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ABSTRACT 
PERPETUAL PAVEMENT ANALYSIS FOR THE MARQUETTE 

INTERCHANGE INSTRUMENTATION PROJECT 
 
 

Nicholas J. Hornyak, B.S., M.S. 
 

Marquette University, 2010 
 
 

With the emergence of the mechanistic-empirical pavement design process, 
development of pavements rely on the structural response and fatigue characteristics of 
pavement materials due to traffic loads.  In the past, pavement design has been almost 
entirely based on empirical data.  One area of interest in designing hot-mix asphalt 
(HMA) pavements is the fatigue life of the pavement, which has been shown to be 
dependent on the horizontal strain in the pavement.   

 
This research is focused on measuring the structural response of a pavement 

located within the Marquette Interchange Project in order to analyze fatigue behavior 
with great detail.  Virtually all variables which affect the life of HMA pavements were 
measured and analyzed in accordance with the structural data.  Assumptions that were 
historically used in design were verified and suggestions regarding the structural response 
of the pavement are given.  These include results from analyses of load pulse duration, 
analytical stress/strain predictions, and strain influence. 
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Chapter 1 - Introduction 
 

Traffic volume in the United States has been growing at a steady pace since the 

car was introduced.  It was immediately apparent that the ability to move across large 

distances with little effort was of huge benefit.  This ability has been the foundation for 

the economic and technological growth in United States for decades and will continue for 

decades to come.   

A younger Dwight D. Eisenhower participated in military convoy across the 

United States shortly after World War I.  The purpose was to field test Army vehicles and 

to measure the ease of moving an Army across the continent.  During the Second World 

War Eisenhower served as an Allied Commander in Europe, overseeing the defeat of the 

Nazi army.  He was fascinated at the mobility of the Nazi army, due largely to the 

autobahn system of roadways.  When Eisenhower returned to the States and took office 

as the nation’s president, he persuaded congress to pass the Federal-Aid Highway Act of 

1956, the birth of the interstate highway system (Pfeiffer, 2006). 

Today, all citizens of the U.S. enjoy the benefits of a high quality transportation 

system thanks to the efforts of Dwight D. Eisenhower and other supporters of the system.  

However, in 2006, the system celebrated its 50th anniversary, and many of our roadways 

are deteriorating and need rehabilitation.  Present traffic volumes are higher than 

engineers expected when developing the system, and the cost of delays to today’s 

motorist is large. 
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These costs are well understood in today’s economy, and civil engineers are 

charged with building new facilities with more capacity, better performance, safer and 

longer design lives while still keeping designs economical. 

Pavement design ideology has undergone changes since the first highways were 

built, and there is now a revolution taking place.  In the past, pavements were designed 

using empirical data from a handful of road tests, experience, and rules of thumb.  Since 

computers have become common place, more detailed design procedures based on 

modern engineering concepts are being implemented.  This new design process is 

currently referred to as the Mechanistic-Empirical (M-E) pavement design process.  It 

incorporates basic material mechanics principles while still maintaining some of the 

empirical relationships of past and present pavement research. 

 
1.1 - Problem Statement 

 

Most asphalt pavements will eventually deteriorate over time to a condition where 

the roadway is unsafe or unusable.  Typical failure modes are bottom-up fatigue cracking, 

rutting, thermal cracking, and top-down fatigue cracking.  Pavement engineers have been 

designing new facilities with higher quality materials and longer lasting performance.  

However, the determination of service life for a particular design has been difficult to 

accurately predict.  These poor predictions generally come from the variable nature of the 

materials used for construction and traffic uncertainty.   

Of particular interest is a new concept called perpetual pavement, sometimes also 

called long-life pavements.  The design philosophy of perpetual pavements is to limit the 

average maximum tensile strain due to an 18 kip axle load during July temperatures to 
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prevent the bottom-up mode of failure.  The specific limiting values of strain are 

disputable, but generally fall around the 70 micro-strain range.  This strain threshold 

corresponds to stresses that are near the endurance limit of the pavement structure.   

It is understood that while this only prevents one mode of failure, other failure 

modes can be accommodated by good mix designs and simple preventative maintenance 

and rehab work.  While these other modes of failure are possible, they should be limited 

to a sacrificial wearing surface.  The main structural component of the pavement remains 

intact and when needed a removal and relay of the wearing surface can restore quality.   

These pavements have become mainstream in the state of Wisconsin, but the 

predicted and actual performance has not been analyzed.  Furthermore, the maximum 

tensile strain, a main limit state during design, has not been accurately measured in actual 

pavement structures.  This research aims to answer these questions concerning perpetual 

pavements. 

 
1.2 - Objectives/Significance of Work 

 

This research highlights and analyzes the in place performance of a perpetual 

asphalt pavement section located along I-43 NB within the north leg of the Marquette 

Interchange project in downtown Milwaukee, Wisconsin.  Numerous dynamic pavement 

sensors were installed into this test section and continually recorded.  The data produced 

is valuable because it allows pavement engineers to analyze dynamic responses year 

round under real traffic.   

Most pavement test tracks and test facilities developed used closed coursed traffic 

or simulated traffic loading.  It has been difficult to capture the ‘real’ effects of real 
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traffic due to technological limitations of both hardware and software used in measuring.  

In addition, most simulated testing facilities take only dynamic pavement response 

measurements periodically, not continuously, leaving gaps of information that could lead 

to erroneous conclusions.   

Novel methods have been developed in this work to analyze the massive amount 

of data collected.  Both the real data and theoretical calculations were then meshed 

together as an in depth comparison between predicted and actual pavement responses.  In 

addition many other interesting observations and relationships have been uncovered and 

are discussed.   

The benefits of understanding how perpetual pavements respond over time to 

traffic loads are invaluable.  This project provides engineers a window into the pavement 

aging process, showing how the pavement responds dynamically to repeated loads 

throughout seasonal variations.  At a minimum, the state of Wisconsin has gained data to 

help pavement engineers design more reliable and cost effective pavements.  It is hoped 

that this data and research will benefit the pavement engineering community as a whole.   

 
1.3 - Organization of Research 

 

This project is comprised of five main sections which are the following: literature 

review, instrumentation, data processing and analysis, pavement modeling, results and 

conclusions. 

The literature review highlights past research regarding pavement life prediction, 

performance, and response, and formulates a basis for the need for this research.  

Instrumentation covers all aspects of the pavement test section, detailing the specifics on 
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the location, orientation, and measurement type of each sensor and how the data was 

acquired and stored. 

Data generated from the test section was stored and subsequently post processed 

to gather all of the pertinent information.  The data processing and analysis section covers 

these processes and thoroughly explains the algorithms and data mining techniques used 

to find the important information. 

In order to fully analyze the pavement test section, a finite element model was 

built and used to compare analytical and measured pavement response to loads.  A fully 

automated program was written to accomplish this and implements a finite-element 

model for the analysis. 

Finally, the results from the modeled and measured pavement responses were 

combined for comparison to understand the pavement behavior.  Final conclusions 

regarding the study are presented in an organized manner.   



6 
 

Chapter 2 - Literature Review 
 
 
There have been many attempts to accurately model pavement performance in 

order to predict pavement service life.  These attempts include studying pavements on 

macro- and meso- level scales.  Research at the macro-level scale is composed of full 

scale test tracks and accelerated testing facilities.  The meso-level scale consists of 

research that has been performed on smaller material specimens studying properties such 

as cracking mechanisms, binder film behavior, healing, etc. under controlled laboratory 

testing.   

The following is a summary of research that pertains, in most respects, to the 

research conducted for this project.  Some of the most recent work is presented and older 

work is also included to provide a complete understanding of the progression of the 

pavement design theory and state of practice.  

 
2.1 - Asphalt Pavement Design Principles 

 

The American Association of State Highway and Transportation Officials 

(AASHTO) have made large contributions to the practice of pavement design and 

research.  The first edition (1961) of the design guide (known as the “AASHO Interim 

Guide for the Design of Rigid and Flexible Pavements”) used pavement models created 

from data taken from a full scale highway experiment known as the AASHO Road Test.  

This experiment helped formulate a design process which was largely, if not completely, 

empirically based.  This design process was carried through to the 1972 and 1993 

versions of the design guide.  The 1993 design guide is still in use today but is quickly 

being replaced by the Mechanistic-Empirical Pavement Design Guide (MEPDG).  The 
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concept of mechanistic-empirical design implies elements of both empiricism as well as 

the principles of mechanics.   

 
2.1.1 - AASHTO Design of Pavement Structures (AASHTO, 1993) 

 
 
For the purposes of this research and understanding its importance, the salient 

features of the current pavement design methods need to be understood.  In pavement 

design it is important to consider all factors which affect the performance of a pavement.  

The guide makes 9 distinct considerations for pavement design (AASHTO, 1993); 

 

1. Pavement performance 

2. Traffic 

3. Roadbed soil 

4. Materials of construction 

5. Environment 

6. Drainage 

7. Reliability 

8. Life-cycle costs 

9. Shoulder design 

 

These considerations are basic in nature, but cover the factors that dictate the life 

of a pavement in service and should be included in any thorough research.   

Pavement performance includes functional performance, structural performance, 

and safety, of which the design guide focuses on the former two.  The structural 

performance considers the pavement’s ability to carry loads and the associated distress 

(fatigue cracking, rutting, thermal cracking, etc.) that result from use.  Functional 
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performance is strictly confined to how well the pavement serves the user and typically 

centers on a driver’s level of comfort while in vehicles.  

This performance concept formulates the basis for the estimating the life of a 

pavement and the serviceability of a pavement versus time can be used to measure 

performance.  The unit of measure for performance by AASHTO is given as the present 

serviceability index (PSI) which is a function of pavement distress and roughness, the 

measurement of which is dominated by roughness.  A pavement begins its life with a 

measured PSI value, which decreases with time as the pavement undergoes distress from 

repeated loading.  Over time, the pavement will have a PSI value lower than an 

acceptable limit, at which point the life of the pavement has been consumed.   

One important product of the AASHO Road Test was the development of axle 

load factors and the effect that traffic has on pavement performance and its associated 

deterioration.  The AASHO experiment compared the damaging effects that different axle 

loads have on the pavement and the individual damage relative to a standard 18-kip 

equivalent single axle load (ESAL).  Equivalent axle load factors (EALF) were 

developed to convert the incremental damage from any axle repetition into the equivalent 

number of ESALs to cause the same amount of damage.   

For instance, AASHTO recommends an EALF = 0.26 for a 13-kip axle load 

(assuming a referenced pavement strength and terminal serviceability), which roughly 

implies, 4 repetitions of a 13 kip axle load equates to the same damage caused by one 

repetition of an 18 kip single axle load (AASHTO, 1993).  These load factors have been 

developed for single, tandem, and tridem axle groups for various load magnitudes.  The 

traffic that the pavement will endure is then broken down into the various load groups 



9 
 

and converted to an estimated number of ESALs for the design period.  Pavement fatigue 

models are then used to estimate the number of repetitions to failure and the two values 

are compared.   

The road bed material properties are considered in flexible pavement design 

through the use of the resilient modulus, MR, of the soil.  The resilient modulus of a soil 

is similar in concept to the Young’s modulus of elasticity.  However, during testing of the 

soil, the specimen is subjected to a range of repeated compressive loads under varying 

confining stress loads.  The resilient modulus is defined as the stiffness of the material 

after a predefined number of conditioning load repetitions and is the ratio of the deviator 

stress to the recoverable strain of the soil.   

 

 
Figure 2-1 - Recoverable strain during resilient modulus testing. 

 

    

                                                                   (2-1) 

 
 

where MR =  resilient modulus, psi 

 σd = deviator stress, psi 

 εr = recoverable strain, in/in 

 

Accumulated 
Plastic Strain 
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In the 1993 Design Guide, the resilient modulus of the road bed materials is used 

directly in the design computations.  Additionally, MR values may fluctuate with 

environmental conditions, and average seasonally adjusted values are typically used.   

In addition to the road bed (native) materials described above, the mechanical 

properties of the sub-base, base, and surface layers of the pavement structure are needed 

for design.  In general, the bound and unbound materials are characterized by their MR 

values, which are converted to layer coefficients used to calculate a Structural Number 

(SN) for the particular pavement design.  The SN is an index that is used to determine the 

total depth of the pavement structure and is based on assigned layer strength coefficients 

and thicknesses.  The SN is used directly in computations to calculate the allowable load 

repetitions for the pavement.   

Two major environmental factors affect the material properties of the pavement 

structure; temperature and moisture.   In regards to bituminous pavements, the stiffness of 

the bound layers decreases as temperature increases, resulting in higher stresses being 

imparted to the layers below.  At lower temperatures, the stiffness of bituminous 

materials increases resulting in lower stresses imparted to the layers below, but the 

material also has a tendency to crack.  In addition to this, the continuous temperature 

fluctuations can lead to thermal cracking from expansion and contraction.   

The performance of native and other unbound layers in a pavement structure may 

be susceptible to moisture or a combination of both moisture and temperature changes.  

Highly plastic soils, such as clays, can be significantly weakened (reducing stiffness 

values) in the presence of high moisture contents.  Under freezing conditions with the 

presence of moisture, soils can become frozen and can have large increases in stiffness, 
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while some other soils can also be classified as “frost susceptible”.  During periods of 

below freezing temperatures, ice lenses may form causing these soils to deform leading to 

heaving and frost weakening.   

Wind, solar radiation, ambient air temperature, rainfall amount, etc. are all 

contributors to the particular effect on a pavement’s structural performance.  In the design 

of the pavement structure, these environmental effects are typically accounted for by 

creating a realistic variation in the stiffnesses of the pavement layers throughout the 

seasonal analysis periods.   

Precipitation is mitigated by designing drainage for the pavement system and is 

very important in reducing the effect that moisture may have on the pavement materials.  

In design, drainage factors are applied when computing the SN for a given pavement 

structure, but these are based heavily on empiricism.   

In addition, shoulders have been shown to increase the performance of certain 

pavement designs by reducing moisture intrusion and providing support of lateral 

movement of the other layers of the pavement structure.  The 1993 Design Guide makes 

no provisions for the benefits of shoulders, but recommends including beneficial effects 

based on field observations and experience.  A guide for the design of shoulders is 

included however. 

Encompassing all of these design variables, is life cycle cost and reliability – two 

important aspects of pavement design.  As costs rise, the stakes are higher for 

governmental agencies to provide suitable facilities that provide the best performance.  

Reliability is used to predict the performance of a design which rest on the accurately 

predicted traffic volumes, material properties, and environmental conditions.  The 1993 
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Design Guide provides provisions for including reliability into the pavement design 

process, while, with respect to life cycle costing, it is left to the engineer to predict the 

construction and future maintenance costs. 

 
2.2 - Full Scale Experiments 

 

Numerous full scale experiments have been executed to try to represent the 

pavement responses under “real world” conditions (Timm et al., 2004).  Some of the very 

first experiments produced the empirical data that some design guides were based upon.  

However, as pavement behaviors were better understood and as the technology to 

measure these pavement behaviors became more efficient and economical, these 

experiments have been repeated in greater detail and scope.  The research, which is the 

basis of this work, is an example of this type of experiment.   

 
2.2.1 - NCAT Structural Experiment 

 

The National Center for Asphalt Technology (NCAT) at Auburn University test 

track was started in 2000 and has produced excellent research concerning asphalt 

technology.  The track consisted of forty-five flexible pavement test sections, each 200 

feet long, and was continuously loaded with FHWA Class 9 vehicles with controlled axle 

configurations and weight.  The trucks were used for the sole purpose of applying load 

repetitions to the pavement and were driven on the track for eighteen hours a day.  The 

test track was an example of an accelerated performance testing facility (consuming 10 to 

15 years of design life in 2 years).  Within the numerous test sections are a variety of 
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different research activities (Brown et al., 2002) (Freeman et al., 2001) (Timm & Priest, 

2004) 

In 2004, sensors were installed in eight sections of the NCAT test track for 

measuring dynamic pavement responses.  The eight sections selected were constructed of 

asphalt with varying structures and asphalt mix designs.  Asphalt strain gauges were 

installed as the primary source of data for pavement analysis.  Along with these 

instruments, earth pressure cells (of two different types), vertical compression gauges, 

soil moisture (time domain reflectometry) probes, and temperature probes were installed 

to provide supplemental data. 

The installation of the sensors was a success, with only a few gauges not 

surviving the installation.  It was suspected that failure was due to damage to the sensor 

leads during HMA compaction.  Low speed data was recorded for the environmental 

sensors such as temperature and soil moisture.  The outputs of strain sensors and earth 

pressure cells were recorded at high speed under traffic from the calibrated test vehicles.  

The data was analyzed in a piecewise manner, taking the information that was considered 

most crucial.   

The information taken from the study was used to calibrate the pavement design 

processes to the local variables.  The stated objectives of this particular research were to 

validate mechanistic pavement models, develop transfer functions for typical asphalt 

mixtures and pavement cross-sections, study the dynamic effects on pavement 

deterioration, and evaluate the effect of layer thickness and polymer modification on 

structural performance.  One of the most important results from the project was the 
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calibration of pavement design parameters for local conditions (Priest & Timm, 2006) 

(Priest, 2005) (Timm & Priest, 2004). 

Wheel wander is a phenomenon that takes place on virtually every roadway and is 

defined by the natural meandering of vehicles transversely across the pavement lane.  

This occurs naturally since a driver has a limited ability to drive in a straight line given 

the natural conditions of the environment such as pavement cross-slope, smoothness, 

wind direction and speed, vertical and horizontal alignment, etc.  This traffic wander is 

important to pavement analysis because it affects how much damage the pavement 

undergoes at one particular location.  Evidence for the magnitude of this effect was found 

by researchers studying pavement fatigue under heavy load simulators in which the 

pavement life was significantly shorter when the load was confined to one path (Buiter et 

al., 1989) (Timm & Priest, 2005).   

The researchers at the NCAT test track found the wheel wander to be normally 

distributed with standard deviations between 7.6 and 8.0 inches.  These results were 

found to agree with past research (Buiter et al., 1989) (Timm & Priest, 2005).  The 

NCAT researchers found a strong relationship between lateral offset and peak tensile 

measurements, where greater offsets values resulted in lower strain.   

Strain measurements in the NCAT test were consistent with those obtained in 

other past research.  The typical strain responses at the bottom of the pavement due to a 

moving vehicle loads was noted.  For a sensor installed to measure longitudinal strain, 

this almost always consisted of a compressive strain followed a large tensile strain 

followed by a smaller compressive strain.  For the case of a sensor installed to measure 

transverse strain, the measurements almost always showed a tensile strain with no 
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compressive strains preceding or following the peak tensile strain (Timm et al., 2006) 

(Priest, 2005).  These observations coupled with peak strain data were used to support 

theories on modes of fatigue failure.   

 
2.2.2 - MnROAD 

 
 
The MnROAD program was sponsored by the Minnesota Department of 

Transportation and carried out by researchers at the University of Minnesota.  The 

program involved studying behavior at both a test track for controlled loading and a 

portion of Interstate 94 for loading under real traffic conditions.  The focus of the project 

was very broad and covered many aspects of pavement and highway design.  Of interest 

to this research was the work done to better understand the structural response of 

different flexible pavements.  Some outcomes of the project included calibrating 

pavement models to the local conditions in the region, thus improving the accuracy of 

their pavement design procedures.  The research also helped shape a mechanistic-

empirical design process (Bao, 2000). 

To measure the structural response of both PCC and HMA pavements, over 4,500 

sensors were installed into the pavement structures.  Of these, 1,151 were used to 

measure dynamic pavement response.  Amongst the numerous sensors were asphalt strain 

sensors and earth pressure cells.  These two sensor types were the main resource for 

acquiring the dynamic load response of the pavements.  Many of the other sensors used 

were focused on acquiring environmental information for the supporting layers below the 

asphalt, such as temperature, moisture content, and pore water pressure (Baker et al., 

2002) (Strommen, 2002).   
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The strain sensors were arranged in groups of three and spanned across a wheel-

path.  Some were placed to measure transverse strain while others were placed to 

measure longitudinal strain, although no reasons were given for why an orientation was 

used.  Previous pilot studies had been carried out but were mainly focused on the type of 

instruments utilized and not necessarily with the location and arrangement patterns of the 

sensors.   

Optim Electronics MEGADAC data acquisition systems were used to collect the 

data.  Acquisition was done at set time intervals and not necessarily taken continuously 

(Koubaa & Stolarski, 2002) (Worel, 2006) (Lau & Alouini, 2002).   

Researchers did note during the project that numerous sensors eventually failed, 

crippling the effort.  They also reported that they needed more data consisting of 

additional axle configurations to use in creating and calibrating models.  Work is ongoing 

at the MnROAD project site, but research regarding structural response has ended. 

 
2.2.3 - AASHO Road Test 

 
 
Shortly after the end of both World Wars, the number of vehicles on the roadway 

quickly increased.  It has estimated that the number of registered vehicles, both 

automobiles and trucks, tripled between the years of 1919 and 1929 and doubled between 

1945 and 1955 (Highway Research Board, 1961).  The increased traffic during these 

post-war periods started to wear on roadways and very little maintenance was being done 

during war-time to maintain facilities.   

In addition to this increase in traffic volume, the roadways were not designed with 

heavy loads in mind – most traffic consisted of lighter vehicles.  However, transporting 
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cargo over the road was becoming a popular method of moving goods, which meant the 

roads sustained more stressful loads.  In 1930 only 35 states enforced a weight limit on 

axle loads and by 1932 it was recommended by the American Association of State 

Highway Officials that all states should adopt a weight limit of 16,000 lb per axle for 

vehicles with high pressure tires.  It was estimated that there were only about 13 axles per 

1000 vehicles that weighed over 18,000 lbs between 1936-37 and 86 axles per 1000 

vehicles in 1945.  Coupled with the fact that the number of trucks on the road had nearly 

doubled in the same time period, the roadways experienced significant distress.   

It was obvious that a better design method was needed to construct quality 

pavements, and regulation needed to be in place to limit loads.  One interesting problem 

that was faced was how to select an optimum vehicle size and complimentary pavement 

and bridge structures.  An economic study was conducted by collaborative efforts 

between vehicle manufacturers and engineers to find an optimum vehicle size.  In the 

end, experiments were needed to generate the necessary pavement performance 

information. 

The first test was known as Road Test One-MD and was focused on applying 

controlled loads to rigid pavements that were representative of the majority of existing 

pavements.  This test would serve as the first basis for determining weight limits and 

vehicle size.  Following Road Test One-MD was another experiment known as the 

WASHO Road Test which shared similar objectives to Road Test One-MD but focused 

on analyzing flexible pavement types.   

Ultimately more tests were planned, but the scope of the proposed plan grew.  A 

larger spectrum of loads was needed to understand the effects of both light and heavier 
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loads.  In addition, the number of cross sections needed to be expanded to cover designs 

typically constructed across the country.  The culmination of the recent findings and the 

interest in expanded road testing led to the development of the AASHO Road Test.  The 

basic experimental plan was presented in 1952, and by early 1956 the first contracts for 

structural steel were awarded.   

The plan included the construction of 6 traffic loops outside Ottawa, Illinois.  

Four of the loops were loaded with heavier tractor-trailer trucks, one loop was loaded 

with light truck traffic and the last loop was used for static, creep speed (~2 MPH), and 

vibratory loads.  The last loop was meant to be relatively unloaded and serve as a control 

to observe the effects of environment alone. 

The technical objectives of the test, as stated by the National Advisory Committee 

(Highway Research Board, 1961) were the following: 

 
1. To determine the relationship between the number of various axle loads and 

groups on pavement performance. 

2. To determine significant affects of various axle loads and configurations on 

bridges. 

3. To address special interests such as the effects of shoulders, base materials, 

different tire types/pressures, military loading, etc. 

4. Document all maintenance activities needed to keep the pavement in satisfactory 

condition. 

5. Provide useful information in evaluation of existing facilities, design of new 

facilities, and future research through the development of instrumentation, test 

procedures, data, etc.   
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The result of the research project was a series of reports published after the close 

of the planned test traffic.  The compiled data would eventually lead to design practices 

and recommendations for pavement designs, published in 1961 as the Interim Guide for 

the Design of Pavement Structures.  Since data comparable to that of the Road Test was 

not available from any other sources, the design recommendations were heavily based on 

results of the experiment.  Eventually the interim guide underwent minor revisions and 

slowly evolved to the 1993 version of the pavement design guide.   

 
2.2.4 - Kansas Experiment 

 

The state of Kansas along with researchers from Kansas State University initiated 

a research project in 2005 to measure dynamic structural responses of four different 

perpetual pavements.   

The research involved designing four separate pavement cross sections and 

designing an instrumentation plan for each of the test sections.  The objectives of the 

experiment were to validate the endurance limit of the pavements, evaluate the cost-

effectiveness, and finally to compare measured horizontal strains in bottom of the asphalt 

layer with those calculated analytically from linear elastic models (Romanoschi et al., 

2006) (Romanoschi et al., 2008).   

The instrumentation included Texas Measurements (model PML-120-2L, field 

modified with additional anchors) strain sensors, Geokon earth pressure cells, and 

temperature sensors to monitor asphalt temperatures.  The test sections were loaded with 

a test vehicle on multiple occasions.  Eight of the sensors contained in one of the test 

sections were destroyed during the construction of the pavement and were later 
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retrofitted.  The retrofit was done by removing a 12 in diameter core, applying a strain 

gauge to the underside of the core and then reinstalling the core in to the pavement using 

epoxy.  The various instruments were recorded with a National Instruments data 

acquisition system and the recorded strain signals were analyzed with the aid of a 

spreadsheet program.   

The test sections were loaded with a single axle dump truck (FHWA Class 5) 

loaded with material and weighed on a static scale (11,000 lbs – front axle, avg. and 

19,000 lbs – rear axle, avg.).  In addition to this test vehicle, a rolling wheel 

deflectometer (RWD) was used to stimulate the gauges and measure deflections.  The 

instruments were sampled at 3 kHz while only storing the average of ten measurements.   

They found that strains measured in the same section varied as much 30 to 60%.  

They attributed this to construction and dynamic loading effects.  They also report that 

measured strains were highly influenced by vehicle speed, with much higher strains 

induced at slower speeds.  However, the effect due to increasing speeds was reduced as 

speeds increased.  Three different speed regimes were used during the tests: 20-25 mph, 

40-45 mph, and 55-60 mph. 

The authors also noted that strains were highest for the thinnest pavement design 

and steering axle strains were measured at about 50 to 70 % of the measured rear axle 

strains.  For a single axle with dual tires, the transverse strains were always larger than 

the corresponding longitudinal strains for all cases (temperature, speed, and pavement 

cross section).  Linear elastic analysis of the test sections with the same loading scenario 

resulted in the calculated longitudinal strains being larger than the transverse, 

contradicting what was measured in the field.  The authors note that this observation may 
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be due to the chosen instrumented sections, which are close to the shoulder of the 

roadway.   

As expected, higher strains were recorded during the warmer months, confirming 

that pavement temperature has a significant effect on the pavement response.  Measured 

strains under dual tire loading, also show that transverse strains were typically larger than 

the longitudinal strains.  The authors attribute this to the pavement not recovering 

completely after the first axle passes over the gauge.   

Everstress (an FE pavement analysis software package) model results for the 

pavements showed that the measured transverse strain were almost twice as large as those 

calculated by Everstress.  In addition, measured longitudinal strains were about half of 

the computed strains and the measured vertical stress about one-third of that calculated.   

 
2.3 - Fatigue Testing 

 
 
During the late 1950’s, a great deal of research was being conducted on the 

fatigue behavior of metals, and the science was quickly extended to asphalt.  Continuum 

damage mechanics is a study devoted to the accumulation of “damage” a material 

undergoes during fatigue.  Most notably for the purposes of HMA materials, damage 

accumulation in regards to fatigue failure is of most interest, and the most widely 

accepted concept was proposed by M.A. Miner (Miner, 1945).  Miner’s Rule allows the 

fraction of damage in a material to be calculated as the ratio of the number of applied 

load repetitions to the amount of allowable load repetitions (allowable in regards to 

failure) and is stated mathematically in Equation 2-2. 

 



22 
 

                                                           




k

i i

i

N

n
D

1  (2-2) 
 

where D = damage 

 k  =  number of different stress levels 

 ni  = actual number of load repetitions for stress level k 

 Ni = allowable number of load repetitions at stress level k 

 
As an example of the rule, suppose an A36 steel fatigue specimen is subject to 

tensile fatigue testing at some level of constant stress amplitude.  At the beginning of the 

test, the damage is 0 and at the end of the fatigue test (that is, at failure), the damage is 1 

(100%).  The damage is often indicated by the elements decrease in stiffness throughout 

each loading cycle – implying that small cracks have formed and are growing (the 

decrease in stiffness only occurring after cracking has started), effectively decreasing the 

section of the specimen.  In this particular case, failure of the specimen could be 

represented by the complete fracture through the specimen – damage at the failure state 

would be 100%.   

It is important to remember that higher stress levels during a fatigue test will 

cause the allowable number of load repetitions to decrease and the opposite will happen 

for lower stress levels.  It also follows from this that at higher stress levels, the unit 

damage per cycle is greater than that at lower stress levels.   

Many mechanistic-empirical design procedures today apply Miner’s hypothesis to 

estimate the accumulated fatigue damage for pavements.  The application of this damage 

theory resulted in a beam fatigue test for compacted HMA specimens, pioneered by 

Monismith and Deacon (Deacon, 1965) (Tayebali et al., 1996) (Monismith & Deacon, 
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1969).  The testing apparatus was designed to continuously and consistently bend a prism 

of compacted HMA cut to the required dimensions.  The deflections of the beam are 

measured during testing and the stiffness of the beam is then back-calculated using the 

deflection and loading.  Failure of the HMA specimen is typically considered when the 

stiffness has reach 50% of its initial stiffness.   

Fatigue testing of many different HMA specimens has resulted in a handful of 

transfer functions which relate a level of strain to the allowable number of load 

repetitions.  The most popular were developed by Shell Oil (Shell, 1978) and the Asphalt 

Institute (Asphalt Institute, 1991), however an updated model has been given in the new 

Mechanistic Empirical Pavement Design Guide (MEPDG) and is based on a National 

Cooperative Highway Research Program (NCHRP) study (Witczak et al., 2003).  All 

models follow the general form shown below in Equation 2-3. 
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Where:  Nf =  number of load repetitions to fatigue cracking 

 εt =  tensile strain at the critical location 

 E =  dynamic modulus of the material 

 k1, k2, k3  =  laboratory regression coefficients 

 C  =  laboratory to field adjustment factor 

 
The testing protocol recommends a specific loading sequence, but there has been 

much discussion on the effects of different loading scenarios.  A load cycle consists of a 

steadily increasing load up to the maximum followed by a subsequent release which is 
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finally followed by a short rest period (load frequency of 1-2 Hz with a 0.1 second load 

time). 

Deacon conducted extensive fatigue testing of HMA specimens using the 

developed fatigue equipment and found that under a controlled-stress mode of testing, 

there was a linear relationship between the logarithm of the mean fatigue life and the 

logarithm of the stress level.   

It was also observed that the rate of loading on the specimens had a profound 

effect – faster loading rates were associated with a shorter fatigue life.  Similarly, longer 

load durations were shown to shorten fatigue life.  Longer load durations also resulted in 

lower stiffnesses (Deacon, 1965).  Deacon postulated that the two aforementioned 

observations can be attributed to the visco-elastic nature of HMA materials. 

In addition to these, Deacon observed that, for his specimens, a larger initial 

stiffness modulus resulted in a longer fatigue life.  A higher specific gravity also 

indicated a longer fatigue life. Ultimately the testing conducted by Deacon indicated that 

the most general damage determinant was the initial maximum principal tensile strain in 

the bituminous binder.   

However, Deacon’s initial testing was done at a rather low-cycle fatigue and very 

high-cycle fatigue had yet to be studied at the time.  High-cycle fatigue has been stated as 

being probably the most difficult phenomenon to study within solid mechanics.  This 

consequence results in many failures caused by high-cycle fatigue – the difficulty in 

studying stemming from the very small and hard to measure micro- or nanoscale defects 

initiating much below the engineering yield stress (Lemaitre & Desmorat, 2005).  It has 

also been noted that for high-cycle fatigue, the experimental data always possesses a 
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large amount of scatter and that a factor of 10 on the number of cycles to rupture on 

similar tests is normal.  Furthermore, a probability analysis should be used where 

possible when studying high-cycle fatigue in order to integrate reliability into design 

(Lemaitre & Desmorat, 2005). 

 
2.3.1 - Endurance Limit 

 

With the increasing emphasis on extended life HMA pavements, also called 

perpetual pavements, the existence of a fatigue endurance limit (FEL) has been 

postulated to exist for HMA materials, and initial data supports this theory.  The FEL 

follows from observations that fatigue behavior at low strain levels does not follow the 

same relationship as that of the materials subjected to “normal” stress levels, and that 

there exist a strain limit for HMA materials below which no damage occurs (Carpenter et 

al., 2003).   

This concept was originally developed for metals where below a particular stress 

amplitude level, the plot of a stress amplitude versus cycles to failure plot became a 

horizontal line, indicating an infinite fatigue life.  Monismith and McLean first proposed 

the FEL for HMA materials to be around 70 microstrain for typical HMA mixtures. 

