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Abstract:  

At the microscale, cantilever vibrations depend not only on the 

microstructure’s properties and geometry but also on the properties of the 

surrounding medium. In fact, when a microcantilever vibrates in a fluid, the 

fluid offers resistance to the motion of the beam. The study of the influence of 

the hydrodynamic force on the microcantilever’s vibrational spectrum can be 

used to either (1) optimize the use of microcantilevers for chemical detection 

in liquid media or (2) extract the mechanical properties of the fluid. The 

classical method for application (1) in gas is to operate the microcantilever in 

the dynamic transverse bending mode for chemical detection. However, the 

performance of microcantilevers excited in this standard out-of-plane dynamic 

mode drastically decreases in viscous liquid media. When immersed in liquids, 

in order to limit the decrease of both the resonant frequency and the quality 

factor, and improve sensitivity in sensing applications, alternative vibration 

modes that primarily shear the fluid (rather than involving motion normal to 

the  fluid/beam interface) have been studied and tested: these include 

inplane vibration modes (lateral bending mode and elongation mode). For 

application (2), the classical method to measure the rheological properties of 

fluids is to use a rheometer. However, such systems require sampling (no 

insitu measurements) and a relatively large sample volume (a few milliliters). 

Moreover, the frequency range is limited to low frequencies (less than 

200Hz). To overcome the limitations of this classical method, an alternative 

method based on the use of silicon microcantilevers is presented. The 

method, which is based on the use of analytical equations for the 

hydrodynamic force, permits the measurement of the complex shear modulus 

of viscoelastic fluids over a wide frequency range. 

Keywords: Hydrodynamic force, microcantilever vibration, rheology, 

chemical detection, in-plane vibration, MEMS. 
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1. INTRODUCTION  

In recent years, interest in microcantilever-based chemical and bio-

chemical sensing systems has risen due to their projected high 

sensitivity [1-5]. The large ratio of surface area to volume makes the 

microcantilever extremely sensitive to surface processes. For 

(bio)chemical detection, the microcantilever is usually coated with a 

(bio)chemically sensitive layer whose purpose is to selectively sorb the 

analyte or molecule of interest. The sorbed substance can then be 

detected by monitoring either the resonant frequency shift (dynamic 

mode) or the quasi-static deflection (static mode). A simplified way to 

explain the basic principle of such sensors is to say that in the case of 

dynamic mode operation, the change in mass associated with the 

sorption of analyte onto/into the sensitive coating causes a shift in 

resonant frequency, which may be correlated to the ambient 

concentration of the target substance. For static-mode operation, the 

sorption of analyte causes a cantilever deflection that is induced by 

surface stress or by the tendency of the sensitive coating to expand or 

contract upon analyte sorption or desorption (modification of strain 

and stress in the coating). In this paper we will focus on the use of the 

dynamic mode. 

At the microscale, cantilever vibrations depend not only on the 

microstructure’s properties and geometry but also on the properties of 

the surrounding medium (density and viscoelastic properties). In fact, 

when a microcantilever vibrates in a fluid, the fluid offers resistance to 

the motion of the beam. The coupling between the structure and the 

surrounding viscous fluid influences the structure’s mechanical 

resonance; in particular, the fluid causes a decrease of both the 

resonant frequency and the quality factor and, thus, negatively 

impacts the device’s sensing capabilities. In gas, resonant frequencies 

of classical transverse flexural modes may be reduced by a few 

percent compared with the value in vacuum, whereas  the  quality  

factor  may  exhibit  reductions  of  two  orders  of  magnitude. This 

performance degradation for conventional out-of-plane flexural 

resonant modes is further exacerbated in liquids: the resonant 

frequency and quality factor values are approximately one order of 

magnitude smaller than their values in the gas phase (Fig. 1). 

http://dx.doi.org/10.1016/j.snb.2013.10.106
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Figure 1. Measurements of three microcantilevers with different geometries 

(named in section 4 LL, LH and A respectively): 2810 x 100 x 20µm3 (blue), 1440 x 

285 x 20µm3 (green) and 500 x 100 x 20µm3 (red). a) spectrum in air. b) spectrum 

in water. 

