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ABSTRACT
A NON-RIGID REGISTRATION METHOD FOR ANALYZING MYOCARDIAL
WALL MOTION FOR CARDIAC CT IMAGES

Elizabeth B. Philps, B.S.

Marquette University, 2010

Cardiac resynchronization therapy (CRT) has a high percentage of non-
responders. Successfully locating the optimal location for CRT lead placement on a
priori images can increase efficiency in procedural preparation and executioouéthd ¢
potentially increase the rate of CRT responders.

Registration has been used in the past to assess the motion of medical images.
Specifically, one method of non-rigid registration has been utilized to abgasmtion
of left ventricular MR cardiac images. As CT imaging is often perforrsquhg of
resynchronization treatment planning and is a fast and accessible meaagingjm
extending this registration method to assessing left ventricular motion of &Esm
could provide another means of reproducible contractility assessment.

This thesis investigates the use of non-rigid registration to evaluate the
myocardium motion in multi-phase multi-slice computed tomography (MSCT)acardi
imaging for the evaluation of mechanical contraction of the left ventricle.
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ACRONYMS

2D
Two Dimensional
Having two dimensional geometry; flat; characterized by Cartesjar ¢oordinates

3D
Three Dimensional
Having three dimensional geometry; characterized by Cartesian pcoorinates

4D
Four Dimensional
Characterized by Cartesian (X, y, z) coordinates and a dimension of time

AHA

American Heart Association

BiV

Bi-Ventricular
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Cardiac Angiographic Catheterization
CRT

Cardiac Resynchronization Therapy
CT
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DOE
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Electrocardiogram
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Ejection Fraction
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End Systole
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General Electric
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Institutional Review Board
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Left Bundle Branch Blockage
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Ml
Mutual Information

MR/MRI
Magnetic Resonance Imaging

MSCT
Multi-Slice Computed Tomography

NYHA
New York Heart Association

PET
Positron Emission Tomography

RMS
Root Mean Squared Error

SAD
Summed of Absolute Difference

SO
Summed of Squared Difference

TDI
Tissue Doppler Imaging

usb
United States Dollar
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VTK
Visualization Toolkit

VWMS
Visual Wall Motion Scoring



GLOSSARY

akinesia
A lack of myocardial wall motion.

dyskinesia
Fragmented or jerky myocardial wall motion.

hypokinesis
Slow or diminished myocardial wall motion.

QRS
The region of an electrocardiogram that signifies the depolarization of thaaardi
ventricles.
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TABLE OF DATASETS
Synthetic Dataset A
Description: Elliptical synthetic data. Intensities increase froncehger of the ellipse
outward. The synthetic ellipse object was defined over 121x121x121 voxels with a

dynamic range of approximately 4400 intensities.

Synthetic Dataset B
Description: This dataset was created by applying a known transfornatsymthetic
Dataset A. The prescribed transformation involves increasing radial matrortte

center of the ellipse outward.

Synthetic Dataset C
Description: This will be used to refer to an image series created fgpstereng

Synthetic Dataset A to Synthetic Dataset B.

Clinical Dataset X
Description: A patient clinical image series with normal left ventfictetion. The

image series consisted of volumetric reconstructions at 10 cardiac phases.

Clinical Dataset Y
Description: This will be used to refer to the image series created fgistering the

systole to diastole image phases of Clinical Dataset X.



Xii
Clinical Dataset Z

Description: A patient clinical image series with known pathology. The imaigs se

consisted of volumetric reconstructions at 20 cardiac phases.



CHAPTER 1 INTRODUCTION

1.1 Problem Statement

Heatrt failure afflicts approximately 5 million Americans, resulting00,000
annual death$. Cardiac resynchronization therapy (CRT) is a used to treat heart failure
due to cardiac dyssnchrony, for example myocardial conduction systenddel#y left
bundle-branch blockage. The effectiveness of CRT is limited, as the procedure has a
high percentage of non-responders (~30-5%).

Successfully locating the optimal location for CRT lead placement on a priori
images can increase efficiency in procedural preparation and execution ahd coul
potentially increase the rate of CRT responders. Recent studies suggdstedrthad
pacing is possible by placing a pacing lead at the site of the most delagkdncal
motion?’ Therefore, identifying the site of the most delayed region prior to lead
placement is an ongoing challenge. To address this challenge, previous work
implemented registration algorithms for cardiac MR and developed s@tistodels for
identifying regions of abnormal wall motion. While promising, MR acquisitioeat
routinely prescribed prior to CRT, due partly to issues of cost. As CT imaginegtris oft
performed as part of resynchronization treatment planning and is a fast assilaec
means of imaging, developing a registration method for assessing leftwantmotion
of CT images could be beneficial. Automated 3D ventricular motion analysmngfili

registration and motion transformation evaluation can provide an objective and



reproducible means to perform assessment that is currently performed lpnanzd)
images, which causes increased inter- and intra-observer variability.

This thesis investigates the use of a 3D non-rigid registration to evdleate t
myocardium motion in multi-phase multi-slice computed tomography (MSCijacar

imaging for the evaluation of mechanical contraction of the left ventricle.

1.2  Project Objectives
1.2.1 Non-Rigid Registration

The first objective of this thesis was to develop and validate a 3D non-rigid
registration technique to extract the motion transformation of a multi-phagsedge
series. Chapter 3 summarizes the algorithm design and describes the technique
implemented to validate and optimize the algorithm performance including (1) the
development of a synthetic data series to mimic clinical cardiac imagesgdézign of
experiments to select optimal algorithm parameters, and (3) the resultslebite of

experiments applied to the synthetic images and to clinical cardiac images.

1.2.2 Motion Analysis

The second objective of this thesis was to apply the developed algorithm to
clinical CT time-series datasets. A preliminary comparison of theforemations
obtained from the non-rigid registration of a normal and pathological dataset was
performed to evaluate whether the resulting motion data may be beneficiahlyriag
wall motion characteristics. Chapter 4 summarizes the evaluation of the motion

transformation obtained from the non-rigid registrations of both a normal and



pathological clinical data series. Motion vectors were plotted for both ¢lsecas and

compared to determine similarities and differences between the motion.



CHAPTER 2 BACKGROUND

2.1 Background
2.1.1 Heart Failure: An Epidemic

Cardiovascular disease is one of the leading causes of morbidity and mortality
Western civilization, especially the United Staltés. Increased survival rates of
myocardial infarction due to improved medical and surgical interventions and
thrombolytic therapies have led to a growing elderly populdfioi€onsequently, the
increasing population of patients surviving with reduced cardiac function contributes
an increased economical burden on health services from the high costs of longer-term
drug therapies and hospitalizatibnApproximately 5 million individuals in the United
States are afflicted by heart failure and nearly 300,000 deaths reswteadtom heart
failure and related complications of the disease. On average, $6,000 USD are gspent on
annual basis per patient case of cardiac fafluFer these reasons, earlier and more
effective treatments are needed to reverse the effects and minimaesthef medical
care needed for treatment of chronic heart failure.

In recent years the epidemiology of coronary heart disease has advancedswher
that of heart failure caused by other related cardiac factors is ledgwaeth. Sudden
cardiac death has demonstrated recent decline since the early 1980s, mamiyhdue t
decline in coronary heart diseaseIncreases in the incidence of congestive heart failure,

however, are expected to combat this decfine.



There are several variations on the definition of chronic heart faifu@ne
general definition of heart failure is “a pathophysiological state inwdncabnormality
of cardiac function is responsible for the failure of the heart to pump blood at a rate
commensurate with the requirements of the metabolizing tisSu@is generalized
definition suggests that heart failure is characterized by a reductioa @ection
volume of each cardiac stroke, leading to a reduction in left ventricular doorac
efficiency and the reduction of the systolic function despite the same amometgy e
exerted to contract the muscle. The New York Heart Association (NYH#gifts
heart failure by levels of patient activity:

Almost 20% of patients with myocardial failure die within 1 year of initial
diagnosis of the disease; this accounts for a greater than 80% eight-yesitynate.
Fifty percent of these deaths are sudden, suggesting heart failure pagdid tames

more likely to suffer sudden cardiac death than individuals of the general popdlHtion.



2.1.2 Heart Failure Causes

Chronic heart failure may result from one or a combination of factors including,
but not limited to, myocardial ischemia, myocardial dysfunction, cardiagtamin,
valvular anomalies, pericardial diseases, or rhythm disturbances. Vawolaalies, for
example, impede the activation of the papillary muscles responsible for the ogeding
closing of the mitral valves; this complicates cardiac hemodynamics @dnceethe rate
at which the heart can mechanically transport blood to the systemic s¥sttrer
factors, although less commonly the causes of heart failure, may worséstulsen$ the
heart failure such as anemia, renal or thyroid dysfunctions, or cardiodepdrssgsdt

Figure 1: New York Association (NYHA) Classification of Heart Failure”
* Class I: patients with no limitation of activities; they

suffer no symptoms from ordinary activities.

* Class Il: patients with slight, mild limitation of activity
they are comfortable with rest or with mild
exertion.

* Class lll:patients with marked limitation of activity; th
are comfortable only at rest.

* Class IVpatients who should be at complete rest,
confined to bed or chair; any physical activity
brings on discomfort and symptoms occur gt

rest.

As the survival rate of myocardial infarction increases, more individualy/srg

with reduced ventricular function, which may result in eventual heart failure. For



patients with asymptomatic left ventricular dysfunction, well-defineatesgies for
preventing myocardial and ventricular remodeling are neceésary.

This thesis will emphasize the 20 to 30% of New York Heart Association
(NYHA) patients of classes llI-1V heart failure manifested masgidiently as left bundle
branch blockage (LBBB}? Bundle branch blockage (BBB) results in contractile
inefficiency and dyssynchrony (eitharioventricular, being dyssychrony between the
atrial and ventricular contractions, iotraventricular, being dyssychrony between the
left and right ventricular contractions), with consequences of further reduction i
ventricular function. Both atrioventricular and intraventricular conduction disorder
contribute to heart failure associated with ischemicidiggathic (cause unknown)
dilatedcardiomyopathy (enlargement of ventricle resulting in reduced pumping
efficiency).® The conduction delays imposed by LBBB lead to asynchrony inducing
hemodynamic changes and alterations in systolic and diastolic furtéti@onduction
pathways for normal ventricular function are known, but the abnormalities andorsiati
associated with BBB have not been adequately characterized. The extent and
implications of the impulse conduction delay within the heart, both atrioventricular and

intraventricular, is not fully understood.

