters, such as end diastolic volume, 

end systolic volume, and ejection fraction.  Mutliple methods can be used to assess these 

parameters, such as contour detection, segmentation, etc. 18  Rarely, however, have these 

methods been used to assess the global and regional mechanical delay of the left 

ventricular, let alone the right ventricle or left and right atrial mechanical characteristics.  

Assessing these parameters would allow electrophysiologists to, not only pre-operatively 

prepare for the specific anatomical caveats on a per patient basis, but it would allow them 

to pre-operatively assess the mechanical characteristics of the heart to evaluate for 

optimal lead placement during biventricular cardiac resynchronization therapy. 
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2.2 Image Registration 

Image registration is the method of arranging two (or more) associated images.  

This work focuses on the techniques of image registration for alignment of radiological 

medical images.  Medical image registration has proven beneficial in the diagnosis, 

planning, and treatment across multiple imaging modalities, across longitudinal image 

studies, and across normal versus pathological specimens.65    

 For the purpose of this work, image registration can be used to align two images 

from the same patient at different time points.  Registering images to a common 

coordinate system, perhaps a reference anatomical model, can facilitate the analysis of 

correlate anatomy and function of that anatomy.  In addition to these methods, image 

registration can be extended to the characterization and compensation of movement of a 

target anatomy, such as the analysis of perfusion image of the heart to compensate for 

patient respiration.66 

Registration applies to both spatial and temporal registration of images.  Rather 

than images of different coordinate systems, these methods consider images of the same 

coordinate system at different image time points. 

There are three fundamental steps to a registration method, including (1) the 

transformation model that defines the method in which one image is altered to correspond 

to the other image, (2) the similarity measure that reports the level of semblance between 

the images (before, during and/or after transformation of the images), and (3) the 

optimization process that alters the transformation metrics to produce the most desired 

similarity results.  Each of these components must be considered in the utilization of a 

registration algorithm for medical image alignment. 
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2.2.1 Image Transformations 

The first fundamental constituent of image registration is the transformation 

technique, which describes how one image (often referred to as the source image) will be 

altered to correspond more to the second image (referred to as the target image).  In other 

words, the transformation describes in what manner the voxels of the source image can 

be deformed to better match the target image.  There are, generally, three classes of 

transformations: rigid transformations, affine transformations, and non-rigid 

transformations.  Depending on the type of medical images being analyzed or the type of 

information desired from the registration of the images, each of these classes provides 

different benefits. 

 

2.2.1.1 Rigid Transformations 

Rigid transformation of a 3D medical image allows for only six degrees of 

freedom (DOFs), namely translational movement in the x, y, and z directions and 

rotational movement about the three axes.  These types of transformations ensure that 

each voxel within the image preserves the same distance between all points after 

transformation as were defined before transformation.  Rigid transformation is selected 

for registration of anatomy that experiences only rigid motion between source and target 

images.  Bony structures and relatively stationary organs can often be registered 

successfully between scans of the same patient, as these structures do not undergo 

significant structural compression or gross physiological motion, and remain structural 

consistent. 65 
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2.2.1.2 Affine Transformations 

Like rigid transformations, affine transformations allow for the same 6 degrees of 

freedom, but additionally provide 3 scaling and 3 shearing directional parameters – 

yielding twelve total DOFs.   Affine transformations preserve parallel lines after 

transformation but not necessarily the length of the lines or the angles between lines.  

These types of transformation are best utilized in medical applications where geometric 

distortion appears in the form of scaling or shearing.  An example of this may be 

longitudinal imaging studies of a pediatric anatomical study in which the patient’s 

anatomy is the same but scaled through years of aging.  Affine transformation is also 

considered more accurate type of transformation for intersubject registration to account 

for similar anatomy of different size in different subjects. 65 

 

2.2.1.3 Non-rigid Transformations 

Depending on the non-rigid transformation method used, the number of DOFs far 

outnumbers those of rigid or affine transformations.  Subsequently, this requires 

increased computation cost over the other transformation methods.  These types of 

transformations are commonly used when local changes occur between the images of 

interest, such as soft tissue deformable structures within a subject or across subjects. 65  

For the purposes of this paper, for example, non-rigid registration will be applied to 

assess the deformation of the cardiac motion throughout the cardiac cycle within an 

intrasubject computed tomography (CT) image acquisition. 
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Several non-linear transformation models exist that have been applied to medical 

imaging, including elastic, fluid, and spline models of registration.  These methods have 

been surveyed and summarized by Daniel Rueckert.65  A brief explanation of each group 

will be provided below as well as a justification for utilization of each model for different 

applications. 

 

2.2.1.4 Elastic and Fluid Transformations 

First proposed by Bajcsy et al. in 198971 an elastic model can be described as the 

transformation of a source image into the target image in a physical process that models 

the stretching of an elastic material, such as rubber.  Two forces, an internal and an 

external force govern the transformation. The external forces act to deform the elastic 

(rubber) physical body, and the internal force (internal stresses) act to maintain a 

smoothness constraint on the body.  Deformation ceases when both forces arrive at an 

equilibrium state.  These methods were initially suggested for registering CT human 

brain images to a brain atlas.  Elastic transformations, however, are limited in that 

profoundly localized deformations are not easily modeled.  This is caused by the fact that 

deformation energy caused by the internal forces increases directly with the strength of 

the deformation.  Fluid registration, on the other hand, allows for an approach in which 

the stresses relax with deformation over time.65  This makes fluid deformation more 

suitable for intersubject registration.  This method of registration, however, allows for 

concentrated local deformations but also poses a potential increase in misregistration as 

fluid transformations involve a large number of DOFs. 

 



24 

 

2.2.1.5 Spline 

The concept of splines originates from long flexible materials used to model 

surfaces of large machinery.  Spline transformation is based on the principle that 

conceptual splines can be used to model a transformation of one image into another.  In 

this model, a set of corresponding points, called control points, are defined both within 

the source and target images.  In this way, spline based registration assumes that these set 

of corresponding landmarks, or control points, can be found in both images.  A spline-

based transformation approximates the movements necessary to map each source image 

control point to the corresponding control point within the target image.  A smoothness 

parameter was enlisted to ensure displacements occurs seamlessly between these 

landmarks in the work of Goshtasby.67  Meyer et al.,69 further proposed revising the 

landmark locations based on voxel intensity similarity measures, and Davis et al. in 

199770 further extended spline transformations to include control points arranged with 

equidistant spacing throughout the image, forming a control point mesh as opposed to 

relying on anatomical or geometrical landmark locations.  These mesh grids of control 

points are often referred to as pseudo- or quasi- landmarks. 

One specific type of spline, thin-plate splines, utilizes transformations to map an 

original image, modeled as a flat metal sheet, to its target image with in-plane bending 

only.  Each displacement in the plate, however, has a global influence on the 

transformation, thus problematic in attempting to evaluate local deformations.  An 

alternative spline method is based upon free-form deformations utilizing B-splines.  