Chemical detection using microcantilever-based sensors is based 

on the measurement of the resonant frequency shift Δf, which is 

induced by the mass increase of the vibrating microstructure during 

sorption of the target species into the sensitive coating [6]: 

 

Δ𝑓𝑟 = −𝑓𝑟
Δm

2𝑚
                                       (1) 

 

with fr and m being the resonant frequency and mass of the 

microstructure, respectively. According to the partition coefficient (K) 

of the analyte/sensitive coating pair [6], which is defined as the ratio 

of the concentration of the analyte in the coating and the ambient 

http://dx.doi.org/10.1016/j.snb.2013.10.106
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concentration, CA, of the analyte in the surrounding medium, the mass 

variation Δm is proportional to the concentration CA. Thus, the 

sensitivity of the chemical sensor, S, is proportional to the resonant 

frequency of the microcantilever in the surrounding medium (gas or 

liquid) [6]: 

 

𝑆 =
Δ𝑓𝑟

𝐶𝐴
= −

𝑓𝑟KV𝐿

2𝑚
∝ 𝑓𝑟          (2) 

 

with VL defined as the volume of the sensitive layer. 

The accuracy of the resonant frequency measurement depends 

on the sharpness of the resonant peak which is characterized by the 

quality factor, Q, associated with a particular resonant mode, while the 

noise N corresponding to the resonant frequency measurement can be 

considered to be inversely proportional to the quality factor [6]: 

 

      𝑁 ∝
1

𝑄
                        (3) 

According to Eqs. 2-3, reduced values of the resonance 

characteristics (resonant frequency and quality factor) in liquid media 

(Fig. 1) adversely affect the sensitivity and the detection limit of these 

types of sensors. Therefore, for liquid- phase chemical sensing 

applications it is imperative that the effect of the liquid on the resonant 

characteristics of the sensing device be understood and considered in 

the sensor design in order to achieve desired levels of sensing 

performance (sensitivity and limit of detection). 

 In the present paper, we propose alternative uses of 

microcantilevers, including the implementation of unconventional 

vibrational modes to overcome the aforementioned obstacles for 

liquid-phase operation. By understanding in detail the influence of the 

hydrodynamic force on the microcantilever’s vibrational spectrum, the 

following two objectives may be achieved: (1) optimization of 

microcantilevers for chemical detection in liquid media and (2) 

http://dx.doi.org/10.1016/j.snb.2013.10.106
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extraction of the mechanical properties of complex fluids which is of 

particular importance for microfluidic systems and for chemical 

detection in these types of environments. 

The paper is organized such that a review of hydrodynamic force 

expressions and their impact on the resonant frequency and quality 

factor is given in Section 2 for the cases of out-of-plane and in-plane 

vibrations. In Section 3 we present how one may use the knowledge of 

the hydrodynamic force to choose appropriate vibrational modes and 

microcantilever geometries for chemical detection in liquid media. A 

second example of how a firm grasp of fluid-structure interaction may 

be used to advantage is the implementation of a microcantilever to 

extract the rheological properties of a fluid, which is described in 

Section 4. 

Notation (Fig.2): The geometry of the cantilever is defined by the 

width b, thickness h, and length L. Coordinate x is measured along the 

beam length. The properties of the cantilever material are the Young’s 

modulus E and the mass density ρ. The fluid (gas or liquid) properties 

are defined as ρf, the fluid’s mass density, η the fluid’s dynamic 

viscosity and G* = G’ + jG’’, the complex shear modulus of the fluid. 

2. INFLUENCE OF HYDRODYNAMIC FORCE ON 

MICROSTRUCTURE RESONANT CHARACTERISTICS 

In this paper, we focus on three distinct vibration modes 

(Fig.2): the transverse (out-of-plane) bending mode, the lateral (in-

plane) bending mode and the elongation mode (also in-plane). A 

fourth mode that may also have interesting potential for both chemical 

detection and rheological sensing is the torsional mode, whose 

hydrodynamic force and resonant characteristics have been studied in 

[7-8]; however, that mode is not included in the present study. 