2.1.3 Heart Failure Diagnosis

The most common precursors and symptoms of chronic heart failure include
coronary artery disease, chronic hypertension, cardiomyopathy, valvulanctyen,
cardiac arrhythmia and conduction disturbance (electrophysiology), perichsaiase,

and infection® Effective identification of the symptoms and signs of heart failure are



the first step to proper treatment, but no single investigation can be considergaldhe “
standard” for the confirmation of the clinical diagnosis of heart faffuteurrently,
although electrocardiography has been utilized to aide in the diagnosis Bf (&8
studies also include the complimentary investigations of coronary angiogrefhy, |
ventriculography, and hemodynamics to fully characterize the dis8astl Remme and
K Swedberg from the Task Force for the Diagnosis and Treatment of Chronic Hear
Failure have concisely outlined the algorithm for which to guide in the promgradizs

of heart failure utilizing several investigatory techniqie$he algorithm, featured in
Figure 2, demonstrates that a combination of multiple diagnostic tools isagcts
proper characterization of the disease.

Figure 2: Algorithm for Diagnosis of Heart Failure”
This figure demonstrates the steps typically taken to strategically diagnose
heart failure.

Suspected Heart Failure
Becaouse of symptoms ond signs

h 4
Assess presence of cardioc

isease by ECG, X-Ray . -
EI"’.EU'E. # EC(.;. it A 4>| Mormal Heart Failure unlikely
Motriuretic peptides [where =

ovailoblel

h 4
Tests abnaormal |

¥
Imaging by Echocardiography

[Muclear angicgraphy or MRI 4!4 Mormal Heart Failure unlikely

where ovailablel

¥
Tests abnormal |

¥
Assess eticlogy, degree,
precipitoting fcl_l::tc_rz and type of %
cardioc dysfunction

additional diognostic tests
where oppropriate {e.g. coronary
angiography|

¥
Choose Therapy I

E




Diagnosis is based on a combination of patient history, clinical examinations,
physiological testing, electrocardiography, biochemical assays, agéhgrstudies:’
Prognosis of congestive heart failure can be further determined through peak oxygen
uptake values, left ventricular ejection fraction (LVEF), signal-averaged
electrocardiography (ECG), and electrophysiologic testingany different imaging
modalities are used in the diagnosis and treatment planning of heart faillrassucay,
echocardiography, nuclear medicine and magnetic resonance imagimgy. Fo
comprehensive evaluation of the heart, an imaging modality should provide the
following: a high spatial resolution for proper anatomical assessment, tictatetand
guantification of stenotic lesions in the coronary arteries, possible evaluatidh of
contractility, the detection of abnormal blood flow, and the detection of myocardial

viability. 18

Computed Tomography (CT)

The gold standard for assessment of left ventricular ejection fraction westio
be ultrasound echocardiography, although the temporal and spatial resolutions of both
magnetic resonance imaging (MRI) and computed tomography (CT) are ingptovi
provide more accurate resuft$!®*?° Developments in the accuracy and consistency of
CT have significantly improved the morphological, functional, and vascular information
that can be obtained from a CT cardiac examinatforECG synchronization with the
CT image acquisition provides detail to delineate images from different seggofehe

ECG cycle, for example the phases of end-diastole and end-systole. CardiacaCT ha
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variety of applications. A majority of these are solely to evaluate anzbaspects of
the heart, but other applications that contribute to the functional aspects of therdeart
also being investigated, for example myocardial perfusforAnatomical assessments
include calcium scoring and other coronary artery assessment, morphodogilyeis,
ventricular function, vessel run-off, and treatment follow3fip.

In general, the procedure for performing a CT acquisition involves the IV
administration of a contrast agent to the patient to enhance the cardiac vasdotatur
optimal vessel opacification and a series of short x-ray exposures to locaiaeng,
optimize contrast timing, and acquire multi-phase data at applicable timndgpefithe
ECG cycle. With more recent technology and the introduction of 64-slice andrgreate
scanners, these types of CT cardiac scans are acquired in as short as 20°5e€dnds.
cardiac exams can be acquired in one of two modes, “prospectively” gated and
“retrospectively” gated. In prospectively gated acquisitions, x-rgyubig pulsed to
acquire axial images at pre-determined ECG time intervals. bspsictively gated
acquisitions, a helical (or spiral) acquisition involving continuous table movememds us
to acquire cardiac images simultaneously with an ECG signal acquisitioncandimg;
views are then retrospectively sorted and reconstructed at the desireglsndéthe
cardiac cycle®

One specific application of anatomic cardiac CT is pre-operative planning of
electrophysiology interventions. Visual assessment of CT images farctletion of
pulmonary veins prior to ablation of the heart muscle in the treatment of étnigtion
is essential to proper planning of percutaneous radiofrequency ablationrcathete

placement?! Variations in pulmonary veins are common and proper placement planning
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of ablation seeds is necessary to provide familiarity to the physician @tioe t
procedure to assure the therapy is provided as accurately as possible. CT imades pr
the tools for accurate localization planning of these procedures with midiefieets to
normal surrounding tissues.

Ventricular functional analysis is used for the visualization and quaniticat
different phases of the cardiac cycle and at different stress levels thBaglobal indices
of cardiac function, such as stroke volume, ejection fraction, and cardiac output, and the
local indices of cardiac function, such as wall thinning and thickening, can be obtained
from CT images?* From CT multi-phase datasets, regional wall motion can be evaluated
by visual ranking of dyskinesia and akinesia of certain segments of theviaélait
More sophisticated functional analysis, whether global or local, may require
segmentation of the epi- and endocardial boundaries of the cardiac muscle, mokeoften t
left ventricle. Segmentation of these boundaries is used to determine the voluntes and t
motion characteristics of the ventricle on a more objective quantitativie Beandaries
of these volumes can be determined manually by the opérat@emi-automatically or
automatically using software algorithms to detect the ventricle canfdur

New advancements in CT are also being made to extend the capabilities of this
imaging modality beyond anatomical-only analysis into the realm of funtaoadysis.
Investigations are being made into using contrast-enhanced CT to assessliayoca
perfusion and viability with early and late contrast enhancement protSc&asnilar to
recent MRI techniques, CT techniques are being evaluated that demonstrate
microvascular occlusion on late perfusion images of individuals with re-pdrficsee

infarcts.?’ These techniques involve well-timed imaging of the myocardial during first-
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pass imaging (as the contrast agent first flows through the ventncde)uaing late
enhancement periods (as the contrast agent has had time to transfer into the atyocardi
muscle tissue). These studies of myocardial perfusion and viability presdat s
information as from nuclear medicine perfusion and viability scans pertainihg to

blood flow capabilities and the metabolic functionality of the myocardial mtissiee.

ECG

One of the less invasive investigations, electrocardiography, aides in the
assessment of the electrical impulses of the heart, which, in patientsB&& inost
often demonstrates a prolonged QRS duratfofrigure 3 below shows a typical, normal
physiological electrocardiogram waveform as read on the right arnt tegdéad
voltages.

Figure 3: Typical Echocardiogram
R

+1mV—

The QRS complex of a normal ECG heart cycle waveform represents the
depolarization of the ventricular muscle cells, typically lasting betweem@&@.00
milliseconds. Atrial cell repolarization often occurs during this sameghdout this
signal is overshadowed by that of the ventricular depolarization sigrféigure 4

demonstrates a typical result of an ECG for a LBBB patient. Activation fhe
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atrioventricular node cannot effectively be sent through the left bundle-brarteh of t
heart, and, therefore, the electrical impulse does not travel through thentettlge

directly, but only by proceeding first through the right ventricle, then to thedefricle.

This inefficient transfer from the right ventricle through the intravemiticseptum and,
eventually, to the left ventricular muscle causes a delay in the QRS comitexEsCG
trace by >0.12 seconds. This contributes to a very broad S wave in ECG leads V1 and
V2 and broad R wave in V5 and V6, as demonstrated in Figtite 4.

Figure 4: LBBB QRS Duration and Associated Cardiac Electrical
Propagation

NVERN 4

Transverse plane

X-RAY

X-ray angiographic catheterization also plays a large role in theagial of a
variety of heart failure precursors, most prevalently, coronary arteegsk and
electrophysiology. Cardiac angiographic catheterization (CACtlimiaal gold
standard for assessment of coronary disease, providing accurate depictionosarfycor
artery stenosis and occlusion. This modality also provides a means for @y $cci
deploy specialized catheters to different locations of the heart to #ssedsctrical

impulses and pathways and a similar deployment method is used to deliver cardiac
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resynchronization therapies in the form of cardiac pacing directly to thdenuddhe
heart.

Multiple imaging modalities are pertinent in the diagnosis of heart fadsre
described above. Another goal of imaging techniques is to provide a more accurate
depiction of how to tailor treatments and therapies of heart failure to the need# of e

individual patient.

2.1.4 Treatments
Ultimate aims of chronic heart failure treatments are shown in the fotjowin
figure.”*2

Figure 5: Aims of Treatment of Chronic Heart Failure”
1. Prevention

(a) Prevention and/or controlling of diseases leading|to

cardiac

dysfunction and heart failure

(b) Prevention of progression to heart failure once

cardiac

dysfunction is established

2. Morbidity

Maintenance or improvement in quality of life

3. Mortality

Increased duration of life
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Any treatment methods deployed to treat chronic heart failure must cowrol t
disease from further dysfunction of the heart's mechanical capabilitigantieg not
reduce the quality of life of the individual, and they must have a positive increthese
duration of the life of the afflicted individual. Once myocardial dysfunctiondseont,
the cause of the dysfunction must first be removed or reduced as much as possible.
Causes of ventricular dysfunction may include ischemia, alcohol, drugs, or, in some
cases, thyroid disease. Once the present underlying cause has been removed, therap
must be deployed to reduce any progression from the current state of dysfunction t
chronic heart failuré.

One method of treatment of cardiac dyssynchrony, known as cardiac
resynchronization therapy (CRT), is applicable to patients with myocamhduction
system delay, often manifest as left bundle branch blockage (LBBBhis
nonpharmacologic therapy is assumed to correct the electrical component of the
underlying electromechanical delay in the left and right ventricularagicn, thus
counterbalancing the delay in activation of the left ventricle caused bBLBBrhere
are convincing results that demonstrate the positive effects of biventpadiaug (one
specific method of CRT) including an increase in the left ventricular ejectiotidn, a
decrease in mitral regurgitation, and an improvement in other related symptorastof he
failure.*>*? Two main mechanisms are vital to the therapy of this type of heart failure, as
proposed by Ansalone et al., (1) an increase in preload after the optimization of the
atrioventricular delay with right sequential pacing, and (2) cardiaoclsgnization with
biventricular (BiV) pacing in patients with left ventricular (LV) ashrany caused by

LBBB.** CRT has been evaluated in many trials and has shown positive effects such as
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improved quality of life, improved exercise capacities, and improved left veatricul
functional parameter® The MIRACLE trial (mutlicenter InSync randomized clinical
evaluation) was one of these trials, in which a large placebo controlledbtrfaheed the
beneficial effects of CRT. In 2002, biventricular cardiac resynchrooiztterapy (BiV-
CRT) was supplemented to the American Heart Associations guidelinesiog Rad
Electrophysiolog$, which indicate that BiV-CRT be limited to patients with drug
refractory, symptomatic NYHA classes llI-IV with a prolonged QREZ LV end

diastolic (ED) diameter greater than 55mm, and LV ejection fraction (E&}han 35%.