The significance of the FEL for HMA materials would be such that a pavement 

structure thickness design would depend only on limiting the maximum tensile strain to a 

value at or below the FEL strain.  In addition to this, the pavement structure would 

require little or no consideration of a traffic analysis.  A minimum thickness to limit the 

strain below the FEL would be all that is necessary.  There is no longer a need estimate 
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consumed fatigue life because the life is essentially infinite (for the bottom-up fatigue 

mode of failure that is) (Carpenter et al., 2003). 

Fatigue testing conducted by Carpenter et al., has clearly established the existence 

of the FEL (Carpenter et al., 2003).  A survival analysis conducted using the Long Term 

Pavement Performance database indicated that the FEL theory appears to be valid and 

that the FEL is a property of the HMA material (Von Quintus, 2006).  Another study by 

Prowell et al. (2006) suggests that fatigue testing should be conducted in excess of 10 

million cycles to accurately determine the FEL strain limit.  They also suggest a FEL 

strain limit of approximately 100 microstrain.  Different modeling techniques have been 

applied in order to create predictive tools based off of conducting far shorter fatigue test 

durations (Prowell & Brown, 2006).  

 
2.3.2 - Dissipated Energy Theory 

 

As a further look into finding a unifying approach to characterize HMA materials, 

researchers began studying the energy dissipated during various load cycles of the 

traditional fatigue test.  It was hypothesized that understanding the nature in which 

energy was dissipated would allow for a unifying characteristic of the accumulation of 

damage.  After all, it is understood that the hysteresis curve observed in stress-strain plots 

of a material being loaded and unload represents a loss of energy.   

Working off of previous research, Carpenter et al. began studying the dissipated 

energy during a traditional fatigue test by measuring the stress and strain in the sample 

during the test (Ghuzlan & Carpenter, 2000) (Ghuzlan, 2001). 
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The researchers defined the dissipated energy as the area of the hysteresis loop 

formed during the repeated loading cycles – the area of which represents energy that has 

been dissipated by the accumulation of damage within the material, heat generation, etc.  

The researchers posit that no damage occurs as long as the area and shape of the stress-

strain hysteresis loop is the same.  The supporting reason is that the area below the stress-

strain path represents the structural integrity of the sample – if the area and shape remain 

identical then the structural integrity is not lost.  However, when the total amount of 

structural integrity is changed, then damage has been accumulated (Ghuzlan, 2001) 

(Ghuzlan & Carpenter, 2000).   

The unifying law is then based on calculating the rate of change of the dissipated 

strain energy between each loading cycle.  They found an interesting behavior, which is 

defined in three different stages of the test specimen.  During the initial stage, there is a 

very rapid decrease in the rate of change of this strain energy release (the strain energy is 

actually being absorbed by the material).  The second stage is a very steady stage where 

the rate of change is nearly constant (which they refer to as the plateau stage).  The third 

stage is characterized by a sudden increase in the rate of change up until the final failure 

of the specimen.   

Many different beams were fatigued tested at different stress and strain levels in 

both stress and strain controlled fatigue tests.  They found an excellent relationship 

between the plateau value (of the ratio of dissipated energy) and the number of cycles to 

failure (i.e. when stiffness was reduced by 50%).  They extended this to both normal and 

low strain-damage levels.  This relationship was independent of test conditions and 
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mixtures and supports the idea that the energy dissipating mechanism is unique and 

defined (Carpenter et al., 2003). 

The original concept of the fatigue test was to measure the stiffness of the 

material for every load repetition done in similar fashion for fatigue of metals.  Classical 

damage mechanics uses this approach to measure the extent of damage being 

accumulated in the material.  As the material undergoes load repetitions, micro-fractures 

develop in the material which grow larger with each load cycle.  The lost of contact of 

this material leads to a reduction in stiffness.  The severity and quantity of these small 

fractures can be measured on the macro-level scale by computing the stiffness of the test 

specimen.   

However, at low strain levels, the researchers noticed that a non-linearity was 

present in the relationship between the rate of damage accumulation and strain level 

during testing.  Testing at low strain levels (below ~100 microstrain), the amount of 

damage done to the sample changes drastically and becomes a minimum.  This 

nonlinearity and breakpoint further suggest the existence of the FEL.  However, a small 

amount of damage is still accumulated, and it has been proposed that healing is the source 

of the FEL (Carpenter et al., 2003).   

Healing has been described as a continual process by which there is a return of 

structural integrity back into the material, repairing the damage done and restoring its 

load carrying ability.  This process is most evident when there is a rest period being 

repeated loading.  This process provides the connection between the dissipated strain 

energy concept and the FEL. 
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An HMA specimen possesses a certain amount of healing potential, thus a strain 

level would exist that the damage being done to the sample is equal to the healing 

potential of the specimen, with the net outcome that no damage has accumulated.  At or 

below this tensile strain threshold, the pavement would have an essentially infinite life 

(Carpenter et al., 2003) (Shen & Carpenter, 2005).   

A related study on HMA with rich bottom bases (RBB) showed that the addition 

of 0.5% binder over the control mix did increase the initial stiffness of the specimen 

(Carpenter & Shen, 2006).  It was proposed that the additional binder content in the mix 

would increase the fatigue resistance.  Contrary to this, the study showed that the 

additional binder content had little effect on the FEL and supports a conclusion that 

healing potential is a property of the specific binder and that different HMA mixtures 

using the same binder should exhibit similar FEL strain levels.   

 
2.4 - Advances in Modeling Techniques 

 

Modeling of asphalt pavements has been a focal point in order to properly create 

mathematical models to accurately predict behavior and ultimately pavement life.  In the 

past the modeling process was sometimes considered ineffective due to the long 

computation times necessary to make accurate predictions.  Faster computers have finally 

brought these numerical analysis solutions to the forefront and integrated into pavement 

analysis.   

The boundary element method (BEM), element free Galerkin, and the layered 

elastic analysis (LEA) have all been applied to represent pavement structures.  The finite 
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element method (FEM) has become prominent because of its adaptability, versatility and 

popularity amongst other disciplines (which lends to the availability of software).   

In general, three different modeling approaches have been used to model 

pavements: 2 dimensional, 2-dimensional axi-symmetric (3-D solution), and a full 3 

dimensional analysis.  Within these three classifications, use of different material models 

have been applied to extend the general first order, linear elastic analysis to a more 

refined analysis type such as non-linear material models (which could include stress 

dependencies).   

One such study, by Cho et al. (1996), aimed to determine which of these popular 

modeling techniques was the most appropriate.  In their research they directly compared 

different FEM models for a given pavement structure.  In their study they also varied the 

aspect ratio and size of each individual element.  Their work consisted of using a 2-D 

plane strain, 2-D axi-symmetric, and 3-D model.  They ran the models and compared 

them with solutions from BISAR (BItumen Stress Analysis in Roads), a LEA program 

develop for pavement analysis.   

The pavement analyzed consisted of an infinitely thick subgrade overlain by 8 

inches of PCC with a 4 inch HMA overlay.  The pavement was subjected to a 9000 lbs 

wheel load placed on circular area with a 5.9 inch radius (approximately 80 psi).  The 

models were compared based upon the maximum deflection of the pavement structure 

and the maximum tensile stress in the PCC pavement.  All analyses were carried out on a 

Cray supercomputer.  They found that in general the 2-D model appeared to be too stiff, 

however, the load was applied to a single node and was not representative.  The axi-

symmetric model performed extremely well when elements were about 1 inch by 1 inch. 
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The applied load was circular with a uniform contact pressure, which is consistent with 

actual conditions.  The 3-D dimensional solution was actually carried out in half- and 

quarter-symmetric fashion due to limits of the FE software (ABAQUS) with load applied 

at a single point.  They found that the relative magnitudes of stresses and displacements 

to be inconsistent (i.e. stresses too high with small displacements or vice-versa).  They 

concluded that this was likely due to the application of the point load and a refined load 

distribution was developed and applied to a rectangular area.  This improved load 

application generated results closer to a reasonable solution, but still the relative 

magnitudes of stresses and deflections were somewhat unreasonable, leading to the 

conclusion that much more consideration must be given to proper load modeling.   

The authors ultimately concluded that the axi-symmetric model was adequate 

given small enough element sizes and that the 3-D model could be adequate, but would 

require more consideration when designing the model. 
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Chapter 3 - Research Method 
 
 
This research is concerned with studying a section of HMA pavement located on 

an urban highway.  More definitively, the pavement structure was designed to meet the 

requirements of a perpetual pavement, also called an extended life pavement, and the 

focus of this research centers on studying the structural response to traffic loads. 

An intricate system of state-of-the-art measurement devices and computer 

systems were combined to accurately measure the pavement response due to live traffic 

loads.  This project is unique in that responses from live traffic are recorded under real 

conditions, contrary to the controlled conditions that past research projects have studied.   

This chapter highlights the important factors in the performance and life of an 

HMA pavement and illustrates the experimental procedures and equipment.   

 
3.1 - HMA Performance Variables 

 
 
Many different factors affect the performance of any pavement system.  The most 

important of these features have been accounted for in most design procedures such as 

those accounted for in the AASHTO 1993 design guide and new Mechanistic-Empirical 

Pavement Design Guide (MEPDG).  It only follows that a thorough analysis of a 

pavement system should include information, or data, on these variables.   

These variables can be viewed in four general subgroups; traffic, pavement 

design, environmental, and material variables.  These four categories act together to form 

the complex problem of accurately predicting pavement performance.   

The amount of traffic can vary greatly on an hourly, daily, weekly, monthly and 

yearly basis for a given facility.  For instance, rush hour traffic patterns can increase the 



33 
 

frequency of loads, but they can also slow traffic down, creating loads that have much 

longer durations.  At other hours it may be the case where there are periods of heavy 

truck traffic, and yet other instances when traffic is reduced and consists of light, high 

velocity passenger vehicles.   

The traffic variable can also include the type of vehicles making up the total 

amount of traffic and can be used to describe the spectrum of individual loads applied to 

the pavement system.  Heavier loads stress the pavement system much more than lighter 

vehicles, and the higher stresses lead to a higher rate of damage to the pavement and 

hence the need to accurately characterize the traffic.   

 Material properties logically play a large role in the performance of a pavement 

system.  It is necessary to understand and measure material properties to perform an 

analysis.  Just as Young’s modulus is crucial for the analysis of reinforced concrete, so 

are the stiffness properties for HMA or sub-grade materials.   

Coupled with the material properties, is the design of the pavement system.  In 

order to analyze a pavement system, a thorough knowledge of the physical dimensions 

must be known, such as layer thicknesses, lanes widths, etc.  In addition, other physical 

boundaries or discontinuities, such as construction joints, may be required for a thorough 

analysis to model stress concentrations.   

Environmental variables can influence the performance of a pavement by altering 

the other aforementioned properties.  Environmental factors heavily influence the 

material properties of HMA and exclusion of these factors in the analysis would be an 

oversight.  HMA materials are temperature dependent with high temperatures resulting in 

lower stiffness values and low temperatures causing stiffness to increase.  In addition, 
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moisture in the unbound material layers can have a profound effect on the stiffness of 

those materials, especially fine grained silts and clays.   

This research was concerned with measurement of all these variables as well as 

measurement of the pavement responses.  This collected data could then be used to 

perform a thorough analysis of the pavement system.  Past research projects have shared 

goals similar to this project, and a thorough review helped guide the development of the 

experiment – the details of which are defined in the following sections.   

 
3.2 - Bottom-Up Fatigue HMA pavement 

 
 
Of particular interest to this research is the progression of bottom-up fatigue 

cracking.  This mode of failure has been prevalent in the past and represents one of the 

major forms of structural distress for HMA pavements.  This mode of failure has been 

characterized by a crack initiation at the bottom of HMA layers with subsequent stress 

cycles causing the crack to grow and eventually propagate to the surface.  The crack 

results in a loss of section, causing other distresses to accumulate much faster.  In 

addition, the crack allows surface moisture to penetrate into the subbase and subgrade 

materials, which may cause a weakening of those layers leading to more distress.    

The means to characterize the fatigue behavior of HMA has been on-going as 

discussed in Chapter 2.  Many variations of a fatigue test have been developed, but 

Deacon and Monismith pioneered the development and analysis of a fatigue test that has 

gained the most attention (Monismith & Deacon, 1969).  The test consists of bending a 

rectangular prism of compacted HMA until failure in either a controlled stress or 

controlled strain mode.  The load is typically applied at third points along the length of 



35 
 

the beam with pinned supports at each end (four point bending), causing a region of 

constant moment at the center of the beam.  The load is applied for a duration of 0.1 

seconds followed by a 0.9 second rest period (rest periods can vary based on the 

frequency of testing), although many other loading variations have been applied in other 

studies.  Upon release of the load, the specimen is typically pushed back to its position 

before the load cycle re-starts.  Measurements during the test include the applied load, 

deflection, and strain at the center of the beam.   

Failure criteria for laboratory fatigue testing typically are based on two different 

testing scenarios.  Constant stress type testing is typically used for testing pavements 

where the HMA thickness is greater than 6 inches.  Failure of the sample is clearly 

defined by complete cracking of the specimen.  Constant strain type testing is typically 

applicable to relatively thin pavements when the thickness is less than 2 inches.  Failure 

in these types of tests is not well defined, so it is common to assume failure when the 

stress has reached 50% of the initial stress (Huang, 1993).  Fatigue testing for pavement 

thicknesses between 2 and 6 inches demonstrate characteristics of the former and latter, 

however the criteria for failure can be left to the engineer.  It is common to use the 50% 

reduction in stress for failure criteria, especially when performing a high-cycle fatigue 

test. 

Many fatigue tests were conducted on various HMA mixtures, and the analysis of 

the data showed that the maximum tensile strain in the HMA specimens was the best 

predictor of fatigue life (Deacon, 1965).  In the fatigue of metals, fatigue behavior is 

often illustrated by plotting stress amplitude versus the number of cycles to failure, with 

the plot being referred to as an S-N curve.  The same can be done for HMA fatigue 
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testing; however, controlled strain tests usually require stress to be replaced by the strain 

level at testing.  What was found is that the relationship can be nearly approximated by a 

straight line on a log-log plot of the data as shown below in Figure 3-1.   

 

 
Figure 3-1 - HMA fatigue S-N curve. 

 
 

The regression equation of this relationship is sometimes referred to as a transfer 

function because it transfers the strain level in the HMA to the number of repetitions to 

failure.  The form of this relationship has been given in the previous chapter, but bears 

repeating.   
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where  Nf =  number of load repetitions to fatigue cracking 

 εt =  tensile strain at the critical location 
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 E =  stiffness of the material 

 k1, k2, k3  =  laboratory regression coefficients 

 C  =  laboratory to field adjustment factor 

 
  
This relationship by itself does not allow the fatigue life of pavement to be 

predicted, but Miner’s principle allows the damage to be calculated.  Because of the 

nature of the traffic distributions and the associated loads of each, the induced strain in 

the pavement is not always the same (and also contains a significant amount of 

variability).  Hence it is necessary to calculate each load range and the associated fraction 

of fatigue damage, summing up the total damage over time. 

For each load range, there is some strain induced in the pavement structure which 

correlates to an allowable cycles to failure of the HMA.  Smaller strains, lead to larger 

fatigue lives, and vice versa for larger loads.  One load repetition at some tensile strain 

level, εt, causes Nf
-1 amount of damage, where Nf is the allowable number of load 

repetitions at the particular strain level.  Summing up all load repetitions for all strain 

level gives the predicted amount of fatigue damage.  When the ratio of applied repetitions 

to the allowable repetitions approaches unity, the defined threshold for considering 

failure is approached (e.g. 50% cracking of wheel path).  The preceding explanation is 

mathematically expressed below in Equation 3-2.   
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where D  = damage 

 k  = number of different stress levels 

 ni = actual number of load repetitions for stress level k 

 Ni = allowable number of load repetitions at stress level k 

 
3.3 - Current Fatigue Models 

 
 
Fatigue testing by a number of researchers has produced a handful of different of 

fatigue models.  Although none of them can be universally applied to any pavement, their 

development has been instrumental in developing the latest model used by the 2002 

Design Guide calibrated to historical data.   

The Shell Oil model was developed covering a wide range of HMA mixes, 

binders, and testing conditions.  Two models were recommended for both constant strain 

and constant stress laboratory fatigue testing (Bonnaure et al., 1980).  The models are 

given below in Equation 3-3 and Equation 3-4. 
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Constant strain 
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where Nf = number of repetitions to failure 

 εt  = tensile strain at the critical location 

 E = stiffness of the material 

 Vb = percentage of binder in mix by volume 

 PI = penetration index of binder 

  
 
The Asphalt Institute also developed a similar model which was based on 

laboratory data produced from the constant-stress test.  The model, Equation 3-5, is 

mathematically similar, except for the regression constants.  In addition a correction 

factor, C, was introduced to account for field conditions based on material volumetric 

relations (Asphalt Institute, 1982). 
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 Vb = percentage of binder in mix by volume 

 Va  = percentage of air voids in mix by volume 
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During the development of MEPDG, the aforementioned fatigue relationships 

were calibrated by changing the model parameters to match historical pavement 

performance data.  This provided a fatigue relationship which was based on data recorded 

for pavements found in the U.S. and takes into account local conditions.  Sample 

pavements were taken from the Long Term Pavement Performance (LTPP) database for 

the study.  This updated fatigue cracking model was based upon using 94 new pavement 

test sections and 42 overlay test sections.  Simulations were run for each test section 

using the MEDPG design software using modification factors on two aforementioned 

models.  Calibration factors were added to mathematical models and these factors were 

varied over a range of values.  This updated model with calibration factors is shown in 

Equation 3-6 (National Cooperative Highway Research Program, 2004).  
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Where: βf1, βf2, βf3   = calibration parameters 

 
 
The calibration factors were varied in value from 0.8 up to 2.5 based upon past 

literature concerning fatigue testing.  The data was input into the program and the 

predictions of fatigue cracking were produced.  The results along with actual field 

measurements from the LTPP database were compared and optimized to generate a 

calibrated model.  The recommended model is a version of the model given by the 

Asphalt Institute calibrated for the test section data and is given in Equation 3-7. 
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where 1f  = parameter for thin asphalt pavements 

 hac = total thickness of asphalt layers, inches 

 
3.4 - Marquette Interchange Instrumentation Project  

 

The Transportation Research Center at Marquette University was awarded a 

project on behalf of the Wisconsin Highway Research Program (WHRP) to instrument a 

section of a perpetual pavement along Interstate 43 just north of downtown Milwaukee, 

Wisconsin.  The section of highway is located just north of what is more commonly 

known to Milwaukeeans as the Marquette Interchange.  The megaproject to reconstruct 

the Marquette Interchange had been continuing since 2004 and was finished by 2008.   

As a means to make a lasting investment, an HMA perpetual pavement was 

selected as the pavement of choice for the North Leg contract.  The final pavement design 

incorporates a 13 inch (325 mm) HMA pavement built upon multiple aggregate layers 

placed over the native soils.   

The breakdown of the pavement structure is listed in Table 3-1 and Table 3-2.  

The design philosophy of the HMA perpetual pavement is to minimize tensile strains at 

the bottom of the HMA layer asphalt to maximize the fatigue endurance of the pavement.  
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In concept, the onset of bottom-up tensile fatigue cracking should be delayed for a period 

of 40 years or more.  

 
Table 3-1 - Breakdown of asphalt layers. 

 
Description Thickness, in (mm) Mix Size, in (mm) Binder Type, PG

SMA 2 (50) 0.5 (12.5) 70-28
E30 7 (180) 0.75 (19.0) 64-22
C2 4 (100) 0.75 (19.0) 64-22  

 
 
Table 3-2 - Breakdown of aggregate layers. 

 
Description Thickness, in (mm)

Open Graded 4 (100)
Dense Graded 6 (150)
Select Crushed 18 (460)  

 
As a means to confirm the design process and philosophy, the pavement section 

was instrumented to record key pavement response data in real-time under live traffic 

conditions.  In addition, multiple other measurement devices were integrated to 

supplement the pavement response data.  All measured data is stored in a remote database 

and represents a comprehensive set of response data for a heavily trafficked urban 

freeway. 

 
3.4.1 - Project Objectives 

 
 
The main of objective was to fully instrument a perpetual pavement to verify the 

design assumptions.  This implied that many sensors would be used to measure dynamic 

pavement responses under loading.  Installation of the sensors presented itself to be a 

great challenge.  In similar research projects instrumentation was done on test tracks or 

low volume roads; however, this project required meeting tight construction schedules 
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and installing instruments, sometimes, in a fraction of the time that would normally be 

required.   

The data that is recorded will be used to correlate back to the design parameters as 

a check of the design assumptions.  The first phase of the project consisted of setting up 

the system of instruments and the necessary hardware and software to acquire the data.  

Additional phases included laboratory testing to characterize the materials used for 

construction (resilient modulus, dynamic modulus, etc) and to create automated 

techniques for analyzing the mass of data.   

 
3.4.2 - Instrumentation Plan 

 
 
The Marquette research team developed the instrumentation plan which was 

presented and accepted by the Wisconsin Highway Research Program (WHRP).  Past 

research that contained similar elements to this project were studied when formulating 

this plan.  Of specific interest was instrumentation done within the MnROAD project 

sponsored by the Minnesota Department of Transportation and also the work done at the 

National Center for Asphalt Technology (NCAT) test track.  Both of these projects 

contained instruments which were similar to those used in this research project - namely 

strain sensors, earth pressure cells, moisture sensors, etc.   

 
3.4.3 - Project Location 

 
 
The Marquette Interchange is located in downtown Milwaukee at the junction of 

Interstates 43 and 94.  The interchange was originally constructed in 1968 and by the year 

2000 carried 300,000 vehicles per day and 7 million annual visitors to downtown 
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festivals and attractions.  The reconstruction of this interchange was done to enhance 

safety, widen ramps, create right-hand only entrances/exits and extend merge lanes.  The 

northern portion of the interchange, termed the north-leg, includes a 1.5 mile (2.4 km) 

segment of Interstate 43 between Wells Street and North Avenue.  The northbound lanes 

of I-43 were scheduled for reconstruction during the 2006 construction season and were 

selected for instrumentation via WHRP research grant 0092-06-01 (Hornyak et al., 2007). 

The specific instrumentation location was selected considering installation costs, 

traffic patterns, and utility access.  It was desired to locate the instrumentation section 

away from any areas that may have a lot of traffic weaving due to entrance and exit 

ramps.  However, since the setting is highly urbanized, very few sections were distant 

from such areas and some amount of weaving is inevitable.  Another important aspect 

was the physical layout of the landscape surrounding the test section.  A control cabinet 

was required to house the hardware used to collect the sensor data and it would also be 

necessary for personnel to have easy ingress and egress from the site for future 

maintenance activities that may be necessary.  Excessive distances between the data 

acquisition equipment and sensors were also unacceptable.  Of greatest importance for 

the proper location was safety – both for personnel working at the cabinet and for the 

traveling motorist.  Lastly, the proper utilities would be needed for the project.  

Fortunately, the segment of I-43 was surrounded with many lights, ramp meters, and 

other devices used for traffic management and power supply was not an issue.   

The location chosen for instrumentation is located just before (upstream) of the 

entrance ramp merge from Fond Du Lac/McKinley Avenue, as shown in Figure 3-2.  

This location provided excellent protection from traffic and an acceptable distance from 
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the sensor locations.  In addition, the site could be accessed from the on-ramp rather than 

the mainline.  The lane closest to the curb-line was chosen to keep the distance from the 

hardware and instruments a minimum. Within Figure 3-2, the three rectangular areas 

denoted “A”, “B”, and “C”, indicate the location of the instrumented pavement, the 

control cabinet, and the roadside sensors respectively. 

 

A

B

C

 
Figure 3-2 – Instrumented test section location. 

 
 

3.4.4 - Instrumentation 
 
 
As mentioned, the primary objective of the pavement instrumentation was to 

measure load-induced strains at the bottom of the HMA layer; however, many other 

sensors were included to help benefit researchers by providing structural and 

environmental data necessary for a thorough fatigue analysis.  The list of sensors includes 

strain gauges, earth pressure cells, moisture probes, pavement temperature probes, a 

weigh-in-motion (WIM) system, a wheel-wander grid, and numerous environmental 
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sensors.  The strain sensors, earth pressure cells, and soil moisture probes were calibrated 

at Marquette University prior to installation to provide the most accurate measurements 

possible. 

 
3.4.4.1 - Asphalt Strain, Subgrade and Base Pressure 

 
The general layout of the strain and pressure sensors is provided in Figure 3-3.  

As shown, a redundant strain gauge setup was accomplished by using three 8-sensor 

arrays of strain sensors, two of which were composed of strain sensors manufactured by 

CTL Group and the third comprised of sensors manufactured by Dynatest Incorporated.  

Four earth pressure sensors (2 redundant groups), manufactured by Geokon Incorporated, 

were installed to measure vertical pressures in the base and subgrade layers.  As shown in 

Figure3-3, the pressure sensors are located between the strain gauge arrays.  There are 

two pressure sensors at each installation location; one positioned approximately 3 inches 

(75 mm) below the top of the native subgrade and one approximately 1.5 inches (37 mm) 

below the top of the dense-graded aggregate base material.   

 
3.4.4.2 - Subgrade Temperature and Moisture Content 

 
Six ECH2O EC-5 moisture probes manufactured by Decagon Devices (Decagon 

Devices Inc.) and six soil temperature probes manufactured by Romus Incorporated 

(Romus Inc.), were installed in the vicinity of the pressure cells, three of each per 

location.  Pairs of temperature and moisture sensors were installed at depths of 

approximately 6, 12 and 24 inches (150, 300, 600 mm) below the top of the native 

subgrade soil.  
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Figure 3-3 - Layout of the strain gauge arrays and earth pressure cell locations. 

 
 
Two temperature gradient probes were installed to measure pavement 

temperatures at 1 inch (25 mm) intervals within the HMA layer.  To supplement the 

temperature gradient data, an infrared thermometer was mounted at the roadside and 

aimed at the pavement in the vicinity of the sensors, providing pavement surface 

temperature. 

 
3.4.4.3 - Weigh-In-Motion (WIM) and Wheel Wander 

 
WIM and wheel wander systems were purchased from ECM Incorporated  and 

installed directly after the strain gauge arrays.  The wheel wander system is composed of 

three PK piezo strips manufactured by ECM arranged in a reverse “N” pattern as shown 
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in Figure 3-4.   The wander system provides data necessary for the determination of the 

lateral placement of passing wheels, often referred to as wheel-wander, as well as wheel 

travel speed.   

The WIM system was installed immediately downstream of the wheel wander 

strips.  The WIM system utilizes quartz piezo sensors manufactured by Kistler 

Corporation (Kistler) and a Never-Fail inductive traffic loop (Never-Fail Loop Systems 

Inc.).  The quartz piezo sensors were each positioned within the outer wheel path to 

provide redundant measures of the wheel loads affecting the HMA strain and base 

pressure sensors.  The WIM system also provides data indicating the vehicles class, axle 

spacings, and speed.   

In addition, a closed circuit camera was installed by the roadside to provide a 

snapshot image of each vehicle passing over the instrumented test section.  This provides 

a check that the vehicle passing over the test section is consistent with the WIM and 

strain/pressure data.  

 
3.4.4.4 - Environmental 

 
Three different sensor types have been installed to provide environmental data.  A 

vented enclosure and temperature sensor measures the ambient air temperature, and a 

standard anemometer provides a measure of wind speed.  Two pyranometers have been 

installed to measure the solar radiation at the site (which can be used to predict pavement 

surface temperature).  Together, these environmental sensors provide supplemental data 

useful for comprehensive pavement fatigue analyses.  
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Figure 3-4 - Layout of the sensors used for wheel-wander and WIM. 
 
 
The installation of these sensors was a crucial step in this project and failure to 

achieve a reasonable survival rate of the instruments would compromise the project.  The 

details of the installation procedures, materials sample locations, etc. can be found in the 

project report (Hornyak et al., 2007).  In addition the report details the calibration 

procedures used to verify the accuracy and precision of the instruments used.  The 

measurement error within the instruments without calibration were significant – some 

errors in the strain sensors were found to be as high as 15 to 20% (Hornyak et al., 2006).   

 
3.5 - Data Analysis Software 

 
 
Due to the large amount of data being received from the project, it would be 

nearly impossible to analyze all of the data by hand.  Because of this reality, computer 

programs were developed to automate the process of data extraction.   Of particular 
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interest for this research project, and asphalt pavement research in general, is the 

maximum tensile strain induced in the pavement by a passing wheel load.  The 

development of this software took place under Phase II of the Marquette Instrumentation 

Project (Hornyak & Crovetti, 2008). 

The first task was to create a method by which the maximum tensile strain could 

be taken from the raw strain signals and then matched accordingly with the appropriate 

wheel loading.  However “real” data contains many differences from the idealized case of 

data collection which complicates this task.  Figure 3-5 is a flow-chart of the general 

process used for matching the peak strain data, load-times, and peak pressures with the 

associated wheel event.   

 

 
Figure 3-5 - Data collection process. 

 
 
 
The difficulties in analyzing the data can be viewed at two different levels - the 

first level consisting of the strain signal as a complete entity.  One aspect that is different 

from the idealized situation is the fact that there may be more than one peak in each 
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recorded strain signal.  For instance, a tandem axle group may create two peaks that are 

closely spaced, especially at high speeds.  Another concern is instances where the strain 

signal was recorded improperly, and the peak may be missing, partially recorded or 

instances where the wheel event is missing entirely.  In general, it is not surprising to find 

anomalies within the data and each of these issues must be dealt with in the programming 

code.  The causes of the error can be related to numerous things such as the vehicle 

merging into another lane, moving too slow or fast, vehicle bounce, and so on.   

The second level is viewed on a smaller scale, as individual data points.  An 

example of this sort of complication is signal noise, and how to distinguish noise from 

peak strains occurring for very light wheel loads.   

The data analysis process for sorting out these peak events was coded and is 

described in various components.  This keeps the coding understandable, manageable and 

easier to follow than one single file containing all of the code.  

  
3.5.1 - Database Architecture and Program Flow 

 
 
The database for the acquired data contains four tables which consist of the wheel 

data, WIM data, strain and pressure data, and environmental data.  Each row of the WIM 

table represents one vehicle while each row of the wheel table represents an individual 

wheel event.  Each row of the strain and pressure table represents one output data point 

from each of the 29 sensors (25 strain and 4 pressure), which were sampled at a rate of 1 

kHz. The number of data rows for each wheel event is dependent on the travel speed of 

the wheel.  
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During acquisition, the recording software enters a data buffer and samples the 

strain and pressure sensors while the load is positioned anywhere within a sixteen foot 

segment of pavement, beginning at a point 8 feet before the sensor to a point 8 feet after 

the sensor location.   

For a wheel travel speed of 60 mph (88 fps), the wheel would be within this 16 

foot measurement window for a period of 16/88 = 0.1818 seconds. Thus, for the 1 kHz 

sample rate, a total of 182 samples would be stored. As travels speeds diminish, the size 

of the recorded data buffer increase.  An identifier from the WIM system is tagged to the 

wheel data when the event is triggered. 

The environmental table consists of rows of data taken every fifteen minutes and 

has no correlation to individual wheel/vehicle events other than the time at which they 

were taken.  A graphical relationship of the data structure is shown in Figure 3-6 

(excluding environmental data).   

 

WIM Data Row Wheel Data
1st axle
2nd axle
3rd axle
4th axle
5th axle

× 29

× 29

× 29

× 29

× 29

 

Figure 3-6 - Data relationship. 
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The most logical procedure to analyze the data based on this architecture 

corresponds to Figure 3-6.  The analysis begins with one row of the WIM table (one 

particular vehicle) and caches the data row into memory.  It then uses a key (WIM ID) 

unique to the WIM table and queries the wheel table, selecting all rows that possess the 

same key.  The returned rows consist of the specific wheels for that particular vehicle.  

Finally the unique wheel identifications for individual wheels are used to query the 

appropriate strain and pressure data and then analyzed.  The results of the analysis 

algorithms are then stored into another database for future use.   

 
3.5.2 - Analysis Modules 

 
 
As stated before, the analysis package was designed in separate modules.  

Considering the programming language used in this case, C#, they are often referred to as 

‘classes’ which contain the methods to carry out the work.  The significant modules, or 

classes, used here are for the following: peak detection in signals, aggregation of the 

peaks amongst all of the sensors, matching the correct peak with each associated wheel 

event, calculation of the load times, calculation of the area under the signal trace.   

In addition to these, another module was developed to rebuild strain signals for 

axle groups which were closely spaced together – in essence taking the short recordings 

and ‘splicing’ them together to form one continuous signal.   

There are many other incidental modules which had to be created in order for the 

program to operate, however they are not essential to this dissertation and information on 
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these classes is not provided here.  These classes are responsible for operations such as 

opening database connections etc. 

 
3.5.3 - Signal Regeneration 

 
 

The function of the signal regeneration module is to take strain data for closely 

spaced axle groups and combine them into one long data stream.  The development of 

this module actually came after difficulties arose while trying to match peak tensile 

strains with specific wheel events. 

The system was designed so that when an axle of a vehicle enters the test section, 

the data acquisition system sets off events which were triggered by the wheel wander 

piezo sensors.  When a wheel was detected, the data acquisition system entered the data 

stream being generated and selected data from the strain and pressure sensors for the 

window of time the wheel was in the test section.   

Due to the limitations of the software, the recorded signals were not always 

uniform.  These differences are illustrated below in Figure 3-7 for two FHWA class 4 

vehicles recorded only a few hours apart and with similar offsets.  The wheel weights for 

the slow and fast vehicles are 5.45 and 4.1 kips, respectively.  Although the axle loads (or 

wheel loads rather) are somewhat similar, the length of the recorded signals are 

significantly different.   
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Figure 3-7 - Strain versus vehicle speed. 
 