 

Figure 2. Schematic representation of the transverse (out-of-plane) bending 

mode, the lateral (in-plane) bending mode and the (in- plane) elongation mode. 

http://dx.doi.org/10.1016/j.snb.2013.10.106
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2.1 General modeling of the hydrodynamic force 

When a microcantilever vibrates in a viscous fluid (gas or liquid), 

the fluid offers resistance to the motion. Depending on the vibration 

mode and on the cantilever surface there are hydrodynamic pressure 

forces (normal to the surface) and hydrodynamic viscous forces 

(tangential to the surface) (Fig. 3). 

 

 

Figure 3. Schematic representation of the hydrodynamic force on a microcantilever 

cross section in the cases of transverse (out- of-plane) bending, lateral (in-plane) 

bending and (in-plane) elongation modes. 

The force per unit length, Ffluid , which is the consequence of all 

normal and tangential stresses exerted by the fluid on all the surfaces 

of the cantilever, can be written in the frequency domain as [9]: 

𝐹𝑓𝑙𝑢𝑖𝑑 = −[𝑗ωg1(𝑥, ω) − ω2g2(𝑥, ω)]𝑤(𝑥, ω)   (4) 

where 𝑥 is the longitudinal coordinate, ω the radial frequency of 

vibration, w the microcantilever deflection in the case of bending  

modes or  the  microcantilever axial  displacement in  the  case  of the 

elongation mode, and g1 and g2 are functions depending on the fluid 

properties and the microcantilever cross-sectional geometry. They may 

be interpreted, respectively, as the distributed damping coefficient of 

the fluid and the distributed effective fluid mass (per unit length of 

beam). In general, these quantities are both frequency-dependent and 

𝑥-dependent; however, in what follows g1 and g2 will be assumed 

uniform in 𝑥 as this assumption has been shown to be sufficiently 

accurate in many cases of practical interest [10]. 

It is common to normalize Ffluid into a dimensionless form called 

the hydrodynamic function, Γ = Γr - jΓi, (where Γr > 0 and Γi> 0) [11] 

http://dx.doi.org/10.1016/j.snb.2013.10.106
http://epublications.marquette.edu/
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Γ𝑟 =
4

𝜋ρ𝑓𝑏2 g2             (5) 

Γ𝑖 =
4

𝜋ρ𝑓𝑏2

g1

ω
                (6) 

The hydrodynamic function, Γ, represents the total hydrodynamic 

force per unit length normalized by the force per unit length required 

to excite (at the same amplitude and frequency) a circular cylindrical 

volume of diameter b and density ρf. The subscripts r and i in Eqs.5-6 

denote the real and imaginary parts of the hydrodynamic function, 

respectively. 

2.2 Resonant characteristics of the microstructure 

The fluid effects (viscous term g1, and inertial term g2) influence 

the dynamic response of the beam; in particular, the resonant 

frequency, fr , and the quality factor associated with viscous losses, 

Qvisc , may be expressed as [10-11] 

𝑓𝑟 = 𝑓0,𝑣𝑎𝑐
1

√1+
𝐿g2

𝑚⁄
√1 −

1

2𝑄2          (7) 

𝑄𝑣𝑖𝑠𝑐 =
2𝜋√1+

𝐿g2
𝑚⁄

𝐿g1
𝑚⁄

𝑓0,𝑣𝑎𝑐         (8) 

where f0,vac is the undamped natural frequency of the microcantilever 

in vacuum, Q is the total quality factor of the cantilever/fluid system 

(incorporating all losses), m is the total microcantilever mass and L is 

the microcantilever length. 