CRT Procedure

During a cardiac catheterization procedure, pacemaker leads are intrattoced i
the body via a vein in the chest and snaked up through the main blood vessels to reach the
heart. The pacemaker leads are then navigated to the right ventricle amdoatise i
coronary sinus vein. Three leads are implanted in total - one to regulate the right
ventricle, one to regulate the left ventricle (via implantation in the coramaug), and
one to regulate the right atrium (near the sinoatrial node). From these locions
pacemaker device can sense the heart’s electrical impulses as wealll angulses to
synchronize the leads as specified by the clinician. The leads can be predrtorsand
an electrical impulse at specified time intervals. In patients with chheaid failure due
to LBBB, both interventricular dyssynchrony and intraventricular dyssymy can be
managed by selecting an ideal timing of pacing impulses between righgfand |

ventricular activatiorf®
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Improved Diagnosis and Treatment

Cardiac resynchronization therapy has a high percentage of nonresponders - as
high as 30-50% of heart failure patients with LBBBReducing the number of
nonresponders or, at minimum, identifying and characterizing the nonresponders apar
from the positive responders can contribute to personalized cardiac resyratiwaniz
therapies for responders and to determining an alternative therapy or egtimiz
resynchronization therapy for nonresponders.

Many factors may contribute to the significantly large category of npanekers
including suboptimal simultaneous activation of each of the right and left veatricul
walls. Other variables contribute to the lower than desired percentage ofgositi
responders to resynchronization therapy, among these are pacing lead platesient
conduction delay intervals, and appropriate tradeoff between atrioventricuilag ti
optimization.”*** Proper placement of the left ventricular pacemaker lead is key for
successful resynchronization of the electrical and resulting mechartieatiaa of the
left ventricle. The activation of the left ventricle is necessary for iceidr systole for
optimal contraction and efficiency of the heart. Typically, this lead is pldadbd &ee
wall of the LV, consistent with the location of the lateral cardiac vein ofdrenary
sinus* This site was shown to provide positive results in cardiac contractilityi¥or B
patients as per the work of Auricchio et‘af® Further study suggested that anterior or
anterolaterial wall positioning provided superior LV ejection fraction and NYHA
functional classification over positioning in lateral or posterolateral le@emient*
More recently, a Tissue Doppler study by Ansalone et al. demonstrateseoosstilts

with lead placement at the site of most delayed mechanical contraction, wksrbging
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the lateral wall, but not in all cas&5.These findings support the hypothesis that the
anatomical lateral wall may not be optimal for every patient, being thaveoy

patient’s cardiac anatomy and pathophysiology is the same from one t&#Bfo the
next.*’ Heart failure patients often die prematurely despite the attempts to paovide
“optimal” therapy. CRT is seen as currently addressing the need for improwarig he
failure therapy:? bringing electrophysiologists and pharmacotherapists together to treat
the debilitating disease. However, improved methods of delivery and therapy
optimization of ventricular synchronization is key for further development.

Further optimization of the placement of biventricular lead placements can,
theoretically, continue to improve the mechanical parameters of heart fadtients.
Currently, assessment of the mechanical status of the heart for determafidead
placement is performed utilizing echocardiography and x-ray cardiaeteazation.
Tissue Doppler Imaging (TDI) has been shown to be helpful in determining th@yseve
of LV dyssynchrony and for determining the effects of different pacmthe
mechanical functionality of the heart during biventricular proced{r& A standard
transthoracic echocardiogram was obtained for these measurementingronages of
the heart through the chest wall to assess LV end diastolic volume (EDER\
index, LV end systolic volume (ESV), LVESV index, and LV ejection fraction (EYE
using a modified biplane Simpson rule, a method of determining the volume of the LV
using additive Riemann sum of multiple volume disks that represent small incrementa
portions of the LV volumée"?

Although currently the gold standard for the diagnosis of heart ffilanel left

ventricular function analysis, echocardiography is being challenged lhyritigonal
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assessment capabilities provided by magnetic resonance imaging, metkeine, and
computed tomography. Whereas left ventricular functional analysis using
echocardiography is based mainly on two-dimensional image analysis and giblesce
to interobserver bias and operator experience, mutli-phase computed tomogragds/ ima
are now used to analyze two-dimensional and three-dimensional wall-motion and
function of cardiac image®?42*%>42°1The spatial and temporal resolution of CT
imaging is improving, potentially beyond that of echocardiographslthough
computed tomography uses ionizing radiation, it has become an integral part in pre-
operative planning for cardiac catheterization electrophysiologiceégues involving
ablation and lead placemetft. Therefore, more information could be extracted from
these computed tomography images without necessarily imparting more duose to t
patient than is already required and without additional investigatory ex&mninat
Computed tomography images have been used to assess regional and global wall
motion and estimate left ventricular functional parameters, such as endidiasitahe,
end systolic volume, and ejection fraction. Mutliple methods can be used to assess these
parameters, such as contour detection, segmentatiotf, &arely, however, have these
methods been used to assess the global and regional mechanical delay of the left
ventricular, let alone the right ventricle or left and right atrial medahiharacteristics.
Assessing these parameters would allow electrophysiologists to, not olygyedively
prepare for the specific anatomical caveats on a per patient basis, but it Wewltham
to pre-operatively assess the mechanical characteristics of theoheaatuate for

optimal lead placement during biventricular cardiac resynchronization yherap
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2.2 Image Registration

Image registration is the method of arranging two (or more) associatgdsma
This work focuses on the techniques of image registration for alignment of rackblog
medical images. Medical image registration has proven beneficial in thedigag
planning, and treatment across multiple imaging modalities, across londitintage
studies, and across normal versus pathological specfthens.

For the purpose of this work, image registration can be used to align two images
from the same patient at different time points. Registering imagesotmmon
coordinate system, perhaps a reference anatomical model, can fabiétateatysis of
correlate anatomy and function of that anatomy. In addition to these methods, image
registration can be extended to the characterization and compensation of movement of a
target anatomy, such as the analysis of perfusion image of the heart to compensate for
patient respiratiof°

Registration applies to both spatial and temporal registration of images.r Rathe
than images of different coordinate systems, these methods consider imagesaofehe
coordinate system at different image time points.

There are three fundamental steps to a registration method, including (1) the
transformation model that defines the method in which one image is altered tp@odres
to the other image, (2) the similarity measure that reports the levehbfasee between
the images (before, during and/or after transformation of the images), ahd (3) t
optimization process that alters the transformation metrics to produce thdesinsd
similarity results. Each of these components must be considered in theiomilafea

registration algorithm for medical image alignment.
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2.2.1 Image Transformations

The first fundamental constituent of image registration is the transiormat
technique, which describes how one image (often referred to as the sourcewrtidgge
altered to correspond more to the second image (referred to as the target imagedr
words, the transformation describes in what manner the voxels of the source image ca
be deformed to better match the target image. There are, generadh\l#sses of
transformations: rigid transformations, affine transformations, and nah-rigi
transformations. Depending on the type of medical images being analyzedypetioé
information desired from the registration of the images, each of these classdepr

different benefits.

2.2.1.1 Rigid Transformations

Rigid transformation of a 3D medical image allows for only six degrees of
freedom (DOFs), namely translational movement in the x, y, and z directions and
rotational movement about the three axes. These types of transformatioestiestsur
each voxel within the image preserves the same distance between all paints afte
transformation as were defined before transformation. Rigid transformsasefected
for registration of anatomy that experiences only rigid motion betweenesandctarget
images. Bony structures and relatively stationary organs can oftegi$tened
successfully between scans of the same patient, as these structures do not undergo
significant structural compression or gross physiological motion, and retnastusal

consistent®
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2.2.1.2 Affine Transformations

Like rigid transformations, affine transformations allow for the samegfeds of
freedom, but additionally provide 3 scaling and 3 shearing directional parameters —
yielding twelve total DOFs. Affine transformations preserve paiaikes after
transformation but not necessarily the length of the lines or the angleshdimes.
These types of transformation are best utilized in medical applications gédueretric
distortion appears in the form of scaling or shearing. An example of this may be
longitudinal imaging studies of a pediatric anatomical study in which tienpat
anatomy is the same but scaled through years of aging. Affine transtormsadlso
considered more accurate type of transformation for intersubject ragisti@account

for similar anatomy of different size in different subjeCts.

2.2.1.3 Non-rigid Transformations

Depending on the non-rigid transformation method used, the number of DOFs far
outnumbers those of rigid or affine transformations. Subsequently, this requires
increased computation cost over the other transformation methods. These types of
transformations are commonly used when local changes occur between the images of
interest, such as soft tissue deformable structures within a subject orsatjesss®”
For the purposes of this paper, for example, non-rigid registration will be applied to
assess the deformation of the cardiac motion throughout the cardiac cycle within an

intrasubject computed tomography (CT) image acquisition.
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Several non-linear transformation models exist that have been applied tolmedica
imaging, including elastic, fluid, and spline models of registration. Thededshave
been surveyed and summarized by Daniel Rue€ketbrief explanation of each group
will be provided below as well as a justification for utilization of each model fardiit

applications.

2.2.1.4 Elastic and Fluid Transformations

First proposed by Bajcsy et al. in 1988n elastic model can be described as the
transformation of a source image into the target image in a physical ptiogessdels
the stretching of an elastic material, such as rubber. Two forces, an iatedraxl
external force govern the transformation. The external forces act to dis@etastic
(rubber) physical body, and the internal force (internal stresses) actritaima
smoothness constraint on the body. Deformation ceases when both forces arrive at an
equilibrium state. These methods were initially suggested for reggET human
brain images to a brain atlas. Elastic transformations, however, arellimtteat
profoundly localized deformations are not easily modeled. This is caused bgtttieata
deformation energy caused by the internal forces increases direittlthevistrength of
the deformation. Fluid registration, on the other hand, allows for an approach in which
the stresses relax with deformation over tithéhis makes fluid deformation more
suitable for intersubject registration. This method of registration, howal@ws for
concentrated local deformations but also poses a potential increase in mnetregias

fluid transformations involve a large number of DOFs.
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2.2.1.5 Spline

The concept of splines originates from long flexible materials used to model
surfaces of large machinery. Spline transformation is based on the principle that
conceptual splines can be used to model a transformation of one image into another. In
this model, a set of corresponding points, called control points, are defined both within
the source and target images. In this way, spline based registration aifisaintieese set
of corresponding landmarks, or control points, can be found in both images. A spline-
based transformation approximates the movements necessary to map eacimsgerce
control point to the corresponding control point within the target image. A smoothness
parameter was enlisted to ensure displacements occurs seamlessgnlibase
landmarks in the work of GoshtastfyMeyer et al®*further proposed revising the
landmark locations based on voxel intensity similarity measures, and Davisne
1997° further extended spline transformations to include control points arranged with
equidistant spacing throughout the image, forming a control point mesh as opposed to
relying on anatomical or geometrical landmark locations. These meslofyadstrol
points are often referred to as pseudo- or quasi- landmarks.