Although thin-plate splines provide for a method of manipulating an arbitrary 

configuration of control points, B-spline deformation requires a mesh of uniformly 
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spaced control points.  This method was first suggested by Reuckert et al. in 1999 to 

register contrast enhanced MR mammography images.68  B-splines involve deformation 

that controls the shape of the 3D object, ensuring a smooth and continuous 

transformation.  In this method, the effect of changing localized control points is limited 

to the neighborhood of each control point, providing recovery of deformations in the 

vicinity of the respective control point.  The smooth and continuous transitions allow for 

effective transformation of control point motion over time.  In addition to the fact that 

these algorithms are readily available, B-splines have wide general applicability and 

computational efficiency.65   At very fine resolutions, however, folding of the 

deformations field becomes possible and special measures are required to prevent these 

disadvantages. 65   

 

2.2.2 Similarity Metrics 

Medical image registration is often categorized as utilizing either geometric or 

intensity similarity approaches.  For the purpose of this investigation, the geometric 

approaches, such as point-based and surface-based similarity metrics will not be 

discussed in detail.  Voxel intensity-based approaches will be the focus of this thesis, 

particularly mutual information, as they have become, in recent years, robust and 

accurate enough to use target and source image intensities without image segmentation or 

delineation of corresponding structures.65  These methods also contain an advantage in 

that they do not require image feature, such as surface or 3D volume, extraction.  Voxel 

intensity approaches assume that the target and source images are most similar at the 

optimal registration between the two images. 
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Perhaps the simplest voxel intensity similarity measure that can be implemented 

is sum of squared differences, also known as sum of squared error, presented in Figure 6 

below.66   

 

Figure 6: Equation for SSD65 
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where xA denotes the voxel locations, A and B are the untransformed images, T 

represents the transformation operation, 
T

BA,Ω  is the overlapping domain between the 

images, and N is the number of voxels within the overlapping domain. 

This technique assumes that the target and source image intensities are identical at 

final registration, excluding noise characteristics.  Because SSD is the  optimal similarity 

measure for images that only differ by Gaussian noise, SSD is appropriate for registration 

between images of the same imaging modality, for example CT to CT or PET to PET, but 

is not even always ideal for intramodality imaging.66  The smallest SSD provides the best 

alignment; therefore, as the value of SSD decreased, the alignment is improved. 

As the equation shows, corresponding intensities within the images are subtracted 

from each other to obtain the difference and then squared.  Whereas SSD can be skewed 

by large intensity differences between only a few image voxels, the sum of absolute 

differences (SAD) measure is less sensitive to these outlying voxels.  The calculation of 

SAD minimizes the effect of those problematic voxel differences by removing the 

squared effects.65  The equation for SAD is provided in Figure 7. 
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Figure 7: Equation for SAD65 
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This method, for example, is useful if contrast media is injected into the organ of 

interest between the acquisition of the target and source images.  Contrast injection can 

cause large intensity differences at corresponding landmarks, which will be minimized 

using a SAD technique over an SSD technique. 

Another voxel-based similarity metric is the correlation coefficient.  This method 

assumes a linear relationship between the target and source image intensities.  Similarly 

to SSD, correlation coefficient based metrics are optimized for intramodality 

registration.66  Figure 8 defines the equation for correlation coefficient. 

 

Figure 8: Equation for Correlation Coefficient65 
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where A  is the mean voxel value in image A and B  is the mean voxel value in image B. 

In this approach, the source image is aligned with the target image and 

corresponding image intensities are multiplied until the maximum correlation coefficient 

is obtained.65 

  The correlation coefficient metric is a normalized version of the cross correlation 

measure shown in Figure 9. 
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Figure 9: Equation for Cross Correlation65 

)()(
1

,

AA xBxA
N

CC
T

BAAx

Τ
⋅= ∑

Ω∈

 

 

In aligning two images, one can also measure the amount of information and 

uncertainty provided by the combined images, as is calculated by the metric of joint 

entropy.  If there is no commonality between the target and source images, the joint 

entropy equals the sum of the entropies of each respective image.  As the images become 

more alike, the joint entropy reduces related to the sum of the individual entropies.  

Figure 10 is an equation that represents this relationship, with the function H representing 

the entropy. 

Figure 10: Relationship for Commonality of Joint Entropy 
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This equation represents the desire to have the amount of entropy in the combined 

images to be no more than the sum of the entropies of the individual images.  Two-

dimensional histograms can be used to represent the joint entropy of a pair of images, 

where the intensity of the voxels in A,A(xA) are plotted against the intensity of the 

corresponding voxel in image B, B(xA).  When misregistration is greater between the two 

images, the 2D histogram displays a more disperse or blurred distribution.  When these 

histograms are normalized by the total number of voxels, N, the result is the joint 

probability distribution function 
T

BA
p

,  of image A and B.  The equation for joint entropy 

is provided below in, Figure 11. 
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Figure 11: Joint Entropy 
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As medical images have many intensity values, up to 4096 for MR and CT 

images, the probability distribution function becomes very sparse.  Binning these 

intensities into bins is commonly used to address this problem.  The intensity values are 

typically binned to 32 to 256 bins.  Therefore, in the equation for joint entropy, a and b 

can refer to the image intensities themselves or to a representative bin of image 

intensities.65  Joint entropy is highly dependent on T, or the transformation.  In fact, the 

probability distribution function of A and B, 
T

BA
p

, , is highly dependent on the 

overlapping domain of the two images, 
T

BA,Ω .  This presents a problem, in that a 

registration algorithm utilizing joint entropy will tend to maximize regions that contain 

noise in the lowest intensity value bins, potentially providing an incorrect solution. 

 
2.2.2.1 Mutual Information 

Mutual information provides an advantage over joint entropy by considering 

separately the information provided to the overlapping volume from each individual 

image.  In other words, mutual information considers the marginal probability 

distributions of each image, as well as the joint information, or the joint probability 

distribution function.  This method is represented in Figure 12. 

Figure 12: Mutual Information 
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At the best alignment between the two images, mutual information is maximized, 

meaning that the combined uncertainty of the two images is less than the sum of the 

uncertainties of the individual images.  As mutual information is improved, one image 

becomes a good predictor of the values of the other image, meaning that knowing the 

value of voxel intensities of one image diminishes the uncertainty (entropy) of the 

corresponding voxel in the other image. 

 

2.2.3 Optimization 
 

In general, optimization of a registration algorithms involves selecting a cost 

function or similarity metric, computing this value for the current registration, and 

iterating the parameters of the transformations to increase or decrease this metric until the 

maximum or minimum result within the given boundary conditions is obtained.  The 

iterations continue until the similarity measure converges to where no other 

transformation can provide a more ‘optimal’ measure.  The number of iterations can be 

constrained to cease at a maximum number of iterations or at the iteration at which the 

difference between measured similarity between sequential iterations is below a set 

threshold. 

 Optimization can potentially end in a convergence to a local maximum or 

minimum of the similarity measure.  To avoid this situation, providing a best starting 

transformation is suggested, minimizing the possibility of reaching a local optimum 

before reaching the end desired global optimum.  However, there may be several optima 
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within a given parameter space.  To accommodate this challenge, multi-resolution 

registration has become useful.  By blurring an image prior to the first iterations of 

registration, local optima may be removed to provide a better initial transformation.  As 

each lower resolution transformation is optimized, the resolution is increased to better 

fine tune the similarity of the registered images.  This is known as multi-resolution 

registration.65 

Non-rigid algorithms generally require additional parameters to define the 

transformation than rigid or affine methods, and, therefore, require more time to 

determine the appropriate optimizer.  In addition, an optimal parameter set may provide a 

visibly adequate image result, but may not be anatomically or physiologically meaningful 

throughout the image space.  Folding or tearing of the image may be present after 

deformation – a result that is physically invalid in medical applications.  Therefore, the 

appropriate optimization for the given registration problem is dependent upon the 

similarity metric, the type of transformation used, any resource constraints employed 

under the implementation circumstances, and the level of precision or accuracy desired 

from the results, which includes the level of physical reality needed in the results. 65 

 

2.2.4 Cardiac Image Registration 

Although there are many applications of registration algorithms in the subject of 

medical imaging, this work focuses on registration of cardiac images.  Each imaging 

modality has devised imaging methods to capture changes in the motion of the heart over 

time, such as contrast enhanced multi-phase CT imaging, PET multi-phase perfusion 

images, and tagged magnetic resonance imaging. 
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Frangi et al. has written an extensive review on the many forms of 3D modeling 

of the heart for functional analysis.72  The work summarizes several modeling methods 

and categorizes them into imaging modality, complexity, pre-processing, automation, and 

available validation.  The general takeaway concludes that 3D cardiac modeling 

approaches do have the capability to improve diagnosis of cardiac imaging, but available 

studies at the time of the review still required improved robustness, computational 

simplicity, and clinical validation.  The review also focused on functional analysis 

metrics that studied volumes and volume changes as opposed to dyssynchrony and 

mechanical dysfunction.  The metrics included left ventricular volume, left ventricular 

mass, stroke volume, ejection fraction, and cardiac output.  The study did touch on 

motion and deformation analysis metrics, such as wall thickening, which has 

demonstrated a higher sensitivity for dysfunctional contraction over wall motion73, and 

strain analysis, which could be a promising method to quantify ventricular deformation. 