The above equations illustrate, as stated in the introduction, the 

fact that in the general case of dynamic mode operation of a 

microcantilever, the resonant frequency and the quality factor depend 

on the fluid properties via the terms g1 and g2. In the following 

sections, the terms g1 and g2 will be analyzed for the different vibration 

modes. 

http://dx.doi.org/10.1016/j.snb.2013.10.106
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2.3 Transverse (out-of-plane) bending vibrations of thin 

microcantilevers 

The hydrodynamic function of a transversely vibrating beam of 

ribbon-like cross-section (i.e., width b much larger than the thickness 

h) was previously determined in [12] by using the method of moments 

to solve for the velocity field in the fluid and in [11] by performing a fit 

of the numerical results of [12]. 

A more accurate approximation of the total hydrodynamic force 

acting on a transversely vibrating microcantilever in liquids should 

include both the effects of the pressure and shear stress exerted by 

the fluid on all faces of the beam of finite cross-sectional dimensions. 

Due to the symmetry of the problem, the hydrodynamic forces acting 

in the 𝑥 or 𝑦 direction on a beam with a rectangular cross-section 

vibrating transversely will cancel each other out. Only the 

hydrodynamic forces acting in the 𝑧 direction will then affect the 

response of the beam. These forces (Fig.3a) are the pressure forces 

acting on the large faces (of dimension 𝑏) and the shear forces acting 

on the small faces (of dimension ℎ). It can be assumed that the 

microcantilever is long enough so that the hydrodynamic force acting 

on the surface at the unsupported end of the beam is negligible. 

Recently, results for the hydrodynamic function in the case of 

transverse bending that accounted for both the beam’s aspect ratio 

(h/b) and the Reynolds number (Re) of the fluid flow have been 

published [13]. A Taylor series of the analytical function or a fitting of 

the numerical results can be made, and then the hydrodynamic 

function Γ can be written as 

Γ𝑟 = 𝑎0 (
𝑏

ℎ
) + 𝑎1 (

𝑏

ℎ
)

1

√𝑅𝑒
+ 𝑎2 (

𝑏

ℎ
)

1

𝑅𝑒
          (9) 

Γ𝑖 = 𝑏0 (
𝑏

ℎ
) + 𝑏1 (

𝑏

ℎ
)

1

√𝑅𝑒
+ 𝑏2 (

𝑏

ℎ
)

1

𝑅𝑒
          (10) 

With 𝑎0, 𝑎1, 𝑎2, 𝑏0, 𝑏1 and 𝑏2 being functions of aspect ratio b/h, and 

the Reynolds number, Re, defined as 

http://dx.doi.org/10.1016/j.snb.2013.10.106
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𝑅𝑒
𝑤𝑏2ρ𝑓

4η
                           (11) 

For the ribbon-like case, 𝑎0, 𝑎1, 𝑎2, 𝑏0, 𝑏1 and 𝑏2 have constant 

numerical values. In [14] a fit of the results of [11] has been made 

and the obtained numerical values are: 

𝑎0 = 1.0553         𝑎1 = 2.6868        𝑎2 = 0 

𝑏0 = 0         𝑏1 = 2.6883        𝑏2 = 1.3682    (12) 

2.4 In-plane vibrations of thin microcantilevers: lateral 

bending and elongation 

In 1851, Stokes investigated the forces acting on an infinite 

rigid plane undergoing a sinusoidal, in-plane motion [15]. This is 

commonly called Stokes’s second problem. The fluid forces on a 

laterally vibrating beam of infinitely thin cross- section can be 

considered equivalent to those of Stokes’s second problem if the beam 

under investigation is also quite wide relative to the boundary layer 

thickness of the fluid. In this case, the hydrodynamic force can be 

expressed as 

 

 

(13) 

 

 

This equation corresponds to the more general form of Eqs. 9-10 for 

the following values of coefficients: 

  

  

(14) 

 

http://dx.doi.org/10.1016/j.snb.2013.10.106
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However, Eq. 13 neglects edge effects, which could be 

significant for vibrations in which the boundary layer thickness is not 

negligible relative to width b. Furthermore, it also neglects the fluid 

resistance due to pressure on the thin faces of the beam (those of 

corresponding dimension h) in the lateral bending mode case and the 

fluid resistance due to shear on the same faces in the elongation mode 

case (Figs. 3b-3c). These neglected terms may be important for many 

practical beam geometries. As was the case for out-of-plane 

vibrations, it can be assumed that the microcantilever is long enough 

so that the hydrodynamic force acting on the surface at the 

unsupported end of the beam is negligible. 