One specific type of spline, thin-plate splines, utilizes transformationgacam
original image, modeled as a flat metal sheet, to its target imagenwitane bending
only. Each displacement in the plate, however, has a global influence on the
transformation, thus problematic in attempting to evaluate local deformations. A
alternative spline method is based upon free-form deformations utilizingrizspl
Although thin-plate splines provide for a method of manipulating an arbitrary

configuration of control points, B-spline deformation requires a mesh of uniformly
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spaced control points. This method was first suggested by Reuckert et al. in 1999 to
register contrast enhanced MR mammography im¥g&ssplines involve deformation

that controls the shape of the 3D object, ensuring a smooth and continuous
transformation. In this method, the effect of changing localized control pointstisdi

to the neighborhood of each control point, providing recovery of deformations in the
vicinity of the respective control point. The smooth and continuous transitions allow for
effective transformation of control point motion over time. In addition to the fact tha
these algorithms are readily available, B-splines have wide generaldyfl and
computational efficienc§? At very fine resolutions, however, folding of the
deformations field becomes possible and special measures are requiredribtheses

disadvantage§>

2.2.2 Similarity Metrics

Medical image registration is often categorized as utilizing eithemgtric or
intensity similarity approaches. For the purpose of this investigation, dineetyéc
approaches, such as point-based and surface-based similarity métmncs lae
discussed in detail. Voxel intensity-based approaches will be the focus of ¢igs the
particularly mutual information, as they have become, in recent years, radust a
accurate enough to use target and source image intensities without imagetaggmer
delineation of corresponding structufésThese methods also contain an advantage in
that they do not require image feature, such as surface or 3D volume, extraction. Voxel
intensity approaches assume that the target and source images asienmlersat the

optimal registration between the two images.
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Perhaps the simplest voxel intensity similarity measure that can be inmpéeme
is sum of squared differences, also known as sum of squared error, presentecifi Figur

below®®

Figure 6: Equation for SSD®

S - YIAX)-B (x)F

Xa EQL’B
where » denotes the voxel locations, A and B are the untransformed images, T

represents the transformation operati@rTA,B is the overlapping domain between the

images, and N is the number of voxels within the overlapping domain.

This technigue assumes that the target and source image intensitiegtigal ide
final registration, excluding noise characteristics. Because S8B isgtimal similarity
measure for images that only differ by Gaussian noise, SSD is apprdprigggistration
between images of the same imaging modality, for example CT to CT or PET tblRE
is not even always ideal for intramodality imagfigThe smallest SSD provides the best
alignment; therefore, as the value of SSD decreased, the alignment is improved.

As the equation shows, corresponding intensities within the images are sabtract
from each other to obtain the difference and then squared. Whereas SSD can be skewed
by large intensity differences between only a few image voxels, the sum aftabsol
differences (SAD) measure is less sensitive to these outlying voxadscalculation of
SAD minimizes the effect of those problematic voxel differences by remmdie

squared effect® The equation for SAD is provided in Figure 7.
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Figure 7: Equation for SAD®

SAD = S Ax) B (x,)

Xa EQL’B

This method, for example, is useful if contrast media is injected into the organ of
interest between the acquisition of the target and source images. Corggtrirgan
cause large intensity differences at corresponding landmarks, which wiihbaized
using a SAD technique over an SSD technique.

Another voxel-based similarity metric is the correlation coefficients Tethod
assumes a linear relationship between the target and source imagdesteSsihilarly
to SSD, correlation coefficient based metrics are optimized for intraityodal

registration®® Figure 8 defines the equation for correlation coefficient.

Figure 8: Equation for Correlation Coefficient6?

Z XAcOh & (A(XA) o Z) ) (BT (XA) o E)

CC = — -5
{Z XACQh 5 (A(XA) o A)2 Z XACQh 5 (BT(XA) — B)Z} ?

where A is the mean voxel value in image A aBdis the mean voxel value in image B.
In this approach, the source image is aligned with the target image and
corresponding image intensities are multiplied until the maximum coarledefficient
is obtained?
The correlation coefficient metric is a normalized version of the crosdatmmne

measure shown in Figure 9.
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Figure 9: Equation for Cross Correlation®

CC= % D AXa)- BT (X,)

XAGQ-IA B

In aligning two images, one can also measure the amount of information and
uncertainty provided by the combined images, as is calculated by the metric of joint
entropy. If there is no commonality between the target and source imagesjtthe |
entropy equals the sum of the entropies of each respective image. As thebetges
more alike, the joint entropy reduces related to the sum of the individual entropies.
Figure 10 is an equation that represents this relationship, with the functionedenegomg
the entropy.

Figure 10: Relationship for Commonality of Joint Entropy
H(AB)<H(A) +H(B)

This equation represents the desire to have the amount of entropy in the combined
images to be no more than the sum of the entropies of the individual images. Two-
dimensional histograms can be used to represent the joint entropy of a pair of images
where the intensity of the voxels in A,A(xare plotted against the intensity of the
corresponding voxel in image B, B(x When misregistration is greater between the two
images, the 2D histogram displays a more disperse or blurred distribution. Wéeen the

histograms are normalized by the total number of voxels, N, the result isrthe joi

.
probability distribution functionP, g of image A and B. The equation for joint entropy

is provided below in, Figure 11.
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Figure 11: Joint Entropy
_ T T
H(AB)=->>" pus(a,b)logp.(a,b)
a b

As medical images have many intensity values, up to 4096 for MR and CT
images, the probability distribution function becomes very sparse. Binning these
intensities into bins is commonly used to address this problem. The intensity values a
typically binned to 32 to 256 bins. Therefore, in the equation for joint entropy, a and b
can refer to the image intensities themselves or to a representative bin of image

intensities>> Joint entropy is highly dependent on T, or the transformation. In fact, the

.
probability distribution function of A and BP, g, is highly dependent on the

overlapping domain of the two imagé%},s . This presents a problem, in that a

registration algorithm utilizing joint entropy will tend to maximize cetg that contain

noise in the lowest intensity value bins, potentially providing an incorrect solution.

2.2.2.1 Mutual Information
Mutual information provides an advantage over joint entropy by considering
separately the information provided to the overlapping volume from each individual
image. In other words, mutual information considers the marginal probability
distributions of each image, as well as the joint information, or the joint propabilit
distribution function. This method is represented in Figure 12.
Figure 12: Mutual Information

I(AB)=H(A)+H(B)-H(AB)

or
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Pas(a,b)
PA(3) - pg(b)

At the best alignment between the two images, mutual information is maximized,

(A B)= ZZ pI\B(a’ b)log

meaning that the combined uncertainty of the two images is less than the sum of the
uncertainties of the individual images. As mutual information is improved, one image
becomes a good predictor of the values of the other image, meaning that knowing the
value of voxel intensities of one image diminishes the uncertainty (entropy) of the

corresponding voxel in the other image.

2.2.3 Optimization

In general, optimization of a registration algorithms involves selectoogta
function or similarity metric, computing this value for the current registiaand
iterating the parameters of the transformations to increase or dettrisasetric until the
maximum or minimum result within the given boundary conditions is obtained. The
iterations continue until the similarity measure converges to where no other
transformation can provide a more ‘optimal’ measure. The number of iterations can be
constrained to cease at a maximum number of iterations or at the iteratioictathe
difference between measured similarity between sequential iteratibakbw a set
threshold.

Optimization can potentially end in a convergence to a local maximum or
minimum of the similarity measure. To avoid this situation, providing a beshgtart
transformation is suggested, minimizing the possibility of reaching a localapti

before reaching the end desired global optimum. However, there may be several opti
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within a given parameter space. To accommodate this challenge, muliticeso
registration has become useful. By blurring an image prior to the firstotes atf
registration, local optima may be removed to provide a better initial tramstion. As
each lower resolution transformation is optimized, the resolution is increasdteto be
fine tune the similarity of the registered images. This is known as multi#ieso
registration®>

Non-rigid algorithms generally require additional parameters to defene th
transformation than rigid or affine methods, and, therefore, require more time to
determine the appropriate optimizer. In addition, an optimal parameterysptonae a
visibly adequate image result, but may not be anatomically or physiolggwwadningful
throughout the image space. Folding or tearing of the image may be present after
deformation — a result that is physically invalid in medical applications. fOner¢he
appropriate optimization for the given registration problem is dependent upon the
similarity metric, the type of transformation used, any resource eamtstemployed
under the implementation circumstances, and the level of precision or accisiaeg de

from the results, which includes the level of physical reality needed in thesr&sult

2.2.4 Cardiac Image Registration

Although there are many applications of registration algorithms in thecsulbje
medical imaging, this work focuses on registration of cardiac imageh iBaging
modality has devised imaging methods to capture changes in the motion of the heart ove
time, such as contrast enhanced multi-phase CT imaging, PET multi-phas@perfus

images, and tagged magnetic resonance imaging.
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Frangi et al. has written an extensive review on the many forms of 3D modeling
of the heart for functional analysis. The work summarizes several modeling methods
and categorizes them into imaging modality, complexity, pre-processitognation, and
available validation. The general takeaway concludes that 3D cardiac modeling
approaches do have the capability to improve diagnosis of cardiac imaging, butlavaila
studies at the time of the review still required improved robustness, computational
simplicity, and clinical validation. The review also focused on functional asalys
metrics that studied volumes and volume changes as opposed to dyssynchrony and
mechanical dysfunction. The metrics included left ventricular volume, leftimgliar
mass, stroke volume, ejection fraction, and cardiac output. The study did touch on
motion and deformation analysis metrics, such as wall thickening, which has
demonstrated a higher sensitivity for dysfunctional contraction over wall Mbtiom
strain analysis, which could be a promising method to quantify ventricular defammat

Non-rigid registration has been extensively studied in the case of taggedimagne
resonance imaging by Chandrashekara et al., who employed 2D and 3D moldtiors
free form deformation approach on cardiac images, utilizing normalized mutual
information algorithm optimization on short-axis and long-axis imay&s Motion
fields were extracted from the algorithm for several systole imaggstered to the target
diastole image. This method demonstrated a root-mean squared (rms) trackiog) er
less than 2 mm for most of the patient data tested, which was calculated bésveen t
plane displacement estimated from registration and that measured byareno8§® As

the approach used in this study did not make any assumptions regarding the imaging
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modality, it can theoretically be applied to any images, for example untagged MR,
ultrasound or CT.