 
If the particular vehicle has relatively short axle spacings (say a tandem or tridem 

axle group), it is possible that the windows of this data collection for the axles may 

overlap, as shown in the strain signals in Figure 3-8 for a quad axle dump truck.  Note 

that in Figure 3-8 the 3rd and 4th axle recordings are nearly identical and that the 4th 

recording actually contains data earlier than the 3rd recording. 
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Figure 3-8 - Quad axle strain signals. 
 
 
Depending on the type of vehicle and the axle configuration, it is possible to have 

nearly identical strain recordings for two or more wheel events.  This presents an issue 

for analysis because there may be two peak tensile/pressure values in one data recording, 

thus making a row-by-row analysis of the data not possible.  If it were to be done, it 

would be too difficult to differentiate which peak strain/pressure value corresponded to 

each axle.   

In addition, there is the possibility of shadowing the change in strain/pressure 

caused by the wheel event.  Since we are looking for the change in strain in the sensors 

an average of the first few data points is taken and subtracted from the rest of the data.  

For the purpose here, this subtracted value is referred to as the baseline.  The ‘shadowing’ 

problem that could occur is that for strain recordings containing multiple axles, it is 

possible that the axle event just before the current may cause a peak in the beginning of 

the data trace.  If the first few data points are averaged to try to obtain a baseline value, it 
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will compute a much higher (or lower) value than it should, thus possibly providing peak 

strains that are erroneous.   

Because the acquisition system is simply storing data from a memory buffer, the 

same data points can exist in multiple strain/pressure signals.  In the event that there are 

large overlaps in the signal traces, there may be a large number of data points which are 

identical.  The chaotic nature of the signal due to the noise and from the wheel event 

itself causes a large enough series of data points to be considered unique.  This unique 

sequence can then be used to search consecutive data traces for a sequence which is 

exactly the same.   

The algorithm used only five data points from only one gauge to do this with 

almost perfect accuracy.  The first five data points from a signal are subtracted from a 

moving array of data points from the previous signal.  If the subtraction of the two arrays 

equals an array of zeros, then the data points from the newer signal are added to the older 

signal.  This process is carried out for each wheel.  However, since the timing for each 

strain gauge is identical, the remaining 28 instrument signals are added together based on 

the location found from the first gauge.   

The final result of this module is a complete set of strain/pressure signals 

comprised of signals generated by multiple wheels.  Depending on the nature of the 

recordings, this process may yield no results.  In this event the rest of the program 

handles the analysis in a separate manner.   

 
 
 
 
 
 



58 
 

3.5.4 - Peak Detection 
 
 

The main function of the peak detection process is to search each strain/pressure 

signal recording and select the peak tensile strains.  A simple process was used to 

accomplish this goal.  Each row of the tabled data represents one peak detected in the 

signal recording and the number of peaks is limitless. 

A common method for finding peaks in data signals is to perform a linear 

regression of a set of points and subsequently analyze the slope.  When the slope equals 

zero, it is assumed there is a peak at that location.  A tool in the software package 

LabVIEW by National Instruments contained this process and was found to be quite 

accurate but the simplified process was easier to deploy and control programmatically.   

The peak detection module for this project operated in a simple manner.  The 

strain/pressure signals were comprised of data points recorded every 0.001 seconds.  First 

a submitted strain trace was normalized to a baseline value by subtracting the average of 

the first 20 points from the entire signal.  Next, beginning at the first data point, a group 

of five points are averaged.  Then another group of five data points are averaged at a 

specified distance of 10 data points away (i.e. calculating the centroid of data points at 

two distinct location spaced apart a reasonable distance).  These two averaged values are 

then subtracted.  If the difference is within a specified threshold, then the data point is 

stored as a peak.   

There are different properties which could be set in the algorithm to maximize 

accuracy.  The number of data points to use in the averaged values and the spacing 

between them can be adjusted as well as the threshold for the difference between them.  

A thorough analysis had been conducted to obtain the best values.  In addition to these an 
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overall threshold has been applied to filter out signal noise, thus anything smaller then 

about +1 με (tension) is not recorded as a peak.  A time spacing threshold has also been 

implemented, otherwise it was possible that multiple points meet the search criteria 

within the same peak pulse.   

It should be noted that the signal was manipulated before the actual peak 

detection.  Each data point is multiplied by a factor of 5 to increase the effects of values 

greater than plus or minus one.  This helps to eliminate the effects of signal noise and 

make actual peaks more pronounced.  Also, only the absolute value was used when 

comparing the difference in the average values; thus a ‘valley’ would be processed as a 

‘peak’ and the data point is stored with its original sign. 

 
3.5.5 - Load Time and Area Integration 

 
 
Two other important pieces of information that were taken from the data was the 

time of loading and the area underneath the tensile (compression) portion of the strain 

(pressure) signals.  

For a particular strain signal, the algorithm required the location of the peak data 

point of interest which was generated by the peak detection module.  The load time is 

calculated in the program by entering the normalized strain/pressure signal and moving 

backwards through the data until the strain value is < 0 and records the location (or time).  

The program then re-starts at the peak value, moving forward through each data point 

looking for the first data point to drop below zero, storing the location of the point.  The 

load time is the product of 0.001 seconds and the number of data points between the two 

stored values (based on a sample rate of 1000 Hz).  Using the two values found for the 
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load time, the program iterates through the data points and calculates the area under the 

strain/pressure curve using the trapezoid rule.   

It should be noted that for certain axle configurations, namely tandems and 

tridems, it was possible that the area and load time calculated for the axles in the group 

were exactly the same (i.e. same data for each axle in the group).  These particular values 

represent the load time and area for all three combined axles because the strain signals 

might not return to a base value.  An example of such a signal is shown in Figure 3-9  – 

the strain signal represents the tandem axle group for the class 6 vehicle.   

 

 

Figure 3-9 - Tandem axle strain signal. 
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two tables each contain 30 columns; the first column is the unique wheel ID, and the 

other 29 represent data for each of the 25 strain gauges and 4 pressure cells.   
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3.5.6 - Matching Peak Strains and Pressures to Wheel Events 

 
 
The previous three modules must be tied together in some fashion to yield 

meaningful data.  The fourth module was responsible for creating the relationship 

between the previous three modules.  This final module ultimately returns three tables of 

data which contain the peak strain/pressure, area, and load time data – each row 

associated with wheel identifications that match those in the original data tables.  These 

three tables are then stored in a new database for querying at a later time.   

This final module has three main routines contained within itself.  The first 

routine (represented by steps 1 and 2 in Figure 3-10) gathers all of the wheel and WIM 

data for a particular vehicle which typically consists of one row of WIM data and 

numerous rows of wheel data (corresponding to each wheel on the vehicle that was 

recorded).  

The second routine takes data from the peak detection program and sorts them 

into logical groups based on time (step 3 in Figure 3-10).  The peak detection module 

takes a raw strain signal and detects and records peaks within a signal.  Since there are 25 

strain sensors and 4 pressure cells, the peaks that are detected do not occur at precisely 

the same time, but need to be sorted accordingly (i.e. the raw signals are not synchronized 

in time due to the variations of the physical locations of the sensors).  This particular 

routine runs the peak detection on a signal and then organizes the results into a table 

where each row represents a relative instance of time.  The result is a table of 

strain/pressure peak values where each row represents a particular instance in time.   
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Lastly, the third routine analyzes time signatures, matches the peak data with 

corresponding wheel events, and institutes the time of loading and area routines (step 4 in 

Figure 3-10).  There are several different analysis paths the program uses based upon the 

corresponding FHWA vehicle class.   

From the WIM data, the time spacing between axles is calculated based on speed 

and axle spacing.  The program runs through the sorted and organized peak data looking 

for the same time signature and stores those particular values tagging them with the 

appropriate wheel identification.  In the event that the program fails to find a proper time 

signature match, there are default routines to employ a generalized process for storing 

peak data.   

When this module finishes, it returns three data tables containing the area, time of 

loading, and peak strain/pressure data.  From here another set of code handles saving the 

data to a database for use at a later time (step 5 in Figure 3-10).   
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Figure 3-10 - Data analysis program flow 
 

With these modules working together, a completely automated system has been 

set up to iterate through every row of WIM data and store the analysis data.  The program 

has been developed to analyze the data one week at a time.  Depending on the number of 

wheel events that cause significant strain measurements, the analysis may take up to 

several hours to process one week of recorded data.   

 
3.5.7 - Analysis Performance 

 
 
The tools developed to analyze the data and generate meaningful information 

were checked to ensure accurate results were being obtained.  To accomplish this, a series 

of vehicles were randomly selected from the database and the peak values, area under the 
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curve, and load times were computed manually.  The values were compared against those 

generated by the analysis program.   

One-hundred randomly selected vehicles were chosen from FHWA vehicle 

classes ranging from class 4 up to class 10 vehicles, which represented the most common 

vehicle types.  All of the axles for the selected vehicle were included in the comparison, 

but only one strain signal was randomly selected for each axle to account for any 

localized effects from gauge calibration factors, wheel offset, etc. 

It should also be noted that one week of data (42nd week of 2007), was used to 

sample the vehicles and that this week represented a time where ambient temperatures 

were moderately warmer and tensile strains were moderately higher.  This was done to 

maximize the number of applicable strain measurements for analysis. 

Four vehicles were selected from each class (from class 4 to class 10) which 

comprised 90 individual axles.  In some cases axles were missed by the data acquisition 

system.  However no preferential treatment was given to vehicles with omitted axles.  

Furthermore, nothing was done to account for these missed axles in terms of checking the 

performance of the analysis program.  The performance of the data acquisition process 

and the analysis process is completely independent. 

From these 90 axles, a strain signal from the first 5 senors in the first sensor array 

(the ‘A’ array) was randomly selected to be included in the evaluation.  (This was done 

because during the development of the software, a limited set of strain gauges was used 

to simplify preliminary coding.  The first four gauges consisted of longitudinal gauges 

which present a greater challenge for analysis due to the common compression-tension-

compression pavement behavior.)  The actual peak strain value was picked manually for 
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each of the 90 strain traces.  For the case of axle groups containing successive peaks, the 

value of interest was matched with the proper corresponding axle based on inspection of 

the signal.  Any strain below the threshold of +1 με (tension) was recorded as zero to be 

consistent with the analysis program.   

Figure 3-11 is a plot of actual peak tensile strain (from inspection of raw signals) 

versus the detected peak strain (selected by algorithm) for each sampled strain trace.  

Note that most of the sampled strains were lower than 12 με and the results are quite 

reasonable (R2 = 0.94).  In general the detected and recorded peak values (both strain and 

pressure) will be slightly lower than the actual value.  This is due to the fact that a 

moving average is applied to the signal before analysis – the amount of error is roughly 

0.1 με and should be small enough to ignore. 

 

 

Figure 3-11 - Actual versus detected peak tensile strains. 
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Accuracy at these relatively low strain values provides some comfort in future 

analyses were strains become substantially larger.  The algorithm used will become 

increasingly more accurate due to the inherent balancing of the simplified slope analysis 

used for peak detection.  With low strain values signal noise can sometimes become as 

large as the strain peak, possibly causing misinterpretation of the signal and hence the 

need to set a lower bound threshold of 1 με.   

As described in section 3.4.4 of the peak detection process, strains smaller then +1 

με (tension) are filtered out.  However, the plot in Figure 3-11 above shows values below 

this threshold.  This is possible because the peak detection process analyzes the absolute 

values of the signals so all extremes, valleys and peaks, are detected and because the 

signals are scaled up by a factor of 5.  Because of this it is possible that a negative 

(compressive) strain peak can be included in the result set.  In addition, the program 

locates the peaks on the representative set of signals (sensors) and locates peaks on the 

remaining sensor signals based on the window of time from the representative sensors. 

The algorithm for selecting peaks from the strain has also been applied to the 

pressure data.  No formal check has been made, but close inspection shows that the 

algorithm operates in similar manner in regard to the strain pulses.  In general the 

pressure cell instruments have much less signal noise and hence the peak detection 

algorithm operates more efficiently. 

The area under the curve and load time calculations are based directly off of the 

raw or regenerated signals and the peak strain/pressure data as stated in section 3.4.4.  

Due to this, the accuracy of these values is directly dependent on the performance of the 

peak detection.  Random checks of these calculations show that the algorithms perform as 
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designed; any errors in calculations are caused by errors in the peak detection process.  

Post processing of the data can be used to discard erroneous data since the flawed results 

contain either a set of zeros or extremely large, and clearly unreasonable, values. 

 
3.6 - Pavement Modeling 

 
 
Since experimental measurements were made in the field, the pavement was 

modeled as closely as possible in order to test the validity of making predictions for the 

pavement.  This also served to test current practices used for pavement design and 

develop a prediction model. 

The results of the modeled pavement can be used to analyze specific parameters 

such as fatigue accumulation in the pavement as well as other assumptions made during 

pavement design.  Of interest here is the magnitude of tensile strain at the bottom of the 

pavement at distances away from the load center.  The assumed distribution of tensile 

strains from analytical models may be significantly different than the experimental 

distribution.  This discrepancy among the influence areas may have implications for 

calculation of fatigue damage accumulation across the width of the pavement.   

In addition, the same scenario can be stated for vertical pressures and the stress 

influence under analytical and actual conditions.  The permanent vertical deformation of 

the pavement through fatigue is outside of the study of this work, but could be integrated 

in the future.  However, the load pulse durations are of interest for this work and the 

Method of Equivalent Thickness (MET) is applied and can be compared to that found in 

the field. 
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The modeling approach used here covers the aforementioned areas of interest and 

was designed to provide the pertinent information required for this work.  The following 

discussion describes the finite-element (FE) model developed, environmental, material 

and load data integration.  The entire FE program was written in the C# computing 

language.  

In pavement analysis it is common for the compressive stresses and strains to be 

considered positive.  However for this analysis tensile strains are considered positive to 

be more consistent with classic mechanics exercises.  Furthermore, the axisymmetric 

analysis utilizes a polar notation to describe stress and strain – Figure 3-12 shows the 

notation for stress/strain used in this analysis.  

 
Figure 3-12 - Stress/strain notation. 
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3.6.1 -  FE Model 
 
 
The most accurate representation of a pavement structure would be a three-

dimensional model – taking into account the real geometry.  This model could account 

for discontinuities in the pavement such as paving boundaries, cracks, shoulders, et cetera 

as well as an exact representation of applied loading.  However an almost equally 

accurate model can be developed using two-dimensional techniques reported by other 

researchers (Cho et al., 1996).  Larger, three-dimensional models require much more 

computational time and it was not feasible considering the number of iterations 

performed in this research. 

The technique applied for this work used an axi-symmetric model – a two-

dimensional model in which is revolved around a selected axis and solved using linear-

elastic analysis.  This provides three-dimensional results, but only requires two-

dimensional calculations.   There are limitations of this type of model; the biggest of 

which is how the loading is applied to the model.  Figure 3-13 is a graphical 

representation of the model developed for the pavement system.   
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Figure 3-13 - Axi-symmetric pavement model used for analysis – 1178 elements.  

 
 

3.6.1.1 - Load Application 

 
The loading is applied in the upper left hand corner of the model.  The vertical 

axis is the axis of symmetry and the loading represents half of the applied wheel-load.  In 

this arrangement, the applied wheel loading is assumed to be circular which is a 

simplification of the actual contact area from common vehicle tires.  A more accurate 

representation of the loaded area may in the form of a rectangular area with two semi-

circular areas flanking each longer side as shown in Figure 3-14.  However, for two- and 

three-dimensional finite element analyses this representation is commonly converted to a 
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rectangular area.  It is believed that errors due to the idealization of the loaded contact 

areas very small and is an adequate representation (PCA, 1984).    

 

 
 
Figure 3-14 – Contact areas and contact pressure. 

 
 
The above contact areas are assumed to have a uniform pressure applied over the 

entire area.  It is further assumed that the contact pressure is equivalent to the inflation 

pressure of the tire.  As more loading is applied, the amount of deformation of the tires 

increases proportionately and the contact area increases.  It is assumed that there is no 

increase in the inflation pressure (although in reality there may be a very small increase) 

and thus the uniform pressure applied to the loaded area is equal to the inflation pressure.   

For the idealized loading used in this research, the contact area and contact radius 

can be calculated given the inflation pressure of the tire and the load in Equation 3-8 and 

Equation 3-9.   

a

Inflation Pressure, P

Pavement Surface

Simplified

L

0.6L

Ideal 



72 
 

ܽ݁ݎܣ ݐܿܽݐ݊ܥ                                                       ൌ



    (3-8) 

 
 

                                          ܽ ൌ ට


గ
      (3-9) 

Where: P = wheel load 

 p = tire inflation pressure 

 a = contact radius 

 
The element used for the FE model is a four-node isoparametric quadrilateral with 

two degrees of freedom per node (x- and y- displacement).  The isoparametric element 

differs from a standard quadrilateral by using the same parameters that define the shape 

function to also define the geometry.   

Due to the limitations of the model, loads can only be applied to the nodes in the 

system.  As stated before, wheel loads are modeled as pressures so a logical method was 

developed to redistribute the applied pressures into individual loads which were then 

applied to the proper nodes during analysis.   
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Figure 3-15 - Influence factors for circular load with a 6 inch contact radius. 
 
 
The above figure illustrates the method used to allocate loads to the nodes in the 

model.  The outermost ring represents the overall contact area of the loaded tire.  The 

dashed concentric circles represent the boundaries between the influence areas to be 

distributed and the solid circles represent the centerline of the influence area.  The dashed 

horizontal line represents the section that the FE model represents and also the location of 

the nodes in the model.  The total load to be applied to any such node is simply the 

product of the influence factor (shown in Figure 3-15) and the contact pressure for a 

given contact radius.   

It should be noted the total load is being applied at one location, even though the 

model is being analyzed in two horizontal dimensions to account for tandem or tridem 
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axle groups.  For the case of tandem and tridem axle groups, the loads are superimposed 

using the principle of superposition and the cumulative strains and stresses are calculated. 

The computer code has been written to handle the loading incrementally – given 

the wheel load, an appropriate load distribution scheme is selected to apply loads to the 

nodes in the model.  In this process, the contact radius for each vehicle wheel is 

calculated using the load and tire pressure, the routine then drops into distinct cases based 

on the contact radius and applies the loading to the proper nodes in the force vector.  As 

the computed contact radius increases, the number of nodes loaded increases, starting 

from the axi-symetric boundary outward along the modeled surface.  For example, for a 

contact radius of 2 inches, only two nodes are loaded (on the axis of symmetry and the 

next adjacent surface node.).  For a contact radius of 6 inches, six of the surface nodes are 

loaded, starting from the axis of symmetry and the next five adjacent surface nodes. 

 
3.6.1.2 - Model Development and Adequacy 

 
The finite element mesh was chosen through careful observations of the stresses 

and strains at critical locations in the model.  Inaccurate results may be generated if the 

model represents a pavement area that is too small or if the element sizing and aspect 

ratios are inadequate.  In order to quantify the size and mesh refinement, multiple models 

were constructed, solved and analyzed.   

The first constructed model contained 322 elements and modeled 38 inches of the 

half-space and depth of 50 inches.  Refinement in all models is focused on the areas near 

the load application, while the mesh is designed progressively coarser near the 
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constrained boundaries.  The final element/nodal geometry are shown below in Figure 

3-16. 

For the comparison of the different models, average values were used for the 

material properties and are tabulated in Table 3-3.  The stiffnesses for the HMA materials 

were placed on the lower range of typical values while applied load was 100,000 lbs with 

a contact radius of 4 inches.  This loading is relatively high; however this was done to 

amplify the calculated values (in conjunction with the low HMA stiffnesses) since using 

more realistic values would have resulted in low values of strain and stress.  Allowing 

larger values of stress and strain prevents errors from being accumulated in the numerical 

computations.  Since the model is linear elastic, amplifying the load by a factor of 100, 

simply results in the solution being amplified by the same factor.  This scenario is only 

done for testing the adequacy of the models. 

   
Table 3-3 - Material properties for model development. 

 

 
 

In the analysis program developed for this research, the loads from vehicles are 

scaled up by a factor of 10,000 and the solutions are reduced as necessary.  The results 

from the program are reported in units of microstrain (µε) and pounds per square inch 

(psi).  During initial testing it was found that small passenger vehicle loads in conjunction 

Material Stiffness, psi
Poisson's

Ratio

SMA 100,000 0.35

E30 100,000 0.35

C2 100,000 0.35

Open Graded 15,000 0.35

Dense Graded 15,000 0.35

Select Crushed 25,000 0.35

Native Soil 10,000 0.35
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with high HMA stiffnesses during periods of low air temperatures, caused computation 

errors to be generated during analysis while using double precision.  Double precision 

normally provides 16 significant digits – the direct mathematical computation when 

involving units of microstrain (10-6) can often lead to computation errors. 

 

 
Figure 3-16 - 322 node mesh.  Note some constraint symbols were omitted from upper right corner 
for clarity and that both the x- and y-displacements are constrained on the vertical face. 

 
 
The degrees of freedom on the vertical edge, along the right side of the model, 

were constrained in the x-direction.  In reality the surrounding pavement constrains most 

movement in the horizontal directions, similar to that of a plane-strain condition.  The 

 

1 

2

3 

4 



77 
 

vertical deflection of a real pavement will be substantial, but decreases with distance 

away from the applied load.  The lack of constraint on the vertical side models this effect.   

The bottom of the model was also constrained from both vertical and horizontal 

movement.  The bottom of the pavement system is founded on the native soil layers.  In 

reality, there is an amount of confinement placed on the pavement system which becomes 

greater with depth.  This confinement restrains displacement – the constraints placed at 

the model boundaries should reasonably represent this situation.  

Preliminary analysis of the 322 node model showed that there were significant 

stresses along the right vertical edge of the model, indicating that the constraints were 

influencing the results.  The results of the analysis were compared to results from 

JULEA, a layered elastic analysis (LEA) program using the same loading, material 

properties, and geometry.  This LEA package was used as a baseline for comparison to 

the FE model. 

The horizontal tensile strain at the bottom of the HMA layer and directly under 

the load from the FE model was much lower than the strains computed from JULEA.  

Vertical deflections at the surface and vertical stresses in the base and native soil layers 

were also lower than those calculated by JULEA.   These were indications that the model 

was too coarse and physical extents did not encompass a large enough area.   

The model was increased to encompass a larger volume and the mesh refinement 

was adjusted as needed until the results at the locations of interest converged.  The 

number of elements in the model increased from 322, to 522, 680, 912, 1178, and 2000.  

In the evolution of the models, the locations of interest used for comparing results were 

the horizontal radial tensile strain at the bottom of the HMA layer (under the load), the 
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radial strains at the upper right (restrained) corner, the radial strain at the bottom left 

corner of the model directly under the load, and the vertical pressure on top of the native 

soil layer directly under the load.  These locations are labeled in Figure 3-16 as 1, 2, 3, 

and 4 respectively.   

The final model chosen for analysis contains 1178 elements and measures 70 

inches from the center of the applied load to the edge of the model (2 × 70 = 140 inches 

total width).  The pavement is modeled to a depth of 77 inches below the surface.  

Results of the observations during model selection are shown in Table 3-4 below.   

 
Table 3-4 – Finite element model results. 

 

 
 
 
During the analysis of the different models, it was observed that a considerable 

amount of stress accumulated at the upper right corner of the model (although not shown 

in the table above).  With the vertical displacement degree-of-freedom fixed along the 

vertical edge, the stress at the upper right corner was 17.4 psi.  The addition of allowing 

the vertical displacements on the right edge reduced this stress to only 1.1 psi.  

Constraining the vertical displacements appeared to make the model too stiff and it was 

Radial Strain at

Bottom of HMA

Location #1

Radial Strain at

Upper Right Corner

Location #2

Radial Strain at

Bottom Left Corner

Location #3

Vertical Pressure on 

Top of Native Soil

Location #4

322 2.7749E‐03 6.3852E‐04 4.7880E‐09 NA

522 2.7505E‐03 6.1574E‐04 2.2233E‐09 ‐2.0668E+01

680 2.7965E‐03 4.4076E‐04 1.1603E‐09 ‐1.6129E+01

912 2.8063E‐03 2.0174E‐04 8.3634E‐10 ‐1.6246E+01

1178* 2.8112E‐03 2.0078E‐04 8.3934E‐10 ‐1.6297E+01

1178** 2.8028E‐03 1.5379E‐04 7.5912E‐10 ‐1.8394E+01

2000† 2.8076E‐03 7.3650E‐04 8.5232E‐10 NA

‐   All units in/in and psi.

Location

Mesh

† This model had the same geometry as the others, however the model was 

     meshed with 1 in. × 1 in. elements throughout the entire model.  

*  The width of the model was expanded by 30 inches and the depth increased by 27 

     inches.

** The constrained vertical boundary was modified to release/allow vertical deflections.
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concluded that allowing the vertical displacements is a better representation of the 

pavement structure.   

 
3.6.1.3 - FE Analysis Code 

 
The finite code written for the analysis was based off of existing code written by 

Kwon and Bang (Kwon & Bang, 1997), but was heavily modified to suit the needs of this 

research.  Additionally, the original code was written in MATLAB, but was adapted into 

a C#/.NET project for this research.  This translation between computing languages 

offered the benefits of the easy integration with databases and storage needed for 

processing the data.   

The original intent of the programming for this research was to use MATLAB 

code run as a component of a C# project.  The limitations of the interoperability 

eventually led to the entire project being translated to C#.  The C# code is available in 

Appendix A. 

The mesh which was selected for the analysis program consisted of the 70 inch 

wide and 77 inch deep model which contained 1178 elements.  The advantage of the 

models containing less elements is strictly one of computation speed.  Current computing 

power limits the extent of rapid computations of large models with a high degree of 

refinement.  This is why there was an extended effort in selecting an adequate model and 

mesh.  The current model can complete a single linear elastic analysis in under 30 

seconds.   

The conceptual flow of the program is shown below in Figure 3-17.    The 

program downloads the raw data from the Marquette Interchange database and begins 
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iterating through each vehicle in the database.  The vehicle speed and environmental data 

are used in computing HMA stiffnesses and the vehicle weight data is used for 

distributing loads on the FE model (using an inflation pressure of 35 psi for FHWA Class 

4 vehicles and below and 80 psi for FHWA Class 5 vehicles and up).  Once the FE 

computations are solved, the results are passed back to another database for storage.   The 

individual modules for computing material properties are discussed in the following 

sections for each respective material.   

 

 

Figure 3-17 - Finite element analysis conceptual flow. 
 
 
A large portion of the program deals with importing data from the Marquette 

Interchange Project MySQL database (MySQL/Sun Microsystems, Inc.) and 

subsequently storing results back to another MySQL database.  The details of the 
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database transactions are available from MySQL and contained within the code in 

appendix A.   

 
3.7 - Material Modeling 

 
 
This section details all aspects of the materials used in construction of the test 

section and the relevant material properties used for pavement modeling.  During 

construction of the pavement, representative samples were taken from the location of the 

test section.  These samples were retained and subsequently analyzed under another 

research phase of the instrumentation project sponsored by the Midwest Regional 

University Transportation Center (Crovetti et al., 2008).   

All of the retained material samples were tested according to the requirements of 

the Level I analysis in the MEPDG design guide (National Coorperative Highway 

Research Program, 2004).  The materials tested included the three HMA mixtures, three 

unbound aggregates, and samples of the native soils extracted from the site.   

The data from the materials characterization study were used to develop the 

constitutive material properties necessary to accurately model the pavement system.  

Models were constructed to match, as closely as possible, the variations in the material 

properties in response to environmental changes (temperature, moisture, etc.).  The 

generated data was then used in construction of the FE model used for the analysis.  

 
3.7.1 - Unbound Layers 

 
 
Three unbound subbase materials were used in the construction of the pavement 

structure and were placed on the native soils layer.  The three materials were quite 
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different in terms of gradation and composition – two were manufactured from recycled 

concrete crushed on-site and the other was manufactured from quarried limestone.   

The pavement design called for 18 inches of select crushed material placed on top 

of the native soil, overlain by an additional 6 inches of a dense graded crushed material 

followed by a 4 inch open graded layer with the HMA topping off the structure.  The 

select crushed and dense graded materials were produced from recycled concrete while 

the open graded material was manufactured from virgin limestone.  The general strength 

properties are given in Table 3-5.   

 
Table 3-5 - Summary of unbound aggregates. 

 

 

 
3.7.1.1 - Select Crushed 

 
The select crushed material (SCM) was placed directly on top of the native soils 

and was designed to serve as an improvement to the native soils.  The particle size of this 

material ranged from 4 to 6 inches in diameter.  The gradation for this material according 

the Wisconsin DOT (WisDOT) specification is given in Table 3-6. 

 

Table 3-6 - WisDOT SCM gradation. 
 

 

Material Resilient Modulus, psi Poisson's Ratio

Select Crushed 30,000 0.35

Dense Graded Varied by Season 0.35

Open Graded Varied by Season 0.35

Sieve Size Percent Passing

5‐Inch 90‐100

1.5‐Inch 20‐50

No. 10 0‐10
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The large particle diameter unfortunately made the task of determining strength 

properties quite difficult and no data was produced from the characterization report to 

support specific resilient modulus values.  However, careful consideration was used to 

estimate the resilient modulus and Poisson’s ratio of the material.  In addition, since the 

material is open graded and the pavement system contained adequate drainage there 

should be little variation in this strength parameter due to variations in moisture content 

in the system.   

The resilient modulus used for this study was set at 30,000 psi which matches that 

used in the materials characterization report.  The material is composed of recycled 

concrete which should have strength similar to that of virgin limestone particles.  Similar 

materials are known to be stress-stiffening materials which imply that the stiffness of the 

material increases with increases in confining stress.  The top of this layer is located 23 

inches below the pavement surface which should provide a significant amount of 

confining stress.  In addition, the material was placed in lifts and rolled to achieve 

maximum density.   

Due to these observations and based on experience, a resilient modulus of 30,000 

psi for this material should be reasonable.  Furthermore, large deviations in this value 

should still provide reasonable FE solutions since the layer is located deep in the 

structure.  This reduces the influence of this particular layer on the analytical solutions 

for the HMA layers.   

The Poisson’s ratio assigned to this material, as well as the other unbound 

aggregates, is based upon experience and historical values for similar materials.  The 

ratio is known to be consistently around 0.35 to 0.40 for many granular materials – the 
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characterization study did not produce these measured values.  Small variations in these 

values are known to have a small influence on the pavement analysis results.      

 
3.7.1.2 - Dense Graded Aggregate 

 
The layer placed on top of the select layer was composed of recycled concrete that 

was screened after crushing.  The material contained both larger diameter (3/4”) particles 

as well as smaller particles from the crushing process.  This material closely appears to be 

an ASTM D448 #67 or 68 size number; however the additional small diameter material 

prevents definite classification.  The material was reported to be classified as Poorly 

Graded Gravel with Sand under the Unified Soil Classification System (USCS) (Crovetti 

et al., 2008).  Additional material parameters and gradation are shown below in Table 3-7 

and Figure 3-18 below. 

 
Table 3-7 - Dense graded material properties. 

 

 

 

Bulk Specific Gravity 2.396

Apparent Specific Gravity 2.594

Absorption, % 5.47

Max Dry Unit Weight, pcf 121.1

D10  , mm 0.55

D30  , mm 3.6

D60  , mm 8.5

Cu  , mm 15.45

Cc  , mm 2.77
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Figure 3-18 - Dense graded particle size distribution. 
 
 
Resilient modulus testing was conducted on this material, and it was determined 

that a stress-stiffening model best represented the material.  Equation 3-10 is the model 

generated from the laboratory data.  The stress stiffening model implies that there is an 

increase in stiffness with increases in the bulk-stress (confinement stress).  This model 

was used to generate a value for the stiffness - the dynamic effects from moving wheel 

loads (causing increases in bulk stress as the load passes) was simplified by including an 

average stress due to a static load (4.0 psi) into the bulk stress value. 

 

ோܯ                                                           ൌ  .ଷସଶ   (3-10)ߠ5,741

 
where MR  = resilient modulus, psi 

 θ  = bulk stress, psi 
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The stress increases from moving wheel loads was considered on an average 

basis.  Since the material layer is below the 13 inch HMA layer and 4 inches of open 

grade base course (OGBC), the increases in stress due to a wheel load are reduced.  An 

average value of the increase in vertical stress based upon the standard 18-kip axle load 

was computed to be approximately 5 psi using the layered-elastic analysis program 

JULEA.  This additional increase in vertical stress was included when calculating the 

bulk-stress. 

The bulk stress represents the amount of confinement on the material which 

includes stresses from the weight of material above the point of interest, including lateral 

pressure, and stresses caused by loads applied to the pavement surface.  This stress 

scenario is depicted in Figure 3-19.   
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Figure 3-19 – Pavement structure stress state. 
 
 
The bulk stress is defined by Equation 3-11 below. 

 
ߠ                                                    ൌ ௗߪ  ଶߪ  2ሺ݇ߪଶሻ     (3-11) 

 
where  k0  = lateral earth pressure coefficient 
  = assumed 0.45 

 
 
 
Using the assumed at-rest coefficient of lateral earth pressure, k0, simplifies to: 

 

ߠ                                             ൌ ௗߪ  0.  ଷ     (3-12)ߪ9

σ3 = 0.45σ2

σ3 = 0.45σ2σ2 = Overburden Stress

σ1 = Surface Load Stress     
= σd
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For computations of resilient modulus for all unbound materials, the actual unit 

weights of the materials were used.  For the calculation of confinement pressures, the 

stress was calculated at mid-depth of each layer.  Table 3-8 shows the computations for 

estimation of the stresses used for calculation of the bulk stress for all materials.  The 

resulting bulk stress states were then used to estimate the resilient modulus.   