In the case of lateral bending, more accurate modeling has been 

studied in [13,16,17]: the work takes into account both  of the edge 

effects, which could be significant for beams whose boundary layer 

thickness is not much smaller than the width b, and the fluid 

resistance due to pressure on the thin faces of the beam. These results 

may also be fit to express them in the form of Eqs. 9-10. 

In the case of the elongation mode, it is easy to modify Eq. 14 in order 

to take into account the hydrodynamic force on the thin faces of the 

beam (of dimension h): 

 

(15) 

 

In this mode, if we want to take into account the edge effects, 

numerical simulation may be performed and fitted to express them in 

the form of Eqs. 9-10. 

3. CHOICE OF VIBRATIONAL MODES AND 

MICROCANTILEVER GEOMETRY FOR CHEMICAL 

DETECTION IN LIQUID MEDIA 

From Eq. 7, it can be seen that the decrease of the resonant 

frequency when the microcantilever is immersed in a fluid is 

essentially due to the mass effect g2; this effect can be minimized if 

the term g2;  is small in liquid. On the other hand, the strong decrease 

in the quality factor in liquid is due to the stronger influence of the 

http://dx.doi.org/10.1016/j.snb.2013.10.106
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viscous term g1  compared to the (beneficial) influence of the displaced 

fluid mass (term due to g2;) in Eq. 8. 

In order to limit the decrease of both the resonant frequency 

and the quality factor upon immersion in liquid media, alternative 

vibration modes that essentially shear the surrounding fluid rather 

than exerting normal stress on it have been studied (section 2.4); in 

particular, a comparison of values listed in Eqs. 12 and 14, within the 

context of the expressions for the hydrodynamic function (Eqs. 5, 6, 9 

and 10), indicates quantitatively that the in-plane modes result in 

much smaller g1 and g2 values than the out-of-plane mode, meaning 

that the in-plane modes are less affected by immersion in liquid. 

Examples of analyses and experimental measurements of the resonant 

frequency and quality factor associated with the two unconventional 

modes of lateral bending and axial elongation are presented in what 

follows. 

3.1 Case of lateral (in-plane) bending vibrations 

Several cantilevers with widths of 45, 60, 75 and 90 µm, lengths 

of 200, 400, 600, 800, 1000 µm and nominal silicon thicknesses of 5, 

8, 12 and 20 µm, corresponding to lateral bending resonant 

frequencies up to about 3 MHz, have been characterized in air and 

water. For operation in the lateral flexural vibration mode, thermal 

excitation and piezoresistive detection, both based on the use of 

diffused resistors, have been chosen as the actuating and sensing 

mechanisms, respectively (Fig. 4). The design of the actuation 

resistors and integrated Wheatstone bridge allows for a more efficient 

excitation of the in-plane flexural mode than the more classical out-of-

plane flexural mode [18]. 
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Figure 4. a) Schematic of the Wheatstone bridge connection, b) Schematic layout 

of heating resistors and piezoresistors at the microcantilever clamped-end, c) 

photograph of a lateral-mode silicon microcantilever with piezoresistors and heating 

resistors at the clamped-end. 