Chandrashedara et al. further supplemented this work on tagged MR images by
developing a 4D B-spline transformation approach with the maximization of mutual
information. In this work, the systole images were registered to a diasaje. They
proposed use of these deformation results for quantification of strain and velocity
analysis> Supplemental studies by the group applied this algorithm to synthetic data
with a known transformatiofi?

As summarized by Frangi et &f.characterizing ventricular wall motion has
proven to be a complex problem. The aim of these studies was to provide a repeatable
tool to assess myocardial regional wall motion to address the subjectivinigady
the standard visual wall motion scoring (VWMS) methods suggested by the Americ
Heart Association (AHA). VWMS involves segmentation of the myocardium into 17
regions, each of which are graded on a five level scale as normo-kinetic, mild-
hypokinetic, severe hypokinetic, akinetic and dyskinetic. As these regmassessed
qualitatively by the clinician, the method suffers from high interobserveaitvbty,
introducing non-reproducibility and subjectivity. In the studies describeddngFet al,
an extensive number of MR images were acquired from healthy individualata trai
statistical model of normal myocardial function. The methods employed dicthtis
model to identify local ventricular contraction patterns from the normal iesdions. In
addition, this method involved the contouring of end diastole and end systole wall
components, epicardium and endocardium, and unification of all normal contours to a

unit contraction model using thin-plate spline warping. It was then necessary to
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determine the number of independent components into which to sort the statistical model
components. A clustering technique was used to segment the components. Once the
components were identified, the density function of each component was determined.
They then employed a means to identify wall abnormalities based on thiscstiatis

model. By comparing the component values of an abnormal individual to the distribution
of the normal statistical model, a region could be flagged as deviating from thal nor
myocardial contraction with different degrees of deviation from the stafistiodel

values.

Suinesiaputra et &f.used a statistical model based on a database of normal
myocardial images to establish whether and to what degree a region was #dignorma
contracting. This method requires a representative normal databaseofa@avhich to
compare other suspected abnormal cases. This method appears to be viable in other areas
of the heart, for potential interventricular contraction analysis or eviahtatventricle
contraction efficiency analysis.

Computed tomography images are relatively unstudied for the extraction of wall
tissue motion fields within the referenced work. As these images are rg@oueiired
for planning of cardiac catheterization procedures, such as radiofrequenmynaduial
biventricular pacing, developing a registration algorithm to extract themifiids for
the myocardial tissue could contribute an additional use of images that aready
routinely used for general anatomical reference. Chapters 3 and 4 wilbddbker
implementation of a non-rigid registration algorithm for use with multesinulti-phase
cardiac computed tomography images. Like the pre-existing work, this inviestiggl

attempt to characterize the difference in motion fields between a normehcitudy
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and one with known myocardial function pathology. Unlike the preexisting work,
however, a statistical model of what constitutes ‘normal’ myocardialitmbas not
been established. Instead, only one example of a normal motion will be used for an
initial comparison to a pathological case to identify gross differences ingée oy

motion fields within the myocardium.
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CHAPTER 3 REGISTRATION ALGORITHM DEVELOPMENT, VALIDATION AID

OPTIMIZATION

3.1 Methods
3.1.1 Algorithm Overview

As described in Chapter 2, placing a pacing lead at the site of the most delayed
motion has the potential to provide improved pacing results. The challenge remains of
identifying the site of the most delayed region prior to lead placementio&sevork
implemented registration algorithms for cardiac MR and developed s@tistodels for
identifying regions of abnormal wall motion. While promising, MR acquisitioesat
routinely prescribed prior to CRT, due partly to issues of cost. As CT imaginegtris oft
performed as part of resynchronization treatment planning and is a fast assilaec
means of imaging, extending a registration method to assessing leftiantmotion of
CT images could provide another means of reproducible contractility agsgssihhe
purpose of this study is to develop and implement a 3D non-rigid registration algorithm
for motion analysis of multi-phase cardiac CT images.

Figure 13 displays the overall goal of the proposed motion analysis algorithm
The first step of the analysis performs registration to determine the motimmsref left
ventricle. Analysis of the images requires registration of each phage {s@urce
image) to a reference image (target image). When one image is exjist@another

image , a transformation matrix is calculated that defines the motiossaeg¢o
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transform the original source image to the new image. The transformatiox caa be
used to evaluate the motion characteristics between the two images.

Figure 13: A Method for Non-rigid Registration for Motion Analysis
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This work developed a multi-resolution non-rigid registration algorithm that used
mutual information as the similarity measure and B-Splines as the traasiom model.
The optimization method used a brute-force search, whose extent was determireed by t
user-defined parameter of step length. Figure 14 summarizes theategistlgorithm

framework which is explained in more detail in the following paragraphs..
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Figure 14: Registration Algorithm

calculate similarity value (M) between images
for all resolution levels (lowest to highest)
for all step lengths (largest to smallest)
initialize control points
for all control points (first to last)
translate by step length (x, y. z)
interpolate (B-Spline) to new transformed image

calculate similarity value (MI) for new image and
compare to previous

end
translate control point that maximizes similarity

end

end

The iterative algorithm begins by defining a source image and a tamage,iand
calculating the mutual information between the images. A rectangular gadtodic
point locations is defined in the source image. The algorithm starts with the lowes
resolution level, which corresponds to a coarsely spaced grid of control points. The
algorithm then translates the voxel at a selected control point in an inigetiolir by a
distance equal to the step length. After the voxel location is adjusted, the remaining
voxels are transformed non-rigidly according to B-spline interpolations. Thsm
information between the target image and transformed source image islegedlc If
the transformation results in increased mutual information, the adjustmenhtainmed.

If the transformation reduces the mutual information, the original voxel idataddy
the step length in the next direction. This adjustment is repeated for each pomtrol

Using the coarsely transformed source image as the initial guess, thespso@peated
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with a smaller step length. Thus the image is first transformed on a coalesesiag
large step lengths, and the transformed image is refined by repeatomgithization
with a finer step length. This iterative process is then repeated at a taghieition
level, which is obtained by using a finer grid to define the control points. Quésall
search for the optimal transform is repeated for all control points, for pllestigths and
then for all resolution levels until the number of iterations specified by the user
Two outputs are generated by the completed algorithm: (1) the optimally
transformed source image and (2) the array of transformation vectors whiod tthefi

optimal motion of each control point from the target image to the source image.

3.1.2 Implementation

The registration algorithm was implemented using the VTK CISG Retyistra
Toolkit 2.0.0 (http://www.vtk.org/pipermail/vtkusers/2002-September/062841.html) and
Matlab 7.4.0 software. The VTK CISG Registration Toolkit is a free softwakeapac
that provides two voxel-based, mutual information image registration &lig@réand is
implemented on top of the Kitware 4.0 Visualization Toolkit (VTK). It allows for
registration implementations on Linux, Solaris, and Windows computer hardware and
operating systems. The developed algorithm included the following user-defined
parameters: the number of resolution levels, number of histogram bins used tatealcul
the mutual information, the number of allowed iterations, the number of resolution steps,
length of resolution steps, similarity measure (options include mutual infonaat

normalized mutual information), and control point spacing. Matlab was used for
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processing of motion vectors obtained from the registration process and farrccéati

synthetic datasets used for validation.

3.1.3 Validation of Registration Functionality
The registration algorithm was validated using three main methods, including
validation of the non-rigid algorithm on non-rigid motion of an elliptical synthetie da

series, and validation of the non-rigid algorithm on clinical cardiac image data.

3.1.3.1 Validation with Prescribed Motion of an Elliptical Synthetic Data Series

For the first state of validation, a simple ellipse was developed (Synthé¢tisdDa
A), which contained increasing voxel intensities from the center of the ellipsaroutw
This simplified data series is shown in Figure 15. The figure demonsirdyesne slice
through the center of the data ellipse. The synthetic ellipse object wagddefine

overl21x121x121 voxels with a dynamic range of 4400 intensities.
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Figure 15: Synthetic Elliptical Data Series
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To validate basic algorithm functionality and investigate the effectseof t
algorithm parameters, the ellipse image (Synthetic Dataset A) a$ainaed non-
rigidly using a prescribed transform, with each voxel moving in the direction mlitwa
from the center of the ellipse. The magnitude of motion increased as the distance
between the original voxel location and ellipse center increased. Figunews$ an
example of the prescribed vector motion at one slice location within an ellipse with a

radius of six voxels.
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Figure 16: Prescribed Vector Motion of Ellipse
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The transformed image, Synthetic Dataset B, was generated by signulan-
rigid motion of the voxels using B-spline interpolation.

Figure 17 displays the original synthetic images on the top (left to rightsstiew
Xy, or axial, plane, xz, or coronal, plane, and yz, or sagittal, plane) and displapnthe
rigidly deformed images on the bottom (same orthogonal views as the origirratiynt

data).
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Figure 17: Original Synthetic Data and Artificially Transformed Data
Original synthetic images on the top (left to right shows the xy, or axial,
plane, xz, or coronal, plane, and yz, or sagittal, plane)
Non-rigidly deformed images on the bottom (left to right shows the xy, or
axial, plane, xz, or coronal, plane, and yz, or sagittal, plane)

Original (axial, coronal, sagittal)

Deformed (ax, cor, sag)

The original (Synthetic Dataset A) and transformed (Synthetic BlaBsmages
were registered using the developed non-rigid registration algorithm. fiinatesl
transformation result was then compared to the prescribed transformation toyghantif
performance of the algorithm. The mean-squared error between the preaadbe
estimated motion vectors was the quantitative metric used to evaluate thi@lgor

To investigate the effects of the algorithm parameters, a design ofregpesi
(DOE) was performed while varying several of the algorithm parametéesnumber of
resolution levels was varied between 1, 3, and 4, as this range was found through

preliminary testing to be computationally feasible with respect to meaomrsumption,
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which will depend on the type of system being used. The number of histogram bins was
varied between 32, 64, and 128, in order to investigate the tradeoff between
computational complexity and high intensity resolution during the mutual information
calculation. Finally, the control point spacing range was determinechhingua few
algorithm runs on the data to understand the range that would provide a number of
degrees of freedom for which the hardware and software could proceed without aborting
the registration process. Based on these preliminary runs, the control poingspas

varied between 8, 10, and 12mm. For each run of the DOE, the MSE between the

prescribed and estimated motion vectors was used to quantify algorithm @eréerm

3.1.3.2 Feasibility with Clinical Data

The registration algorithm was then tested on a normal clinical image ser
(Clinical Dataset X). A systole image volume was registered to odiasiage volume.
The end diastole image was selected as the target image becauselitsptese
demonstrates the largest volume of the cardiac cycle. This is consisteritentbrk of
Chandrashekara et &f.which also utilized end diastole as the target image series. The
transformed image series was compared qualitatively to the diastoletonaggerstand
in which regions of the ventricle the registration algorithm provided discregancie
between the target and transformed image volumes. This information was used to
understand some of the limitations of the registration algorithm for use in motion

analysis.
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3.1.4 Optimization of Algorithm Parameters

A second design of experiments (DOE) was developed to analyze the
performance of the registration algorithm. The design of experiments)(D&xE
performed on the clinical data (Clinical Dataset X), using the end diastoladsysole
phase images, with three levels for number of resolution levels (1, 3, 4), number of
histogram bins (32, 64, 128), and control point spacing (8, 10, 12). These values were
chosen for consistency with the initial synthetic data analysis. For@act the DOE,
the end systolic phase image (phase 4) was used as the source registratiomdpth@se a
end diastolic phase image (phase 1) was used as the target registration jghaeel8F
summarizes the parameters used for the design of experiments.