Non-rigid registration has been extensively studied in the case of tagged magnetic 

resonance imaging by Chandrashekara et al., who employed 2D and 3D multi-resolution, 

free form deformation approach on cardiac images, utilizing normalized mutual 

information algorithm optimization on short-axis and long-axis images 56,63.  Motion 

fields were extracted from the algorithm for several systole images registered to the target 

diastole image.  This method demonstrated a root-mean squared (rms) tracking error of 

less than 2 mm for most of the patient data tested, which was calculated between the in-

plane displacement estimated from registration and that measured by an observer.56,63  As 

the approach used in this study did not make any assumptions regarding the imaging 
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modality, it can theoretically be applied to any images, for example untagged MR, 

ultrasound or CT.   

Chandrashedara et al. further supplemented this work on tagged MR images by 

developing a 4D B-spline transformation approach with the maximization of mutual 

information.  In this work, the systole images were registered to a diastole image.  They 

proposed use of these deformation results for quantification of strain and velocity 

analysis.62  Supplemental studies by the group applied this algorithm to synthetic data 

with a known transformation. 64 

As summarized by Frangi et al.,73 characterizing ventricular wall motion has 

proven to be a complex problem.  The aim of these studies was to provide a repeatable 

tool to assess myocardial regional wall motion to address the subjectivity presented by 

the standard visual wall motion scoring (VWMS) methods suggested by the American 

Heart Association (AHA).  VWMS involves segmentation of the myocardium into 17 

regions, each of which are graded on a five level scale as normo-kinetic, mild-

hypokinetic, severe hypokinetic, akinetic and dyskinetic.  As these regions are assessed 

qualitatively by the clinician, the method suffers from high interobserver variability, 

introducing non-reproducibility and subjectivity. In the studies described by Frangi et al, 

an extensive number of MR images were acquired from healthy individuals to train a 

statistical model of normal myocardial function.  The methods employed a statistical 

model to identify local ventricular contraction patterns from the normal examinations.  In 

addition, this method involved the contouring of end diastole and end systole wall 

components, epicardium and endocardium, and unification of all normal contours to a 

unit contraction model using thin-plate spline warping.  It was then necessary to 
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determine the number of independent components into which to sort the statistical model 

components.  A clustering technique was used to segment the components.  Once the 

components were identified, the density function of each component was determined.  

They then employed a means to identify wall abnormalities based on this statistical 

model.  By comparing the component values of an abnormal individual to the distribution 

of the normal statistical model, a region could be flagged as deviating from the normal 

myocardial contraction with different degrees of deviation from the statistical model 

values. 

Suinesiaputra et al.74 used a statistical model based on a database of normal 

myocardial images to establish whether and to what degree a region was abnormally 

contracting.  This method requires a representative normal database of cases to which to 

compare other suspected abnormal cases.  This method appears to be viable in other areas 

of the heart, for potential interventricular contraction analysis or even atrial to ventricle 

contraction efficiency analysis. 

Computed tomography images are relatively unstudied for the extraction of wall 

tissue motion fields within the referenced work.  As these images are routinely acquired 

for planning of cardiac catheterization procedures, such as radiofrequency ablation and 

biventricular pacing, developing a registration algorithm to extract the motion fields for 

the myocardial tissue could contribute an additional use of images that already are 

routinely used for general anatomical reference.  Chapters 3 and 4 will describe the 

implementation of a non-rigid registration algorithm for use with multi-slice multi-phase 

cardiac computed tomography images.  Like the pre-existing work, this investigation will 

attempt to characterize the difference in motion fields between a normal clinical study 
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and one with known myocardial function pathology.  Unlike the preexisting work, 

however, a statistical model of what constitutes ‘normal’ myocardial function has not 

been established.  Instead, only one example of a normal motion will be used for an 

initial comparison to a pathological case to identify gross differences in the types of 

motion fields within the myocardium. 
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CHAPTER 3 REGISTRATION ALGORITHM DEVELOPMENT, VALIDATION AND 

OPTIMIZATION 

 

 

 

3.1 Methods 

3.1.1 Algorithm Overview 

As described in Chapter 2, placing a pacing lead at the site of the most delayed 

motion has the potential to provide improved pacing results.  The challenge remains of 

identifying the site of the most delayed region prior to lead placement.  Previous work 

implemented registration algorithms for cardiac MR and developed statistical models for 

identifying regions of abnormal wall motion.  While promising, MR acquisitions are not 

routinely prescribed prior to CRT, due partly to issues of cost.  As CT imaging is often 

performed as part of resynchronization treatment planning and is a fast and accessible 

means of imaging, extending a registration method to assessing left ventricular motion of 

CT images could provide another means of reproducible contractility assessment.  The 

purpose of this study is to develop and implement a 3D non-rigid registration algorithm 

for motion analysis of multi-phase cardiac CT images. 

Figure 13 displays the overall goal of the proposed motion analysis algorithm.  

The first step of the analysis performs registration to determine the motion vectors of left 

ventricle.  Analysis of the images requires registration of each phase image (source 

image) to a reference image (target image).  When one image is registered to another 

image , a transformation matrix is calculated that defines the  motion necessary to 
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transform the original source image to the new image.  The transformation matrix can be 

used to evaluate the motion characteristics between the two images. 

Figure 13: A Method for Non-rigid Registration for Motion Analysis 

 

This work developed a multi-resolution non-rigid registration algorithm that used 

mutual information as the similarity measure and B-Splines as the transformation model.  

The optimization method used a brute-force search, whose extent was determined by the 

user-defined parameter of step length.   Figure 14 summarizes the registration algorithm 

framework which  is explained in more detail in the following paragraphs..  
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Figure 14: Registration Algorithm 

 

The iterative algorithm begins by defining a source image and a target image, and 

calculating the mutual information between the images.  A rectangular grid of control 

point locations is defined in the source image.  The algorithm starts with the lowest 

resolution level, which corresponds to a coarsely spaced grid of control points.  The 

algorithm then translates the voxel at a selected control point in an initial direction by a 

distance equal to the step length.  After the voxel location is adjusted, the remaining 

voxels are transformed non-rigidly according to B-spline interpolations.  The mutual 

information between the target image and transformed source image is recalculated.  If 

the transformation results in increased mutual information, the adjustment is maintained. 

If the transformation reduces the mutual information, the original voxel is translated by 

the step length in the next direction.  This adjustment is repeated for each control point.  

Using the coarsely transformed source image as the initial guess, the process is repeated 
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with a smaller step length.  Thus the image is first transformed on a course scale using 

large step lengths, and the transformed image is refined by repeating the optimization 

with a finer step length.  This iterative process is then repeated at a higher resolution 

level, which is obtained by using a finer grid to define the control points.  Overall, the 

search for the optimal transform is repeated for all control points, for all step lengths and 

then for all resolution levels until the number of iterations specified by the user. 