 
Table 3-8 - Stress states and resilient modulus values. 

 

 
 
 
The dense graded aggregate layer is relatively permeable and is rather moisture 

insensitive.  It is likely that there will be a small variation in the stiffness of this material 

with changes in the moisture content of the layers in conjunction with temperature.  The 

pavement structure has a drainage system, and it is unlikely that the layers will become 

saturated.  In the future, it is possible that the unbound aggregate layers could become 

saturated if the drainage system is not maintained or accumulation of fine materials 

causes blockages in the underdrains.  Saturation would have the effect of lowering the 

effective vertical stress (the particle-on-particle stresses) and reduce the bulk stress state, 

thus reducing the resilient modulus. 

Since it is likely that there will be a small change due to moisture and 

temperature, the stiffness was varied slightly with seasonal changes.  Stiffness variations 

Unit Wt. or Gs Thickness Lateral Pressure Wheel Load M_R

PCF in pcf psi psi (k0 = 0.45) psi psi

2.478 13 167.51 1.16

128.4 4 188.91 1.31 3.2904 6 4616

121.1 6 240.59 1.67 2.5518 4 12942

125.0 18 364.61 2.53 2.4894 3 30000

Upper 144.2 6 530.46 3.68 2.5577 2 12132

Lower 146.2 6 603.56 4.19 2.7861 2 5607
Native 

Vertical Press.

NAHMA

Open

Dense

Select

Material
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were accomplished in a generalized manner for the dense and open graded layers while 

the native soils were varied using models developed by past research.  

Based on the summary of the soil moisture generated from the soil moisture 

probes, a particular month was chosen to represent the highest stiffness and another was 

chosen to represent the weakest month.  The soil moisture data is summarized in Figure 

3-20 – the precipitation data was taken from weather station data located at General 

Mitchell International Airport (located in the local Milwaukee area).   

 

 

Figure 3-20 - Summary of soil moisture and precipitation at the test section. 
 
 
Based on the soil moisture data from the test section it was determined that the 

month with the lowest moisture content (and the peak stiffness) was February while the 

wettest month (and lowest stiffness) was August.  A reduction of 2% of the peak strength 

per month was used for setting up the uniform gradient for stiffness variation.  This 
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represents approximately 10% reduction in stiffness over a 12 month period.  This 

estimate of variation was developed by investigating design recommendations by the 

Asphalt Institute for subgrade strength. 

For example, starting from the peak month, 2% of the peak strength was 

subtracted from the previous month’s stiffness until reaching the weakest month.  From 

the weakest month, the stiffness was increased at the same rate until reaching the peak 

stiffness again.  Table 3-9 contains the calculated values based on this variation method - 

these values have been used for use in the FE analysis. 

 
Table 3-9 - Dense graded resilient modulus values. 

 

 

 
3.7.1.3 - Open Graded Aggregate 

 
The open graded aggregate layer was placed on top of the dense graded aggregate 

layer just prior to placement of the first HMA layer.  This layer was primarily designed to 

drain moisture out of the system and does not provide the same supporting strength that 

the dense graded layer does, mainly due to the lack of aggregate interlock.  This material 

Month Peak Stiffness, psi Reduction Factor MR

January 0.98 12683

February 1.00 12942

March 0.98 12683

April 0.96 12424

May 0.94 12165

June 0.92 11906

July 0.90 11647

August 0.88 11388

September 0.90 11647

October 0.92 11906

November 0.94 12165

December 0.96 12424

12,942 ×
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is composed of crushed virgin limestone material produced in the local area and closely 

resembles an ASTM D448 Size #67 material containing a small amount of additional 

material in smaller size ranges.  The material was classified as a Poorly Graded Gravel 

with Sand under the USCS system (Crovetti et al., 2008).  Additional material parameters 

and gradation are shown in Table 3-10 and Figure 3-21. 

 
Table 3-10 – Open graded material properties. 

 

 

 
Figure 3-21 - Dense graded particle size distribution. 

Bulk Specific Gravity 2.743

Apparent Specific Gravity 2.809

Absorption, % 1.34

Max Dry Unit Weight, pcf 128.4

D10  , mm 2.75

D30  , mm 5

D60  , mm 9

Cu  , mm 3.27

Cc  , mm 1.01
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The stress-stiffening model in Equation 3-13 was produced from resilient 

modulus testing on the open graded aggregate samples.  The model possesses the same 

form as the dense graded, but with different regression parameters.   

 

ோܯ                                                        ൌ  .ସ଼ଷ (3-13)ߠ1,295

 
where MR  = resilient modulus, psi 

 θ  = bulk stress, psi 
 
 
The aforementioned assumptions for the dense graded aggregate layer apply to 

this material as well; i.e., it is assumed that the layer will not be saturated for the time 

period under study and there will be a slight variation in the stiffness of the material due 

small changes in moisture content.  The material is modeled as linear elastic and the 

stiffness is varied in the same fashion as the dense graded layer.  Additionally, the same 

peak and weak months apply based on the summary of the moisture contents.  The 

resulting resilient modulus values for analysis are tabulated in Table 3-11.   
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Table 3-11 - Open graded resilient modulus values. 
 

 

 
The bulk stress was calculated from the unit weights of the materials above the 

layer and an average vertical stress due to wheel loads of 6 psi.  The unit weights, depths, 

and calculations for each material and the resulting resilient modulus value can be found 

in Table 3-8 (pg. 88).  Similar to the dense graded aggregate layer, the at-rest lateral earth 

pressure coefficient, ko, was assumed to be 0.45.   

 
3.7.1.4 - Native Soils 

 
The native soil layer was exposed during the demolition of the existing pavement 

structure and the proposed vertical alignment required excavation of the native soils.  The 

select crushed material was placed directly on top of this native layer.  Due to site access 

restrictions, samples of the soils were not taken directly from the test section.  Instead 

samples were taken adjacent to the areas that were instrumented at representative depths.  

Samples were taken from the upper 24 inches of the native soil layer.  Upon excavation, 

Month Peak Stiffness, psi Reduction Factor MR

January 0.98 4523

February 1.00 4616

March 0.98 4523

April 0.96 4431

May 0.94 4339

June 0.92 4246

July 0.90 4154

August 0.88 4062

September 0.90 4154

October 0.92 4246

November 0.94 4339

December 0.96 4431

4616 ×
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the soils varied considerably in the rather small area from clayey to silty in texture (see 

Table 3-12).   

 Since there was a degree of variation of the types of soils, additional resilient 

modulus testing was conducted to quantify any differences in stiffness behavior.  

Moisture-density curves were developed for native soils as well as the subbase layers 

(moisture density data for subbase layers have been omitted from this paper) and are 

important to helping to define seasonal changes in stiffness characteristics.   

 
Table 3-12 - Native soil properties. 

 

*NP – Non-plastic 

 
 
Resilient modulus testing of the soils resulted in two different models being 

developed for the upper and lower layers.  Soils 1A and 2 were taken at the higher 

elevations and were similar in composition while soil 1B was taken deeper and contained 

more clay.  Since soils 1A and 2 were similar, the results of laboratory testing were 

combined and averaged, while soil 1B was treated independently.   

The characterization report recommended stress-stiffening models for both of the 

native soil layers.  An analysis was done using a stress-softening model, but it was 

confirmed that stress-stiffening model was most adequate.  The models developed for 

both layers were significantly different in terms of stiffness with the lower layer showing 

a reduced stiffness (Equations 3-14 and 3-15). 

 

Soil
Liquid 

Limit, %

Plasticity 

Index, %

Shrinkage 

Limit, %

Specific 

Gravity

Optimum Moisture 

Content, %

Max Dry Unit 

Weight, pcf
USCS Classification

Group 

Index

AASHTO 

Classification

1A 17 3 14.445 2.705 10 127.5 ML / CL‐ML
Silt with Sand / Silty Clay with Sand

0 A‐4

1B 24 8 2 2.870 12.5 119 CL / CL‐ML
Lean Clay / Silty Clay with Sand

5 A‐4

2 NP NP NP 2.725 10.5 118.55 ML
Sandy Silt

0 A‐4
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Upper soil layer 

 
ோܯ                                             ൌ  .ଶଽ  (3-14)ߠ6,085

 
Lower soil layer 

 
ோܯ                                             ൌ  .ହଵ  (3-15)ߠ1,595

 

where MR  = resilient modulus, psi 
 θ  = bulk stress, psi 

 
 
The calculation of the bulk stress and the resulting stiffness for both layers is 

shown in Table 3-8 (pg. 88).  A deviator stress of 1 psi due to wheel loads was included 

in the estimate of stiffness.  The stiffness of these layers are dependent upon the moisture 

content of the soils and a model developed for MEPDG was used to model the seasonal 

variations in stiffness.   

The model (Equation 3-16) developed for MEDPG was based off of past work by 

(National Cooperative Highway Research Program, 2004) and was calibrated using 

pavement sections taken from the Long Term Pavement Performance (LTPP) database.  

The model uses a stiffness ratio and the degree of saturation to predict the resilient 

modulus of a soil – as the degree of saturation increases, the stiffness of the soil 

decreases.   
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݈݃                                   
ெೃ

ெ ோ௧
ൌ ܽ 

ି

ଵା
ቂഁశೖೞቀೄషೄቁቃ

  (3-16) 

 

where MR  = resilient modulus, psi 

 MRopt = resilient modulus at optimum moisture content, psi 

 S = degree of Saturation 

 Sopt = degree of Saturation at optimum moisture content 

 a  = ݊݅ܯ ൜݈݃ ൬
ெೃ

ெೃ
൰ൠ  

 b = ݔܽܯ ൜݈݃ ൬
ெೃ

ெೃ
൰ൠ  

 β  = ݈݊ ቀെ



ቁ 

 ks = regression parameter 

 
 
The literature suggested values a, b, β, and ks for both course and fine grained 

materials – the values for the fine grained materials has been implemented in this study 

and are shown below in Table 3-13.  The resilient modulus testing for the soils in this 

study were conducted at the optimum moisture content (determined from moisture-

density analyses) and the volumetric moisture content of the soils is measured at the test 

section.  With this information, the resilient modulus can be predicted at a degree of 

saturation, S. 
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Table 3-13 - Resilient modulus prediction equation parameters. 
 

 

 
The materials characterization produced the gravimetric optimum moisture 

content and the soil moisture probes implemented at the site produce moisture data in 

terms of  volumetric moisture content - however the prediction model uses the degree of 

saturation for predictions.  In addition, the in-place properties of the soil must be known 

in order to determine the relative compaction in the field and volumetric properties 

required for calculating the degree of saturation, S.   

Soil properties were measured in-place via nuclear density testing during 

installation of the earth pressure cells.  The bulk density, dry density and moisture content 

were measured and recorded (Table 3-14).  These values were used to estimate the in-

place volumetric and gravimetric properties of the soil.  Overall, the average dry density 

of the soils were close to the maximum dry unit weight determined from the moisture-

density results from the characterization study and it was assumed that the resilient 

modulus values for the soils represented the stiffness of the soils in the field.   

 
Table 3-14 – In-place measured soil properties. 

 

 

 

Parameter Value

a ‐0.5934

b 0.4

β ‐0.3944

k s 6.1324

Test #1 Test #2 Average

Unit Weight, PCF 143.7 144.6 144.15

Moisture Unit Weight, PCF 19.8 21.3 20.55

Moisture Conent, % 16.0% 17.3% 16.6%

Dry Unit Weight, PCF 123.9 123.3 123.6

146.2

18.8

14.8%

127.4

Property
Soil 1A and Soil 2 ‐ Upper Soils Soil 1B ‐ Lower Soils

Test #1
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Using the measured field values in Table 3-14 the porosity of the soils were 

estimated as closely as possible – though there is likely some error due to lack of 

precision of nuclear density testing.  The upper and lower soil porosities were estimated 

to be 33.0 % and 30.1% respectively.  The porosity was integral for calculating the 

degree of saturation from the volumetric moisture content measured in the field and was 

calculated using Equation 3-17.  The degree of saturation at the optimum moisture 

content from the characterization report was found to be 74.8 % and 71.1 % for the upper 

and lower soils, respectively. Table 3-15  is a summary of the calculated values used for 

implementation. 

 

                                                            ܵ ൌ ߠ ቀ
ଵ


െ 1ቁ  (3-17) 

 
where S  = Degree of saturation of soil 

  = 
௨  ௐ௧

௨  ௗ௦
 

 θ = Volumetric moisture content of soil 

  = 
௨  ௐ௧

௨  ௌௗ௦
 

 n = Porosity of soil 

  = 
௨  ௗ௦

்௧ ௨
 

 
Table 3-15 - In place soil properties. 

 

 

 

Soil n , % S opt , % M ropt , psi

Upper 33.0 74.8 11267

Lower 30.1 71.1 4717
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The soil moisture data used for estimating the dense and open graded layer 

resilient moduli was also used to evaluate the variations in stiffness for the native soil 

layers.  Since the soil moisture does not vary greatly on any given day and varies slightly 

on a monthly basis, a stiffness was selected for each month of the year for use in the FE 

analysis.  The prediction model (Equation 3-16) was used along with the corresponding 

values from Tabel 3-14 and Table 3-15 to estimate the stiffness for the monthly period of 

interest.  Table 3-16 shows the resulting stiffness profiles for the 12-month period.   

The relative deviations in subgrade stiffness have a small effect on the resulting 

solutions found from FE analysis, mainly due to the depth below the pavement surface 

(and loading) and the robustness of the pavement structure.  Inspection of the soil 

temperature in the subgrade indicates that freezing temperatures have occurred in only a 

few instances and lasted briefly.   

 
Table 3-16 - Native soil layer resilient modulus values. 

 

 

 

θ, % S% Mr θ, % S% Mr

January 39.6 91.96% 3625 37.4 75.93% 11806

February 39.2 91.03% 3679 36.9 74.92% 12097

March 39.4 91.50% 3652 37.3 75.73% 11864

April 40.2 93.35% 3550 38.7 78.57% 11084

May 41.6 96.61% 3397 40.9 83.04% 9994

June 43.4 100.79% 3240 43.6 88.52% 8897

July 44.9 104.27% 3136 45.8 92.99% 8192

August 45.9 106.59% 3079 47.0 95.42% 7873

September 45.6 105.90% 3095 46.5 94.41% 8001

October 41.3 95.91% 3428 41.5 84.26% 9727

November 40.6 94.28% 3504 39.8 80.81% 10517

December 39.5 91.73% 3638 37.9 76.95% 11522

Lower Native Soil Layer

Mropt  = 4,717 psi, S opt  = 71.1%Month

Upper Native Soil Layer

Mropt  = 11,267 psi, S opt  = 74.8%
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The analysis program accesses the above stiffness data, as well as stiffness for all 

the unbound pavement layers, via a database that contains the stiffness for each month 

and each material.  Timestamps associated with the data from the test section are used to 

determine the respective month.   

It should be noted that temperature was neglected in the stiffness evaluations for 

all of the unbound layers.  This was done to simplify estimations of the stiffness and 

because the effect of freezing is likely minimal in this system.  Since the upper subbase 

layers are well drained, it is assumed that there is not sufficient moisture to cause a large 

increase in stiffness because of freezing.  Furthermore, as indicated by Figure 3-22, the 

native soil layer rarely experiences freezing temperatures.  These assumptions have been 

noted and are considered upon analysis of recorded stress and strain measurement from 

the test section.  In the event of frozen layers, the overall increase in section stiffness 

should cause a reduction in the strain at the bottom of the HMA layers coupled with a 

reduction in the vertical stress in the base and native soil layers.   
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Figure 3-22 - Native soil temperature variation. 
 
 

3.7.2 - Hot Mixed Asphalt 
 
 
The stiffness of HMA is typically load rate and temperature dependent.  The 

nature of HMA is quite complex due to the mixture of the aggregates and the bitumen 

binding agent.  This usually limits the measurement of the material strength properties to 

a macro level, and the individual constituent properties cannot be easily combined to 

predict the overall material properties.  However, the current technology has allowed 

researchers to model the HMA stiffness throughout a regime of load rates and 

temperatures with a reasonable degree of accuracy.  The downside is that the testing can 

be quite complicated, time consuming, and costly.   

Luckily for this project the materials characterization phase included a full 

analysis of the HMA materials.  Since the pavement consists of 13 inches of HMA (4 
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compacted layers, 3 distinct layer types), the majority of the pavement strength is derived 

from the HMA and hence the need for accurate characterization.   

 
3.7.2.1 - Dynamic Modulus 

 
The dynamic modulus takes into account the load rate and temperature 

dependency of the material.  Typically, during modulus testing, a cylindrical HMA 

specimen is subjected to vertical sinusoidal loading of different frequencies, each set of 

which is completed under a range of temperatures.  During the testing, the load pulse and 

the resulting strain in the material is recorded - the resulting model (Equation 3-18 to 

Equation 3-20), referred to as the master curve, can be used to describe the stiffness for a 

particular rate of loading and a particular temperature.  Individual master curves at each 

temperature are developed during testing.  These are then shifted to form one sigmoid, 

called the master curve.  The individual curves are shifted using time-temperature 

superposition, and the amount of shifting is based on temperature dependency of the 

material (National Coorperative Highway Research Program, 2004). 

 
ሻ∗ܧሺ݈݃                                                 ൌ ߜ 

ఈ

ଵାഁశംሾሺೝሻሿ
    (3-18) 

 

where E*  = degree of saturation of soil 

  tr = time of loading at reference temperature, 
Equation 3-19 

 
 δ, α, β, γ = fitting and regression parameters 
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ሻݐሺ݈݃                                       ൌ logሺݐሻ െ ܿൣlogሺߟሻ െ log ሺߟ
ೝ்
ሻ൧  (3-19) 

 

where tr = time of loading at reference temperature 

 t = time of loading at temperature of interest 

ߟ 
ೝ்
 =  binder viscosity at reference temperature 

-binder viscosity at temperature of interest, Equation 3 = ߟ 
20 

 
 c = regression parameter 

 

ሻߟሺ݈݈݃݃                                                ൌ ܣ  ሺ݈ܸ݃ܵܶ ோܶሻ  (3-20) 

 

where ߟ = binder viscosity at temperature of interest 
 

 TR = temperature, Rankine 
 

  A = regression intercept 
 

  VTS = regression parameter of viscosity-temperature 
susceptibility 

 

The time of loading is transformed from the time domain to the frequency domain 

by simply taking the inverse of the load frequency.  This has recently been the subject of 

discussion since it is thought that method is inaccurate and a better representation can 

found by using the angular velocity for conversion or even applying spectral analysis (Al-

Qadi et al., 2008) (Dongre et al., 2006) (Thompson et al., 2006) 

For a more thorough discussion of master curve development, refer to Part 2, 

Chapter 2 of the Guide for Mechanistic Empirical Design of New and Rehabilitated 
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Pavement Structures (National Coorperative Highway Research Program, 2004) and the 

testing protocol set forth by AASHTO (2003). 

Due to the visco-elasticity of the binding agent used in the material, there is a time 

lag between the induced stress pulse and the resulting strain pulse.  This is caused by the 

damping action of the viscous component of the binding agent.  At faster load rates, the 

viscous damping effect causes the material to possess an increased stiffness.  Slower load 

rates result in the opposite effect, causing a reduction in the stiffness of the material.   

At higher temperatures, the viscosity of the binding agent decreases reducing the 

damping potential of the viscous component of the stiffness.  This results in an overall 

reduction in the stiffness of the material and also effects the magnitude of the effect the 

load rate has on the material.  The dynamic modulus represents these material 

characteristics. 

The materials characterization study included testing of the three HMA mixtures 

used for construction of the pavement.  The bottom layer consists of a four inch thick 

19.0 mm binder rich base layer containing recycled asphalt pavement (RAP), a seven 

inch thick 19.0 mm intermediate layer with standard binder content, and a two inch thick 

surface layer composed of a 12.5 mm stone matrix asphalt (SMA) mixture (Figure 3-23).  
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Figure 3-23 - HMA pavement structure and binder types. 
  
 
The following master curve parameters, shown in Table 3-17, summarize the 

findings of the dynamic modulus testing conducted on the materials.  These constants 

have been incorporated into the FE analysis program and using Equations 18 through 20.  

Only the pertinent constants have been included in this work.  The complete data, along 

with data for all of the pavement materials, can found in the materials characterization 

report (Crovetti et al., 2008).  Additionally, complete aggregate gradation, binder data, 

etc., for the HMA materials are provided in Appendix B. 

 
Table 3-17 - Master curve and binder viscosity parameters. 

 

 

 

 
 
 
 

SMA ‐ 2 Inches / PG 70‐22

E30 ‐ 7 inches
PG 64‐22

C2 ‐ 4 Inches
PG 64‐22

Mixture     c

SMA 4.1560 2.4244 ‐0.3918 0.4794 1.6996

E30 2.5566 4.2125 ‐1.5623 0.3937 1.6214

C2 1.6841 5.1418 ‐1.7168 0.3650 1.6905

Asphalt Binder A VTS

PG 64‐22 9.7732 3.2637

PG 70‐22 8.4589 2.7813
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3.7.2.2 - Method of Equivalent Thickness 

 
The aforementioned data regarding the development of the HMA stiffness has 

been integrated into the analysis program to accurately calculate stiffness of the HMA 

materials for any particular loading and environment.   

The MET process, developed by Odemark (Odemark, 1949) can be used to solve 

for the time of loading based on the relative stiffnesses of the material, assuming a stress 

distribution through the entire pavement structure.  For example,  

Figure 3-24 shows a typical pavement structure with an applied load at the surface 

and stress distribution through the thickness indicated by the dashed lines.   

  

 

 
Figure 3-24 - Untransformed section. 

 
 
The stiffest layers can then be transformed and given a stiffness modulus equal to 

the subgrade layer, while still maintaining the same overall section stiffness, which 

results in an increase in the total thickness of the upper layers.  The thickness transform is 

given by Equation 3-21. 

 
 

aC

HMA Layer, E1, h1

Unbound Layer, E2, h2

Subgrade Layer, ESG

1h

2h
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                                                           ݄ ൌ ݄ට
ா

ாೄಸ

య
     (3-21) 

 

where hie  = equivalent thickness of layer i 

  hi = actual thickness of layer i 

  Ei = stiffness modulus of layer i 

  ESG = stiffness modulus of subgrade layer 

 
Figure 3-25 represents the resulting pavement structure after transformation.  The 

stress distribution is assumed to be inclined at a 45° – this represents a very broad value 

of stress distribution given the common shear strength of most soils.  Since the upper 

layers are transformed and are assumed to have the same stiffness as the subgrade, this 

stress distribution is carried through to the surface of the structure.   

 

Figure 3-25 - Transformed pavement structure. 
 
 
Using the assumed stress distribution, the effective length of the influence of the 

stress on the soil can be calculated at any given depth (referred to as the effective depth) 

in the structure using the geometry of the transformed section (Figure 3-26).  Then 

45°
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knowing the speed of the moving load, the time that a particular point is influenced by 

the stress can be calculated by Equation 3-22.   

 

 

Figure 3-26 - Effective depth and effective length. 
 

 

ݐ                                                                ൌ


ଵ.௩
      (3-22) 

 

where t  = Time of loading, seconds 

  Leff = Effective length, inches 

   ݒ = Vehicle speed, mph 

 
The process is further complicated by the addition of tandem, triple or other load 

groups which cause an overlapping of the stresses in the pavement structure as shown in 

Figure 3-27.  This has been handled in MEPDG by applying traffic multipliers to the 

calculated load times.   

In the case of axle groups close to the pavement structure, there is no overlap of 

stresses, so the time of loading is the same for each axle and there exist two distinct load 

Zeff

Leff

Transformed HMA Layer, ESG, h1

Transformed Unbound Layer, ESG, h2

Subgrade Layer, ESG
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pulses (multiplier = 2).  Deep in the structure, there will be full overlap of the stresses 

which results in one large stress pulse (multiplier = 1) with an extended time of loading.  

In between these two cases, there will be partial overlap.  MEPDG has used a scheme that 

calculates the load time between the two stress pulses and applies a traffic multiplier 

which is a straight line interpolation between the no-overlap and full-overlap conditions 

(e.g. between 1 to 2 pulses for a tandem axle, 1 and 3 pulse for a tridem axle, etc.) 

(National Coorperative Highway Research Program, 2004).   

 

Figure 3-27 - Stress overlap for tandem axles. 
 
 
Importantly, the researchers found that even while taking into account the overlap 

conditions, the time of loading is relatively insensitive to axle type as shown in Figure 

3-28.  However, the traffic multipliers are used for analysis.   
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Figure 3-28 - Effective length calculations (National Coorperative Highway Research Program, 
2004). 

 
 

3.7.2.3 - Analysis Implementation 

 
The MET process has been integrated into the analysis program in conjunction 

with the dynamic modulus computations in order to solve for the HMA stiffnesses.  The 

MET process solves for the load time assuming a single axle based on the findings 

reported by the MEPDG Appendix CC.  However, no multiplier has been applied in the 

routine since the analysis is done on a per-axle basis.  In addition, the actual load times 

have been calculated from Phase II of the Marquette Interchange Instrumentation Project 

(Hornyak & Crovetti, 2008) and a preliminary analysis of the load times was recently 

published (Hornyak & Crovetti, 2009).  An investigation into the adequacy of the load 

times is warranted and is investigated in the following chapters.   



111 
 

The stiffness for the HMA materials is solved in the analysis program following 

the steps below.  The  classes within the C# program that carry out the following 

computations  are titled ‘DynamicModulus’ and ‘METIterator’ and are contained in 

Appendix A. 

 
1. Download temperature data from environmental database. 
2. Calculate layer temperatures using recorded ambient air 

temperature and regression model (developed in Chapter 4). 
3. Calculate viscosities at reference temperature (70°F) and 

temperature of interest using Equation 3-20 (pg. 103). 
4. Solve for HMA stiffnesses using dynamic modulus data.   
5. Calculate time loading using MET. 
6. Calculate time of loading at the reference temperature using 

Equation 3-19 (pg. 103). 
7. Calculate stiffness using Equation 3-18 (pg. 102). 
 

The above procedure has one caveat - the MET process relies on the material 

stiffness to estimate time of loading.  This requires and iteration between the dynamic 

modulus calculations and the time of loading from MET.  Initially the process uses a 

default time of loading of 0.05 seconds to initiate the iteration process.  The resulting 

time of loading is used to repeat steps 4 through 7 until the stiffness converges to 0.1% of 

the previous iterations value.  This can typically be achieved within 10 cycles – no 

maximum number of iteration cycles has been included in the program.   

Because of the distribution of stress through the thickness of the pavement, the 

entire 13 inch HMA section has been subdivided into one inch intervals.  The solver 

begins with the upper layer, iterates for the solution, and then continues to the following 

layers.  Once the layer is solved, it does not have to be re-solved in the next iteration.  

The entire iteration of the HMA layer takes milliseconds to solve on an average personal 
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computer.  The stiffness values are then stored and passed on to the finite-element engine 

for solution.   
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Chapter 4 - Results 
 

The following sections discuss the results of the data analyses performed and the 

interpretations and conclusions that can be drawn from the experiment.  The focal areas 

that are discussed are the following: environmental data, structural response of the 

pavement system, load duration, and fatigue. 

 
4.1 - Environmental Models 

 

Part of the research objectives for this project was to obtain enough environmental 

data over the course of the project so that future conditions could be modeled.  It was also 

understood that periods would exist where failed equipment may cause gaps in the data.  

The most important environmental data for pavement analysis, based on past research, 

are temperatures throughout the pavement structure and the moisture content of the 

unbound layers.   

Temperature has a profound effect on the stiffness of HMA materials and 

unbound layers can become frozen, increasing stiffness.  Moisture has virtually no effect 

on the properties of HMA materials short term, but unbound layers can become 

weakened with variations in moisture content.     

For these reasons, temperature probes have been installed throughout the 

pavement structure of the test section.  To supplement the pavement temperature data, the 

ambient air temperature, pavement surface temperature, and shortwave solar radiation are 

also measured.  Soil moisture probes have been installed into the native soils layer.  The 

remaining unbound aggregate layers above the native soils layer and below the pavement 

are highly permeable and should be virtually moisture insensitive and thus did not require 
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measurement of moisture content in those zones.  Details of the instruments can be found 

in Chapter 3.   

In addition to the need to model future conditions of the pavement test section, 

periods of time existed where instruments had failed and no data was recorded.  The 

environmental models would serve to provide the best representation of the missing data 

for the purpose of pavement analysis.   

 
4.1.1 - Model Data 

 

The data selected for the models consisted of a period where all instruments were 

known to be functioning properly and accurately.  The specific dates for the data range 

from September 26th, 2007 to December 12th, 2007 and include 5,361 samples (each 

sample representing one row of data which includes temperatures, pyranometer data, et 

cetera).  The ambient air temperatures for this particular period ranged from a low of 7.6 

F to 81.1 F. 

More data would have been included, but failure of one or more instruments 

caused difficulties in creating an adequate model.  Initial linear regression models 

suggested that the ambient air temperature, surface temperature, and solar radiation were 

all significant predictors of the pavement layer temperature.  These initial conclusions 

were somewhat expected given the known factors of heat dissipation through the HMA 

layers.   In addition, these three properties can easily be measured at the test section 

because they are measured external to the pavement.   

Wind speed data is available and was applied to the determination of the 

pavement surface temperature data.  However, the instrument used for measuring surface 
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temperature incurred damage from the enironment and frequently required service.  The 

quality of some of the data was rendered as questionable and little data was available that 

could be considered usable. 

Model adequacy checks for the linear regression, including wind speed, indicated 

wind speed was not significant in determining surface temperature.  Future measurements 

may allow a feasible model to be developed and it should be reiterated that pavement 

surface temperature is crucial for modeling pavement layer temperatures.  However, 

general observations indicate that wind speed may have little effect on the pavement 

surface temperature for this specific case.   

Only HMA layer temperatures and surface temperature were considered for the 

final environmental model generation.  Temperatures are not measured in the unbound 

aggregate layers and have little effect on these layers.  The layers are quite porous and it 

is assumed that excessive moisture is not present at any time, thus is it reasonable to 

assume that freezing of these layers is not possible.  

The native soil layer on the other hand could be affected by temperature since the 

soil was silty to clayey in consistency.  Subjection to freezing temperatures may cause an 

increase in stiffness of the layer.  Inspection of the recorded temperature data for the 

native soil layers show that temperatures dropped below 32° F only on rare occasions.  

For this reason, it can be reasonably assumed that the native soil layer will not become 

frozen and therefore the stiffness of the material has little dependency on temperature.   
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4.1.2 - Linear Regression Models 
 

The following models were generated using the data analysis tool-pack contained 

within Microsoft’s Excel spreadsheet software.  Other variables were included in the 

model generation, but the following models represent the best fitting found during the 

analysis while remaining simple. 

 
4.1.2.1 - Pavement Surface Temperature 

 
The significant predictors for surface temperature were found to be ambient air 

temperature and solar radiation.   The following equation is the model generated.   

 
Pavement Surface Temperature = 0.8907 × AAT + 0.0135 × SR + 92.2260  (4-1) 

 
where AAT  = ambient air temperature, °F 

 SR  = shortwave solar radiation, W/m2 

 
The regression fit statistics are shown in Table 4-1.   The model has a good fit to 

the data indicated by the high coefficient of regression values.  All predictor variables 

were significant at the α = 0.05 level (significance of the regressor).  A plot of the data 

used to generate the model and the predicted values are shown in Figure 4-1.   

 
Table 4-1 – Pavement surface temperature model parameters and statistics. 

 

 

Predictor t Stat P‐value

Intercept 58.47 << 0.001

Ambient Air Temperature 254.59 << 0.001

Solar Radiation 43.25 << 0.001

R2

Adjusted R2
0.937

0.937
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Figure 4-1 – Actual versus predicted surface temperatures. 
 

4.1.2.2 - Pavement Layer Temperature 

 
The layer temperatures are based on values measured at different elevations 

throughout the thickness of the pavement.  The original plans included temperature 

measurements every inch throughout, however problems with instruments led to a retrofit 

instrument which measured temperature at the center of each layer.  The following linear 

regression models are the result of the analysis.  It was found that ambient air 

temperature, surface temperature, and solar radiation were significant predictors for each 

pavement layer temperature.    Data used for the models was based on recorded data from 

the project database.  The models take the form of Equation 4-2. 
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                                          Ti = β0 + β1 × AAT + β2 × SR + β3 × PST  (4-2)  

 
where Ti =  temperature at location i, °F 

 β0, β1, β2, β3 = regression coefficients 

 AAT   = ambient air temperature, °F 

 SR = shortwave solar radiation, W/m2  

 PST  = pavement surface temperature, °F 

 
The following table contains the regression coefficients and statistics.  The high 

coefficient of regression, R2, values indicate a good fit to the data.  According to the P-

values from the regression output, all predictors are significant at the α = 0.05 level.   

 
Table 4-2 - Pavement layer temperature model parameters and statistics. 

 

 

 
The following figures contain the actual pavement layer temperatures plotted 

against the predicted values. In addition, the residual plots and normal plots were 

analyzed for all linear regression models (including pavement surface temperature) and 

all data appears to be normal distributed.   