Figure 18: Registration Algorithm Parameters

Parameter Description Range

Similarity measure Metric used to compare registered images. MI
Maximized during registration process

Interpolation model | How transformed image is calculated B-Spline

# of histogram bins | Used to calculate similarity measure. 32,604,128

# of iterations Maximum number of iterations per optimization. 100

# of steps Number of different step sizes. 8

Length of steps Length of the initial step size. 1

Lambda Weighting factor for the smoothness constraint 0

Control Point Spacing between vertices of the mesh grid. The 8,10.12

Spacing vertices of the mesh grid are the control points.

Unlike the ellipse simulation, the true motion vectors are not known in the case of
clinical data. Therefore, the mutual information between the target image dndhthe
registered source image was compared for each combination of algorigmmepens to

guantify the performance of the registration. The registration parantieteryielded the
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greatest mutual information were chosen as the optimal parameters dmial theestudy

of clinical motion analysis described in Chapter 3.

3.2 Results
3.2.1 Validation of Registration Functionality
3.2.1.1 Validation with Prescribed Motion of an Elliptical Synthetic Data Series

The transformed ellipse dataset (Synthetic Dataset B) underwentlsevera
registrations in which the number of resolution levels, number of histogram bins, and
control point spacing was adjusted within a formal design of experiments. Befune F
19 displays the original series (Synthetic Dataset A - top), the atflfitiansformed
image series, (Synthetic Dataset B — middle), and the resultinteregismage series
(Synthetic Dataset C - bottom) after registration.

Figure 19: Synthetic Data Before and After Registration
Original diastole image on top (Synthetic Dataset A), artificially
transformed image in middle (Synthetic Dataset B), and the non-rigidly

registered image on bottom (Synthetic Dataset C)

Original

Prescribed Transformation

Results —
Original registered to
Prescribed



a7

Figure 19 displays the original diastole image (top), the image with theipeskc
transformation (middle), and the non-rigidly registered image overlaid obaotioih).
From left to right, the figure displays the axial, coronal and sagittal views afmage
series. These images show that there is a good overlap between the seiggsahnd
the registered series. The purpose of the registration was to transfogmttietically
transformed series into the original series. The inner radii of the eflgpace not fully
registered, but the other portions of the ellipsoids demonstrate reasonabheemgree

The compiled results from the design of experiments are present in Figure 20
The average root-mean squared error between the prescribed motion vectors and the
vectors estimated by the registration algorithm was calculateddbmrea of the DOE.

The minimal root-mean squared error is highlighted in the figure, as 0.0587. This
minimal value was obtained using three resolution levels, 128 histogram bins, and a 12-
mm control point spacing. As the maximum motion introduced into the image series was
approximately 7.5 mm, an RMS of 0.0587 demonstrates an error of less than one percent
of the maximum motion imposed on the ellipse, implying a good result. As validation of
a registration algorithm for use in medical imaging relies on the climgzdct as well as
the quantitative values that one can extract, it would be important to also consider the
time to image, or the time it takes to get to the resulting registered,iaradjéhe realistic
anatomical nature of the resulting registered image. Most of the RMS @asults
clustered from about 0.06 and 0.1 mm. If one reviews the interactions between the DOE
factors — resolution levels, histogram bins, and control point spacing — one canzecogni

which of these factors has the largest effect on the resulting RMS. Thenbspdgciions
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plot in Figure 21 demonstrates that the control point spacing has the highdstretfes

RMS registration result.

Figure 20: Non-rigidly Transformed Ellipse Design of Experiments Results
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Figure 21: DOE Factors Interactions
Demonstrates the interactions between the DOE factors and the resulting
RMS values

Mo of res le

Control Poin

If one considers the processing time required for more resolution levels and the
use of more histogram bins, one might consider using the most time-efficient
parameterization for those factors rather than that of the resulting &pRMS. In this
specific example, using one resolution level and 32 histogram bins would have
minimized the processing time required for the analysis of those paramgtehe
clinical setting, however, one would also need to consider if and how significantly the
results changed clinical treatment. If, for example, using the moseffiroent number
of resolution levels and histogram bins, 1 and 32, respectively, had an undesired clinical
outcome, the operator would have to consider using the necessary parameters to obtai

the proper clinical outcome.
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3.2.1.2 Feasibility with Clinical Data

Once the synthetic data was reviewed, the registration was appliedrial cli
data series (Clinical Dataset X). As already stated, the sypt@ie of the series (phase
4 of 10) was registered to match the diastolic phase of the series (phase 1 of u®). Fig
22 displays a visual representation of the original phases, systole (leftipatale
(middle), and the non-rigidly deformed systolic phase, Clinical Dataseght)ri

Figure 22: Registration of Systole to Diastole Phase
(Left) Systole Phase, (Middle), Diastole Phase, (Right) Systole Phase
Registered to the Diastole Phase
(Top) Axial Planes, (Bottom) Coronal Planes

(Top) AxialiPlahe .. - - _ y’

S
oy —

Phase #4 - Systole B L':'I-:;ﬂrriase #1 — Diastole ~ Phase #4 Registered

to Phase #1

e . :"-." - - g
’ ._(Igi%bm) Coronal Plane

As the purpose of transforming the systole image was to register it to shaalia
image, the diastole image and transformed systole image were ovena&dtwhere the
registration succeeded in the transformation and where differences could hvedbge
difference image was created from the diastole (Clinical Datgsattransformed
systole images (Clinical Dataset Y) by subtracting the two imdgigsire 23 shows the

original diastole image (grayscale) with the difference image odestatop (hot iron
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color overlay). The areas of yellow highlight the regions in which the highéstedice
was noted.

Figure 23 Diastole of Clinical Dataset X and Clinical Dataset Y Difference
Overlay
Original diastole image (grayscale) with a difference image (created from
a difference of the diastole and registered image) overlaid on top (hot iron
color overlay)

Original diastole image (grayscale)
Difference image (between diastole and registered) overlaid
on top (hot iren'color overlay)

Tannversa L

sagal |

Axial Coronal Sagittal

The regions of highest difference appear to occur at the mitral value, the goronar
vessels, and the pericardial sac. With regard to the mitral valve and condeaesa
these areas are likely to have discrepancies based on contrast enhandteremtet
occurring between the original images. As the heart pumps, the contrasthitough
these regions, causing intensity differences that will be picked up on thisrtitere
image. With regard to all of these regions, higher motion of these regions — opehing a
closing of the valve, pulsatory motion of the arteries, and breathing effects on the
pericardial sac — is likely to cause some differences between the dasidiansformed
systole images. In general, differences in other areas of the image waraimi

suggesting reasonable registration of the systole image to the diastpée ima
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3.2.2 Optimization of Algorithm Parameters
3.2.2.1 Design of Experiments

Figure 24 displays the results from all runs of the design of experimentsefihe |
most column lists the mutual information of the transformed source image ancyéte ta
image.

The maximum mutual information of 1.391 was obtained using the algorithm
parameters of one resolution level, 64 histogram bins, and a control point spacing of 8-
mm. Various runs of the DOE results could not be completed due to the memory
limitations of the algorithm and system used for registration. These runsdnaarkea’,
failed to complete registration and aborted before final registration cowldtdi@med. In
general, these failed runs involved multiple resolution levels. Due to the length and
analysis requirements for these problematic runs, these parameterizatidtdikely be
less clinically desirable for the analysis time and resource contstrai

A maximized MI of 1.391 is only one quantitative approach to optimizing the
registration for these clinical image series. If one considers thatltiaali of the
diastole image when registered with itself is approximately 2.65, one noigéider this

value the upper limit of how maximized the MI could be in an ideal registrationrgcena
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Figure 24: Design of Experiments Results

Number| Number
of of |Control
resolutiorhistogran Point | Mutual
RunOrde levels bins |Spacingnformatior

1 1 128 10 1.361
2 4 64 8 na
3 1 128 12 1.361
4 4 64 10 1.376
5 1 32 8 na
6 3 128 10 na
7 4 128 12 na
8 4 64 12 1.362
9 3 128 8 na
10 3 64 12 1.367
11 3 32 10 1.379
12 4 32 12 1.362
13 1 64 8 1.391
14 3 64 8 na
15 1 64 10 1.342
16 1 128 8 1.345
17 4 128 8 na
18 3 32 8 na
19 4 128 10 1.381
20 1 64 12 na
21 4 32 10 na
22 3 128 12 1.367
23 4 32 8 na
24 3 32 12 1.364
25 1 32 10 1.159
26 1 32 12 1.313
27 3 64 10 1.382

As many of the DOE runs result in values differing only by a few hundredths of a
unit, one must additionally consider other factors that differentiate theste3iiis
guantitative value, as stated before, does not represent the clinical usefulnBsaayr ef
of the resulting registration. To further validate these results, otheictadt be
performed. One example of this might include comparing the resulting motion

transformations from the registration algorithm to an operator defined motion
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transformation, wherein a clinical expert could identify landmarks in thelsystage

and the location of these same landmarks in the diastole image. Comparing the
calculated motion between the operator defined landmarks and the motion transformation
calculated for the respective control points of the source image could provide atneans
compare the motion transformation value to a ground truth motion value as determined
by an operator. An alternative validation approach, which would be far more invasive
and more appropriate for an animal study, would be to place radio opaque fiducial
markers on the epicardium to act as landmarks that could be easily identified es.imag
The subject could be imaged and motion of the fiducials could be compared to the motion

of the nearest neighboring control points.