Two outputs are generated by the completed algorithm: (1) the optimally 

transformed source image and (2) the array of transformation vectors which define the 

optimal motion of each control point from the target image to the source image.  

 

3.1.2 Implementation 

The registration algorithm was implemented using the VTK CISG Registration 

Toolkit 2.0.0 (http://www.vtk.org/pipermail/vtkusers/2002-September/062841.html) and 

Matlab 7.4.0 software.  The VTK CISG Registration Toolkit is a free software package 

that provides two voxel-based, mutual information image registration algorithms and is 

implemented on top of the Kitware 4.0 Visualization Toolkit (VTK).  It allows for 

registration implementations on Linux, Solaris, and Windows computer hardware and 

operating systems.  The developed algorithm included the following user-defined 

parameters: the number of resolution levels, number of histogram bins used to calculate 

the mutual information, the number of allowed iterations, the number of resolution steps, 

length of resolution steps, similarity measure (options include mutual information or 

normalized mutual information), and control point spacing.  Matlab was used for 
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processing of motion vectors obtained from the registration process and for creation of 

synthetic datasets used for validation. 

 

3.1.3 Validation of Registration Functionality 

The registration algorithm was validated using three main methods, including 

validation of the non-rigid algorithm on non-rigid motion of an elliptical synthetic data 

series, and validation of the non-rigid algorithm on clinical cardiac image data. 

 

3.1.3.1 Validation with Prescribed Motion of an Elliptical Synthetic Data Series 

For the first state of validation, a simple ellipse was developed (Synthetic Dataset 

A), which contained increasing voxel intensities from the center of the ellipse outward.  

This simplified data series is shown in Figure 15.  The figure demonstrates only one slice 

through the center of the data ellipse.  The synthetic ellipse object was defined 

over121x121x121 voxels with a dynamic range of 4400 intensities.   
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Figure 15: Synthetic Elliptical Data Series 

 

 

To validate basic algorithm functionality and investigate the effects of the 

algorithm parameters, the ellipse image (Synthetic Dataset A) was transformed non-

rigidly using a prescribed transform, with each voxel moving in the direction outward 

from the center of the ellipse.  The magnitude of motion increased as the distance 

between the original voxel location and ellipse center increased.  Figure 16 shows an 

example of the prescribed vector motion at one slice location within an ellipse with a 

radius of six voxels. 
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Figure 16: Prescribed Vector Motion of Ellipse 

 

The transformed image, Synthetic Dataset B, was generated by simulating non-

rigid motion of the voxels using B-spline interpolation. 

Figure 17 displays the original synthetic images on the top (left to right shows the 

xy, or axial, plane, xz, or coronal, plane, and yz, or sagittal, plane) and displays the non-

rigidly deformed images on the bottom (same orthogonal views as the original synthetic 

data). 
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Figure 17: Original Synthetic Data and Artificially Transformed Data   
Original synthetic images on the top (left to right shows the xy, or axial, 

plane, xz, or coronal, plane, and yz, or sagittal, plane)  
Non-rigidly deformed images on the bottom (left to right shows the xy, or 

axial, plane, xz, or coronal, plane, and yz, or sagittal, plane) 

 

The original (Synthetic Dataset A) and transformed (Synthetic Dataset B) images 

were registered using the developed non-rigid registration algorithm.  The estimated 

transformation result was then compared to the prescribed transformation to quantify the 

performance of the algorithm.  The mean-squared error between the prescribed and 

estimated motion vectors was the quantitative metric used to evaluate the algorithm.  

To investigate the effects of the algorithm parameters, a design of experiments 

(DOE) was performed while varying several of the algorithm parameters.  The number of 

resolution levels was varied between 1, 3, and 4, as this range was found through 

preliminary testing to be computationally feasible with respect to memory consumption, 
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which will depend on the type of system being used.  The number of histogram bins was 

varied between 32, 64, and 128, in order to investigate the tradeoff between 

computational complexity and high intensity resolution during the mutual information 

calculation.  Finally, the control point spacing range was determined by running a few 

algorithm runs on the data to understand the range that would provide a number of 

degrees of freedom for which the hardware and software could proceed without aborting 

the registration process. Based on these preliminary runs, the control point spacing was 

varied between 8, 10, and 12mm.   For each run of the DOE, the MSE between the 

prescribed and estimated motion vectors was used to quantify algorithm performance  

 
 
3.1.3.2 Feasibility with Clinical Data 

The registration algorithm was then tested on a normal clinical image series 

(Clinical Dataset X).  A systole image volume was registered to a diastole image volume.  

The end diastole image was selected as the target image because this cardiac phase 

demonstrates the largest volume of the cardiac cycle.  This is consistent with the work of 

Chandrashekara et al.,56 which also utilized end diastole as the target image series.  The 

transformed image series was compared qualitatively to the diastole image to understand 

in which regions of the ventricle the registration algorithm provided discrepancies 

between the target and transformed image volumes.  This information was used to 

understand some of the limitations of the registration algorithm for use in motion 

analysis.   
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3.1.4 Optimization of Algorithm Parameters 

A second design of experiments (DOE) was developed to analyze the 

performance of the registration algorithm.  The design of experiments (DOE) was 

performed on the clinical data (Clinical Dataset X), using the end diastole and end systole 

phase images, with three levels for number of resolution levels (1, 3, 4), number of 

histogram bins (32, 64, 128), and control point spacing (8, 10, 12).  These values were 

chosen for consistency with the initial synthetic data analysis.  For each run of the DOE, 

the end systolic phase image (phase 4) was used as the source registration phase and the 

end diastolic phase image (phase 1) was used as the target registration phase.  Figure 18 

summarizes the parameters used for the design of experiments. 

Figure 18: Registration Algorithm Parameters 

 

Unlike the ellipse simulation, the true motion vectors are not known in the case of 

clinical data. Therefore, the mutual information between the target image and the final 

registered source image was compared for each combination of algorithm parameters to 

quantify the performance of the registration.  The registration parameters that yielded the 



46 

 

greatest mutual information were chosen as the optimal parameters and used in the study 

of clinical motion analysis described in Chapter 3.  

 

3.2 Results 

3.2.1 Validation of Registration Functionality 

3.2.1.1 Validation with Prescribed Motion of an Elliptical Synthetic Data Series 

The transformed ellipse dataset (Synthetic Dataset B) underwent several 

registrations in which the number of resolution levels, number of histogram bins, and 

control point spacing was adjusted within a formal design of experiments.  Below, Figure 

19 displays the original series (Synthetic Dataset A - top), the artificially transformed 

image series, (Synthetic Dataset B – middle), and the resulting registered image series 

(Synthetic Dataset C - bottom) after registration.   

Figure 19: Synthetic Data Before and After Registration 
Original diastole image on top (Synthetic Dataset A), artificially 

transformed image in middle (Synthetic Dataset B), and the non-rigidly 
registered image on bottom (Synthetic Dataset C)   
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Figure 19 displays the original diastole image (top), the image with the prescribed 

transformation (middle), and the non-rigidly registered image overlaid on top (bottom).  

From left to right, the figure displays the axial, coronal and sagittal views of the image 

series.  These images show that there is a good overlap between the original series and 

the registered series.  The purpose of the registration was to transform the synthetically 

transformed series into the original series.  The inner radii of the ellipsoids are not fully 

registered, but the other portions of the ellipsoids demonstrate reasonable agreement. 

The compiled results from the design of experiments are present in Figure 20.  

The average root-mean squared error between the prescribed motion vectors and the 

vectors estimated by the registration algorithm was calculated for each run of the DOE.   