Intercept
Ambient Air 

Temperature

Solar 

Radiation

Pavement 

Surface 

Temperature

Depth = 1.0 inch 14.8342 0.5292 ‐0.0008 0.4273

P‐value << 0.001 << 0.001 0.0058 << 0.001

Depth = 3.0 inch 18.1805 0.4923 ‐0.0076 0.4448

P‐value << 0.001 << 0.001 << 0.001 << 0.001

Depth = 4.0 inch 47.3653 0.4912 ‐0.0098 0.4237

P‐value << 0.001 << 0.001 << 0.001 << 0.001

Depth = 7.0 inch 51.6153 0.4541 ‐0.0149 0.4410

P‐value << 0.001 << 0.001 << 0.001 << 0.001

Depth = 10.0 inch 72.1011 0.4136 ‐0.0164 0.4477

P‐value << 0.001 << 0.001 << 0.001 << 0.001

Depth = 12.0 inch 87.2273 0.3882 ‐0.0163 0.4520

P‐value << 0.001 << 0.001 << 0.001 << 0.001
0.869 0.869

R
2

Adjusted R
2

Regression Coefficients

0.962 0.962

0.948 0.948

0.939 0.939

Response Model

0.911 0.911

0.884 0.884
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Figure 4-2 – Actual versus predicted pavement layer temperature A0. 
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Figure 4-3 - Actual versus predicted pavement layer temperature A1. 
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Figure 4-4 - Actual versus predicted pavement layer temperature A2. 
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Figure 4-5 - Actual versus predicted pavement layer temperature A3. 
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Figure 4-6 - Actual versus predicted pavement layer temperature A4. 

 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

P
re
d
ic
te
d
  T
e
m
p
e
ra
tu
re
, °
F

Recorded Surface Temperature, °F

 
Figure 4-7 - Actual versus predicted pavement layer temperature A5. 
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The preceding discussion shows that the pavement layer temperature is heavily 

dependent on the depth below the pavement surface.  Two additional models which take 

depth into account were created and can be used to predicted layer temperatures at any 

depth.  In addition this type of model allows one equation to be used to predict layer 

temperature rather than using a number of models for each depth.   

The models created use the ambient air temperature, pyranometer data, surface 

temperature, and depth below the pavement surface.  The model created using all 

predictor variables is shown below.  This model is not adequate for prediction of layer 

temperatures within 1-inch of the surface – this region is highly affected by the surface 

temperature and no experimental data was available to model this region. 

 
Td = 43.8550 + 0.4614 × AAT – 0.0110 × SR + 0.4394 × PST + 0.0762 × D (4-3) 

 
where Td =  temperature at depth d, °F 

 AAT  = ambient air temperature, °F 

 SR = shortwave solar radiation, W/m2  

 PST  = pavement surface temperature, °F 

 D  = depth below pavement surface, in. 

 
The associated regression fit parameters are listed in the following table.  All 

regression parameters were found to be significant at the α = 0.05 level.  The following 

plot shows the model predictions versus the recorded data.   
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Table 4-3 – Layer temperature model parameters and statistics. 
 

 

 

 
 
Figure 4-8 – Actual versus predicted layer temperatures for any depth in the HMA layers. 

 

In order to try and simplify the predictions more, a similar model was created 

which used only the ambient air temperature and the depth below the surface.  This was 

not done only for simplicity, but for the specific reason of predicting layer temperatures 

where data may have been missing in the Marquette Interchange database.  At various 

points throughout the project, the pyranometers and surface temperature sensors failed 

Predictor t Stat P‐value

Intercept 46.20 << 0.001

Ambient Air Temperature 83.11 << 0.001

Solar Radiation ‐68.87 << 0.001

Surface Temperature 73.35 << 0.001

Depth 13.72 << 0.001

R2

Adjusted R2
0.912

0.912
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which left a gap in the data.  The resulting regression model, fitting parameters and plot 

are shown below.   

 
                                      Td = 8.6953 + 0.8365 × AAT + 0.0762 × D  (4-4) 

 
where Td =  temperature at depth d, °F 

 AAT  = ambient Air Temperature, °F 

 D  = depth below pavement surface, in. 

 
 

Table 4-4 – Simplified layer temperature model parameters and statistics. 
 

 

Predictor t Stat P‐value

Intercept 102.88 << 0.001

Ambient Air Temperature 518.17 << 0.001

Depth 12.48 << 0.001

R
2

Adjusted R
2

0.893

0.893
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Figure 4-9 – Actual versus predicted layer temperatures for simplified model.  
 

The aforementioned simplified model shows a relatively good fit given the 

reduced number of prediction variables.  The R2 value for this reduced model is 0.893 

while the preceding models all have an average R2 around 0.910. Given that good 

performance could be achieved using only the ambient air temperature and depth, the 

reduced model was chosen for use in analysis of the pavement performance.   

This drastically reduced the amount of data-error checking needed in the code to 

fix missing or erroneous data.  The ambient air temperature sensor has been operational 

throughout the data recording phase of the research and appears to be accurate when 

compared against other weather data.  

As noted before, the layer temperature of the HMA affects the stiffness of the 

material which requires calculation before any modeling of the pavement structure can 
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take place.  The reduced model (Equation 4-4) has been used in the analysis program for 

computing performance data. 

 
4.1.2.3 - Combined Model 

 
Since the surface temperature data was not always available, the surface 

temperature prediction model (Equation 4-1) as substituted into the layer temperature 

model (Equation 4-3).  This allows for calculate of the layer temperature which includes 

the predicted pavement surface temperature.   

 
                        Td = 8.4379 + 0.8528 × AAT – 0.0051 × SR + 0.0762 × D  (4-5) 

 
where Td =  temperature at depth d, °F 

 AAT  = ambient air temperature, °F 

 SR = shortwave solar radiation, W/m2 

 D  = depth below pavement surface, in. 

 

This model produces very similar results to Equation 4-4, but has a smaller R2 

value of 0.88 compared to an R2 of 0.90 for Equation 4-4.  The additional prediction 

variable (solar radiation) results from the substitution of Equation 4-1 into the PST 

variable in Equation 4-3.   

 
4.2 - Load Pulse Duration 

 
 
The previous chapter detailed the process used to calculate HMA stiffness from 

the dynamic modulus master curve model.  This model requires the load frequency (load 
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pulse duration) and the temperature in order to predict the material stiffness.  One caveat 

that exists is to properly select, or predict, the load pulse duration at the depth of interest.   

Prior work (Hornyak & Crovetti, 2009) initially demonstrated that the load pulse 

duration determined through the Method of Equivalent Thickness (MET) may have 

shortcomings.  Load pulse duration data from this project was compared to estimated 

load durations calculated through MET.  It was found that the measured load pulse 

durations were in general smaller (shorter in duration) than the durations approximated 

by MET for horizontal strain and longer for measured vertical pressure.  MET best 

describes the case of vertical pressure since the vertical load contained no stress reversals 

whereas horizontal strain contained stress reversal due to the moving load, especially for 

longitudinal, horizontal strain.  The load time extracted for the project data only 

calculates the duration that the pavement is in tension for the case of horizontal strains.   

The likely source of error that causes this discrepancy between the actual and 

MET load time is partly due to the broad assumption made within MET theory.  The two 

main factors are the transformation of pavement layers to an equivalent section and the 

assumption that the stress distribution acts at a 45 degree angle from horizontal (Figure 

4-10).   The transformation of the section thicknesses should be adequate for these 

computations; however depending upon the strength properties of the materials, the 

assumed stress distribution angle may not be adequate and can be regarded as a large 

global assumption of common soil properties.   
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Figure 4-10 - Untransformed and transformed sections for MET computations. 
 

In order to account for these deficiencies, the actual and MET load times have 

been analyzed and a linear regression has been performed to model the correction.  

Furthermore, a stress distribution angle has been proposed to more accurately predict the 

load times for the horizontal strain case.   

 
4.2.1 - Base and Subgrade Pressure 

 

As previously stated for most pavements, the method of equivalent thickness 

(MET) procedures best describes load pulse duration for the case of vertical pressure in 

the pavement structure.  The effect of a rolling wheel load on the pavement can be 

thought of in terms of a continuous beam with supports along its length – as shown in 
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Figure 4-11.  Since the HMA contains some tensile strength, there are small 

displacements occurring in the vicinity of the moving wheel load. 

   

 

Figure 4-11 - Deflection of a continuous beam. 
 

In contrast, the unbound layers in the structure contain little to no tensile strength.  

The lack of tensile strength of these layers removes the above effect demonstrated in 

Figure 4‐11 by effectively removing the ability of the material to carry moment/couple 

forces.  However, the shear strength of the materials (both HMA and unbound layers) 

does allow the material to distribute load through a bridging action.   

The earth pressure cells were installed into the subgrade (Figure 4-12) to measure 

the vertical stress due to the static weight of the pavement structure as well as the vertical 

loading from passing wheel loads.  A total of four cells were installed – two in the 

subgrade layer (46 inches below pavement surface) and two in the dense graded base 

layer (20 inches below pavement surface). The pairs were installed with the same 

horizontal positioning – the two pairs were installed between the strain gauge arrays and 

were centered in the wheelpath (offset = 0.0 inch).   
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Figure 4-12 - Earth pressure cell installation. 

 

Figure 4-13 below is a typical recording of vertical pressure in the base and 

subgrade layers caused by a class 9 vehicle (front axle and tandems on tractor only).  

Note that the change in the recorded sub-grade pressure is less than the vertical pressure 

change in the base layer.  This is because of the wider distribution of the stress at the 

greater depth carried by the shear strength of the unbound layers.  Also note that the 

individual axles of the tandem group can be identified in the base plate recording, while 

the subgrade demonstrates only one stress pulse.   
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Figure 4-13 - Vertical pressure recordings. 
 

Because the stress from the vehicle loading is distributed over a larger area deeper 

into the pavement structure, the duration of the stress at any point at a particular elevation 

is increased (Figure 4-14).  In most circumstances the load duration in the unbound layers 

is not required for determining unbound layer stiffness because the materials are not 

considered load rate dependent. 

 

 

Figure 4-14 - Stress distribution in the pavement structure. 
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The adequacy of the MET process can be validated by comparing the adequacy 

for the non-load rate dependent layers.  As stated before, the MET process for predicting 

load/stress durations are suited best for the case of vertical pressure because of the lack 

large stress reversals (i.e. tension to compression).   

For validation of the MET concept, the load pulse durations from collected 

vehicle data was compared to the load durations computed using MET.  Two time 

periods were used in general for this validation – on from a period of warmer weather 

(42nd week of 2007) and another from colder temperatures (10th and 11th weeks from 

2008).   

A two week-long window of data was sampled for the colder temperatures 

because measured stress and strain magnitudes were significantly reduced due to the 

increase in HMA stiffness at low temperatures.  This limited the number of significant 

observations found within one week of data (i.e. observations that contained strain 

measurements greater than 5 µε and pressure measurements greater than 0.5 psi).  

Environmental conditions for week 10 and 11 from 2008 were nearly identical. 

The MET load pulse durations for the time periods were not computed directly.  

The stiffnesses of the HMA layers were solved (iterative procedure) for in the FE 

analysis and were stored into a database along with the stiffnesses for the unbound layers.  

The MET load pulse duration calculations were then carried out in a spreadsheet using 

the computed stiffness data.  The load pulse durations for the bottom of the HMA layer 

(the location of the strain gauges) was completed in the same manner.   
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Figure 4-15 and Figure 4-16 shows a comparison of the MET load times plotted 

against the measured load times for the base and subgrade vertical pressures at the 

warmer temperatures.   

 

 

Figure 4-15 - Base actual versus MET load time. 
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Figure 4-16 - Subgrade actual versus MET load time. 
 

In Figure 4-15 and Figure 4-16, the bulk of the data is generally centralized 

around the line of equality; there is a trend showing that the MET load times do not 

contain much variability.  The significant variation (scatter) in the data is due to the 

apparent low variation in the MET load durations, while the measured load durations 

have much more variation in the range of values.   

The apparent insensitivity of the MET computed load times is mostly because the 

procedure assumes only a single wheel load.  In reality there is a significant amount of 

overlapping of the stresses as discussed in Chapter 3 which causes some load durations to 

become longer.   

Acknowledgment of this effect led to the separation of singles and axle groups 

(tandems, tridems, etc.) and further extending the load times based on the axle spacing.  
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Figure 4-17 shows the improvement of the fit of load pulse duration data – the portion of 

data points that were located to right side of the line of equality have been shift upward.  

An average axle spacing of 53 inches was used – this spacing was generated by taking the 

average of the measured axle spacing for tandem axle groups in the data set.   

 

 

Figure 4-17 – Base singles/tandems load pulse durations. 
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Figure 4-18 – Subgrade singles/tandems load pulse durations. 
 

The preceding figures show that the MET process has crudely predicted the load 

pulse durations in the base and subgrade.  In Figure 4-18 and Figure 4-19 there appears to 

be a secondary trend in both the single and tandem data points (Figure 4-19 only 

demonstrates singles for clarity).  Around 0.300 seconds for the singles and 0.350 

seconds for the tandems, there a slight gap in the actual load times.  Upon inspection of 

the recorded data, it was found that this shift was due to pressure measurements that did 

not have full stress reversal (i.e. the measurement did not return to the unloaded state 

between different axles). 
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Figure 4-19 - Stress overlap for subgrade pressure. 
 
 

Figure 4-20 shows pressure recordings from the data set demonstrating the two 
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Figure 4-20 - Example of pressure measurements with overlap and no-overlap conditions. 
 

 
4.2.2 - Horizontal Strain Load Pulse Duration 

 

The MET procedure has been implemented to calculate the load pulse duration in 

the HMA layers to be compatible with the time-temperature dependent material model 

for HMA.  This load pulse duration is then converted to a load frequency, Equation 4-6, 

and used in the dynamic modulus model to calculate the HMA stiffness (National 

Cooperative Highway Research Program, 2004).  The MET procedure has been shown in 

the above analysis for the vertical compression that the load pulse duration can be crudely 
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                                                     ݂ ൌ
ଵ

௧
     (4-6) 

 
where f = frequency, Hz 

 t = load pulse duration, seconds 

 
The observed response of pavement under moving wheel loads may imply that the 

MET procedure for calculating load pulse durations may be inaccurate and over 

estimating the load pulse durations.  Typical strain measurements from other research 

have shown a considerable stress reversals in the bound layers (Priest, 2005) (Timm & 

Priest, 2004) (Timm et al., 2004).  This effect may increase the rate of straining in the 

HMA higher than a load scenario with no stress reversals, which has the effect of causing 

an increased stiffening the HMA layers through the viscoelastic component of the HMA.   

Figure 4-21 below is a typical strain response of the HMA pavement from a 

moving wheel load for transverse and longitudinal horizontal strain.  The recordings are 

from the same class 9 vehicle that caused the pressure recordings used in Figure 4-13 

(year-week: 0742; wheel id’s: 250183482, 250183483, & 250183484).  In the figure, note 

that the longitudinal strain contains a compression spike before and after each major 

tensile strain.  The transverse strain recording does not exhibit this behavior. 
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Figure 4-21 - Typical strain response. 
 

Measured from the start to the end of each response, the single axle load times 

appear to be quite similar as indicated in Figure 4-21.  However, the existence of 

compression in the HMA layer for the longitudinal strain causes the slope of the 

strain/time data to be much steeper than that of the transverse.  This increased slope 

implies that the rate of strain in the longitudinal direction is faster than in the transverse 

direction. 

Often, HMA pavements that exhibit bottom-up fatigue symptoms typically are 

evidenced by longitudinal cracking in the wheelpaths.  The above observations from 

Figure 4-21 and the many nearly identical recordings from this project, support and give 

reason to why longitudinal cracking is a dominant pattern of bottom-up fatigue.  
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The increased strain rate in the longitudinal direction implies that the stiffness of 

the HMA in the particular direction is greater than that in the transverse direction due to 

the viscoelastic nature of HMA (i.e. the material is stiffer at a faster rate of loading).  For 

a particular load, the increased stiffness results in lower strain for the longitudinal 

direction.  This is not witnessed for the front axle of the vehicle in Figure 4-21, however 

is readily apparent in the strain magnitudes of the tandem axle set that follows.  Figure 

4-22 shows a typical strain response for single axles – exhibiting transverse strain being 

larger than the corresponding longitudinal strain.  

 

 

Figure 4-22 - Single axle strain response. 
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versus those measured in the field.  Figure 4-23 exhibits the results from the date 

generated for longitudinal horizontal strain.   

From inspection of Figure 4-23, it is clear that the MET computed load durations 

are being over estimated and actual load durations are shorter.  Applying the tandem axle 

spacing moves the cloud of data upwards away from the line of equality, demonstrating a 

constant error (best fit line through clouds passes through origin).  Figure 4-24 is the 

same data from Figure 4-23, but includes the shift for the tandem axle spacing.  

 

 

Figure 4-23 - Actual vs. MET predicted load duration from longitudinal horizontal strain – no 
tandem correction applied. 
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Figure 4-24 - Actual vs. MET predicted load duration from longitudinal horizontal strain including 
shift for axle groups. 
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groups).  The data for the transverse load durations contains significantly more scatter 
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zero, value. 
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peak detection itself contains some variability.  The details of the strain pulse 

measurement can be found in the Marquette Instrumentation Project Phase II Report 

(Hornyak & Crovetti, 2008). 

 

 

Figure 4-25 - Actual vs. MET predicted load duration from transverse horizontal strain including 
shift for axle groups. 
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pressure which was found to be somewhat adequate, the load durations are still 

apparently longer.   

The effect of temperature was analyzed to see if there was significant change in 

the prediction of load pulse duration.  The two analysis periods contained drastically 

different temperature regimes – Table 4-5 below contains the average ambient air 

temperature for the analysis periods examined.   

 
Table 4-5 - Temperatures for analysis periods. 

 

 

 
Figure 4-26  is the same comparison plots as Figure 4-24, but with the two time 

periods superimposed.  It is evident that there is little change in the load duration, both 

for the predicted and also the measured.   

It is also interesting to note that the figure indicates that the MET process is 

creating an increase in the load times during the colder temperatures.  This is likely due 

to the increase in stiffness of the HMA layers at the colder temperatures which causes an 

increase in the equivalent thickness, ultimately resulting in longer load pulse durations.  

In reality this is reasonable since the HMA will carry the loads over a large influential 

area, however the experimental does not show this affect.  The average actual loads times 

for the colder and warmer temperatures was found to be 0.136 seconds and 0.137 seconds 

respectively.  The average predicted load times for the colder and warmer temperatures 

was found to be 0.245 seconds and 0.229 seconds respectively. 
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High 78.2 47.2
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Figure 4-26 - Actual vs. MET predicted load duration at different temperatures. 
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strength testing of these materials confirm this well understood concept (Murthy, 2003). 

The strength characteristics of common soil types are exhibited the Mohr’s plots below in 

Figure 4-27.   

 

       

Figure 4-27 – Mohr’s circle plots for unconsolidated-undrained state (left) and drained state (right). 
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The data from the 42nd week of 2007 and the 10th and 11th weeks of 2008 were 

used for the optimization.  The optimized stress angles were found by minimizing the 

square of the errors between the MET and actual load pulse durations.  The process was 

completed for each individual case (i.e. vertical stress, transverse horizontal strain, etc.) 

and the stress angle for each noted.  Table 4-6 below contains the optimized stress angles 

found for each.   

 
Table 4-6 - Optimize MET stress angles. 

 

 

 
It is worthy to note the optimized stress angles for the different time periods (and 

environmental conditions) are strikingly similar with the exception of transverse strain.  

The similarities between the temperature regimes support the theory that temperature has 

little influence on load times.   

Also, the above load duration analysis showed that the MET and actual load 

durations for the vertical pressure cases were quite similar.  The optimized stress angle is 

quite close to the assumed 45° angle which further supports that the MET process can be 

adequate the case of vertical pressure. 

The optimized angles for the horizontal strain have a much larger change from the 

assumed 45° angle.  Both angles for horizontal load times were increased which is 

consistent with the data comparison from above.  The difference in stress angles for the 

transverse strain case is due to the amount of scatter in the data from the warmer 

Warm Temperature Cold Temperature

Longitudinal Strain 68.55 68.29

Transverse Strain 56.45 65.12

Base Vertical Pressure 45.00 45.00

Subgrade Vertical Pressure 45.34 44.48

Stress Angle, °
Orientation
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temperature period.  During this period of warmer temperatures, the measured strain in 

the HMA does not return to the unloaded state between axle passes and can typically 

have a residual strain up to 5 µε.  During analysis at the warmer temperatures, the 

program tends to ‘over-measure’ some axles which are relatively closely spaced and 

produce long load times because the strain measurement never returns to an unloaded 

state. 

For the strain load time analysis, most of these cases have been removed for 

analysis because the magnitude of the residual strain is rater low.  In Figure 4-23 (pg. 

142), the data points that extend horizontally to the right (high measured load times) 

exhibits these particular ‘over-measurements’.  However, this assumption of residual 

strain (also similarly visible in the earth pressure data discussed prior in Section 4.2.1 

regarding stress overlap) may warrant further investigation in future research to quantify 

if this effect has any influence on the fatigue characteristics of the pavement.    

It should be noted that the load time calculations should be iterated since the 

stiffness changes with the change in load duration.  However the error should be 

reasonably small - the updated stress angle was used in the analysis program and the 

stiffnesses were iterated for the FE analysis.   

Below are updated comparison plots the MET and actual load durations for both 

the horizontal strains and vertical pressures for the 42nd week of 2007 dataset.  The data 

for the figures used the updated stress angles found for each respective case except for 

the vertical pressure where the stress angle for longitudinal strain was used (this was done 

since the optimized was relatively close to the assumed 45° and the longitudinal angle 

held the greatest value of 60° and would thus provide a lower limit of load duration).   
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Figure 4-28 – Actual versus predicted load pulse durations for longitudinal strain using the increased 
stress angle. 

 

 

Figure 4-29 - Actual versus predicted load pulse durations for transverse strain using the increased 
stress angle. 
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Figure 4-30 - Actual versus predicted load pulse durations for base pressure using the increased 
stress angle. 
 

 

 
Figure 4-31 - Actual versus predicted load pulse durations for subgrade pressure using the increased 
stress angle. 
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It is apparent the optimized stress angle has provided a better prediction of the 

load pulse durations for the horizontal strain and the vertical pressure are crudely 

represented.  The procedure was completed for data taken from the 10th and 11th weeks of 

2008.  The load duration data was nearly identical to that of the data taken from the 

warmer period used to generate Figure 4-28 through Figure 4-31.  

In the past, other researchers studying the load pulse durations have described the 

load pulse as a function of vehicle speed (Barksdale, 1971).  Figure 4-32 and Figure 4-33 

below are scatter plots of the load pulse durations and speed for both the longitudinal and 

transverse orientations and both predicted and measured load times.  The longitudinal 

load pulse durations have a much stronger relationship with speed while the transverse 

contains more variability (due to the detection errors mentioned above).  The simple 

linear regression models applied in Figure 4-32 and Figure 4-33 represent the best fit 

models for the predicted data.   

The prediction model presented Figure 4-32 fit the experimental data quite well 

for the longitudinal strain case.  On the contrary, the transverse model (Figure 4-33) for 

singles is slightly under-predicting the load times (short in duration), while the model for 

the tandems fits quite well.  Note that the experimental (measured) transverse load times 

for the singles and tandems (Figure 4-33) lie nearly on top of each other.  Figure 4-29 

indicated that for the chosen stress angle for analysis, the load pulse durations are shorter 

in duration than those found experimentally.  This was expected since the stress angle 

found by minimizing the error between measurements was found to be less than 60°.  The 

selected stress angle was used as an average value for both orientations and small 

discrepancies were expected.   
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Figure 4-32 - Speed versus longitudinal strain load pulse duration. 
 
 

 

Figure 4-33 - Speed versus transverse strain load pulse duration. 
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4.3 - Stress/Strain Prediction 
 

The previous discussion on the load pulse duration was focused on testing 

adequacy of the MET process for determining the load pulse durations which are then 

used for determining the stiffness of the HMA pavement.  The discussion concluded that 

an increased stress angle used in the MET process can provide a much more accurate 

prediction of the load pulse duration in the HMA layers.   

The following provides an analysis of the FE results compared to the stress/strain 

measurements made at the test section.  Of particular interest to this project were the 

horizontal strains and the vertical pressures.  The preliminary data analyzed used the 

standard MET procedures with the 45° stress angle.  The FE computations were then 

completed using the updated stress angles found in the section 4.2.2 and the improvement 

in stress/strain prediction is analyzed.  The analytical representation is important for 

future predictions of the strain, which can then be used to estimate fatigue consumption 

of the pavement. 

Discrepancies found between experimental and the analytical results may be 

attributed to several different parameters - the biggest of which is the stiffness 

characteristics of the HMA.  Variations in stiffness of the subgrade should be minimal; 

however the inaccurate prediction of the load pulse duration may lead to larger error in 

stiffness predictions.  Based upon the measured load times for the vertical pressure and 

corrected load times in the HMA, a better prediction of the strain can be achieved.  Other 

sources of error can be attributed to the FE analysis program which contains a few mild 

assumptions in regards to load modeling, boundary constraints, etc.    
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Higher quality strain prediction results in a better quality fatigue prediction.  

However, this method does not account for irregularities in the pavement structure such 

as cracks or layer debonding (either partially or fully debonded).  These conditions may 

prevail in the future as the pavement ages.  Due to the young age of this pavement, it was 

a safe assumption that these conditions either do not exist or exist to a very small degree.   

 
4.3.1 - Vertical Pressure 

 
 
The FE model of the pavement was designed to mimic the actual pavement as 

closely as possible to allow for accurate predictions of the structural response of the 

pavement.  Since the data from the field was collected and processed, it was possible to 

make a direct comparison between the actual measurements and those predicted by FE 

analysis.   

Figure 4-34 below is a comparison of the actual versus field measured pressures 

in the base layer.  Only loads that were located laterally within ± 2.0 inches of the 

instruments centerline were considered.  It is apparent from this plot that the predicted 

pressures at this location are 65% to 70% lower than the actual pressures from the field.  

A linear regression model has been added to the plot with the y-intercept forced to 

through the origin.  The slope of this regression model essentially provides the average 

ratio of the FE predicted pressure to the actual.   
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Figure 4-34 - Actual vertical pressure versus predicted for base layer. 
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In the subgrade/native soil layer where the soil might be weaker than the sand 

bedding, the opposite effect may occur.  In this scenario, the pressure cell and bedding is 

stiffer than the surrounding material and the combined effect can act as a simple spread 

footing in which the material directly below the instrument ‘feels’ less stress due to the 

distribution (Geokon, Inc., 2004). 

In both cases, the instrument installation can have quite an effect on the state of 

stress around the cell leading to measurement errors.  Due to this discontinuity of the 

stress field, it is possible that the base pressure cell may be producing readings that are 

slightly under the real stresses.  The cells have been reported to produce measurement 

errors up to 15% of the mean soil stress  (Geokon, Inc., 2004).  The cells were installed 

using practices to minimize measurement error. 

Figure 4-35 shows the pressures in the native soils layers.  In this figure, it is 

apparent that the predicted pressures are closer to the measured pressures, especially for 

singles, but still about 40% lower than measured (although there are some significant 

leverage points within the data).   Again the decreased predicted stress could also be due 

to the relatively weaker subgrade causing the pressure measurements to be higher than 

the real stress. 
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Figure 4-35 - Actual vertical pressure versus predicted for native soil layer. 
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4.3.2 - Horizontal Strain 
 
 
Figure 4-36 and Figure 4-37 below are comparisons of the predicted and actual 

horizontal strain for both the longitudinal and transverse strain.  Similar to the load 

duration analysis, the data only represents moving loads that were located over the 

instruments within a range of ±2 inches from the centerline.   

It is apparent that in the longitudinal cases, the predicted strains are higher than 

the measured strains.  This is expected since the standard MET procedures were used to 

generate the material data for the predictions and the load durations are much longer than 

the actual, applying a lower HMA stiffness which results in higher predicted strains in the 

HMA.  This finding is consistent with the load duration data.   

 

 

Figure 4-36 - Measured versus predicted longitudinal horizontal strain. 
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Contrary to the longitudinal case, the predicted transverse strains are nearly in 

agreement with the measured data.  The predictions were actually slightly lower than the 

measured values – observations of the transverse strain during the experiment typically 

indicated that the transverse strains were slightly larger than longitudinal strains for the 

same loads.   

 

 

Figure 4-37 - Measured versus predicted transverse horizontal strain. 
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case and the measured strain data reflects this by indicating a larger difference between 

singles and tandems for longitudinal strains over the transverse strains. 

The optimized stress angle found during the load time analysis was implemented 

into the FE program and the structural responses were recomputed.  Figure 4-38 and 

Figure 4-39 shows the results of the adjustment in load time.  The steeper stress angle 

used for the MET process causes on overall reduction in computed load time durations 

for the predicted results (because of the stiffening of the HMA layers). 

There is an improvement in the predicted results for the longitudinal strain, 

moving the data closer to the line of equality.  However, the predicted transverse strains 

are also reduced slightly and the predictions are slightly under the measured values.  The 

increase in stress angle has improved predictions for longitudinal strain.  However as 

noted in the discussion on load time, the optimized stress angle for transverse strains was 

less than the 60° value used overall.  Taking this into account, it was expected that the 

transverse strain predictions would be negatively affected.  The same notion can be 

applied to the vertical pressure predictions as well. 
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Figure 4-38 - Measured versus predicted longitudinal strain with optimized MET stress angle. 
 

 

Figure 4-39- Measured versus predicted transverse strain with optimized MET stress angle. 
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Because of the stiffening of the HMA layers when implementing the updated 

MET stress angle, the predicted pressures are also reduced by a small amount.  Figure 

4-40 and Figure 4-41 below show the reduction of the pressures due to the updated stress 

angle.  The subgrade vertical pressure still has better agreement compared to the base 

course, although predictions are still under predicted.  There is practically no change due 

to the updated MET angle and the predictions are still crude - the possible source of 

errors within the instruments and the FE model (e.g. modeling of the load, tire pressures, 

etc.) still hold for this data.   

 

 

Figure 4-40 – Measured versus predicted base course vertical pressure with optimized MET stress 
angle. 
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Figure 4-41 - Measured versus predicted base sub-grade vertical pressure with optimized MET stress 
angle. 
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frequency by simply taking the inverse (as in Equation 4-6) of the load pulse time, the 

frequency should actually be the angular frequency, stated in Equation 4-7.   

 

                                                     ݂ ൌ
ଵ

ଶగ௧
     (4-7) 

 

where  f = frequency, Hz 

 t =  load pulse duration, seconds 

 
Other conversions have been suggested, although the most dominant has been the 

angular frequency (Thompson et al., 2006).  It should be noted that this discrepancy 

arises from the difference in the loading schemes used to develop the dynamic modulus 

master curve for the material and how the material is loaded in service.  The dynamic 

modulus uses a sinusoidal loading (compression only) with no rest periods between each 

successive load.   

In service, a pavement will experience a number of rapid loads which are not 

consistent in the timing.  Furthermore, in between vehicles there may be seconds to 

minutes of rest between loadings which can have implications on the viscoelastic 

component of the HMA materials.  One of these modulus implications is that the rest 

periods may allow the viscous component of the stiffness model to return to unloaded 

state – contrary to repeated loading where the viscous component steadily increases.  

Additionally the shape of the test specimen and the laboratory loading configurations do 

not match that of the materials in service.  

The angular frequency was implemented into the FE analysis program along with 

the increased stress angle and the analysis was recomputed for the sample periods once 



166 
 

 
 

more.  It was observed that there was a shift in the data similar to that in the above 

analysis for the optimized MET stress angle. 

However, it was observed that the computed load time durations did not fit those 

measured in the field.  A better understanding of the effects this change on the dynamic 

modulus models is warranted for further investigation.  It should be noted however, that 

the change in the FE results were still somewhat reasonable when using the different 

frequency domain conversion.   

The various methods of computing the load durations however only cause a small 

change in the stiffness of each HMA layer.  Since the pavement in this study has a 

relatively thick HMA layer, it could be expected that small changes in the stiffness will 

only result in minor changes in the stress/strain predictions (i.e. there is a stiffness 

gradient through the thickness of the HMA – additional HMA thickness may not cause a 

linear change in the structural response). 

For a thinner HMA layer pavement, there may be a larger influence of the HMA 

stiffness on the stress/strain computations since the HMA section of the pavement is 

smaller (i.e. the stiffness gradient through the thickness of the HMA may have a larger 

influence).  In addition, the dynamic modulus model is sigmoidal and flattens near the 

outer limits of the model used here (and is characteristic of many other HMA materials).  

This implies that at very fast or very slow load durations, the unit change in HMA 

stiffness is less than the unit changes near the center of the sigmoidal model.   With a 

thinner HMA thickness, the median load duration would be higher than that of the 

median load duration for a thicker HMA section.  The interaction of changes in the load 
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duration on the structural responses could be understood by studying both thick and thin 

pavements utilizing similar materials.   

 
4.3.3 - Other Structural Observations 

 
 
As indicated in the analysis of the load durations for the horizontal strains, the 

transverse load times were longer in duration than the longitudinal load times.  Keeping 

in mind the viscoelastic effect of the HMA, the longer load times for the transverse 

direction should cause the stiffness to be reduced for the transverse direction and thus 

lead to higher strains in the HMA.  Figure 4-42 below is a plot of recorded peak strain 

values for both the transverse and longitudinal orientations. 