3.2.2.2 Conclusion

A method of non-rigid 3D registration was attempted between a systolic and
diastolic cardiac image utilizing mutual information optimization and B-Spline
transformation. Reasonable registration between the target and sauoze iciages
were obtained, providing an x, y, and z coordinate that described the motion of each
control point to describe the transformation. The maximum mutual information of 1.391
was obtained using the algorithm parameters of one resolution level, 64 histogsam bi

and a control point spacing of 8-mm.
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CHAPTER 4 MOTION ANALYSIS

4.1 Methodology

The results of Chapter 2 indicate that the developed non-rigid registration
algorithm can register cardiac CT images from different phases ddutth@c cycle. The
ultimate goal of this project is to use the motion vectors derived from theraéigist
algorithm to evaluate the left-ventricular wall motion throughout the cargicde.As
described in Chapter 1, determining regions of abnormal and delayed wall motion
requires complex statistical models that are trained on numerous normatsdatdme
development of such statistical methods is outside the scope of the present thesis,
however, the preliminary feasibility of using the non-rigid registratigarghm to
analyze the left-ventricular wall motion was evaluated by applying foitdm to a
normal and diseased clinical case. This chapter describes this preliamadysis of the

left-ventricular wall motion.

4.1.1 Clinical Datasets

Two previously acquired high-resolution multi-phase, contrast-enhanced CT
image series acquired using GE (16-slice and 64-slice) CT scanmersh@ned from
sites that provided the clinical data to GE for demonstration and visualization purposes
IRB approval was obtained to use the previously acquired data in the current study. Tw

image sets were selected, one assessed as a patient with normalriettlaemtall
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motion (Clinical Dataset X) and one evaluated as a pathological case, cangaini

ventricular dyssynchrony involving a septal delay in relation to the other podtiting

left ventricle (Clinical Dataset Z). The normal dataset contained agerseries

subdivided into 10 cardiac phases, whereas the pathological case contained an image

series subdivided into 20 cardiac phases. The pathological case was an#tyzed af

subsampling to the phases of the normal dataset and with all available phases.
Clinical assessment was performed by Prachi Agarwal, MD of the Degraroh

Radiology at eh University of Michigan on the pathological case to understand

underlying pathology. Functional analysis revealed diffuse global hypokinesis.

Additionally, there was more pronounced regional hypokinesis and myocardial thinning

in the anterior, anteroseptal, inferoseptal, apical, and inferolateral segnhefit

ventricular ejection fraction was calculated at 32%, supporting an ineffycienice

overall function of the heart in this case. Patient also had confirmed dilated

cardiomyopathy.

4.1.2 Registration Details

The parameterization found to provide the maximum mutual information value
during the DOE was used for the registration; this included 1 resolution level, 64
histogram bins, 100 iterations, 8 resolution steps, 1 mm resolution step, mutual
information similarity measure, and 8 mm control point spacing. Once thea#grstr
algorithm parameters had been determined, each of the CT multi-phase chaigal

series was registered to the diastole phase using the predeterminetralgori
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The multi-phase images series were divided into 10 or 20 phases of the cardiac
cycle, dividing the cardiac phase into equally spaced time points. The diastole phase w
determined by qualitatively assessing which phase image provided tbst laotume of
the left ventricle. This diastole phase was used as the reference, qmtaagetof the
registration. The images at every other phase were registered backefetbece
diastole image. Therefore, the registration algorithm determined a motianm f&x each
control point between each source image series to the reference imagtseaeh

phase of the cardiac cycle.

4.1.3 Motion Extraction and Analysis

For each control point within the defined registration mesh, an x, y, and z motion
component was generated by the algorithm. As this study is focused on tbe ofidhie
left ventricle, only the control points that resided on the ventricle wall or perimwete
manually segmented from the images and used for subsequent analysis, carsol poi
residing outside the left ventricle muscle or within the left ventricle bloodpeid
ignored.

This subset of ventricle control points was manually determined in the diastolic
phase image, as this is the reference image in the registration algofitiecontrol
points were overlaid with the diastole image and each control point lying on the eentricl
region was visually determined and recorded within a file. These control poicgsndi

were referenced when plotting or analyzing the motion values.



58

The wall motion occurs in three dimensions, making comparative motion
assessment difficult. For this preliminary feasibility analysis, ¢saltant motion
magnitudes were calculated at each control point. For each control point, the relati
motion between each phase and the diastolic phase was plotted for each time point. The
absolute motion at each phase was also plotted at each time point. This absolute motion
value was calculated by subtracting the relative motion of the previous time paictt, w
is the transformation calculated by the registration transformation,themelative
motion of the current time point. This allowed all of the phase motion values to be
normalized essentially to an absolute origin of motion, which happened to be the first
phase for each clinical data series. The average motion of all of the contrslvpasnt
also calculated. Each control point motion curve was then compared to the average
motion curve to determine similarity or dissimilarity to the overall vemf@icmotion.

For the purposes display, the motion values are both normalized and interpolated.
Normalization is performed to the sum of the motion curve to regularize the motion curve
values with a consistent value. Interpolation between the discreet data peath a
phase is used to create a more realistic motion curve that demonstrateantiov®us
motion between the available phases. Three values are interpolated betwestleac

available values.



59

4.2 Results of Motion Extraction and Analysis

From the x, y, and z motion components available for each control point, a
resultant vector was determined. The magnitude of this vector was plotted both (1) in
relation to the motion of the diastolic volume, for the relative motion, and (2) in relation
to the absolute motion of the point, where the previous phase motion component was
removed from that of each subsequent phase, as described in the previous section. Figure
25 and Figure 26 display the relative and absolute motion curves, respectivdig, for t
normal clinical image series, and Figure 27 and Figure 28 display the satine for
pathological clinical image series. These plots include all availablephéds
mentioned before, the pathological case was sub-sampled in phase to more agdgropriate
compare to the normal image case; Figure 29 and Figure 30 display the resultas)
from that sub-sampled analysis. For each plot, the motion curve for each contrad point i
displayed in blue and the overall mean motion curve is displayed in red.

Figure 25: Normal Relative Motion Curve
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Figure 26: Normal Absolute Motion Curve
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Figure 27: Pathological Relative Motion Curve
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Figure 28: Pathological Absolute Motion Curves
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Figure 29: Pathological Relative Motion Curve for a Subset of Phases
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Figure 30: Pathological Absolute Motion Curve for a Subset of Phases
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Example code for the calculation of relative and absolute motion can be found in
Appendix A.

Both the relative and absolute motion curves contain differing characteristics
between the normal and pathological cases. With regard to the relative niaion, t
normal case appears to demonstrate a bimodal motion at which there is an upswing of
motion in the early phases of the cardiac cycle and another in the second half of the
cardiac cycle. The pathological case appears to demonstrate a sanylgghase
upswing, but the latter local maxima appears more quickly and contains a $raatlen
of the first motion maxima. When comparing the normal and pathological casesmwith t
phases each, the absolute motion for the pathological case demonstrates fewer
fluctuations within the motion. In a majority of the absolute motion curves, the
pathological case demonstrates no change in the motion magnitude, whereas the norma

case shows some fluctuations and a far more dynamic initial phase motior.chang
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Within one location of phase 8 of the pathological relative motion curve, Figure
29, the magnitude reaches a minimum where there appears to be no motion within the
given phase. The absolute curve, Figure 30 between phases 7 and 8, for this same region
demonstrates several ventricle control points of no change in motion. This mighatendic
an inefficient component of the cardiac cycle in which the heart muscle is working
neither to fill or contract.

A difference in the dynamic range of the 10 phases versus 20 phases motion
analysis of the pathological case can also be noted. This is due mainly to thd tFfmova
certain data points and the resulting normalization and interpolation differéates t
result. As experimental values are removed from the curve, the interpolati@ebehe
remaining values change accordingly. The normalization of the curvehalsges
because the normalization factor, or the sum of the motion curve, also changes as the
inputs into the factor change.

This type of analysis makes it difficult to differentiate the motion betveeatrol
points or between ventricle regions. Each motion curve is very specific to the point it
represents. Certain regions of the cardiac cycle are expected to molesa far
magnitude than others. Within this investigation, the motion curves could be sedgymente
into different z-slice locations. For each of the control points, the motion curves were
plotted with a different color corresponding to the z-slice location. This provicketses
means of comparing cardiac regions (by z-location only) between the normal and
abnormal case. Figure 31 and Figure 32 demonstrate these motion curves for #he norm

and abnormal cases, respectively.



Figure 31: Normal Motion Curves Segmented by Z-Slice Location
This image demonstrates the motion curves of the normal cardiac case
with different curve colors per different z-slice location. The most
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Figure 32: Abnormal Motion Curves Segmented by Z-Slice Location
This image demonstrates the motion curves of the abnormal cardiac case
with different curve colors per different z-slice location. The most superior
z-location is displayed with darkest blue and colors progress to red as the
z-location progresses more
inferiorly.
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Comparing the colors between the two figures allows one to note that the
comparable regions, or z-locations, between the two cases demonstrate viegtdiffe
motion characteristics. One can conclude from these figures that theup@sosz-
locations contribute more significant motion to the beginning of the cardiac madéda (
blue/cyan) in the normal case than in the abnormal case, which shows the moneznferio
locations contributing to the initial motion (yellow/orange motion curves). Thesdy
analysis further helps to clarify the differences between the motion of thraineand

abnormal myocardium. This analysis uses on the z-slice location for comparison,

however. As the two cases are not from the same patient or from the samefframe
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reference, the z-location does not have an exact correlation for the normal to the
abnormal case, although it does have some correlation to the location of the ventricular
myocardium. Compartmentalization of each control point into a standard card@t regi
may make the analysis more conclusive. Using septal, lateral, basal, apécior, and
anterior region segmentation may make the local region comparison such that a
dyssynchrony between regions can be detected. Since each of these regionsa moves i

very different directions, it makes a resultant/magnitude analysis somiexvbiaiplete.

4.3 Conclusions

Overall, this preliminary feasibility investigation demonstratestthemotion
vectors of a transformation between one phase of the cardiac cycle to anoseergha
be extracted and analyzed. This shows that the regional motion of the ventridarwall
be determined throughout the cardiac cycle using a non-rigid registratiomyargpl
mutual information optimization and B-spline transformation, and this motion can be
plotted against time to visualize the changes in motion over the course of the cardiac
cycle. The comparison of the motion curves, Figure 25 and Figure 29, indicates some
differences between the normal and pathological cases, which may be ugedeain f

studies to identify the regions of abnormal wall motion.
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CHAPTER 5 FUTURE DIRECTIONS AND CONCLUSION

5.1 Summary

This work developed a method utilizing a non-rigid registration algorithm to
estimate the motion of a mesh of control points on multi-phase cardiac CT images. The
algorithm parameters were optimized through a series of synthetic andldizia
experiments. After optimization, the parameters were applied to a nordhal a
pathological clinical patient series. The motion was determined for eachqgilihse
cardiac cycle in relation to the end-diastole image of the cardiacfoydleth series.
The absolute and relative motion of each phase was extracted, demonstratiagwvgualit

differences between the normal and pathological cases.