The minimal root-mean squared error is highlighted in the figure, as 0.0587.  This 

minimal value was obtained using three resolution levels, 128 histogram bins, and a 12-

mm control point spacing.  As the maximum motion introduced into the image series was 

approximately 7.5 mm, an RMS of 0.0587 demonstrates an error of less than one percent 

of the maximum motion imposed on the ellipse, implying a good result.  As validation of 

a registration algorithm for use in medical imaging relies on the clinical impact as well as 

the quantitative values that one can extract, it would be important to also consider the 

time to image, or the time it takes to get to the resulting registered image, and the realistic 

anatomical nature of the resulting registered image.  Most of the RMS results are 

clustered from about 0.06 and 0.1 mm.  If one reviews the interactions between the DOE 

factors – resolution levels, histogram bins, and control point spacing – one can recognize 

which of these factors has the largest effect on the resulting RMS.  The DOE interactions 



48 

 

plot in Figure 21 demonstrates that the control point spacing has the highest effect on the 

RMS registration result.   

Figure 20: Non-rigidly Transformed Ellipse Design of Experiments Results 
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Figure 21: DOE Factors Interactions 
Demonstrates the interactions between the DOE factors and the resulting 

RMS values 

 

If one considers the processing time required for more resolution levels and the 

use of more histogram bins, one might consider using the most time-efficient 

parameterization for those factors rather than that of the resulting ‘optimal’ RMS.  In this 

specific example, using one resolution level and 32 histogram bins would have 

minimized the processing time required for the analysis of those parameters.  In the 

clinical setting, however, one would also need to consider if and how significantly the 

results changed clinical treatment.  If, for example, using the most time efficient number 

of resolution levels and histogram bins, 1 and 32, respectively, had an undesired clinical 

outcome, the operator would have to consider using the necessary parameters to obtain 

the proper clinical outcome. 
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3.2.1.2 Feasibility with Clinical Data 

Once the synthetic data was reviewed, the registration was applied to a clinical 

data series (Clinical Dataset X).  As already stated, the systolic phase of the series (phase 

4 of 10) was registered to match the diastolic phase of the series (phase 1 of 10).  Figure 

22 displays a visual representation of the original phases, systole (left) and diastole 

(middle), and the non-rigidly deformed systolic phase, Clinical Dataset Y (right). 

Figure 22: Registration of Systole to Diastole Phase  
(Left) Systole Phase, (Middle), Diastole Phase, (Right) Systole Phase 

Registered to the Diastole Phase 
(Top) Axial Planes, (Bottom) Coronal Planes 

 

As the purpose of transforming the systole image was to register it to the diastole 

image, the diastole image and transformed systole image were overlaid to view where the 

registration succeeded in the transformation and where differences could be observed.  A 

difference image was created from the diastole (Clinical Dataset X) and transformed 

systole images (Clinical Dataset Y) by subtracting the two images.  Figure 23 shows the 

original diastole image (grayscale) with the difference image overlaid on top (hot iron 
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color overlay).  The areas of yellow highlight the regions in which the highest difference 

was noted. 

Figure 23 Diastole of Clinical Dataset X and Clinical Dataset Y Difference 
Overlay   

Original diastole image (grayscale) with a difference image (created from 
a difference of the diastole and registered image) overlaid on top (hot iron 

color overlay) 

 

 

The regions of highest difference appear to occur at the mitral value, the coronary 

vessels, and the pericardial sac.  With regard to the mitral valve and coronary arteries, 

these areas are likely to have discrepancies based on contrast enhancement differences 

occurring between the original images.  As the heart pumps, the contrast flows through 

these regions, causing intensity differences that will be picked up on this difference 

image.  With regard to all of these regions, higher motion of these regions – opening and 

closing of the valve, pulsatory motion of the arteries, and breathing effects on the 

pericardial sac – is likely to cause some differences between the diastole and transformed 

systole images.  In general, differences in other areas of the image were minimal, 

suggesting reasonable registration of the systole image to the diastole image. 
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3.2.2 Optimization of Algorithm Parameters 

3.2.2.1 Design of Experiments 

Figure 24 displays the results from all runs of the design of experiments.  The left-

most column lists the mutual information of the transformed source image and the target 

image. 

The maximum mutual information of 1.391 was obtained using the algorithm 

parameters of one resolution level, 64 histogram bins, and a control point spacing of 8-

mm.  Various runs of the DOE results could not be completed due to the memory 

limitations of the algorithm and system used for registration.  These runs, marked as ‘na’, 

failed to complete registration and aborted before final registration could be obtained.  In 

general, these failed runs involved multiple resolution levels.  Due to the length and 

analysis requirements for these problematic runs, these parameterizations would likely be 

less clinically desirable for the analysis time and resource constraints. 

A maximized MI of 1.391 is only one quantitative approach to optimizing the 

registration for these clinical image series.  If one considers that the MI value of the 

diastole image when registered with itself is approximately 2.65, one might consider this 

value the upper limit of how maximized the MI could be in an ideal registration scenario.   
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Figure 24: Design of Experiments Results 

RunOrder

Number 
of 

resolution 
levels 

Number 
of 

histogram 
bins 

Control 
Point 

Spacing
Mutual 

Information
1 1 128 10 1.361 
2 4 64 8 na 
3 1 128 12 1.361 
4 4 64 10 1.376 
5 1 32 8 na 
6 3 128 10 na 
7 4 128 12 na 
8 4 64 12 1.362 
9 3 128 8 na 
10 3 64 12 1.367 
11 3 32 10 1.379 
12 4 32 12 1.362 
13 1 64 8 1.391 
14 3 64 8 na 
15 1 64 10 1.342 
16 1 128 8 1.345 
17 4 128 8 na 
18 3 32 8 na 
19 4 128 10 1.381 
20 1 64 12 na 
21 4 32 10 na 
22 3 128 12 1.367 
23 4 32 8 na 
24 3 32 12 1.364 
25 1 32 10 1.159 
26 1 32 12 1.313 
27 3 64 10 1.382 

 

As many of the DOE runs result in values differing only by a few hundredths of a 

unit, one must additionally consider other factors that differentiate the results.  This 

quantitative value, as stated before, does not represent the clinical usefulness or efficacy 

of the resulting registration.  To further validate these results, other tests could be 

performed.  One example of this might include comparing the resulting motion 

transformations from the registration algorithm to an operator defined motion 
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transformation, wherein a clinical expert could identify landmarks in the systole image 

and the location of these same landmarks in the diastole image.  Comparing the 

calculated motion between the operator defined landmarks and the motion transformation 

calculated for the respective control points of the source image could provide a means to 

compare the motion transformation value to a ground truth motion value as determined 

by an operator.  An alternative validation approach, which would be far more invasive 

and more appropriate for an animal study, would be to place radio opaque fiducial 

markers on the epicardium to act as landmarks that could be easily identified on images.  

The subject could be imaged and motion of the fiducials could be compared to the motion 

of the nearest neighboring control points. 

 

3.2.2.2 Conclusion 

A method of non-rigid 3D registration was attempted between a systolic and 

diastolic cardiac image utilizing mutual information optimization and B-Spline 

transformation.  Reasonable registration between the target and source clinical images 

were obtained, providing an x, y, and z coordinate that described the motion of each 

control point to describe the transformation.  The maximum mutual information of 1.391 

was obtained using the algorithm parameters of one resolution level, 64 histogram bins, 

and a control point spacing of 8-mm. 
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CHAPTER 4 MOTION ANALYSIS 

 

 

 

4.1 Methodology 

The results of Chapter 2 indicate that the developed non-rigid registration 

algorithm can register cardiac CT images from different phases of the cardiac cycle.  The 

ultimate goal of this project is to use the motion vectors derived from the registration 

algorithm to evaluate the left-ventricular wall motion throughout the cardiac cycle. As 

described in Chapter 1, determining regions of abnormal and delayed wall motion 

requires complex statistical models that are trained on numerous normal datasets.  The 

development of such statistical methods is outside the scope of the present thesis, 

however, the preliminary feasibility of using the non-rigid registration algorithm to 

analyze the left-ventricular wall motion was evaluated by applying the algorithm to a 

normal and diseased clinical case.   This chapter describes this preliminary analysis of the 

left-ventricular wall motion.   