Figure 4-42 demonstrates that the strains measured in the transverse direction are 

indeed larger than those for the longitudinal orientation.  According to the applied linear 

regression model, the transverse strains are about 1.6 times larger than the longitudinal 

and a linear model forced through the origin indicate that the transverse strains are about 

2.0 times larger than the longitudinal orientation.  The comparison plot of load times, 

Figure 4-43 below, confirms the speculation that the load times for the transverse 

orientation are larger than the longitudinal. 
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Figure 4-42 - Measured longitudinal and transverse strains. 
 

 

Figure 4-43 - Load time durations for horizontal strain. 
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4.4 - Fatigue Analysis 
 
 
This research utilizes real-time pavement performance data that was recorded 

continuously. It may have been possible to find measured changes in data, indicating the 

growing quantity of damage in the pavement; however at the time of this report, there is 

no evidence to suggest that any damage has taken place and this is not surprising given 

the young age of the pavement and the robust design of the section.  It is also unlikely 

that any of the instruments will survive a length of time to actually measure large 

changes.   

However, what can be accomplished is the creation of a model that describes the 

distribution of damage across the wheelpath of the pavement.  The current version of the 

MEPDG software uses a defined distribution of strain (and subsequently damage) across 

the wheel path to estimate fatigue damage (National Cooperative Highway Research 

Program, 2004).  This process is based on assuming a relative path for a given wheel/load 

type - the strain is used to compute incremental damage across the pavement and the 

damage is accumulated over the desired design life.   

Traffic loads on the pavement are assumed normally distributed to account for 

wander.  Wheel-wander under live traffic has had limited attention, but is highly 

important, especially at locations where there exist significant traffic weaving/merging.  

The following analysis of fatigue damage gives attention to this matter.   

A model for the accumulation of fatigue across the pavement has been proposed 

which represents more closely the actual conditions within the pavement.  However, 

many pavements are unique in regards to the wheel path that vehicles/motorists travel-

due to geometric conditions (such as super elevation, grade, objects in clear zone, etc.), 



170 
 

 
 

environmental conditions and traffic conditions (e.g. congestion, speed, etc.).  This 

particular section of pavement is located downstream of a drop lane section and just 

before a weaving section for an on-off ramp (Fond Du Lac Ave. on-ramp and North Ave. 

off-ramp).  More information regarding driving habits is required before supposing a 

universally accepted model or applying this model to pavement sections that vary 

drastically in the aforementioned conditions.   

 
4.4.1 - Model Development 

 

The representative time period used for the previous studies has been reinstituted 

for this portion of the analysis (the 42nd week of 2007 and the 10th and 11th weeks of 

2008).  These two periods contain a good sampling of data which possess high quality 

since little deficiencies were present within the instrumentation system.  In addition, these 

two time periods represent the temperature extremes that are encountered in the 

geographical location.   

The focus of fatigue analyses for HMA pavements has typically only concerned 

heavy vehicles with little, or any, regard for passenger type vehicles.  For this analysis, 

only heavier vehicles have been considered, keeping consistency with past research.  

However, it would be possible for this body of research to understand the effects of 

passenger vehicles, but due the small strains witnessed in this project it is highly unlikely 

that any damage is truly accumulated.   

Of interest for this research was the influence various loads had on the pavement 

not only below the load (where the highest stresses are assumed to exist), but also to 

assess the quantity of damage caused by stress at some distance away from the load 
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center.   The data from this project was used to develop a model which describes the 

influence of peak strains at various distances away from the location of the load.  This 

strain influence along with the measured wheel wander can then be used to calculate 

damage across the wheelpath.   

To model the influence of peak tensile strains at distances away from the load 

center, strain ratios were computed for each wheel pass for various load ranges and load 

types (i.e. singles or duals).  The strain ratio (Equation 4-8) was computed as the peak 

strain at the strain gauge of interest, divided by the maximum peak strain measured for 

each of the similar gauges (similar in orientation).  By definition, unity represents the 

maximum value of the strain ratio. 

 

݅ݐܴܽ ݊݅ܽݎݐܵ                         ൌ
௦௧

௫௨ ௦௧
   (4-8) 

 

Using the measured wheel wander data (offset measured from the centerline of 

the wheelpath), the distance of the load from each gauge was computed as shown below 

in Figure 4-44.  The offset distances computed were such that a positive value indicates 

the load was positioned to the right of the instrument and negative indicates the load was 

positioned left of the center.  It was found there was a distinct relationship between the 

strain ratios and the distance from the load which was independent of the wheel loads.   
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Figure 4-44 - Wheel wander offset notation. 
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strain measurements.  
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Figure 4-45 - Typical strain response for a class 9 truck. 
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Figure 4-46 - Longitudinal strain ratio versus load distance, singles. 
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Figure 4-47 - Stress influence from axle loads. 
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models developed for the strain ratios included this condition.  However, to provide an 

additional model which does not contain this condition (where the opposing wheel does 

not have an effect), the portion of the distance-strain ratio curve that does not exhibit this 

effect was essentially mirrored to provide a symmetrical pattern.  This was thought to be 

useful for instances where the opposing wheel loads do not significantly overlap.  This 

may be the case of thinner HMA sections (such as the case of stress overlap for the 

analysis of load pulse durations above).  In addition, a symmetrical model could be used 

to model closely spaced loads by superimposing the loads on top of each other. 

In order to generate meaningful models that could be used for future fatigue 

analyses, the data was separated into 4 distinct groups resulting in 4 models for each 

group.  Initially, load ranges were used to generate the relationships to enhance the 

correlation and fit of the models, however reduction in scatter was not significantly 

reduced and regression analyses indicated the load was not a significant predictor of the 

strain ratio at the alpha = 0.5% level.   
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This finding was important since the assumptions during FE analyses was that the 

pavement behaved in a linear elastic manner.  The good relationship found between the 

strain ratios and load distances indicates that the HMA does behave in a linear elastic 

fashion for these types and rate of loadings.   

Fatigue models were based on 4 cases – longitudinal and transverse for singles 

and longitudinal and transverse for tandems.  A mix of vehicle types was initially used to 

generate the models, however there was difficulty in separating the actual wheel loads 

during the preliminary analyses (i.e. difficult to assign measured wheel load to each 

particular wheel event).   Because of this difficulty only class 9 vehicles where used since 

it can be reasonably assumed that the first load is a single axle and the following axles are 

tandems (and ignoring the possibility of super-singles instead of dual tires). 

Plots of the data generated for the single and tandem longitudinal strain are shown 

in Figure 4-48 and Figure 4-49 for both the single and dual wheel loads.  The data was 

filtered in addition to the aforementioned vehicle class filter.  Only logical values of 

offset were considered which implies that offset measurements outside of the physical 

range were eliminated.  Measurements outside of the physical range are recorded in the 

database but represent errors in the data collection due to merging vehicles, slow traffic, 

and low signal amplitude.  In addition there were a number of computed strain ratios of 

1.00 for loads that hit a significant distance from the center of the gauge.  Many of these 

instances were associated with errors in the strain peak detection process where a peak 

value was missed or incorrectly identified and the data associated with these were 

eliminated.   



177 
 

 
 

The bold lines in Figure 4-48 and Figure 4-49 represent the best fit curve found 

through linear regression of the data points.  As noted before, other potential predictors 

were included in the regression analyses; however it was found that the best 

representation was found as a function of the load distance from the instrument.  More 

detailed information regarding the regression models is presented further into the 

discussion. 

 

 

Figure 4-48 - Strain ratios for longitudinal strain, singles. 
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Figure 4-49 - Strain ratios for longitudinal strain, duals. 
  

The distribution between the strain ratios is asymmetric due to the effect of the 

opposing wheel load at the other end of each axle.  These figures only provide the strain 

influence for one wheelpath and not the entire lane.  The strain influence for the entire 

lane could be theorized by mirroring the above data in Figure 4-48 and Figure 4-49 about 

the dark vertical line at the right end of the best fit line.  However the strain influence for 

the entire lane cannot be stated as such since the instrumentation did not encompass a 

large enough area to confidently make a model.   

Between the single and dual loads, it is apparent that this effect is amplified.  It is 

suspected this is due to the wider influence area of the dual tires contrary to the narrower 

stance of the singles.  The distribution for the singles is narrower and more symmetrical 

than that for dual loads, especially when loads hit to the right of the instruments.  Figure 
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4-50 shows the two regression models superimposed on each other, demonstrating the 

differences between the models.   

 

 

Figure 4-50 - Comparison of best fit regression models for longitudinal strain ratios. 
 

The case of transverse strain ratios was found to be quite different in terms of the 

behavior of the measured strains.  Figure 4-51 and Figure 4-52 provide plots of the strain 

ratios versus distance for the single and dual load configurations.  The is still some mild 

asymmetry to the data, indicating the effect of the opposing wheel load, however it is 

much less significant than the longitudinal cases.    
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Figure 4-51 – Strain ratios for transverse strain, singles. 
 

 

Figure 4-52 - Strain ratios for transverse strain, duals. 
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What differentiates the transverse cases from the longitudinal cases is the 

existence of negative strain ratios.  This indicates that at distances away from the wheel 

load, the measured strain values were actually negative (compression).  This is not an 

astounding discovery since it is understood that cracking in HMA pavements can initiate 

at the top of the pavement and propagate downwards – evidence of this phenomenon.  In 

addition, simple layered elastic analysis (LEA) of loads indicate a small reversal; 

however, the magnitude of the reversal for LEA is not as large.   

The continuous beam analogy used previously in Figure 4-11 can be applied to 

understand the nature of the pavement deflection under a moving wheel load.  The strain 

reversals are not unique to transverse strain though.  The analysis of the strain ratios 

above only consider the peak values of the strain events – observations of the entire strain 

signals indicate that strain reversals takes place for longitudinal strains.   

As stated previously, most longitudinal strain measurements contain a 

compression component that precedes and follows the main tensile pulse.  This 

phenomenon is demonstrated in Figure 4-45, most notably for the center gauge, A1.  It 

has been observed that this compression pulse preceding and following the main tensile 

event is absent for transverse strain measurements.  However, there does exist 

compressive strains at a distance from the load center which is exhibited by the transverse 

strain signals for a class 9 vehicle below in Figure 4-53.   
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Figure 4-53 - Typical transverse strain response. 
 

The vehicle in Figure 4-53 had a measured offset value of only -0.8 inches which 

is nearly on top of the center gauge (sensor A1 & A6 in the figure).  The transverse strain 

variation demonstrates that the bottom of the pavement is in tension directly under the 

load and in compression at the locations of the other gauges (24 inches left and right of 

the center gauge).  After the main strain pulse, there is a slight rise in the signal which is 

due to the following set of tandem axles.  The response in Figure 4-53 is typical for many 

of the loading situations observed for this pavement.   
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4.4.2 - Asymmetric Regression Models 
 

The red solid lines in Figures 4-49 through 4-53 represents the regression model 

that was generated from the data.  The resulting regression model parameters are listed 

below in Table 4-7 and take the form of Equation 4-9.  For each case, various predictor 

variables were included in the regression analysis; namely speed, wheel load, load 

distance, as well as functions of these variables.  

 
݅ݐܴܽ ݊݅ܽݎݐܵ                 ൌ ߚ  ܦଵߚ  ܦଶߚ

ଶ  ܦଷߚ
ଷ  ܦସߚ

ସ  (4-9) 

 
where D = load distance from instrument, inches 

 βi = regression coefficient 

 

Table 4-7 - Resulting asymmetric regression model variables and statistics. 
 

 

 
Speed was considered in the regression analysis since the HMA materials are load 

rate dependent due to viscoelasticity (see Sections 4.2.1 and 4.2.2).  In addition, the 

wheel load was also considered since it was thought that load magnitude might influence 

the stress field distribution in the pavement.  In both of these cases, these predictor 

variables were found to be insignificant to the regression, although there was some 

Intercept D D
2

D
3

D
4

Singles ‐ Longitudinal 0.8089 0.0054 ‐6.6996E‐04 ‐1.5054E‐06 2.1277E‐07

          P‐value << 0.001 << 0.001 << 0.001 << 0.001 << 0.001

Duals ‐ Longitudinal 0.7598 0.0081 ‐4.8112E‐04 ‐1.6720E‐06 1.5464E‐07

          P‐value << 0.001 << 0.001 << 0.001 << 0.001 << 0.001

Singles ‐ Transverse 0.5472 0.0101 ‐1.2573E‐03 ‐6.8484E‐06 4.6482E‐07

          P‐value << 0.001 << 0.001 << 0.001 << 0.001 << 0.001

Duals ‐ Transverse 0.5524 0.0186 ‐1.1906E‐03 ‐1.1658E‐05 4.3873E‐07

          P‐value << 0.001 << 0.001 << 0.001 << 0.001 << 0.001

* Where D = Load distance from instrument, inches.

R
2

0.56

0.51

0.50

0.51

0.72 0.51

0.71 0.50

0.71 0.51

Response Model
Regression Coefficients

Multiple R
2
Adjusted R

2

0.75 0.56
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improvement model fit (multiple R2 statistic).  Since the improvements from these 

additions were small they were eliminated from the regression for model simplicity.   

It was found that the strain ratios were primarily dependent upon the load distance 

from the instrument.  A simple polynomial fit produced the best representation of the 

data.  This relatively simple model can be applied in future analyses with little input.  The 

models were produced using the full spectrum of the strain ratios (i.e. included the 

asymmetric data caused by the opposing wheel load). 

All of the above models listed in Table 4-7 have Multiple R2 values greater than 

0.70 although the coefficient of determination values ranged from 0.50 to 0.56.  The 

potential predictor variables were added and subtracted until the Multiple R2 values were 

a maximum with the fewest number of potential regressors (which included potential 

regressors other than load distance).  The above models were selected to best represent 

the strain ratio as a function of load distance. 

Although the models do possess a rather low coefficient of determination, the 

models represent the average range of the data which is indicated in Figures 34 to 39.  

The experimental data presented and used in this analysis contains a significant amount 

of scatter.  The data was filtered to reduce the amount of scatter, but was done in such a 

manner to maintain quality and accuracy.   

It was not reasonable to reduce the scatter by removing data in an unjustified 

manner.  The aforementioned methods used to reduce a large portion of the scatter (class 

9 vehicles only, removal of loads with illogical offset values, etc.) were felt to be 

justifiable and reasonable.  
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Other methods were attempted to reduce the scatter, but either did not improve the 

relationship or were somewhat unjustifiable.  These methods included deletion of data 

with very low strain ratios that were located over the instrument.  For instance, it could be 

reasonably assumed that the strain ratio should equate to unity when the load is directly 

over the instrument.  An attempted method was to force the strain ratios to unity when the 

load was located within the zone of influence of the instrument (i.e. load distance from 

the instrument was < 6 inches, assuming the next closest instrument was 12 inches away).   

There was a natural variability that was expected when designing the experiment 

and was such because gaining the additional precision would require a significant amount 

of experimental effort.  One source of error was generated from the wheel wander system 

which was found to have a 95% Confidence Interval of approximately 2.0 inches which 

implies each offset (and hence distance from load) measurement could vary as much as ± 

2.0 inches.  

The resolution of the strain measurements is also a large contributor to the overall 

variability of the strain ratios.  The instruments are located across the wheel path at 12 

inch centers – a wheel passing between two instruments would cause the peak strain to be 

directly under the load, but the instruments to each side of the instrument would 

theoretically measure the same strain.  The measurement could also technically be the 

maximum strain and the calculated strain ratios would then be unity for both instruments.   

 
4.4.3 - Symmetric Regression Models 

 

In order to provide models which could be used to represent only one load with 

no influence from other axles, the data used to produce the asymmetric (‘real’) models 
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were used to generate symmetrical data that did not include the data affected by opposing 

wheels.   

The data which represented strain ratios for loads that were located to the left of 

the instrument were retained while data pertaining to loads hitting to the right of the 

instrument were removed.  The resulting one-sided data was then mirrored to represent 

loads hitting to the right of the instrument.  A multiple-linear regression was then 

performed to create the models listed in Table 4-8.   

 
Table 4-8 - Resulting symmetric regression model variables and statistics. 

 

 

 
A similar polynomial fit was found to best represent the data, although the odd-

powered variables were removed due the symmetry (and found to be insignificant 

regressors during the analysis).  The models follow the general form found in       

Equation 4-10 below.   

 

݅ݐܴܽ ݊݅ܽݎݐܵ                            ൌ ߚ  ܦଵߚ
ଶ  ܦଶߚ

ସ   (4-10) 

 

Intercept D
2

D
4

Singles ‐ Longitudinal 0.7655 ‐8.0191E‐04 2.6305E‐07

          P‐value << 0.001 << 0.001 << 0.001

Duals ‐ Longitudinal 0.7126 ‐7.3828E‐04 2.4524E‐07

          P‐value << 0.001 << 0.001 << 0.001

Singles ‐ Transverse 0.4337 ‐1.3050E‐03 5.4323E‐07

          P‐value << 0.001 << 0.001 << 0.001

Duals ‐ Transverse 0.3531 ‐1.3118E‐03 5.6885E‐07

          P‐value << 0.001 << 0.001 << 0.001

* Where D = Load distance from instrument, inches.

0.77 0.59 0.59

Response Model
Regression Coefficients

Multiple R
2
Adjusted R

2
R
2

0.62 0.38 0.38

0.73 0.54 0.54

0.66 0.43 0.43



187 
 

 
 

Similar to the real models in the previous section, the symmetric models fit the 

data with a similar degree of accuracy.  The amount of scatter in the data is logically the 

same as that found in the real models and the sources of the variability are also the same.   

These models, including the asymmetric real models, represent an average of the 

data that has been collected and processed.  Usage of these models should be able to 

accurately predict strain ratios for the various scenarios.  When used in conjunction with 

an analysis to produce the maximum strain for a given wheel load, it is then possible to 

estimate strains at distances away from the load.   

These models should only be used for distances ±40.0 inches from the location of 

interest which is the limit of the regression model.  Extrapolating beyond these limits 

may produce strain ratio predictions with significant error.  The polynomial function used 

to model the strain ratios contain an inflection point near the ±40.0 inch prediction limit 

and could result in infinitely large strain ratios.  Caution must always be exercised when 

implementing regression models beyond the limits of the data used to develop the model. 

 
4.4.4 - Implementation of Fatigue Model 

 

When computing the fatigue damage of the HMA pavements, the general fatigue 

model described in Chapter 3 can be used in conjunction with the HMA stiffness and 

strain to compute an incremental damage for a particular load event.  The developed 

model can be used to generate the strains at all distances across the wheel path.  These 

strains can then be implemented to generate cumulative fatigue damage across the entire 

wheel path.  Each axle pass can then have an associated damage profile which can then 

be summed up with each progressive axle pass, taking into account wheel wander by 
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simply superimposing the damage profile for each accumulation summation.  The 

following steps allow the damage to be computed. 

 
1. Given a particular traffic profile and assumed axle load distribution. 

 
2. Solve FE or LEA problem to find maximum tensile strain for a particular 

vehicle. 
 

3. Calculate strain ratios across the width of the wheelpath/lane. 
 

4. Solve for strain magnitudes across the pavement using strain ratios and max 
tensile strain. 
 

5. Using a fatigue model, use the computed strains along with the stiffness to 
develop the incremental damage. 
 

6. Once the incremental damage is solved, steps 2 to 5 can be repeated and the 
cumulative damaged summed. 

 

The natural wheel wander across the pavement can be easily taken into account 

by either dividing the pavement into intervals across the width or implementing a Monte 

Carlo method to randomly select wheel wander from a given distribution.  This allows 

one to tailor the analysis based on different variations of wheel wander.   

In future studies it may be interesting to better estimate the stiffness profile of the 

pavement in question.  However this would require a much more in depth experiment to 

capture the stiffness profile of the pavement and analyze the actual measurements in 

conjunction with the viscoelastic model presented and used in this study.   

The fatigue damage calculation above is unique in that the actual damage profile 

for a real pavement has been developed and can be implemented for future damage 

calculations.  Previous attempts at modeling this effect use an assumed strain profile 

based on simple LEA approaches (National Cooperative Highway Research Program, 
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2004).  While the previous attempts have been modeled as accurately as possible, a 

process and a model have been developed to produce a more realistic approach to 

accounting for damage for real traffic. 
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Chapter 5 - Conclusions 
 

This research covers over 3 years of experimentation and development work 

which provided the data and the tools to generate the information and results.  One of the 

project outcomes, outside of this work, from the instrumentation work was to generate 

material properties and model the pavement system using analysis programs readily 

available and compare the results to those generated by the new MEPDG software.  The 

selected pavement design will also serve as a long term experiment, demonstrating to 

professionals in Wisconsin the potential performance gains of the perpetual pavement 

philosophy.   

The results generated in this research took additional steps to closely analyze the 

experimental data and develop tools to rigorously process all of the collected data.  The 

results only represent a fraction of the collected data.   The following sections describe 

the conclusions drawn from the results presented in Chapter 4. 

 
5.1 - Environmental 

 

The environmental conditions for pavements is of great importance and must be 

accounted for in some manner for an accurate analysis.  The effects of the environment 

on pavement systems are well understood and the experiment for this research 

implemented the tools necessary to accurately monitor the environmental conditions.  

This was accomplished by using temperature sensors, soil moisture probes, 

pyranometers, and an anemometer to capture the most important environmental factors.   

Of all of the recorded data to date, over 5000 samples (representing over 50 days 

with temperature ranges from 7° to 81° F) from the data collection system were used to 
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construct environmental models to predict pavement layer temperatures.  These models 

can be used for future predictions and were implemented into the finite-element program 

created for this research.  The pavement layer temperature is very critical in analysis of 

the HMA layers since the stiffness of the material is heavily dependent on temperature.  

The data that was selected was verified and represents a complete set of data with little 

error.  It should be noted that the data is not of a consecutive nature, but were actually 

separate data samples from different periods of time.  This gives samples over a wide 

range of time periods, providing a good average over different seasons 

During the analysis of the environmental data, good relationships for the HMA 

layer temperature were found.  Linear regression models were built of these relationships 

and were tabulated in Chapter 4.  It was found that the pavement surface temperature 

could be predicted from the ambient air temperature and the solar radiation at the site.   

This model is only accurate for the surface conditions at the time of the data collection as 

the pavement texture and color will likely have an impact on the adequacy of this model.  

Over time, wear on the pavement will likely strip the upper coating of the binder, 

exposing the rather light colored limestone aggregate.  The lighter colors may have a 

tendency to reflect the visible light radiation, thus making the surface temperature less 

dependent on the total solar radiation received.  

It was also found during the regression analysis that wind speed at the site was not 

a significant predictor for surface temperature.  It was theorized that increased wind 

speed may cause more heat to be conducted away from the pavement surface.  It is 

possible that the wind speed measured at a distance above the ground surface varies 

greatly over the wind speed at the pavement surface (due to the viscosity of the fluid).  In 
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addition, passing vehicles will absolutely create air flow over the pavement surface in 

which case makes the natural wind speed a small factor in heat transfer.  This argument 

may be different on roads with rather low traffic volumes.   

A regression analysis of the HMA pavement layer temperatures indicated that the 

layer temperatures were dependent on the ambient air temperature, solar radiation, and 

the pavement surface temperature.  The regression model statistics indicated an excellent 

fit to the data; however the models were generated at the specific depths of the 

instruments (which was done to fill in blanks in the project database).  The depth of each 

instrument was used to generate another regression model that could then be used to 

predict the layer temperature any depth in the HMA layers.  The adequacy was found to 

be good based on the model fit statistics.   

One caveat to these models was that the solar radiation and pavement surface 

temperature must be known.  To further simplify the model, only the ambient air 

temperature and depth was used to predict layer temperatures.  The resultant model was 

only slightly less adequate than the previous model, but far easier to implement.   

 
5.2 - Load Pulse Duration 

 

Due to the viscoelasticity of the HMA materials, the stiffness of the HMA layers 

are both temperature and load rate dependent.  The Method of Equivalent Thickness 

(MET) is commonly used to predict the load pulse durations in pavement systems.  This 

duration is then converted to a frequency and used in the dynamic modulus material 

model in conjunction with the temperature to calculate the stiffness.  For each load 

succession, only one stiffness is used in most analyses even though there is likely a 
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stiffness variation as the load is passing.  This stiffness variation during the loading 

should be reasonably small, although there is little evidence in support of this and a more 

in depth analysis may be beneficial.   

Since the pressures and strains were measured for each load, it was possible to 

compute the load durations from the experimental data.  These load durations were then 

compared to those found through MET.    

Analysis of the vertical pressure load pulse durations indicated that the MET 

process can provide reasonable predictions.  Data for the vertical pressures contained 

more scatter than that of the horizontal strain measurements which is likely due to the 

amount of stress distribution and overlap that occurs at depths below the surface.  The 

data scatter was higher for the lower subgrade than the upper base course pressure.  In 

both cases, little distinction was noticed between the single and tandem axle load groups 

– indicating the stresses are fully overlapped at the depth of these instruments.   

The load pulse duration analysis was seen as a good way to confirm the MET 

concept since the shape of the stress measurements were uniform and best represents the 

assumed stress distribution in the MET theory.  This is because the typical vertical stress 

measurements exhibit a compression only response with no stress reversals.  Because of 

the construction of the cells, it might be argued that the cells will not register a tensile 

event, however the plates are under a constant static stress due to the overburden stress.  

Any stress that might cause a tensile stress to occur at the cell locations would cause the 

overburden stresses to be relieved.  This was never observed. 

A long term relief of the vertical stress may be present due to changes in soil 

moisture.  This effect was not investigated and any observed changes in static pressure 
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could largely be attributed to temperature changes which affect the cells readout do to 

expansion and contraction of the materials used to construct the instrument. 

The horizontal strains were also analyzed in a similar manner to the vertical 

pressure load pulse durations.  It was observed that the standard MET process was over 

estimating load pulse durations, especially for the longitudinal strain case.  This may 

have been expected for the longitudinal strain since the responses typically contain 

compression strains preceding and following the main tensile strain event.  The behavior 

implies that the strain/load rate for this orientation occurs at a faster rate than for other 

orientations such as vertical pressure or transverse strain (in which the stress reversals are 

absent from the recordings.)  However, predicted load times for the transverse strain 

measurements were also too long even with the stress reversals absent.  Comparison of 

differing temperature regimes for the measured load times indicated little change between 

high and low temperatures, while a shift in the predicted load times, however small, is 

apparently more than those measured.   

In order to better predict the longitudinal and transverse strain load times, 

different methods were attempted to improve these predictions.  This included instituting 

the angular frequency instead of the normal frequency conversion (inverse of the load 

time) which has been the subject of recent discussions regarding this topic.  The best 

solution found was to modify the assumed 45° stress angle used in the MET process.  

Steepening the assumed stress angle essentially reduces the load times.  The best fit angle 

was found by simply minimizing the errors between the predicted and experimental data.   

The average angle for the base and subgrade vertical pressures from this 

minimization was found to be nearly the assumed angle of 45°.  However, the average 
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stress angle found for both longitudinal transverse load times was approximately 60°.  

Re-analyzing the data with the updated stress angle had little to no effect on the 

predictions of the load times.  Ideally the stress angles for both the longitudinal and 

transverse strain load times would be about 68° and 60° respectfully while the vertical 

pressures can remain at the standard stress angle (to produce the least amount of 

prediction error).  It is theorized that the ability of the materials to carry and distribute the 

load is subject to other factors and that the MET process which uses an assumed 

transformed section does accurately depict this.   

The relationship between vehicle speed and experimental load pulse durations is 

well defined for the longitudinal and transverse strains.  The same relationship for 

vertical pressures is slightly less defined due to the inherent scatter in the data.  Linear 

regression models for load time as function of speed were applied, however these models 

are only valid for this pavement type.  From the data, it is apparent that there is a 

distinction between the load times for singles and tandems, the strongest evidence for the 

longitudinal strain load times.  As stated before, there is little distinction in regards to the 

vertical pressures, likely due to the depth of the instruments where full stress overlap of 

the loads occurs.  Observations of the recorded strain responses indicate that at the 

bottom of the HMA layer, most of the stresses are overlapped for multi-axle loads and the 

measured strains do not have a significant return to an unloaded state between axles.   

 
5.3 - Stress/Strain Observations 

 

A complete finite-element (FE) program was written to analyze the loads that 

passed over the test section of pavement and the results stored to a database.  All of the 
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necessary material models and loading types were included in the analysis with some 

minor assumptions.  The FE data analyzed was first computed using the standard MET 

procedures and then re-analyzed using the optimized stress angle of 60°.  The data was 

then queried joining FE data with the experimental data.   

Upon inspection of the data concerning vertical pressures, the FE results were 

similar to the experimental results.  In general though, the measured pressures were lower 

than the analytical results.  The subgrade vertical pressure results agreed more closely 

with the experimental data over the base layer vertical pressures.  However, there does 

exist an element of error in the experimental results since the pressure plates disrupt the 

stress field in the soil and can contribute to this mild inaccuracy.   

It was observed that for the vertical pressures, there was little distinction between 

singles and tandems.  Since the analysis of the load pulse durations indicated that there 

was little distinction due to stress overlap, this finding was expected.  This reinforces the 

idea that the MET process can be used to predict the load times; however the user must 

be careful to understand the extent of the stress overlaps at depths.  Since it has been 

observed that there is an increase in the stress overlap from the strain down to the 

pressure cells, it is clear that the amount of stress overlap does indeed vary.  However, 

since no data is available above the bottom of the HMA layer in this project, the extent of 

this gradient can’t be realized.   

The horizontal strain analysis indicated that the disparity between singles and 

tandems increases which is in agreement with the findings for the load time.  Again this 

is likely because there is less stress overlap closer to the surface of the pavement.  
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Though this disparity is greater for the longitudinal strains over transverse which is 

exactly what was indicated from the load times.   

The increased stress angle for the MET process produced FE results with an 

overall reduction in the analytical strains.  This was expected since the increase in load 

times will result in stiffer HMA layers, thus reducing the responses.  Though there was a 

reduction in the strain, the change was rather lower – this indicates that the load time 

duration may not have a profound effect on the ultimate stress/strain results. 

The angular frequency was introduced to into the FE program and the analysis 

was re-run.  The response in the analytical strains was similar to those found for the 

increases MET stress angle.  The overall change in the stress/strain were again, rather 

small, however the load times were not consistent with those found experimentally as 

indicated previously.   

These rather small changes in the analytical stress and strain computations 

indicate that overall the load time does not change the structural response by a large 

amount even though there is a change in the stiffness of each HMA layer.  This may not 

be the case for thinner HMA layer pavements.  In this case, the HMA layers are quite 

thick relative to other typical pavement sections.  It is possible that the unit change in 

stiffness of the HMA layers in this case causes smaller unit change in the structural 

response than the same changes for thinner HMA layers.  For thinner HMA layers, the 

same unit change in the load time may cause a much larger unit change in the structural 

response.  This effect can be explained by simple beam theory and the stress equation due 

to bending (Equation 5-1). 
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                                                                               (5-1) 

 
where  σ = stress 

 ε = strain 

 M = moment 

 y = depth to neutral axis 

 I = moment of inertia 

 E = stiffness 

  

Because of thickness increases, the moment of inertia will increase according to a 

power function.  A unit change in stiffness for both thick and thin sections creates 

different unit changes in the computed strain.  However, the pavement system contains 

much more stress interactions then a simple beam and this influence is unknown. 

Other observations of the horizontal strain were investigated to confirm 

observations from the load time and FE analyses.  In particular, observations were taken 

during review of the recorded strain responses and it was noted that in general the 

transverse strains were typically higher than the longitudinal strains for the same load.  

Comparison of the data concluded that the transverse strains were indeed higher than the 

respective longitudinal.  During the analysis of the load pulse durations, it was also noted 

that the durations were shorter in length for the longitudinal direction due in part to the 

stress reversals.  Since the transverse load pulse durations were longer than the 

longitudinal, it was expected that the strains may be higher due to a lower stiffness in the 

particular orientation.  This supports a theory that the HMA materials may possess 

different stiffness characteristics for the different orientations under normal traffic 

loading (i.e. the HMA layers are anisotropic).  This observation warrants further study.   
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5.4 - Fatigue Analysis 
 

The fatigue of HMA materials has been studied closely in the past and has been 

found to be heavily dependent on the magnitudes of strain induced by the applied wheel 

loads.  The behavior of the fatigue characteristics have been compared and modeled in a 

similar fashion to the fatigue of metals – increases in the stress magnitude of repeated 

loading causes a reduction in the fatigue life.  This behavior which is well understood in 

metals has been applied to HMA materials (using strain instead of stress for fatigue life 

predictions).  The complexity of the HMA material itself leads to the study of the 

material at a macroscopic level whereas fatigue of metals can typically be understood by 

the crystalline nature of the metal under study.   

One particularly important factor in applying the fatigue theory to HMA is 

correctly modeling the loadings that are applied to the pavement system – both in 

distribution in load magnitude and also the distribution of the influence of those loads.  

The purpose of the analysis under study here was to understand the stress distribution of 

the loadings and develop a method to model these distributions.  In the past, it has been 

common to assume the distribution of the stresses and strains in the pavement system 

using readily available layered elastic analysis or finite-element analysis.  This 

distribution is important because the pavement will undergo stresses at some distances 

away from the load center and the cumulative nature of the fatigue life requires the 

incremental damage to accurately predict the fatigue life consumption.  Drivers have a 

natural tendency to meander within their travel lane, thus adding another variation which 

must be accounted for.   
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In order to understand the strain distributions from individual wheel loads, a strain 

ratio was computed for each load sample.  This ratio described the strains laterally across 

the wheelpath as a fraction of the maximum strain measured (which is found directly 

under the applied load).  A good relationship was found between the strain ratios and the 

lateral distance away from the load center. 