5.2 Registration

Where this analysis enlisted transformation between two images usingy @imes
equally spaced control points, an alternative method of registration invobrass&tion
of the left ventricle and registration of a left ventricle surface or volurvecle® phase
images. This type of analysis would allow for other functional analysis, swchusse,
mass, or cardiac output metrics, in addition to motion deformation metrics, which were
the focus of this study. Segmentation of the ventricular surfaces may algatéacil
analysis of wall thickening, which has proven to provide improved sensitivity over other

motion deformation paramete’rs.
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5.3 Motion Analysis

In this analysis, the magnitudes of the motion vectors were plotted against time
for all control points or for a region or group of control points of interest. Analyzing the
motion data, for example by calculating the correlation coefficient, setemndtive, or
Hilbert transform, the motion for each or a subset of the control points may have
provided a means to identify dyssychronous motion among the ventricular points. In
these methods, however, the analysis is confined to the data of the individual elfam its
A better approach may be to compare the motion analysis to a statistical omadel
established from a series of images known to have normal myocardial functioar gmil
the previously proposed method for MR imaks.

The motion analysis was also done on a point-by-point basis. Averages were
taken from all points on the myocardial wall. Compartmentalizing the analysithe
standard 17 cardiac segments and performing an analysis on a segment-dayt-segim
inter-segment basis may have provided more clinically relevant anaBAtempting to
analyze each control point motion versus the average motion of all control points did not
provide definitive results, mainly because the average motion curves included motion of
all points, which intrinsically have different motions and may or may not have abnormal
motion characteristics. This type of analysis is also complicated in éhegghltant
magnitude was used for motion analysis. As motion occurs in different directions for
different segments, the x, y, z and angular components may be different fioottbe of
each segment or even each control point further complicating an attempt to compare

between all points or to a mean motion curve that incorporates all points.
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5.4 Conclusions

A non-rigid registration algorithm was successfully applied to multi-pGdse
images, and the parameters of the algorithm were optimized through a DOE. Althoug
the current analysis of the motion vectors may be suitable for characterzmgl
versus pathological motion, the motion vector data obtained from the registration
algorithm could be used in future work to determine locations of dyssynchronous
ventricular motion. In addition to the potential improvements outlined already, the
current study also included only one normal and one pathological case — a more diverse
group of studies could have provided a better statistical analysis.

Although further investigation is necessary to assess the proposed motion analysis
method, this work presents an implemented and optimized non-rigid registration
algorithm. The registration algorithm was successful for extragtiggand z motion
vectors throughout a cardiac CT multi-phase image series. Additional intiestiga
required to develop methods for using these motion vectors to identify the most delayed
region. Visual assessment has demonstrated a difference in the motion betwegn norm
and pathologically dysfunctional image series.

A more quantitative means of analysis is desired to improve the objectivity of
current motion dysfunction, however, this investigation has established a basisipr doi
so. This investigation demonstrated a means to characterize the normal mdiefefif t
ventricle and comparison against the motion of a known pathological case. Future work
could entail the use of a larger population of normal cases for establishing amcea

standard deviation of motion fields of normal ventricle motion. It could also @mail t
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analysis of numerous pathological cases, providing a characteristic melibspectrum

for each case. These pathological motion fields could then be compartmentalized into
categories of similar pathological cases, differentiating pathddaggd on motion field
spectrum.

Whereas the hypothesis for this thesis was focused on specifically finding the
most delayed region of motion of the left ventricle, the potential uses for the motion
fields calculated using the registration algorithm are numerous. Fop&xame could
consider applying the same registration algorithm to any or all chambershafatienot
just the left ventricle. Just as understanding the motion characteristicanvithin
the left ventricle for biventricular pacing, understanding the right and l&ft atotion
fields could be useful in radiofrequency ablation planning. Another example of the
potential use of this type of motion characterization is stratification ardrit
pathologies of electromechanical delay. By analyzing cardiac imagessains of
different electromechanical pathology, a database of characteristanrfietds could be
established. From establishing this database in conjunction with knowledge of the
efficacy of different electrophysiological or pharmacological thies it could be
possible to accumulate a database from which one could determine the besntrematm

suggest for a given mechanical characterization.
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Appendix A — Example Code for Relative and Absolute Curve Calculation

clear all
close all

files = 'testfiles.dat'

testfiles = textread(files,'%q");
numfiles = size(testfiles,1);
numphases = numfiles

phaserange = 1:numphases;

for incfile = 1:numfiles
filename = char(testfiles(incfile));
[cpgDisps(:,:,:,:,incfile) refpoints(:,:,incfile)
dimensions(:,:,:,incfile) affine(:,:,incfile)
affineparams(:,:,:,:;,incfile) non-rigid(:,:,:,:,incfile)] =
loadreg(filename);
end

%read in the diastole image for reference
| = analyze75read('phase0);

%Load the file that contains all of the points of interest
on the

%ventricle

load VentriclePointSelection.dat

%Determine how many points were found in the region of the
randomly selected point

F = size(VentriclePointSelection);

F=F(@)

fullXRange = -124.756:0.488281:124.756;%X Min/Max taken
from Origin in dof file, spacing taken from Spacing in dof

file

fullYRange = -124.756:0.488281:124.756;%Y Min/Max taken
from Origin in dof file, spacing taken from Spacing in dof

file

fullZRange = -75:1.25:75;

77
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meshXRange = -141.39:8.31705:141.39;%Taken from Xmin, Xmax
and spacing in Bounds in dof file

meshYRange =-141.39:8.31705:141.39;%Taken from Ymin, Ymax
and spacing in Bounds in dof file

meshZRange =-92.6471:8.82353:92.6471;%Taken from Zmin,
Zmax and spacing in Bounds in dof file

%Now select the region of points that might be adjacent to

the randomly

%selected point

for W =1:F;
nearX(W) = fullXRange(VentriclePointSelection(W,1));
nearY (W) = fullYRange(VentriclePointSelection(W,2));
nearZ(W) = fullZRange(VentriclePointSelection(W,3));
[PX(W,),cX(W,:),VX(W,)] =

findnearest(nearX(W),meshXRange,0);
[rY(W,:),cY(W,),VY(W,)] =

findnearest(nearY(W),meshYRange,0);
[rZ(W,),h(W,:),VZ(W,))] =

findnearest(nearZ(W),meshZRange,0);

end

%Assume 9 phases, create X arrays for plotting motion, 1st
derivative, and

%2nd derivative

phases = size(testfiles,1);

X = 1:phases;

X2 = 1:phases+1;

X3 = 1:phases+2,;

%Set kernels for 1st and 2nd derivatives
Firkernel = [1 -1];
SecKernel =[1 -2 1];

%Determine the motion plots for all points
for phases = 1:numphases
forQ =1:F
Pointx_rel(Q,phases) = non-
rigid(cX(Q,1),cY(Q,1),h(Q,1),1,phases);

end

end

for phases = 1:numphases
forQ =1:F

Pointy_rel(Q,phases) = non-
rigid(cX(Q,1),cY(Q,1),h(Q,1),2,phases);
end
end
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for phases = 1:numphases
forQ=1.F
Pointz_rel(Q,phases) = non-
rigid(cX(Q,1),cY(Q,1),h(Q,1),3,phases);
end
end
%Determine the motion arrays for each point in the random
region
for phases = 1:2
forQ=1.F
Pointx_abs(Q,1) = Pointx_rel(Q,1);
Pointx_abs(Q,2) = Pointx_rel(Q,2) -
Pointx_rel(Q,1);

Pointy _abs(Q,1) = Pointy_rel(Q,1);
Pointy_abs(Q,2) = Pointy_rel(Q,2) -
Pointy_rel(Q,1);

Pointz_abs(Q,1) = Pointz_rel(Q,1);
Pointz_abs(Q,2) = Pointz_rel(Q,2) -
Pointz_rel(Q,1);
end
end
for phases = 3:numphases
forQ=1.F
Pointx_abs(Q,phases) = Pointx_rel(Q,phases) -
Pointx_abs(Q,phases-1);
Pointy _abs(Q,phases) = Pointy_rel(Q,phases) -
Pointy _abs(Q,phases-1);
Pointz_abs(Q,phases) = Pointz_rel(Q,phases) -
Pointz_abs(Q,phases-1);
end
end

for phases = 1:numphases
forQ=1.F

%Create a resultant from the x, y, and z components
of all of the dof files

Point_rel(Q,phases) = sqrt((non-
rigid(cX(Q,1),cY(Q,1),h(Q,1),1, phases)."2) + (non-
rigid(cX(Q,1),cY(Q,1),h(Q,1),2, phases)."2) + (non-
rigid(cX(Q,1),cY(Q,1),h(Q,1),3,phases)."2));

%Create a resultant from the x, y, and z components
of all of the dof files
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Point_abs(Q,phases) =
sqrt((Pointx_abs(Q,phases).”2) + (Pointy_abs(Q,phases)."2)
+ (Pointz_abs(Q,phases)."2));
end
end

%Normalize the motion curves using sum of each motion curve
for Q=1:F

Point_rel(Q,:) = Point_rel(Q,:)/sum(Point_rel(Q,:),2);
end

incinterp = 1;

interptype = 'cubic’;

interprange = l:incinterp:phases;
phaseinterprange = 5:incinterp:95;

%Up sample the motion plots to the specified increment
for Q=1:F

PointUp_rel(Q,:) = interp1(X, Point_rel(Q,:),
interprange, interptype);
end

MeanMotionOfEachPhase = mean(PointUp_rel,1);

figure, plot(interprange,MeanMotionOfEachPhase,'ro-")
title('Relative Motion Curves')
xlabel('Time (Cardiac Phase)')
ylabel('Magnitude (mm)")
hold on
for Q=1:F
plot(interprange,PointUp_rel(Q,:),'b.-")
end
plot(interprange,MeanMotionOfEachPhase,'ro-")

%Normalize the motion curves using sum of each motion curve
for Q=1:F

Point_abs(Q,:) = Point_abs(Q,:)/sum(Point_abs(Q,:),2);
end

incinterp = 0.25;
interptype = 'cubic’;
interprange = l:incinterp:phases;

%Up sample the motion plots to the specified increment
for Q=1:F

PointUp_abs(Q,:) = interp1(X, Point_abs(Q,:),
interprange, interptype);



end
MeanMotionOfEachPhase = mean(PointUp_abs,1);

figure, plot(interprange,MeanMotionOfEachPhase,'ro-")
title('Absolute Motion Curves')
xlabel('Time (Cardiac Phase)’)
ylabel('Magnitude (mm)")
hold on
for Q=1:F
plot(interprange,PointUp_abs(Q,:),'b.-")
end
plot(interprange,MeanMotionOfEachPhase,'ro-")
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