 

4.1.1 Clinical Datasets 

Two previously acquired high-resolution multi-phase, contrast-enhanced CT 

image series acquired using GE (16-slice and 64-slice) CT scanners were obtained from 

sites that provided the clinical data to GE for demonstration and visualization purposes. 

IRB approval was obtained to use the previously acquired data in the current study.  Two 

image sets were selected, one assessed as a patient with normal left ventricular wall 
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motion (Clinical Dataset X) and one evaluated as a pathological case, containing a 

ventricular dyssynchrony involving a septal delay in relation to the other portions of the 

left ventricle (Clinical Dataset Z).  The normal dataset contained an image series 

subdivided into 10 cardiac phases, whereas the pathological case contained an image 

series subdivided into 20 cardiac phases.  The pathological case was analyzed after 

subsampling to the phases of the normal dataset and with all available phases. 

Clinical assessment was performed by Prachi Agarwal, MD of the Department of 

Radiology at eh University of Michigan on the pathological case to understand 

underlying pathology.  Functional analysis revealed diffuse global hypokinesis.  

Additionally, there was more pronounced regional hypokinesis and myocardial thinning 

in the anterior, anteroseptal, inferoseptal, apical, and inferolateral segments.  Left 

ventricular ejection fraction was calculated at 32%, supporting an inefficiency in the 

overall function of the heart in this case.  Patient also had confirmed dilated 

cardiomyopathy. 

 

4.1.2 Registration Details 

The parameterization found to provide the maximum mutual information value 

during the DOE was used for the registration; this included 1 resolution level, 64 

histogram bins, 100 iterations, 8 resolution steps, 1 mm resolution step, mutual 

information similarity measure, and 8 mm control point spacing.   Once the registration 

algorithm parameters had been determined, each of the CT multi-phase clinical image 

series was registered to the diastole phase using the predetermined algorithm.   
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The multi-phase images series were divided into 10 or 20 phases of the cardiac 

cycle, dividing the cardiac phase into equally spaced time points.  The diastole phase was 

determined by qualitatively assessing which phase image provided the largest volume of 

the left ventricle.  This diastole phase was used as the reference, or target, phase of the 

registration.  The images at every other phase were registered back to the reference 

diastole image.  Therefore, the registration algorithm determined a motion vector for each 

control point between each source image series to the reference image series for each 

phase of the cardiac cycle.   

 

4.1.3 Motion Extraction and Analysis 

For each control point within the defined registration mesh, an x, y, and z motion 

component was generated by the algorithm.  As this study is focused on the motion of the 

left ventricle, only the control points that resided on the ventricle wall or perimeter were 

manually segmented from the images and used for subsequent analysis, control points 

residing outside the left ventricle muscle or within the left ventricle blood pool were 

ignored. 

This subset of ventricle control points was manually determined in the diastolic 

phase image, as this is the reference image in the registration algorithm.  The control 

points were overlaid with the diastole image and each control point lying on the ventricle 

region was visually determined and recorded within a file.  These control point indices 

were referenced when plotting or analyzing the motion values.   
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The wall motion occurs in three dimensions, making comparative motion 

assessment difficult.  For this preliminary feasibility analysis, the resultant motion 

magnitudes were calculated at each control point.  For each control point, the relative 

motion between each phase and the diastolic phase was plotted for each time point.  The 

absolute motion at each phase was also plotted at each time point.  This absolute motion 

value was calculated by subtracting the relative motion of the previous time point, which 

is the transformation calculated by the registration transformation, from the relative 

motion of the current time point.  This allowed all of the phase motion values to be 

normalized essentially to an absolute origin of motion, which happened to be the first 

phase for each clinical data series.  The average motion of all of the control points was 

also calculated.  Each control point motion curve was then compared to the average 

motion curve to determine similarity or dissimilarity to the overall ventricular motion. 

For the purposes display, the motion values are both normalized and interpolated.  

Normalization is performed to the sum of the motion curve to regularize the motion curve 

values with a consistent value.  Interpolation between the discreet data points at each 

phase is used to create a more realistic motion curve that demonstrates a more continuous 

motion between the available phases.  Three values are interpolated between each of the 

available values. 
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4.2 Results of Motion Extraction and Analysis 

From the x, y, and z motion components available for each control point, a 

resultant vector was determined.  The magnitude of this vector was plotted both (1) in 

relation to the motion of the diastolic volume, for the relative motion, and (2) in relation 

to the absolute motion of the point, where the previous phase motion component was 

removed from that of each subsequent phase, as described in the previous section.  Figure 

25 and Figure 26 display the relative and absolute motion curves, respectively, for the 

normal clinical image series, and Figure 27 and Figure 28 display the same for the 

pathological clinical image series.  These plots include all available phases.  As 

mentioned before, the pathological case was sub-sampled in phase to more appropriately 

compare to the normal image case; Figure 29 and Figure 30 display the resulting curves 

from that sub-sampled analysis.  For each plot, the motion curve for each control point is 

displayed in blue and the overall mean motion curve is displayed in red. 

Figure 25: Normal Relative Motion Curve 
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Figure 26: Normal Absolute Motion Curve 

 
 

Figure 27: Pathological Relative Motion Curve  
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Figure 28: Pathological Absolute Motion Curves 

 
 

Figure 29: Pathological Relative Motion Curve for a Subset of Phases 
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Figure 30: Pathological Absolute Motion Curve for a Subset of Phases 

 

Example code for the calculation of relative and absolute motion can be found in 

Appendix A. 

Both the relative and absolute motion curves contain differing characteristics 

between the normal and pathological cases.  With regard to the relative motion, the 

normal case appears to demonstrate a bimodal motion at which there is an upswing of 

motion in the early phases of the cardiac cycle and another in the second half of the 

cardiac cycle.  The pathological case appears to demonstrate a similar early phase 

upswing, but the latter local maxima appears more quickly and contains a smaller fraction 

of the first motion maxima.  When comparing the normal and pathological cases with ten 

phases each, the absolute motion for the pathological case demonstrates fewer 

fluctuations within the motion.  In a majority of the absolute motion curves, the 

pathological case demonstrates no change in the motion magnitude, whereas the normal 

case shows some fluctuations and a far more dynamic initial phase motion change. 
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Within one location of phase 8 of the pathological relative motion curve, Figure 

29, the magnitude reaches a minimum where there appears to be no motion within the 

given phase.  The absolute curve, Figure 30 between phases 7 and 8, for this same region 

demonstrates several ventricle control points of no change in motion.  This might indicate 

an inefficient component of the cardiac cycle in which the heart muscle is working 

neither to fill or contract. 

A difference in the dynamic range of the 10 phases versus 20 phases motion 

analysis of the pathological case can also be noted.  This is due mainly to the removal of 

certain data points and the resulting normalization and interpolation differences that 

result.  As experimental values are removed from the curve, the interpolation between the 

remaining values change accordingly.  The normalization of the curve also changes 

because the normalization factor, or the sum of the motion curve, also changes as the 

inputs into the factor change.   