The modeling of the fluid interaction terms, g1 and g2, according 

to Eq. 13 for the lateral mode results in the resonant frequency being 

approximately proportional to 𝑏/𝐿2 (where b is the cantilever width and 

L the cantilever length), the relative resonant frequency shift from air 

to water being proportional to 𝐿/(ℎ𝑏
1

2) and the quality factor (in liquid) 

being proportional to ℎ𝑏
1

2/𝐿 [19-21]. These simple analytical results are 

based on elementary (“Euler-Bernoulli”) beam theory, which is 

applicable to slender beams (i.e., small 𝑏/𝐿 for the lateral bending 

case), and a Stokes-type fluid resistance model. The simple expression 

for Q gives excellent quantitative agreement with the measured quality 

factor in water for aspect ratios up to ℎ/𝑏 = 0.2 [19-21]. However, 

experimental results show that, for microcantilevers having larger 

width- to-length ratios, the behaviors predicted by this analytical 

model differ from measurements due to the violation of the slender 

beam assumption. To more accurately model microcantilever resonant 

behavior in viscous fluids and to improve the understanding of lateral-

mode sensor performance, a new analytical model has been 

developed, incorporating both Stokes-type fluid resistance and 

“Timoshenko beam” effects (shear deformation and rotatory inertia) 
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[22-24]. The latter effects are neglected in Euler-Bernoulli beam 

theory but become more important at larger b/L ratios, which are the 

types of geometries that promise larger Q values in the lateral flexural 

mode according to the Euler-Bernoulli analytical formula for Q listed 

above. The results of the Timoshenko beam model [22-24], presented 

in Fig. 5, exhibit a departure from linearity in both resonant frequency 

and Q for the shorter, “stubbier” specimens, trends that are also seen 

in the data. Results such as these may serve a useful purpose as 

guides for selecting microcantilever dimensions to maximize quality 

factors in liquids(in order to have small noise in the resonant 

frequency measurement) and to minimize the liquid- induced decrease 

in resonant frequency as compared to that in air (in order to yield 

higher sensitivity). 

 

Figure 5. Resonant frequency and quality factor comparison (lateral mode in water, 

h=7.02 μm, E=151 GPa): Timoshenko-based model, Euler-Bernoulli-based model, and 

experimental data [21,24]. 

Analyzing the experimental data in [21] shows that (1) for the 

first lateral flexural mode the microcantilevers exhibit quality factors 

up to 86 in water (for out-of-plane modes, Q-factors in water usually 

do not exceed 10 [25]); (2) the resonant frequencies of the first 

lateral flexural mode are only lowered by 3 % to 14 % in water 

compared to the values  in air (for out-of-plane modes, this reduction 

is approximately 50 % [10]). These two characteristics of the lateral 

mode operation are promising for future sensing applications in liquid 

media. The first chemical detection data in liquid media generated with 

lateral-mode microcantilever devices are presented in [26]. 
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3.2 Case of elongation vibrations 

For the same reason as for the lateral bending mode, the 

longitudinal mode may be of potential interest for sensing applications 

in liquid media. To assess the characteristics of this mode, self-

actuated resonant microcantilevers based on a PZT piezoelectric thick-

film sandwiched between two gold electrodes have been fabricated 

using screen-printing technology associated to a sacrificial layer 

process [27]. The microcantilevers comprising Au/PZT/Au layers [28] 

were partially released from an alumina substrate (Fig. 6). 

 

Figure 6. Schematic of piezoelectric cantilever for elongation mode operation (top); 

photo of one screen-printed Au/PZT/Au microcantilever used for in-plane elongation 

vibrations (bottom). P represents the electrical polarization and Eelec the electric field. 

Using an impedance analyzer (HP4194A), frequency spectra 

have been measured in air and in various other fluids with viscosities 

ranging from 1.5 to 500 cP for a piezoelectric cantilever (8x2x0.1 

mm3) with 7 µm thick gold electrodes (Fig. 7). Even though the quality 

factor of 353 in air is relatively low (probably due to internal 

mechanical losses and piezoelectric losses), the quality factors in 

liquids are significantly higher compared to those of classical out-of-

plane modes.  The piezoelectric cantilever exhibits a decrease of the 

quality factor from 353 to 101 when the cantilever is brought from air 

to dodecane (with 1.5cP viscosity -- on the order of that of water, 

1cP). At the same time, a decrease of resonant frequency of the first 

longitudinal mode of only 1.8% (68.8 to 67.6 kHz) is observed when 

the cantilever is brought from air to dodedane (1.5cP). 
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Figure 7. Effects of liquid on the resonant frequency and quality factor associated 

with the first elongation mode of a 8x2x0.1 mm3 PZT cantilever. 