From the data, it was found that the relationship between the strain ratios and the 

lateral distance was not symmetrical, but was roughly parabolic.  The asymmetry of the 

relationship is theorized to be caused by the wheel loads at the opposing end of the axle.  

This implies that even though a typical truck may have an axle width of over 90 inches, 

both wheels can cause a strain response at a significant distance away.   

Single and dual wheels were analyzed separately as well as the distributions for 

both transverse and longitudinal orientations.  It was found that for the longitudinal 

orientation there is a significant difference between the strain-distance relationships for 

the two load types which is likely due to the wider stance of most dual tires which can 

spread the load out further.  Single tires create a much narrower strain-distance 

relationship with less influence from the opposing wheels.   

In the case of the transverse strain-distance relationship, the data seems to be quite 

similar between both singles and tandems.  This effect could be better understood by 

providing better resolution in the strain measurements.  It is likely that a difference 

between duals and singles does exist given the geometry of the loads, but the strain 

measurements here do not provide enough data to make a justifiable conclusion.   

Regression analysis of the strain ratio-distance data was conducted to generate 

models which can be applied to predict strains at any distance knowing only the 
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maximum tensile strain.  In addition, symmetric models were created by using the data 

not affected by the opposing wheel load.  This was done with the intent that individual 

loads could be superimposed for situations that are not defined by standard axle/load 

configurations.  The linear regression models were found to fit reasonably well given the 

larger amount of scatter in the data.  Different methods of data filtering were attempted to 

further improve the model fit, but ultimately the precision of the data is governed by the 

resolution designed into the experiment.   

The predictors of the strain ratio were found to be almost solely dependent on the 

distance from the load.  Other potential regressors were included in to the regression 

analyses, but were found to be insignificant via the regression statistics.  Notably, speed 

and wheel load were two regressors that were included in these analyses due to their 

known effects on HMA structural response, but both were found to contribute little to the 

strain ratio prediction.  It is possible that additional resolution in a similar experiment 

may show dependence.   

 
5.5 - Recommendations 

 

The research has raised additional questions which could be investigated to 

further improve the accuracy of fatigue life prediction and the nature of HMA pavement 

structural response.  In regards to the time-temperature dependence of the HMA 

materials, there is evidence in support of a stiffness gradient through thickness of the 

HMA which needs to be better understood.  Within the MET procedure to predict load 

times, the fastest durations occur in the upper layers with an increase at greater depths.  It 

is proposed that this effect could be measured by placing numerous strain gauges through 
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the thickness of the HMA layers, spaced longitudinally at known distances.  The load 

times could then be measured and compared to the stiffness gradient generated through 

MET.  The analytical stiffness gradient could then be corrected by balancing the 

stiffnesses to produce a no-stress (neutral axis) of the HMA layers that matches the 

experimental data. 

Since there is a stiffness gradient in the HMA and it has been shown here that the 

load time may have a rather small effect on the overall analytical response, it would be 

wise to instrument pavements with different HMA layer thicknesses, but with identical 

materials.  A similar analysis that has been conducted in this research could be reapplied 

which would hopefully demonstrate the dependence on load times for different HMA 

layer thicknesses.  Thinner HMA sectioned pavements may be more sensitive to changes 

in the stiffness.  In addition, the overall effect of temperature can be studied for thinner 

HMA sectioned pavements.  Temperature was shown for this pavement to have little 

effect on the load times (i.e colder temperatures should lead to stiffer HMA which 

should, theoretically, distribute the load further leading to higher load times).   

This research experiment was limited to the analysis for bottom-up cracking since 

strain was only measured on the bottom of the HMA layer.  Placing strain gauges near 

the surface can yield similar models to understand the phenomenon that occurs at the 

pavement surface, causing top-down cracking.  

There is evidence to support the idea that the HMA layers have different 

stiffnesses for different orientations.  A much more advanced analysis might prove 

beneficial for accurately predicting strain in the HMA layers and could be done by simply 

recalculating the stiffness for the three major orientations studied here (transverse, 
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longitudinal, and vertical).  The vertical stress/strain load times in the HMA could not be 

developed for this research, because it was not measured in this experiment.  However, 

inclusion of strain gauges to measure the vertical orientation would allow for this.  It is 

cautioned that using stress cells (similar to the earth pressure cells used the unbound 

layers in this project) to do this may cause inaccuracies due to the lack of the ability to 

measure tensile events and because there is a lag between strain and stress due to the 

material’s viscoelasticity (but could analytically be corrected).  

The nature of the distribution of the stress and strain on the pavement due to 

different loads can be better understood by gaining better resolution in strain 

measurement.  This can be done by simply applying more strain gauges across the width 

the wheelpath.  This research used strain gauges on 12 inch centers – adding more (but 

spaced longitudinally) instruments can help provide this resolution.  A more thorough 

analysis could be done by instrumenting the entire lane, or (more aggressively) the entire 

cross-section.   

The data produced in this work relied heavily on software customized to extract 

information from the raw data.  Development of this is time consuming and refinements 

can be made, but at a cost.  Refinements in the software could vastly improve the amount 

of usable data and the precision, leading to higher quality.   

Ultimately, more experimental data similar to this project is needed because it 

provides the structural data to validate the analytical models which are prevalent in the 

mechanistic-empirical design process. 
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Appendix A – C# Code 
 

 The following contains the code used to conduct the analysis for this project.  The 

program allows a user a take weigh-in-motion and environmental data and conduct a 

finite-element analysis for each measured vehicle.  The program relies heavily on 

communication with a MySQL server for the storage of results.  The popular MySQL 

community server and .NET connector (both open source) are available for download 

from www.mysql.com.   

 The finite element engine used in this analysis program was adapted from 

MATLAB code written by Kwon and Bang (1997).  The C# language does not include a 

base class for conducting linear algebra, however the .NET class library Mapack written 

by Lutz Roeder was used.  The Mapack .NET package is available from 

http://www.lutzroeder.com/dotnet/.  In addition, a sparse matrix solver was used to 

increase the speed of the linear algebra inversion solution.  This open source .NET library 

package is available from dnAnalytics and can be found at 

http://dnanalytics.codeplex.com/.   

 

The following code can be made availble in electronic form upon request from the 

author. 
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Class: Analysis 
 
using System; 
using System.Collections.Generic; 
using System.Collections; 
using System.Text; 
using Mapack; 
 
namespace MPave 
{ 
    class Analysis 
    {        
        //  Sampling convention.  1 = (-1,-1);   2 = (-1, 1) 
        //   _________            3 = ( 1,-1);   4 = ( 1, 1) 
        //  | 2  |  4 |  
        //  |____|____| 
        //  | 1  |  3 | 
        //  |____|____| 
 
        //Linear elastic axisymmetric FE pavement analysis using quad node 
        //isoparametric elements.  All layers fully bonded.  Adapted from MATLAB 
        //program. 
        //Last updated 01/08/2008 
 
        //Hardcoded model data 
        int nElements;                             //# of elements in system 
        int numNodesElement = 4;                   //# of nodes per element 
        int DOF = 2;                               //# of degrees of freedom per node 
        int nNodes;                                //# of nodes in system 
        int sDOF;                                  //System degrees of freedom 
        int eDOF;                                  //Degrees of freedom per element 
        int nGLX = 2;                 //2 X 2 Gaussian-Legendre quadrature (numerical 
        int nGLY = 2;                 //integration technique) 
        int nGLXY;// = nGLX * nGLY;   //Number of sampling points per 
                                      //element (quadrature) 
 
        Matrix rElementStress, rElementStrain, 
            tElementStress, tElementStrain,     //Global matrices for  
            vElementStress, vElementStrain;     //storing solutions 
 
        double contactRadius, wheelLoad; 
        double[] moduli, poissonsRatio; 
         
        //Constructor 
        public Analysis(double contactRadius, double wheelLoad, double[] moduli, 
            double[] poissonsRatio) 
        { 
            this.contactRadius = contactRadius; 
            this.wheelLoad = wheelLoad * 1000;// 000 - Wheel load amplified to  
            this.moduli = moduli;             //prevent small number computations 
            this.poissonsRatio = poissonsRatio; 
        } 
 
        public void StartAnalysis() 
        { 
            // 
            //For Debugging 
            // 
 
            //Console.WriteLine("CR: " + contactRadius.ToString() + "\tWL: " +  
            //    wheelLoad.ToString()); 
            //for (int j = 0; j < moduli.Length; j++) 
            //{ 
            //    Console.WriteLine(moduli[j].ToString()); 
            //} 
            //Console.ReadLine(); 
 
            // 
            //Initialize mesh and material variables and matrices 
            // 



212 
 

             
            ModelConstants modelConstants = new ModelConstants(); 
            nElements = modelConstants.NumElements; 
            nNodes = modelConstants.NumNodes; 
            int[] xValues = modelConstants.XValues; 
            int[] yValues = modelConstants.YValues; 
             
             
            sDOF = nNodes * DOF; 
            eDOF = numNodesElement * DOF; 
            nGLXY = nGLX * nGLY; 
 
            rElementStress = new Matrix(nElements, 4); 
            rElementStrain = new Matrix(nElements, 4); 
            tElementStress = new Matrix(nElements, 4); 
            tElementStrain = new Matrix(nElements, 4); 
            vElementStress = new Matrix(nElements, 4); 
            vElementStrain = new Matrix(nElements, 4); 
 
            // 
            //Generate Mesh and node connectivity 
            // 
 
            Mesh newMesh = new Mesh(xValues, yValues); 
 
            int[,] gCoord = newMesh.CreateModelNodeCoord(); 
            int[,] nodes = newMesh.CreateModelConnectivity(); 
 
            //Set boundary conditions 
            BoundaryConditions newBC = new BoundaryConditions(xValues, 
                yValues, gCoord); 
 
            int[] bCDOF = newBC.ConstrainedDOF; 
            int[] valuesDOF = newBC.ValuesDOF; 
 
            // 
            //Set force vector 
            // 
            ForceVector fVector = new ForceVector(sDOF, contactRadius, wheelLoad, 
                yValues, xValues); 
            double[] forceVector = fVector.GenerateForceVector(); 
 
            Matrix points2D, weights2D; 
            FEGLQ2D samplingPointsWeights = new FEGLQ2D(nGLX, nGLY); 
            points2D = samplingPointsWeights.CreateIntegrationPoints2D(); 
            weights2D = samplingPointsWeights.CreateIntegrationWeight2D(); 
             
            // 
            //Initialize material matrices 
            // 
            Matrix materialElementCode = 
                modelConstants.MaterialCodes;//Matrix for material code pattern  
                                             //defined below 
            ArrayList materialMatrices = new ArrayList(); 
            for (int m = 0; m < moduli.Length; m++) 
            { 
                FEMatIso matMatrixIso = new FEMatIso(moduli[m], poissonsRatio[m]); 
                Matrix matMatrix = matMatrixIso.AssembleMaterialMatrix(); 
                materialMatrices.Add(matMatrix); 
            } 
                        
 
            // 
            //Compute element matrices and assemble 
            // 
 
            int[] nodalData = new int[4]; 
            double[] xCoord = new double[4]; 
            double[] yCoord = new double[4]; 
 
            int kkSize = nNodes * 2; 
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            Matrix kk = new Matrix(kkSize, kkSize); 
 
            //Beginning first integration loop... 
            for (int iElement = 0;  
                iElement < nElements; iElement++) //Loop for total # of elements 
            { 
                for (int j = 0; j < numNodesElement; j++) 
                { 
                    nodalData[j] = nodes[iElement, j]; 
                    xCoord[j] = (double)gCoord[nodalData[j], 0]; 
                    yCoord[j] = (double)gCoord[nodalData[j], 1]; 
                } 
 
                Matrix k = new Matrix(eDOF, eDOF); 
 
                // 
                //Begin numerical integration 
                // 
 
                for (int intX = 0; intX < nGLX; intX++) 
                { 
                     
                    double xSample = points2D[intX, 0]; 
                    double weightX = weights2D[intX, 0]; 
                     
                    for (int intY = 0; intY < nGLY; intY++) 
                    { 
                        double ySample = points2D[intY, 1]; 
                        double weightY = weights2D[intY, 1]; 
 
                        //Compute shape function 
                        FEIsoQ4 feIsoq = new FEIsoQ4(xSample, ySample); 
                        double[] shape, dhdr, dhds; 
 
                        //Sampling points for integration 
                        shape = feIsoq.ComputeShapeFunction(); 
                        dhdr = feIsoq.Computedhdrq4(); 
                        dhds = feIsoq.Computedhdsq4(); 
 
                        //Compute Jacobian - calculate determinate and inverse 
                        FEJacob2 jacob2 = new FEJacob2(numNodesElement, xCoord, 
                            yCoord, dhdr, dhds); 
                        Matrix jacobian = jacob2.ComputeJacobian2D(); 
                        double detJacobian = jacobian.Determinant; 
                        Matrix invJacobian = jacobian.Inverse; 
 
                        FEDeriv2 derivative = new FEDeriv2(numNodesElement, dhdr, 
                            dhds, invJacobian); 
                         
                        double[] dhdx = derivative.dhdxShapeFunction(); 
                        double[] dhdy = derivative.dhdyShapeFunction(); 
                         
                        double xCenter = 0; 
                        for (int i = 0; i < numNodesElement; i++) 
                        { 
                            xCenter = xCenter + shape[i] * xCoord[i]; 
                        } 
 
                        Matrix kinematicMatrix; 
                        FEKineAx kinematicAxi = new FEKineAx(numNodesElement, dhdx, 
                            dhdy, shape, xCenter); 
                        kinematicMatrix = kinematicAxi.CreateKinematicMatrix(); 
                                              
 
                        //Compute element matrix 
                         
                        double pi = Math.PI; 
                        Matrix kinematicTransposed = kinematicMatrix.Transpose(); 
                                                 
                        int materialCode = (int)materialElementCode[iElement, 1]; 
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                        k = k + (kinematicTransposed * 2 * pi * xCenter) *  
                            (Matrix)materialMatrices[materialCode - 1] * 
                            kinematicMatrix * weightX * weightY * detJacobian;                       
                    } 
                } 
                 
                FEElementDOF elementDOF = new FEElementDOF(nodalData, 
                    numNodesElement, DOF); 
                int[] index = elementDOF.IndexDOF(); 
 
                FEAssemble1 newAssembly = new FEAssemble1(kk, k, index); 
                kk = newAssembly.Assemble(); 
            } 
            //Console.WriteLine("End of first integration loop..."); 
 
            //Apply boundary conditions 
            FEApplyConstraints bConditions = new FEApplyConstraints(kk, forceVector, 
                bCDOF, valuesDOF); 
            bConditions.ApplyConstraints(); 
            kk = bConditions.getkk; 
            forceVector = bConditions.getff; 
             
            // 
            //Solve matrix equation 
            // 
            Matrix dispMatrix; 
 
            Matrix forceVectorMatrix = new Matrix(forceVector.Length, 1); 
 
            //Re-map vectors and matrix for solver 
            for (int n = 0; n < forceVector.Length; n++) 
            { 
                forceVectorMatrix[n, 0] = forceVector[n]; 
            } 
 
            double[,] matrixDouble = new double[kk.Rows, kk.Columns]; 
            for (int n = 0; n < kk.Rows; n++) 
            { 
                for (int m = 0; m < kk.Columns; m++) 
                { 
                    matrixDouble[n, m] = kk[n, m]; 
                } 
            } 
 
            // 
            //Solve matrix equation... 
            // 
 
            //MAPACK Inversion - TOO SLOW! 
            //dispMatrix = kk.Inverse * forceVectorMatrix; 
           
 
            //Mapack Solver - better 
            //dispMatrix = kk.Solve(forceVectorMatrix); 
 
            // 
            //*******************dnAnalytics - FASTEST SOLVER********************** 
            // 
            SparseSolver newSolver = new SparseSolver(); 
            double[] dispArray = newSolver.InvertSolver(matrixDouble, forceVector); 
 
            //Re-map force vector for matrix algebra 
            dispMatrix = new Matrix(dispArray.Length, 1); 
            for (int n = 0; n < dispArray.Length; n++) 
            { 
                dispMatrix[n, 0] = dispArray[n]; 
            } 
 
 
            // 
            //Element stress computation 
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            // 
 
            Matrix stress = new Matrix(4, 4); //Matrices for storing element  
            Matrix strain = new Matrix(4, 4); //results at integration points. 
             
            for (int iElement = 0; iElement < nElements; iElement++) 
            { 
                int intp = 0; 
                 
                for (int j = 0; j < numNodesElement; j++) 
                { 
                    nodalData[j] = nodes[iElement, j]; 
                    xCoord[j] = gCoord[nodalData[j], 0]; 
                    yCoord[j] = gCoord[nodalData[j], 1]; 
                } 
 
                for (int intX = 0; intX < nGLX; intX++) 
                { 
                    double xSample = points2D[intX, 0]; 
                    double weightX = weights2D[intX, 0]; 
 
                    for (int intY = 0; intY < nGLY; intY++) 
                    { 
                        double ySample = points2D[intY, 1]; 
                        double weightY = weights2D[intY, 1]; 
                        //intp++; 
 
                        //Compute shape function 
                        FEIsoQ4 feIsoq = new FEIsoQ4(xSample, ySample); 
                        double[] shape, dhdr, dhds; 
 
                        //Sampling points for integration 
                        shape = feIsoq.ComputeShapeFunction(); 
                        dhdr = feIsoq.Computedhdrq4(); 
                        dhds = feIsoq.Computedhdsq4(); 
 
                        //Compute Jacobian - calculate determinate and inverse 
                        FEJacob2 jacob2 = new FEJacob2(numNodesElement, xCoord, 
                            yCoord, dhdr, dhds); 
                        Matrix jacobian = jacob2.ComputeJacobian2D(); 
 
                        double detJacobian = jacobian.Determinant; 
                        Matrix invJacobian = jacobian.Inverse; 
 
                        FEDeriv2 derivative = new FEDeriv2(numNodesElement, dhdr, 
                            dhds, invJacobian); 
 
                        double[] dhdx = derivative.dhdxShapeFunction(); 
                        double[] dhdy = derivative.dhdyShapeFunction(); 
 
                        double xCenter = 0; 
                        for (int i = 0; i < numNodesElement; i++) 
                        { 
                            xCenter = xCenter + shape[i] * xCoord[i]; 
                        } 
 
                        Matrix kinematicMatrix; 
                        FEKineAx kinematicAxi = new FEKineAx(numNodesElement, dhdx, 
                            dhdy, shape, xCenter); 
                        kinematicMatrix = kinematicAxi.CreateKinematicMatrix(); 
 
                        FEElementDOF elementDOF = new FEElementDOF(nodalData, 
                            numNodesElement, DOF); 
                        int[] index = elementDOF.IndexDOF(); 
 
                         
                        //Extract element displacement vector 
                        Matrix elementDisplacement = new Matrix(eDOF, 1); 
                        for (int i = 0; i < eDOF; i++) 
                        { 
                            elementDisplacement[i,0] = dispMatrix[index[i],0]; 
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                        } 
 
                        Matrix eStrain = kinematicMatrix * elementDisplacement; 
                        double[] eStraind = new double[eStrain.Rows]; 
                        for (int n=0;n<eStrain.Rows;n++) //Map strain to simple array 
                        { 
                            eStraind[n] = eStrain[n, 0]; 
                        } 
 
                        Matrix eStress = new Matrix(0, 0); 
 
                        //Compute element stress 
                        int materialCode = (int)materialElementCode[iElement, 1]; 
 
                        eStress =  
                            (Matrix)materialMatrices[materialCode - 1] * eStrain; 
                         
                        //Map stress to simple array 
                        double[] eStressd = new double[4]; 
                        for (int n=0;n<eStress.Rows;n++)  
                        { 
                            eStressd[n] = eStress[n,0];                             
                        } 
 
                        for (int i = 0; i < 4; i++) 
                        { 
                            strain[intp, i] = eStraind[i]; 
                            stress[intp, i] = eStressd[i]; 
                        } 
                        intp++; 
 
                    } 
                } //End of integration loops 
 
                double factor1 = 1.8660254d; 
                double factor2 = 0.13439746d; 
                                 
                //Computation into radial stresses and strains 
                rElementStress[iElement, 0] = factor1 * stress[0, 0] - 0.5 *  
                    stress[1, 0] - 0.5 * stress[2, 0] + factor2 * stress[3, 0]; 
                rElementStress[iElement, 1] = factor1 * stress[1, 0] - 0.5 *  
                    stress[0, 0] - 0.5 * stress[3, 0] + factor2 * stress[2, 0]; 
                rElementStress[iElement, 2] = factor1 * stress[2, 0] - 0.5 *  
                    stress[0, 0] - 0.5 * stress[3, 0] + factor2 * stress[1, 0]; 
                rElementStress[iElement, 3] = factor1 * stress[3, 0] - 0.5 *  
                    stress[1, 0] - 0.5 * stress[2, 0] + factor2 * stress[0, 0]; 
                 
                rElementStrain[iElement, 0] = factor1 * strain[0, 0] - 0.5 *  
                    strain[1, 0] - 0.5 * strain[2, 0] + factor2 * strain[3, 0]; 
                rElementStrain[iElement, 1] = factor1 * strain[1, 0] - 0.5 *  
                    strain[0, 0] - 0.5 * strain[3, 0] + factor2 * strain[2, 0]; 
                rElementStrain[iElement, 2] = factor1 * strain[2, 0] - 0.5 *  
                    strain[0, 0] - 0.5 * strain[3, 0] + factor2 * strain[1, 0]; 
                rElementStrain[iElement, 3] = factor1 * strain[3, 0] - 0.5 *  
                    strain[1, 0] - 0.5 * strain[2, 0] + factor2 * strain[0, 0]; 
                 
                //Computation into tangential stresses and strains  
                //(perpendicular to plane of model) 
                tElementStress[iElement, 0] = factor1 * stress[0, 1] - 0.5 *  
                    stress[1, 1] - 0.5 * stress[2, 1] + factor2 * stress[3, 1]; 
                tElementStress[iElement, 1] = factor1 * stress[1, 1] - 0.5 *  
                    stress[0, 1] - 0.5 * stress[3, 1] + factor2 * stress[2, 1]; 
                tElementStress[iElement, 2] = factor1 * stress[2, 1] - 0.5 *  
                    stress[0, 1] - 0.5 * stress[3, 1] + factor2 * stress[1, 1]; 
                tElementStress[iElement, 3] = factor1 * stress[3, 1] - 0.5 *  
                    stress[1, 1] - 0.5 * stress[2, 1] + factor2 * stress[0, 1]; 
 
                tElementStrain[iElement, 0] = factor1 * strain[0, 1] - 0.5 *  
                    strain[1, 1] - 0.5 * strain[2, 1] + factor2 * strain[3, 1]; 
                tElementStrain[iElement, 1] = factor1 * strain[1, 1] - 0.5 *  
                    strain[0, 1] - 0.5 * strain[3, 1] + factor2 * strain[2, 1]; 
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                tElementStrain[iElement, 2] = factor1 * strain[2, 1] - 0.5 *  
                    strain[0, 1] - 0.5 * strain[3, 1] + factor2 * strain[1, 1]; 
                tElementStrain[iElement, 3] = factor1 * strain[3, 1] - 0.5 *  
                    strain[1, 1] - 0.5 * strain[2, 1] + factor2 * strain[0, 1]; 
 
                //Computation into vertical stresses and strains 
                vElementStress[iElement, 0] = factor1 * stress[0, 2] - 0.5 *  
                    stress[1, 2] - 0.5 * stress[2, 2] + factor2 * stress[3, 2]; 
                vElementStress[iElement, 1] = factor1 * stress[1, 2] - 0.5 *  
                    stress[0, 2] - 0.5 * stress[3, 2] + factor2 * stress[2, 2]; 
                vElementStress[iElement, 2] = factor1 * stress[2, 2] - 0.5 *  
                    stress[0, 2] - 0.5 * stress[3, 2] + factor2 * stress[1, 2]; 
                vElementStress[iElement, 3] = factor1 * stress[3, 2] - 0.5 *  
                    stress[1, 2] - 0.5 * stress[2, 2] + factor2 * stress[0, 2]; 
 
                vElementStrain[iElement, 0] = factor1 * strain[0, 2] - 0.5 *  
                    strain[1, 2] - 0.5 * strain[2, 2] + factor2 * strain[3, 2]; 
                vElementStrain[iElement, 1] = factor1 * strain[1, 2] - 0.5 *  
                    strain[0, 2] - 0.5 * strain[3, 2] + factor2 * strain[2, 2]; 
                vElementStrain[iElement, 2] = factor1 * strain[2, 2] - 0.5 *  
                    strain[0, 2] - 0.5 * strain[3, 2] + factor2 * strain[1, 2]; 
                vElementStrain[iElement, 3] = factor1 * strain[3, 2] - 0.5 *  
                    strain[1, 2] - 0.5 * strain[2, 2] + factor2 * strain[0, 2]; 
            } 
        } 
 
        // 
        //Properties 
        // 
 
        public Matrix RadialStrain 
        { 
            get 
            { 
                return rElementStrain; 
            } 
        } 
 
        public Matrix RadialStress 
        { 
            get 
            { 
                return rElementStress; 
            } 
        } 
 
        public Matrix TangentialStrain 
        { 
            get 
            { 
                return tElementStrain; 
            } 
        } 
 
        public Matrix TangentialStress 
        { 
            get 
            { 
                return tElementStress; 
            } 
        } 
 
        public Matrix VerticalStrain 
        { 
            get 
            { 
                return vElementStrain; 
            } 
        } 
 
        public Matrix VerticalStress 
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        { 
            get 
            { 
                return vElementStress; 
            } 
        } 
 
        /// <summary> 
        /// Returns the radial strain at the bottom of the  
        /// HMA layer in units of microstrain.   
        /// </summary> 
        /// <returns></returns> 
        public double[] GetBottomHMARadialStrain() 
        {             
            double[] radialStrain = new double[19]; 
            int element = 25; 
 
            for (int m = 0; m < 19; m++) 
            { 
                if (element == 25)//16 
                { 
                    radialStrain[m] =  
                        rElementStrain[element, 0] * 1 * 2*1000; 
                    //Console.WriteLine("Initial: " + 
                    //    radialStrain[m].ToString()); 
                } 
                if (element == 1203)//538 
                {                                             //29 
                    radialStrain[m] =  
                        rElementStrain[(element - 38), 2] * 1*1000; 
                    //Console.WriteLine("Last: " +  
                    //    radialStrain[m].ToString()); 
                } 
                if(element != 1203 && element != 25)//538, 16 
                {                                              //29 
                    radialStrain[m] =  
                        (rElementStrain[(element - 38), 2] +  
                        rElementStrain[element, 0] / 2) * 1*1000; 
                    //Console.WriteLine("Intermediate: " +  
                    //    radialStrain[m].ToString()); 
                } 
                element += 38;//29 
            } 
 
            return radialStrain; 
        } 
 
        /// <summary> 
        /// Returns the tangential strain at the bottom of the HMA  
        /// layer in units of microstrain.   
        /// </summary> 
        /// <returns></returns> 
        public double[] GetBottomHMATangentialStrain() 
        { 
            double[] tangentialStrain = new double[19]; 
            int element = 25; 
 
            for (int m = 0; m < 19; m++) 
            { 
                if (element == 25)//16 
                { 
                    tangentialStrain[m] =  
                        tElementStrain[element, 0] * 1 * 2 * 1000; 
                } 
                if (element == 1203)//538 
                {                                             //29 
                    tangentialStrain[m] =  
                        tElementStrain[(element - 38), 2] * 1 * 1000; 
                } 
                if (element != 1203 && element != 25)//538, 16 
                {                                              //29 
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                    tangentialStrain[m] =  
                        (tElementStrain[(element - 38), 2] +  
                        tElementStrain[element, 0] / 2) * 1 * 1000; 
                } 
                element += 38;//29 
            } 
 
            return tangentialStrain; 
        } 
 
        /// <summary> 
        /// Returns the vertical pressure at the top of the native  
        /// soil layer in units of psi.   
        /// </summary> 
        /// <returns></returns> 
        public double[] GetVerticalPressure() 
        { 
            double[] verticalPressure = new double[19]; 
            int element = 11; 
 
            for (int m = 0; m < 19; m++) 
            { 
                if (element == 11) 
                { 
                    verticalPressure[m] =  
                        vElementStress[element, 1] / 1000 * 2; 
                    //Console.WriteLine("Initial: "  
                    //    + radialStrain[m].ToString()); 
                } 
                if (element == 1189) 
                { 
                    verticalPressure[m] =  
                        vElementStress[(element - 38), 3] / 1000; 
                    //Console.WriteLine("Last: " +  
                    //    radialStrain[m].ToString()); 
                } 
                if (element != 1189 && element != 11) 
                { 
                    verticalPressure[m] =  
                        (vElementStress[(element - 38), 3] +  
                        vElementStress[element, 1] / 2) / 1000; 
                    //Console.WriteLine("Ping: " +  
                    //    radialStrain[m].ToString()); 
                } 
                element += 38; 
            } 
 
            return verticalPressure; 
        } 
 
 
 
        /// <summary> 
        /// Returns the vertical pressure at the location of  
        /// the upper pressure plate (dense layer) in units of psi.   
        /// </summary> 
        /// <returns></returns> 
        public double[] GetBaseVerticalPressure() 
        { 
            double[] verticalPressure = new double[19]; 
            int element = 19; 
 
            for (int m = 0; m < 19; m++) 
            { 
                if (element == 19) 
                { 
                    verticalPressure[m] =  
                        vElementStress[element, 1] / 1000 * 2; 
                    //Console.WriteLine("Initial: " +  
                    //    radialStrain[m].ToString()); 
                } 
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                if (element == 1197) 
                { 
                    verticalPressure[m] =  
                        vElementStress[(element - 38), 3] / 1000; 
                    //Console.WriteLine("Last: " +  
                    //    radialStrain[m].ToString()); 
                } 
                if (element != 1197 && element != 19) 
                { 
                    verticalPressure[m] =  
                        (vElementStress[(element - 38), 3] +  
                        vElementStress[element, 1] / 2) / 1000; 
                    //Console.WriteLine("Intermediate: " +  
                    //    radialStrain[m].ToString()); 
                } 
                element += 38; 
            } 
 
            return verticalPressure; 
        } 
    } 
} 
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Class: BoundaryConditions 
 
using System; 
using System.Collections.Generic; 
using System.Text; 
 
namespace MPave 
{ 
    class BoundaryConditions 
    { 
        int[] xValues; 
        int[] yValues; 
        int[] constrainedDOF; 
        int[] valuesDOF; 
        int[,] gCoords; 
         
 
        public BoundaryConditions(int[] xValues, int[] yValues, int[,] gCoords) 
        { 
            this.xValues = xValues; 
            this.yValues = yValues; 
            this.gCoords = gCoords; 
 
            SetBoundaryConditions(); 
        } 
 
        private void SetBoundaryConditions() 
        { 
            int sizeDOF = (xValues.Length + yValues.Length-1) * 2; 
 
            constrainedDOF = new int[sizeDOF]; 
 
            int index = 0; 
                         
            // 
            //For debugging 
            // 
 
            //for (int i = 0; i < sizeDOF; i++) 
            //{ 
            //    Console.Write(constrainedDOF[i].ToString() + ", "); 
            //} 
            //Console.ReadLine(); 
 
            //for (int i = 0; i < sizeDOF; i++) 
            //{ 
            //    Console.Write(valuesDOF[i].ToString() + ", "); 
            //} 
            //Console.ReadLine(); 
             
             
 
            //Builds the constrained DOF array for bottom row. 
            for (int i = 0; i < gCoords.Length / 2; i++) 
            { 
                if (gCoords[i, 1] == 0 && gCoords[i, 0] !=  
                    xValues[xValues.Length - 1]) 
                { 
                    constrainedDOF[index] = i * 2; 
                    constrainedDOF[index + 1] = i * 2 + 1; 
                    index = index + 2; 
                } 
            } 
 
            //Build the constrained DOF array for the right side. 
            bool firstRow = true; 
            for (int i = 0; i < gCoords.Length / 2; i++) 
            { 
                if (gCoords[i, 0] == xValues[xValues.Length - 1]) 
                { 
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                    //************For fixed right side************************ 
                    //constrainedDOF[index] = i * 2; 
                    //constrainedDOF[index + 1] = i * 2 + 1; 
                    //******************************************************** 
 
                    //*************Fixed corner******************************* 
                    if (firstRow) 
                    { 
                        constrainedDOF[index + 1] =  
                            i * 2 + 1;//Fix bottom right corner 
                        firstRow = false; 
                    } 
                    //******************************************************** 
 
                    index = index + 2; 
                } 
            } 
 
            valuesDOF = new int[sizeDOF]; 
 
            for (int j = 0; j < sizeDOF; j++) 
            { 
                valuesDOF[j] = 0; 
            } 
 
            // 
            //For debugging 
            // 
 
            //for (int i = 0; i < sizeDOF; i++) 
            //{ 
            //    Console.Write(constrainedDOF[i].ToString() + ", "); 
            //} 
            //Console.ReadLine(); 
 