This type of analysis makes it difficult to differentiate the motion between control 

points or between ventricle regions.  Each motion curve is very specific to the point it 

represents.  Certain regions of the cardiac cycle are expected to move a far less 

magnitude than others.  Within this investigation, the motion curves could be segmented 

into different z-slice locations.  For each of the control points, the motion curves were 

plotted with a different color corresponding to the z-slice location.  This provides a better 

means of comparing cardiac regions (by z-location only) between the normal and 

abnormal case.  Figure 31 and Figure 32 demonstrate these motion curves for the normal 

and abnormal cases, respectively. 
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Figure 31: Normal Motion Curves Segmented by Z-Slice Location 
This image demonstrates the motion curves of the normal cardiac case 

with different curve colors per different z-slice location.  The most 
superior z-location is displayed with darkest blue and colors progress to 

red as the z-location progresses more inferiorly. 
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Figure 32: Abnormal Motion Curves Segmented by Z-Slice Location 
This image demonstrates the motion curves of the abnormal cardiac case 

with different curve colors per different z-slice location. The most superior 
z-location is displayed with darkest blue and colors progress to red as the 

z-location progresses more 
inferiorly.

 
 
 

Comparing the colors between the two figures allows one to note that the 

comparable regions, or z-locations, between the two cases demonstrate very different 

motion characteristics.  One can conclude from these figures that the most superior z-

locations contribute more significant motion to the beginning of the cardiac motion (dark 

blue/cyan) in the normal case than in the abnormal case, which shows the more inferior z-

locations contributing to the initial motion (yellow/orange motion curves).  This type of 

analysis further helps to clarify the differences between the motion of the normal and 

abnormal myocardium.  This analysis uses on the z-slice location for comparison, 

however.  As the two cases are not from the same patient or from the same frame of 
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reference, the z-location does not have an exact correlation for the normal to the 

abnormal case, although it does have some correlation to the location of the ventricular 

myocardium.  Compartmentalization of each control point into a standard cardiac region 

may make the analysis more conclusive.  Using septal, lateral, basal, apical, inferior, and 

anterior region segmentation may make the local region comparison such that a 

dyssynchrony between regions can be detected.  Since each of these regions moves in 

very different directions, it makes a resultant/magnitude analysis somewhat incomplete. 

 

4.3 Conclusions 
 

Overall, this preliminary feasibility investigation demonstrates that the motion 

vectors of a transformation between one phase of the cardiac cycle to another phase can 

be extracted and analyzed.  This shows that the regional motion of the ventricle wall can 

be determined throughout the cardiac cycle using a non-rigid registration, employing 

mutual information optimization and B-spline transformation, and this motion can be 

plotted against time to visualize the changes in motion over the course of the cardiac 

cycle.  The comparison of the motion curves, Figure 25 and Figure 29, indicates some 

differences between the normal and pathological cases, which may be used in future 

studies to identify the regions of abnormal wall motion. 
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CHAPTER 5 FUTURE DIRECTIONS AND CONCLUSION 

 

 

 

5.1 Summary 

This work developed a method utilizing a non-rigid registration algorithm to 

estimate the motion of a mesh of control points on multi-phase cardiac CT images.  The 

algorithm parameters were optimized through a series of synthetic and clinical data 

experiments.  After optimization, the parameters were applied to a normal and 

pathological clinical patient series.  The motion was determined for each phase of the 

cardiac cycle in relation to the end-diastole image of the cardiac cycle for both series.  

The absolute and relative motion of each phase was extracted, demonstrating qualitative 

differences between the normal and pathological cases. 

 

5.2 Registration 

Where this analysis enlisted transformation between two images using a mesh of 

equally spaced control points, an alternative method of registration involves segmentation 

of the left ventricle and registration of a left ventricle surface or volume between phase 

images.  This type of analysis would allow for other functional analysis, such as volume, 

mass, or cardiac output metrics, in addition to motion deformation metrics, which were 

the focus of this study.  Segmentation of the ventricular surfaces may also facilitate 

analysis of wall thickening, which has proven to provide improved sensitivity over other 

motion deformation parameters.73 
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5.3 Motion Analysis 

In this analysis, the magnitudes of the motion vectors were plotted against time 

for all control points or for a region or group of control points of interest.  Analyzing the 

motion data, for example by calculating the correlation coefficient, second derivative, or 

Hilbert transform, the motion for each or a subset of the control points may have 

provided a means to identify dyssychronous motion among the ventricular points.  In 

these methods, however, the analysis is confined to the data of the individual exam itself.  

A better approach may be to compare the motion analysis to a statistical model, one 

established from a series of images known to have normal myocardial function, similar to 

the previously proposed method for MR images.74 

The motion analysis was also done on a point-by-point basis.  Averages were 

taken from all points on the myocardial wall.  Compartmentalizing the analysis into the 

standard 17 cardiac segments and performing an analysis on a segment-by-segment and 

inter-segment basis may have provided more clinically relevant analysis.  Attempting to 

analyze each control point motion versus the average motion of all control points did not 

provide definitive results, mainly because the average motion curves included motion of 

all points, which intrinsically have different motions and may or may not have abnormal 

motion characteristics.  This type of analysis is also complicated in that the resultant 

magnitude was used for motion analysis.  As motion occurs in different directions for 

different segments, the x, y, z and angular components may be different for the motion of 

each segment or even each control point further complicating an attempt to compare 

between all points or to a mean motion curve that incorporates all points. 
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5.4 Conclusions 

A non-rigid registration algorithm was successfully applied to multi-phase CT 

images, and the parameters of the algorithm were optimized through a DOE.  Although 

the current analysis of the motion vectors may be suitable for characterizing normal 

versus pathological motion, the motion vector data obtained from the registration 

algorithm could be used in future work to determine locations of dyssynchronous 

ventricular motion.  In addition to the potential improvements outlined already, the 

current study also included only one normal and one pathological case – a more diverse 

group of studies could have provided a better statistical analysis. 

Although further investigation is necessary to assess the proposed motion analysis 

method, this work presents an implemented and optimized non-rigid registration 

algorithm.  The registration algorithm was successful for extracting x, y, and z motion 

vectors throughout a cardiac CT multi-phase image series.  Additional investigation is 

required to develop methods for using these motion vectors to identify the most delayed 

region.  Visual assessment has demonstrated a difference in the motion between normal 

and pathologically dysfunctional image series.   

A more quantitative means of analysis is desired to improve the objectivity of 

current motion dysfunction, however, this investigation has established a basis for doing 

so.  This investigation demonstrated a means to characterize the normal motion of the left 

ventricle and comparison against the motion of a known pathological case.  Future work 

could entail the use of a larger population of normal cases for establishing a mean and 

standard deviation of motion fields of normal ventricle motion.  It could also entail the 
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analysis of numerous pathological cases, providing a characteristic motion field spectrum 

for each case.  These pathological motion fields could then be compartmentalized into 

categories of similar pathological cases, differentiating pathology based on motion field 

spectrum. 