To demonstrate the potential advantages of the (in-plane) 

elongation mode in comparison with the (out-of-plane) transverse 

bending mode, the resonant characteristics of two cantilevers of 

comparable geometries in three different fluids are summarized in 

Table 1. The elongation-mode data corresponds to the PZT cantilever 

described in the previous paragraph, while the data for the transverse 

bending mode was obtained from measurements on a silicon cantilever 

of similar dimensions (6x0.6x0.11mm3) [29]. Despite the fact that the 

measurements were made on cantilevers of different dimensions and 

material properties, the data of Table 1 clearly suggests that the 

detrimental effects of the liquid on the resonant characteristics (i.e., 

lowering Q and fr), which are quite prominent in the transverse (out-

of-plane) bending case, may be significantly reduced when the 

elongation mode is employed. This result is consistent with the earlier 

observations concerning lateral bending vs. transverse bending and 

the superiority of in-plane modes over out-of-plane modes in liquid-

phase sensing applications. 

As was the case with lateral-mode silicon cantilevers having an 

integrated scheme for actuation and measurement, the thick-film 

piezoelectric cantilevers actuated in the longitudinal mode are 

promising in terms of sensitivity and limit of detection for 

(bio)chemical detection in liquid media. 
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Table 1. Comparison of experimental data for resonant characteristics of first 

elongation mode (EL) of PZT cantilever and first transverse bending mode (TB) of Si 

cantilever [29].  (Beam dimensions are comparable.) 

4. USE OF HYDRODYNAMIC FORCE STUDY FOR 

THE MEASUREMENT OF FLUID RHEOLOGICAL 

PROPERTIES 

Using the frequency spectra of microcantilevers vibrating in 

fluids and the equations of section 2, it is possible to extract the 

mechanical properties of fluids. As noted in the introduction and based 

on the results of the previous section, it is clear that successful 

chemical detection and analysis in liquids (Newtonian or non-

Newtonian) requires that the liquid properties be accurately 

characterized.  Different methods for fluid property determination have 

been developed using the transverse bending mode which, as noted 

earlier, is more influenced by the fluid properties than other modes 

[30]. The first of these permits the determination of both the mass 

density and viscosity of the fluid at the resonant frequency of the 

microcantilever in the fluid [29]; the second enables one to extract the 

same properties over a frequency range that includes the in-fluid 

resonant frequency [31]; two other methods are based on the same 

principle, but with the assumption that the fluid’s mass density is 

known. These latter methods allow for the determination of the real 

and imaginary parts of the fluid’s shear modulus, which characterize 

both the elasticity and viscosity of the fluid [32]. In this section we will 

focus on presenting a more detailed description of the fourth method 

(estimation of real and imaginary parts of the shear modulus over a 

range of frequencies). 

Using the amplitude and phase frequency characteristics of the 

transverse-bending microcantilever, it is possible to determine the 

value of the hydrodynamic terms, g1 and g2, at each measurement 

frequency. 
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Then, based on Eqs. 5-6 and 9-12, two analytical equations can 

be used to obtain the numerical values of both the real G’ and the 

imaginary G’’ parts of the fluid shear modulus at the frequency f: 

 

(16) 

 

                        (17)                         

 

With 

𝐵 =
𝜋𝑏1

2√2
𝑏√ρ𝑓        𝐶 =

𝜋

4
ρ𝑓𝑏2ω    𝐷 =

𝜋𝑏2

2ω
 (18) 

 