Whereas the hypothesis for this thesis was focused on specifically finding the 

most delayed region of motion of the left ventricle, the potential uses for the motion 

fields calculated using the registration algorithm are numerous.  For example, one could 

consider applying the same registration algorithm to any or all chambers of the heart, not 

just the left ventricle.  Just as understanding the motion characteristics over time within 

the left ventricle for biventricular pacing, understanding the right and left atrial motion 

fields could be useful in radiofrequency ablation planning.  Another example of the 

potential use of this type of motion characterization is stratification of different 

pathologies of electromechanical delay.  By analyzing cardiac images of persons of 

different electromechanical pathology, a database of characteristic motion fields could be 

established.  From establishing this database in conjunction with knowledge of the 

efficacy of different electrophysiological or pharmacological therapies, it could be 

possible to accumulate a database from which one could determine the best treatment to 

suggest for a given mechanical characterization. 
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Appendix A – Example Code for Relative and Absolute Curve Calculation 
 
clear all 
close all 
 
files = 'testfiles.dat' 
 
%----------------------------------------------------------
--------------- 
testfiles = textread(files,'%q'); 
numfiles = size(testfiles,1); 
numphases = numfiles 
 
phaserange = 1:numphases; 
 
for incfile = 1:numfiles 
    filename = char(testfiles(incfile)); 
    [cpgDisps(:,:,:,:,incfile) refpoints(:,:,incfile) 
dimensions(:,:,:,incfile) affine(:,:,incfile) 
affineparams(:,:,:,:,incfile) non-rigid(:,:,:,:,incfile)] = 
loadreg(filename); 
end 
 
%----------------------------------------------------------
--------------- 
 
%read in the diastole image for reference 
I = analyze75read('phase0'); 
 
%Load the file that contains all of the points of interest 
on the 
%ventricle 
load VentriclePointSelection.dat 
 
%Determine how many points were found in the region of the 
randomly selected point 
F = size(VentriclePointSelection); 
F = F(1) 
 
fullXRange = -124.756:0.488281:124.756;%X Min/Max taken 
from Origin in dof file, spacing taken from Spacing in dof 
file 
fullYRange = -124.756:0.488281:124.756;%Y Min/Max taken 
from Origin in dof file, spacing taken from Spacing in dof 
file 
fullZRange = -75:1.25:75; 
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meshXRange = -141.39:8.31705:141.39;%Taken from Xmin, Xmax 
and spacing in Bounds in dof file 
meshYRange = -141.39:8.31705:141.39;%Taken from Ymin, Ymax 
and spacing in Bounds in dof file 
meshZRange = -92.6471:8.82353:92.6471;%Taken from Zmin, 
Zmax and spacing in Bounds in dof file 
 
%Now select the region of points that might be adjacent to 
the randomly 
%selected point 
for W =1:F; 
    nearX(W) = fullXRange(VentriclePointSelection(W,1)); 
    nearY(W) = fullYRange(VentriclePointSelection(W,2)); 
    nearZ(W) = fullZRange(VentriclePointSelection(W,3)); 
    [rX(W,:),cX(W,:),VX(W,:)] = 
findnearest(nearX(W),meshXRange,0); 
    [rY(W,:),cY(W,:),VY(W,:)] = 
findnearest(nearY(W),meshYRange,0); 
    [rZ(W,:),h(W,:),VZ(W,:)] = 
findnearest(nearZ(W),meshZRange,0); 
end 
 
%Assume 9 phases, create X arrays for plotting motion, 1st 
derivative, and 
%2nd derivative 
phases = size(testfiles,1); 
X = 1:phases; 
X2 = 1:phases+1; 
X3 = 1:phases+2; 
 
%Set kernels for 1st and 2nd derivatives 
FirKernel = [1 -1]; 
SecKernel = [1 -2 1]; 
 
%Determine the motion plots for all points 
for phases = 1:numphases 
    for Q = 1:F 
        Pointx_rel(Q,phases) = non-
rigid(cX(Q,1),cY(Q,1),h(Q,1),1,phases); 
    end 
end 
for phases = 1:numphases 
    for Q = 1:F 
        Pointy_rel(Q,phases) = non-
rigid(cX(Q,1),cY(Q,1),h(Q,1),2,phases); 
    end 
end 
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for phases = 1:numphases 
    for Q = 1:F 
        Pointz_rel(Q,phases) = non-
rigid(cX(Q,1),cY(Q,1),h(Q,1),3,phases); 
    end 
end 
%Determine the motion arrays for each point in the random 
region 
for phases = 1:2 
    for Q = 1:F 
        Pointx_abs(Q,1) = Pointx_rel(Q,1); 
        Pointx_abs(Q,2) = Pointx_rel(Q,2) - 
Pointx_rel(Q,1); 
 
        Pointy_abs(Q,1) = Pointy_rel(Q,1); 
        Pointy_abs(Q,2) = Pointy_rel(Q,2) - 
Pointy_rel(Q,1); 
 
        Pointz_abs(Q,1) = Pointz_rel(Q,1); 
        Pointz_abs(Q,2) = Pointz_rel(Q,2) - 
Pointz_rel(Q,1); 
    end 
end 
for phases = 3:numphases 
    for Q = 1:F 
        Pointx_abs(Q,phases) = Pointx_rel(Q,phases) - 
Pointx_abs(Q,phases-1); 
        Pointy_abs(Q,phases) = Pointy_rel(Q,phases) - 
Pointy_abs(Q,phases-1); 
        Pointz_abs(Q,phases) = Pointz_rel(Q,phases) - 
Pointz_abs(Q,phases-1); 
    end 
end 
 
for phases = 1:numphases 
    for Q = 1:F 
        %Create a resultant from the x, y, and z components 
of all of the dof files 
        Point_rel(Q,phases) = sqrt((non-
rigid(cX(Q,1),cY(Q,1),h(Q,1),1, phases).^2) + (non-
rigid(cX(Q,1),cY(Q,1),h(Q,1),2, phases).^2) + (non-
rigid(cX(Q,1),cY(Q,1),h(Q,1),3,phases).^2)); 
 
        %Create a resultant from the x, y, and z components 
of all of the dof files 
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        Point_abs(Q,phases) = 
sqrt((Pointx_abs(Q,phases).^2) + (Pointy_abs(Q,phases).^2) 
+ (Pointz_abs(Q,phases).^2)); 
    end 
end 
 
%Normalize the motion curves using sum of each motion curve 
for Q=1:F 
    Point_rel(Q,:) = Point_rel(Q,:)/sum(Point_rel(Q,:),2); 
end 
     
incinterp = 1; 
interptype = 'cubic'; 
interprange = 1:incinterp:phases; 
phaseinterprange = 5:incinterp:95; 
 
%Up sample the motion plots to the specified increment 
for Q=1:F 
    PointUp_rel(Q,:) = interp1(X, Point_rel(Q,:), 
interprange, interptype); 
end 
 
MeanMotionOfEachPhase = mean(PointUp_rel,1); 
 
figure, plot(interprange,MeanMotionOfEachPhase,'ro-') 
title('Relative Motion Curves') 
xlabel('Time (Cardiac Phase)') 
ylabel('Magnitude (mm)') 
hold on 
for Q=1:F 
    plot(interprange,PointUp_rel(Q,:),'b.-') 
end 
plot(interprange,MeanMotionOfEachPhase,'ro-') 
 
%Normalize the motion curves using sum of each motion curve 
for Q=1:F 
    Point_abs(Q,:) = Point_abs(Q,:)/sum(Point_abs(Q,:),2); 
end 
 
incinterp = 0.25; 
interptype = 'cubic'; 
interprange = 1:incinterp:phases; 
 
%Up sample the motion plots to the specified increment 
for Q=1:F 
    PointUp_abs(Q,:) = interp1(X, Point_abs(Q,:), 
interprange, interptype); 
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end 
 
MeanMotionOfEachPhase = mean(PointUp_abs,1); 
 
figure, plot(interprange,MeanMotionOfEachPhase,'ro-') 
title('Absolute Motion Curves') 
xlabel('Time (Cardiac Phase)') 
ylabel('Magnitude (mm)') 
hold on 
for Q=1:F 
    plot(interprange,PointUp_abs(Q,:),'b.-') 
end 
plot(interprange,MeanMotionOfEachPhase,'ro-') 
 

  


	Marquette University
	e-Publications@Marquette
	A Non-Rigid Registration Method for Analyzing Myocardial Wall Motion for Cardiac CT Images
	Elizabeth B. Philps
	Recommended Citation


	Microsoft Word - $ASQ45357_supp_A3030078-48C1-11DF-A000-50043012225A.doc