In order to measure the amplitude and phase transfer characteristic of 

microcantilevers in different fluids, chips with silicon-based 

microcantilevers of uniform rectangular cross section were provided by 

LAAS-CNRS of Toulouse, France (Fig. 8). A series of microcantilevers, 

termed LL, LH, and A, having the following lengths and widths were 

tested: LLL=2810µm, LLH=1440µm, LA=500µm, bLL=100µm, 

bLH=285µm, bA=100µm. Due to the use of SOI wafers, the silicon 

thicknesses of all microcantilevers are the same, ℎ = 20µ𝑚. The 

microcantilevers were designed to be electromagnetically actuated, 

i.e., excited by a Lorentz force [29]. For this purpose, a conducting 

path was deposited on the top surface of the microcantilever and an 

external magnet was used. For this method of rheological 

measurement, vibration amplitude measurements were made using an 

optical vibrometer that detects the out-of-plane velocity using Doppler 

interferometry (MSA 500 Polytec), after which the deflection is 

deduced from the velocity. 
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Figure 8. Schematic (left) and photo (right) of silicon microcantilever for operation 

in the tranverse (out-of-plane) bending mode. 

The rheograms presented in Fig. 9 illustrate the Newtonian 

behavior of water and of a silicone oil (20cP) obtained from spectrum 

measurements using three different cantilevers (LL, LH and A) 

covering different frequency ranges: LL between 1kHz and 5kHz, LH 

between 5kHz and 50kHz and A between 50kHz and 100kHz. The 

obtained viscous shear modulus, G’’, over the whole frequency range 

is continuous and proportional to the frequency. This means that the 

viscosity of the tested fluid is constant over this frequency range and 

as seen in Fig. 9 it corresponds to the expected viscosity values of 1cP 

and 20cP. Moreover, we note that more than one decade separates the 

two moduli; thus, G’ can be considered negligible compared to G” and 

the fluids can be considered Newtonian (i.e., they have no elasticity). 

 

Figure 9.a) Rheogram of water (1cP) measured with three microcantilevers (LL, 

LH and A) and using Eqs. 16-18, b) Rheogram of silicone oil (20cP) measured with 
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three microcantilevers (LL, LH and A) and using Eqs. 16-18 and measured with a 

classical rheometer. 

Some complex fluids have also been characterized using the 

same three microcantilever geometries (LL, LH and A). An example of 

characterization of CTAB (CetylTrimethylAmmonium Bromide) with 

microcantilevers at 19°C is given in Fig. 10, as are measurements 

made with the same concentration of polymer by Galvan-Miyoshi et al. 

at 22°C [33] and cone-plate measurements made at 19°C. As 

expected, unlike Newtonian fluids, G’ is no longer negligible.  Except 

for the G’ measurements obtained with the LL cantilevers (G’LL), all 

sets of measurements of G’ and G” clearly follow the same trends until 

100 kHz, given the temperature difference. The inconsistent results 

obtained for G’LL are most likely due to some cantilever 

inhomogeneities or to non-ideal clamping, effects which are not yet 

taken into account in the model. Nevertheless, except for G’LL, the 

cantilever-based shear modulus measurements seem to corroborate 

and extend the Diffusion Wave Spectroscopy reference measurements 

[33] up to 100 kHz. 

 

Figure 10.Rheogram of CTAB measured with a classical cone-plate rheometer and 

three cantilever geometries (LL, LH and A) and covering the frequency range 103-105 

Hz using Eqs. 16-18. Comparison with literature DWS (Diffusing Wave Spectroscopy) 

measurements [33]. 

5. CONCLUSION 

In a liquid medium, the influence of the hydrodynamic force on 

the microcantilever’s dynamic response is much more pronounced than 
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in a gas medium. Appropriate modeling of this hydrodynamic force, 

taking into account the particular mode of vibration, is necessary in 

order to understand the complex interplay among the various system 

parameters and to achieve the promising potential of these types of 

devices in liquid-phase chemical sensing applications and beyond. In 

this paper, we have provided an overview of the relevant 

hydrodynamic force equations for three different modes of vibration 

(transverse bending, lateral bending and elongation) and presented 

two different applications for these  modeling efforts: (a) the choice of 

optimal geometry and vibration mode for liquid-phase chemical 

detection and (b) the determination of the frequency-dependent 

rheological properties of liquids, which is also of paramount 

importance in achieving successfully detection of chemical species in 

more complex fluid environments. 
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