            //for (int i = 0; i < sizeDOF; i++) 
            //{ 
            //    Console.Write(valuesDOF[i].ToString() + ", "); 
            //} 
            //Console.ReadLine(); 
        } 
 
        public int[] ConstrainedDOF 
        { 
            get { return constrainedDOF; } 
        } 
 
        public int[] ValuesDOF 
        { 
            get { return valuesDOF; } 
        } 
 
    } 
} 
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Class: DynamicModulus 
 
using System; 
using System.Collections.Generic; 
using System.Text; 
 
namespace MPave 
{ 
 
    //Constructor 
    class DynamicModulus 
    { 
         
        //Dyanmic modulus material model parameters 
        double delta; 
        double alpha; 
        double beta; 
        double gamma; 
        double c; 
        double A; 
        double VTS; 
         
        public DynamicModulus(double delta, double alpha, double beta,  
            double gamma, double c, double A, double VTS) 
        { 
            this.delta = delta; 
            this.alpha = alpha; 
            this.beta = beta; 
            this.gamma = gamma; 
            this.c = c; 
            this.A = A; 
            this.VTS = VTS; 
        } 
 
        //Reference viscosity 
        private double ReferenceViscosity() 
        { 
            double temperatureReferenceRankine = 70d + 459.67d; 
            double viscosityTrLogLog =  
                A + VTS * Math.Log10(temperatureReferenceRankine); 
            double viscosityTr = Math.Pow(10d, Math.Pow(10d, viscosityTrLogLog)); 
            //Console.WriteLine("Reference Viscosity = " + viscosityTr.ToString()); 
            return viscosityTr;//cP 
        } 
 
        //Viscosity 
        private double Viscosity(double temperatureFahrenheit) 
        { 
            double temperatureRankine = temperatureFahrenheit + 459.67d; 
            double viscosityLogLog = A + VTS * Math.Log10(temperatureRankine); 
            double viscosity = Math.Pow(10d, Math.Pow(10d, viscosityLogLog)); 
            //Console.WriteLine("Viscosity = " + viscosity.ToString()); 
            return viscosity;//cP             
        } 
 
        //Intermediate calculation of log_Tr parameter 
        private double logtr(double temperatureFahrenheit, double timeOfLoading) 
        { 
            double viscosity = Viscosity(temperatureFahrenheit); 
            double viscosityTr = ReferenceViscosity(); 
 
            double logLoadTimeRefTemp = Math.Log10(timeOfLoading) - c *  
                (Math.Log10(viscosity) - Math.Log10(viscosityTr)); 
             
            return logLoadTimeRefTemp; 
        } 
 
        /// <summary> 
        /// Returns the stiffness, in psi, based on material input data. 
        /// </summary> 
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        /// <param name="temperatureFahrenheit">The temperature of interest  
        /// in degrees F.</param> 
        /// <param name="timeOfLoading">The time of loading, in seconds, at  
        /// the temperature of interest.</param> 
        /// <returns></returns> 
        public double CalculateStiffness(double temperatureFahrenheit,  
            double timeOfLoading) 
        { 
            //For debugging/checking 
            //Console.WriteLine("temperature = " + temperatureFahrenheit.ToString()); 
            //Console.WriteLine("time of loading = " + timeOfLoading.ToString()); 
            //Console.ReadLine(); 
 
            double logLoadTimeRefTemp =  
                logtr(temperatureFahrenheit,          //additional converts LT  
                timeOfLoading /*/ (2 * Math.PI)*/);   //on angular freq. 
 
            double logEStar =  
                delta + alpha / (1 + Math.Exp(beta + gamma * (logLoadTimeRefTemp))); 
            double EStar = Math.Pow(10d, logEStar); 
 
            return EStar; 
        } 
 
 
    } 
} 
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Class: FEApplyConstraints 
 
using System; 
using System.Collections.Generic; 
using System.Text; 
using Mapack; 
 
// 
//Applies boundary conditions to model 
// 
 
namespace MPave 
{ 
    class FEApplyConstraints 
    { 
        Matrix kk; 
        int[] constrainedDOF, valuesDOF; 
        double[] ff; 
                 
        //Constructor 
        public FEApplyConstraints(Matrix kk, double[] ff,  
            int[] constrainedDOF, int[] valuesDOF) 
        { 
            this.kk = kk; 
            this.ff = ff; 
            this.constrainedDOF = constrainedDOF; 
            this.valuesDOF = valuesDOF; 
        } 
 
        //Set constrained nodes in global stiffness matrix to zero 
        public void ApplyConstraints() 
        { 
            int n = constrainedDOF.Length; 
            int sizeDOF = kk.Rows; 
            int c; 
 
            for (int i = 0; i < n; i++) 
            { 
                c = constrainedDOF[i]; 
 
                for (int j = 0; j < sizeDOF; j++) 
                { 
                    kk[c, j] = 0; 
                } 
 
                kk[c, c] = 1; 
                ff[c] = valuesDOF[i]; 
            } 
        } 
 
        //Properties 
        public Matrix getkk             
        { 
            get 
            { 
                return kk; 
            } 
        } 
 
        public double[] getff 
        { 
            get 
            { 
                return ff; 
            } 
        } 
    } 
} 
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Class: FEAssemble1 
 
using System; 
using System.Collections.Generic; 
using System.Text; 
using Mapack; 
 
// 
//Assemble local stiffness matrices into global 
//stiffness matrix 
// 
 
namespace MPave 
{ 
    class FEAssemble1 
    { 
        Matrix kk;  //System stiffness matrix 
        Matrix k;   //Element stiffness matrix 
        int[] index; //d.o.f. vector associated with element 
         
        public FEAssemble1(Matrix kk, Matrix k, int[] index) 
        { 
            this.kk = kk; 
            this.k = k; 
            this.index = index; 
        } 
 
        public Matrix Assemble() 
        { 
            int eDOF = index.Length; 
            int ii, jj; 
 
            for (int i = 0; i < eDOF; i++) 
            { 
                ii = index[i]; 
 
                for (int j = 0; j < eDOF; j++) 
                { 
                    jj = index[j]; 
                    kk[ii, jj] = kk[ii, jj] + k[i, j]; 
                } 
            } 
 
            return kk; 
        } 
 
    } 
} 
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Class: FEDeriv2 
 
using System; 
using System.Collections.Generic; 
using System.Text; 
using Mapack; 
 
// 
//Compute shape functions 
// 
 
namespace MPave 
{ 
    class FEDeriv2 
    { 
        int numNodesElement; 
        double[] dhdr, dhds, dhdx, dhdy;         
        Matrix invJacob; 
 
        public FEDeriv2(int numNodesElement, double[] dhdr,  
            double[] dhds, Matrix invJacob) 
        { 
            this.numNodesElement = numNodesElement; 
            this.dhdr = dhdr; 
            this.dhds = dhds; 
            this.invJacob = invJacob; 
        } 
 
        public double[] dhdxShapeFunction() 
        { 
            dhdx = new double[numNodesElement]; 
 
            for (int i = 0; i < numNodesElement; i++) 
            { 
                dhdx[i] = invJacob[0, 0] * dhdr[i] + invJacob[0, 1] * dhds[i]; 
            } 
 
            return dhdx; 
        } 
 
        public double[] dhdyShapeFunction() 
        { 
            dhdy = new double[numNodesElement]; 
 
            for (int i = 0; i < numNodesElement; i++) 
            { 
                dhdy[i] = invJacob[1, 0] * dhdr[i] + invJacob[1, 1] * dhds[i]; 
            } 
 
            return dhdy; 
        } 
 
    } 
} 
   



228 
 

Class: FEElementDOF 
 
using System; 
using System.Collections.Generic; 
using System.Text; 
 
// 
//Indexing 
// 
 
namespace MPave 
{ 
    class FEElementDOF 
    { 
        int[] node; 
        int numNodesElement, numDOF; 
 
        public FEElementDOF(int[] node, int numNodesElement, int numDOF) 
        { 
            this.node = node; 
            this.numNodesElement = numNodesElement; 
            this.numDOF = numDOF; 
        } 
 
        public int[] IndexDOF() 
        { 
            int elementDOF = numNodesElement * numDOF; 
            int k = 0; 
            int[] index = new int[elementDOF]; 
 
            for (int i = 0; i < numNodesElement; i++) 
            { 
                int start = (node[i]) * numDOF; 
 
                for (int j = 0; j < numDOF; j++) 
                {                     
                    index[k] = start + j; 
                    k++; 
                } 
            } 
 
            return index; 
        } 
    } 
} 
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Class: FEGLQ1D 
 
using System; 
using System.Collections.Generic; 
using System.Text; 
 
// 
//Gaussian-Legendre Quadrature - 1-dimension 
// 
 
namespace MPave 
{ 
    class FEGLQ1D 
    { 
        int nGL; 
        double[] points1D; 
        double[] weight1D; 
 
        public FEGLQ1D(int nGL) 
        { 
            this.nGL = nGL; 
        } 
 
        public double[] CreateIntegrationPoints1D() 
        { 
            //Left out other cases, only nGL = 2 is used here. 
 
            points1D = new double[nGL];    
           
            points1D[0] = -0.577350269189626; 
            points1D[1] = 0.577350269189626; 
 
            return points1D; 
        } 
 
        public double[] CreateIntegrationWeights1D() 
        { 
            weight1D = new double[nGL]; 
 
            weight1D[0] = 1.0; 
            weight1D[1] = 1.0; 
 
            return weight1D; 
        } 
 
    } 
} 
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Class: FEGLQ2D 
 
using System; 
using System.Collections.Generic; 
using System.Text; 
using Mapack; 
 
// 
//Gaussian-Legendre Quadrature - 2-dimensions 
// 
 
namespace MPave 
{ 
    class FEGLQ2D 
    { 
        int nGLQX; 
        int nGLQY; 
        int nGL; 
        //double[,] points2Dd, weights2Dd; 
        Matrix points2D, weights2D; 
 
        public FEGLQ2D(int nGLQX, int nGLQY) 
        { 
            this.nGLQX = nGLQX; 
            this.nGLQY = nGLQY; 
        } 
 
        public Matrix CreateIntegrationPoints2D() 
        { 
            if (nGLQX > nGLQY) 
            { 
                nGL = nGLQX; 
            } 
            else 
            { 
                nGL = nGLQY; 
            } 
 
            FEGLQ1D new1D = new FEGLQ1D(nGL); 
            double[] pointX = new1D.CreateIntegrationPoints1D(); 
            double[] pointY = new1D.CreateIntegrationPoints1D(); 
             
            //points2Dd = new double[nGL, 2]; 
            points2D = new Matrix(nGL, 2); 
 
            for (int i = 0; i < nGLQX; i++) 
            { 
                points2D[i, 0] = pointX[i]; 
            } 
            for (int i = 0; i < nGLQX; i++) 
            { 
                points2D[i, 1] = pointY[i]; 
            }                       
 
            return points2D; 
        } 
 
        public Matrix CreateIntegrationWeight2D() 
        { 
            if (nGLQX > nGLQY) 
            { 
                nGL = nGLQX; 
            } 
            else 
            { 
                nGL = nGLQY; 
            } 
 
            FEGLQ1D new1D = new FEGLQ1D(nGL); 
 



231 
 

            double[] weightX = new1D.CreateIntegrationWeights1D(); 
            double[] weightY = new1D.CreateIntegrationWeights1D(); 
 
            //weight2Dd = new double[nGL, 2]; 
            weights2D = new Matrix(nGL, 2); 
 
            for (int i = 0; i < nGLQX; i++) 
            { 
                weights2D[i, 0] = weightX[i]; 
            } 
            for (int i = 0; i < nGLQX; i++) 
            { 
                weights2D[i, 1] = weightY[i]; 
            } 
 
            return weights2D; 
        } 
    } 
} 
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Class: FEIsoQ4 
 
using System; 
using System.Collections.Generic; 
using System.Text; 
 
// 
//Generates integration sampling values 
// 
 
namespace MPave 
{ 
    class FEIsoQ4 
    { 
        double[] shapeq4 = new double[4]; 
        double[] dhdrq4 = new double[4]; 
        double[] dhdsq4 = new double[4]; 
        double rValue, sValue; 
 
        public FEIsoQ4(double rValue, double sValue) 
        { 
            this.rValue = rValue; 
            this.sValue = sValue; 
        } 
 
        public double[] ComputeShapeFunction() 
        { 
            shapeq4[0] = 0.25 * (1 - rValue) * (1 - sValue); 
            shapeq4[1] = 0.25 * (1 + rValue) * (1 - sValue); 
            shapeq4[2] = 0.25 * (1 + rValue) * (1 + sValue); 
            shapeq4[3] = 0.25 * (1 - rValue) * (1 + sValue); 
            return shapeq4; 
        } 
 
        public double[] Computedhdrq4() 
        { 
            dhdrq4[0] = -0.25 * (1 - sValue); 
            dhdrq4[1] = 0.25 * (1 - sValue); 
            dhdrq4[2] = 0.25 * (1 + sValue); 
            dhdrq4[3] = -0.25 * (1 + sValue); 
            return dhdrq4; 
        } 
 
        public double[] Computedhdsq4() 
        { 
            dhdsq4[0] = -0.25 * (1 - rValue); 
            dhdsq4[1] = -0.25 * (1 + rValue); 
            dhdsq4[2] = 0.25 * (1 + rValue); 
            dhdsq4[3] = 0.25 * (1 - rValue); 
            return dhdsq4; 
        } 
    } 
} 
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Class: FEJacob2 
 
using System; 
using System.Collections.Generic; 
using System.Text; 
using Mapack; 
 
// 
//Compute unit Jacobian 
// 
 
namespace MPave 
{ 
    class FEJacob2 
    { 
        int numNodesElement; 
        double[] dhdr, dhds, xCoord, yCoord; 
        Matrix jacob2D = new Matrix(2, 2); 
 
        public FEJacob2(int numNodesElement, double[] xCoord,  
            double[] yCoord, double[] dhdr, double[] dhds) 
        { 
            this.numNodesElement = numNodesElement; 
            this.xCoord = xCoord; 
            this.yCoord = yCoord; 
            this.dhdr = dhdr; 
            this.dhds = dhds; 
        } 
 
        /// <summary> 
        /// Computes the Jacobian 
        /// </summary> 
        /// <returns>Returns the 2 x 2 Jacobian</returns> 
        public Matrix ComputeJacobian2D() 
        { 
            for (int i = 0; i < numNodesElement; i++) 
            { 
                jacob2D[0, 0] = jacob2D[0, 0] + dhdr[i] * xCoord[i]; 
                jacob2D[0, 1] = jacob2D[0, 1] + dhdr[i] * yCoord[i]; 
                jacob2D[1, 0] = jacob2D[1, 0] + dhds[i] * xCoord[i]; 
                jacob2D[1, 1] = jacob2D[1, 1] + dhds[i] * yCoord[i];                
            } 
             
            return jacob2D; 
        } 
 
    } 
} 
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Class: FEKineAx 
 
using System; 
using System.Collections.Generic; 
using System.Text; 
using Mapack; 
 
// 
//Compute kinematic matrix 
// 
 
namespace MPave 
{ 
    class FEKineAx 
    { 
        int numNodesElement; 
        double[] dhdx, dhdy, shape; 
        double radialDist; 
 
        public FEKineAx(int numNodesElement, double[] dhdx, 
            double[] dhdy, double[] shape, double radialDist) 
        { 
            this.numNodesElement = numNodesElement; 
            this.dhdx = dhdx; 
            this.dhdy = dhdy; 
            this.shape = shape; 
            this.radialDist = radialDist; 
        } 
 
        /// <summary> 
        /// Computes the kinematic matrix. 
        /// </summary> 
        /// <returns>Kinematic matrix</returns> 
        public Matrix CreateKinematicMatrix() 
        { 
            Matrix kinematic = new Matrix(4, 8); 
            int i1; 
            int i2; 
            int index = 0; 
 
            for (int i = 0; i <= numNodesElement; i++) 
            { 
                i1 = (i - 1) * 2; 
                i2 = i1 + 1; 
 
                if (i != 0) 
                { 
                    kinematic[0, i1] = dhdx[index]; 
                    kinematic[1, i1] = shape[index] / radialDist; 
                    kinematic[2, i2] = dhdy[index]; 
                    kinematic[3, i1] = dhdy[index]; 
                    kinematic[3, i2] = dhdx[index]; 
                    index++; 
                } 
            } 
 
            return kinematic; 
        } 
 
    } 
} 
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Class: FEMatIso 
 
using System; 
using System.Collections.Generic; 
using System.Text; 
using Mapack; 
 
// 
//Assembles/calculates the material matrix 
// 
 
namespace MPave 
{ 
    class FEMatIso 
    { 
        double modulus; 
        double poissonRatio; 
 
        public FEMatIso(double modulus, double poissonRatio) 
        { 
            this.modulus = modulus; 
            this.poissonRatio = poissonRatio; 
        } 
 
        public Matrix AssembleMaterialMatrix() 
        { 
            Matrix materialMatrix = new Matrix(4, 4); 
 
            double scalarValue = 
                modulus / ((1 + poissonRatio) * (1 - 2 * poissonRatio)); 
 
            materialMatrix[0, 0] = 1 - poissonRatio; 
            materialMatrix[0, 1] = poissonRatio; 
            materialMatrix[0, 2] = poissonRatio; 
            materialMatrix[0, 3] = 0; 
 
            materialMatrix[1, 0] = poissonRatio; 
            materialMatrix[1, 1] = 1 - poissonRatio; 
            materialMatrix[1, 2] = poissonRatio; 
            materialMatrix[1, 3] = 0; 
 
            materialMatrix[2, 0] = poissonRatio; 
            materialMatrix[2, 1] = poissonRatio; 
            materialMatrix[2, 2] = 1 - poissonRatio; 
            materialMatrix[2, 3] = 0; 
 
            materialMatrix[3, 0] = 0; 
            materialMatrix[3, 1] = 0; 
            materialMatrix[3, 2] = 0; 
            materialMatrix[3, 3] = (1 - 2 * poissonRatio) / 2; 
 
            materialMatrix = Matrix.Multiply(materialMatrix, scalarValue); 
 
            return materialMatrix; 
        } 
 
    } 
} 
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Class: ForceVector 
 
using System; 
using System.Collections.Generic; 
using System.Text; 
 
// 
//Generates force vectors for models. 
// 
 
namespace MPave 
{ 
    class ForceVector 
    { 
        int sDOF; 
        double[] forceVector; 
        int[] yCoords, xCoords; 
        double area, contactRadius, wheelLoad, contactPressure; 
 
        //Constructor 
        public ForceVector(int sDOF, double contactRadius, double wheelLoad,  
            int[] yCoords, int[] xCoords) 
        { 
            this.sDOF = sDOF; 
            this.contactRadius = contactRadius; 
            this.wheelLoad = wheelLoad / 2; 
            this.yCoords = yCoords; 
            this.xCoords = xCoords; 
 
            forceVector = new double[sDOF]; 
 
            for (int i = 0; i < forceVector.Length; i++) 
            { 
                forceVector[i] = 0d; 
            } 
        } 
        /// <summary> 
        /// Generates the force vector based on y-coordinate  
        /// model array based on wheel  
        /// load and contact radius.   
        /// </summary> 
        /// <returns></returns> 
        public double[] GenerateForceVector() 
        { 
            int maxYCoord = yCoords.Length; 
            int forceDOF = (maxYCoord) * 2 - 1; 
            int shift = maxYCoord * 2; 
 
            if (contactRadius < 1.5) 
            { 
                area = Math.PI * Math.Pow(1.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[forceDOF] =  
                    -0.25 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift] =  
                    -0.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 1.5 && contactRadius < 2.5) 
            { 
                area = Math.PI * Math.Pow(2.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[forceDOF] = 
                    -0.25 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift] =  
                    -2.0 * contactPressure * Math.PI; 
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                forceVector[forceDOF + shift * 2] =  
                    -1.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 2.5 && contactRadius < 3.5) 
            { 
                area = Math.PI * Math.Pow(3.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[forceDOF] =  
                    -0.25 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift] =  
                    -2.0 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift * 2] =  
                    -4.0 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift * 3] =  
                    -2.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 3.5 && contactRadius < 4.5) 
            { 
                area = Math.PI * Math.Pow(4.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[forceDOF] =  
                    -0.25 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift] =  
                    -2.0 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift * 2] =  
                    -4.0 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift * 3] =  
                    -6.0 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift * 4] =  
                    -3.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 4.5 && contactRadius < 5.5) 
            { 
                area = Math.PI * Math.Pow(5.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[forceDOF] =  
                    -0.25 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift] =  
                    -2.0 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift * 2] =  
                    -4.0 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift * 3] =  
                    -6.0 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift * 4] =  
                    -8.0 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift * 5] =  
                    -4.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 5.5 && contactRadius < 6.5) 
            { 
                area = Math.PI * Math.Pow(6.0, 2); 
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                contactPressure = wheelLoad / area; 
 
                forceVector[forceDOF] =  
                    -0.25 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift] =  
                    -2.0 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift * 2] =  
                    -4.0 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift * 3] =  
                    -6.0 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift * 4] =  
                    -8.0 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift * 5] =  
                    -10.0 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift * 6] =  
                    -5.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 6.5 && contactRadius < 7.5) 
            { 
                area = Math.PI * Math.Pow(7.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[forceDOF] = 
                    -0.25 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift] =  
                    -2.0 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift * 2] =  
                    -4.0 * contactPressure * Math.PI; 
                
                forceVector[forceDOF + shift * 3] = 
                    -6.0 * contactPressure * Math.PI; 
                
                forceVector[forceDOF + shift * 4] =  
                    -8.0 * contactPressure * Math.PI; 
                
                forceVector[forceDOF + shift * 5] =  
                    -10.0 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift * 6] = 
                    -12.0 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift * 7] = 
                    -6.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 7.5) 
            { 
                area = Math.PI * Math.Pow(8.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[forceDOF] =  
                    -0.25 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift] =  
                    -2.0 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift * 2] = 
                    -4.0 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift * 3] =  
                    -6.0 * contactPressure * Math.PI; 
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                forceVector[forceDOF + shift * 4] = 
                    -8.0 * contactPressure * Math.PI; 
               
                forceVector[forceDOF + shift * 5] = 
                    -10.0 * contactPressure * Math.PI; 
                
                forceVector[forceDOF + shift * 6] =  
                    -12.0 * contactPressure * Math.PI; 
                
                forceVector[forceDOF + shift * 7] = 
                    -14.0 * contactPressure * Math.PI; 
                 
                forceVector[forceDOF + shift * 8] =  
                    -7.75 * contactPressure * Math.PI; 
            } 
 
            //For Debugging 
            //Console.WriteLine("Wheel LoadE3: " + wheelLoad.ToString() +  
            //    " \t Contact Radius: " + contactRadius.ToString()); 
            //Console.WriteLine("Contact Pressure:  " +  
            //    contactPressure.ToString()); 
            //Console.ReadLine(); 
            return forceVector; 
        } 
 
        //*************************322 Element Mesh**************************** 
        /// <summary> 
        /// Generates force vector for 322 element mesh. 
        /// </summary> 
        /// <returns></returns> 
        public double[] GenerateForceVector322() 
        { 
            if (contactRadius < 1.5) 
            { 
                area = Math.PI * Math.Pow(1.0, 2); 
                contactPressure = wheelLoad / area; 
 
                //322 Element 
                forceVector[47] = -0.25 * contactPressure * Math.PI; 
                forceVector[95] = -0.75 * contactPressure * Math.PI; 
            } 
             
            if (contactRadius >= 1.5 && contactRadius < 2.5) 
            { 
                area = Math.PI * Math.Pow(2.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[47] = -0.25 * contactPressure * Math.PI; 
                forceVector[95] = -2.0 * contactPressure * Math.PI; 
                forceVector[143] = -1.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 2.5 && contactRadius < 3.5) 
            { 
                area = Math.PI * Math.Pow(3.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[47] = -0.25 * contactPressure * Math.PI; 
                forceVector[95] = -2.0 * contactPressure * Math.PI; 
                forceVector[143] = -4.0 * contactPressure * Math.PI; 
                forceVector[191] = -2.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 3.5 && contactRadius < 4.5) 
            { 
                area = Math.PI * Math.Pow(4.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[47] = -0.25 * contactPressure * Math.PI; 
                forceVector[95] = -2.0 * contactPressure * Math.PI; 
                forceVector[143] = -4.0 * contactPressure * Math.PI; 
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                forceVector[191] = -6.0 * contactPressure * Math.PI; 
                forceVector[239] = -3.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 4.5 && contactRadius < 5.5) 
            { 
                area = Math.PI * Math.Pow(5.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[47] = -0.25 * contactPressure * Math.PI; 
                forceVector[95] = -2.0 * contactPressure * Math.PI; 
                forceVector[143] = -4.0 * contactPressure * Math.PI; 
                forceVector[191] = -6.0 * contactPressure * Math.PI; 
                forceVector[239] = -8.0 * contactPressure * Math.PI; 
                forceVector[287] = -4.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 5.5 && contactRadius < 6.5) 
            { 
                area = Math.PI * Math.Pow(6.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[47] = -0.25 * contactPressure * Math.PI; 
                forceVector[95] = -2.0 * contactPressure * Math.PI; 
                forceVector[143] = -4.0 * contactPressure * Math.PI; 
                forceVector[191] = -6.0 * contactPressure * Math.PI; 
                forceVector[239] = -8.0 * contactPressure * Math.PI; 
                forceVector[287] = -10.0 * contactPressure * Math.PI; 
                forceVector[335] = -5.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 6.5 && contactRadius < 7.5) 
            { 
                area = Math.PI * Math.Pow(7.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[47] = -0.25 * contactPressure * Math.PI; 
                forceVector[95] = -2.0 * contactPressure * Math.PI; 
                forceVector[143] = -4.0 * contactPressure * Math.PI; 
                forceVector[191] = -6.0 * contactPressure * Math.PI; 
                forceVector[239] = -8.0 * contactPressure * Math.PI; 
                forceVector[287] = -10.0 * contactPressure * Math.PI; 
                forceVector[335] = -12.0 * contactPressure * Math.PI; 
                forceVector[383] = -6.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 7.5) 
            { 
                area = Math.PI * Math.Pow(8.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[47] = -0.25 * contactPressure * Math.PI; 
                forceVector[95] = -2.0 * contactPressure * Math.PI; 
                forceVector[143] = -4.0 * contactPressure * Math.PI; 
                forceVector[191] = -6.0 * contactPressure * Math.PI; 
                forceVector[239] = -8.0 * contactPressure * Math.PI; 
                forceVector[287] = -10.0 * contactPressure * Math.PI; 
                forceVector[335] = -12.0 * contactPressure * Math.PI; 
                forceVector[383] = -14.0 * contactPressure * Math.PI; 
                forceVector[432] = -7.75 * contactPressure * Math.PI; 
            } 
 
            return forceVector; 
        } 
 
        //**********************522 Element Mesh****************************** 
        /// <summary> 
        /// Generates force vector for 522 element mesh. 
        /// </summary> 
        /// <returns></returns> 
        public double[] GenerateForceVector522() 
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        { 
            if (contactRadius < 1.5) 
            { 
                area = Math.PI * Math.Pow(1.0, 2); 
                contactPressure = wheelLoad / area; 
                                 
                forceVector[59] = -0.25 * contactPressure * Math.PI; 
                forceVector[119] = -0.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 1.5 && contactRadius < 2.5) 
            { 
                area = Math.PI * Math.Pow(2.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[59] = -0.25 * contactPressure * Math.PI; 
                forceVector[119] = -2.0 * contactPressure * Math.PI; 
                forceVector[179] = -1.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 2.5 && contactRadius < 3.5) 
            { 
                area = Math.PI * Math.Pow(3.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[59] = -0.25 * contactPressure * Math.PI; 
                forceVector[119] = -2.0 * contactPressure * Math.PI; 
                forceVector[179] = -4.0 * contactPressure * Math.PI; 
                forceVector[239] = -2.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 3.5 && contactRadius < 4.5) 
            { 
                area = Math.PI * Math.Pow(4.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[59] = -0.25 * contactPressure * Math.PI; 
                forceVector[119] = -2.0 * contactPressure * Math.PI; 
                forceVector[179] = -4.0 * contactPressure * Math.PI; 
                forceVector[239] = -6.0 * contactPressure * Math.PI; 
                forceVector[299] = -3.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 4.5 && contactRadius < 5.5) 
            { 
                area = Math.PI * Math.Pow(5.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[59] = -0.25 * contactPressure * Math.PI; 
                forceVector[119] = -2.0 * contactPressure * Math.PI; 
                forceVector[179] = -4.0 * contactPressure * Math.PI; 
                forceVector[239] = -6.0 * contactPressure * Math.PI; 
                forceVector[299] = -8.0 * contactPressure * Math.PI; 
                forceVector[359] = -4.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 5.5 && contactRadius < 6.5) 
            { 
                area = Math.PI * Math.Pow(6.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[59] = -0.25 * contactPressure * Math.PI; 
                forceVector[119] = -2.0 * contactPressure * Math.PI; 
                forceVector[179] = -4.0 * contactPressure * Math.PI; 
                forceVector[239] = -6.0 * contactPressure * Math.PI; 
                forceVector[299] = -8.0 * contactPressure * Math.PI; 
                forceVector[359] = -10.0 * contactPressure * Math.PI; 
                forceVector[419] = -5.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 6.5 && contactRadius < 7.5) 
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            { 
                area = Math.PI * Math.Pow(7.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[59] = -0.25 * contactPressure * Math.PI; 
                forceVector[119] = -2.0 * contactPressure * Math.PI; 
                forceVector[179] = -4.0 * contactPressure * Math.PI; 
                forceVector[239] = -6.0 * contactPressure * Math.PI; 
                forceVector[299] = -8.0 * contactPressure * Math.PI; 
                forceVector[359] = -10.0 * contactPressure * Math.PI; 
                forceVector[419] = -12.0 * contactPressure * Math.PI; 
                forceVector[479] = -6.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 7.5) 
            { 
                area = Math.PI * Math.Pow(8.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[59] = -0.25 * contactPressure * Math.PI; 
                forceVector[119] = -2.0 * contactPressure * Math.PI; 
                forceVector[179] = -4.0 * contactPressure * Math.PI; 
                forceVector[239] = -6.0 * contactPressure * Math.PI; 
                forceVector[299] = -8.0 * contactPressure * Math.PI; 
                forceVector[359] = -10.0 * contactPressure * Math.PI; 
                forceVector[419] = -12.0 * contactPressure * Math.PI; 
                forceVector[479] = -14.0 * contactPressure * Math.PI; 
                forceVector[539] = -7.75 * contactPressure * Math.PI; 
            } 
 
            return forceVector; 
        } 
 
        //**************************2000 Element Mesh************************ 
        /// <summary> 
        /// Generates force vector for 2000 element mesh. 
        /// </summary> 
        /// <returns></returns> 
        public double[] GenerateForceVector2000() 
        { 
            if (contactRadius < 1.5) 
            { 
                area = Math.PI * Math.Pow(1.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[101] = -0.25 * contactPressure * Math.PI; 
                forceVector[203] = -0.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 1.5 && contactRadius < 2.5) 
            { 
                area = Math.PI * Math.Pow(2.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[101] = -0.25 * contactPressure * Math.PI; 
                forceVector[203] = -2.0 * contactPressure * Math.PI; 
                forceVector[305] = -1.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 2.5 && contactRadius < 3.5) 
            { 
                area = Math.PI * Math.Pow(3.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[101] = -0.25 * contactPressure * Math.PI; 
                forceVector[203] = -2.0 * contactPressure * Math.PI; 
                forceVector[305] = -4.0 * contactPressure * Math.PI; 
                forceVector[407] = -2.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 3.5 && contactRadius < 4.5) 
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            { 
                area = Math.PI * Math.Pow(4.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[101] = -0.25 * contactPressure * Math.PI; 
                forceVector[203] = -2.0 * contactPressure * Math.PI; 
                forceVector[305] = -4.0 * contactPressure * Math.PI; 
                forceVector[407] = -6.0 * contactPressure * Math.PI; 
                forceVector[509] = -3.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 4.5 && contactRadius < 5.5) 
            { 
                area = Math.PI * Math.Pow(5.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[101] = -0.25 * contactPressure * Math.PI; 
                forceVector[203] = -2.0 * contactPressure * Math.PI; 
                forceVector[305] = -4.0 * contactPressure * Math.PI; 
                forceVector[407] = -6.0 * contactPressure * Math.PI; 
                forceVector[509] = -8.0 * contactPressure * Math.PI; 
                forceVector[611] = -4.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 5.5 && contactRadius < 6.5) 
            { 
                area = Math.PI * Math.Pow(6.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[101] = -0.25 * contactPressure * Math.PI; 
                forceVector[203] = -2.0 * contactPressure * Math.PI; 
                forceVector[305] = -4.0 * contactPressure * Math.PI; 
                forceVector[407] = -6.0 * contactPressure * Math.PI; 
                forceVector[509] = -8.0 * contactPressure * Math.PI; 
                forceVector[611] = -10.0 * contactPressure * Math.PI; 
                forceVector[713] = -5.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 6.5 && contactRadius < 7.5) 
            { 
                area = Math.PI * Math.Pow(7.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[101] = -0.25 * contactPressure * Math.PI; 
                forceVector[203] = -2.0 * contactPressure * Math.PI; 
                forceVector[305] = -4.0 * contactPressure * Math.PI; 
                forceVector[407] = -6.0 * contactPressure * Math.PI; 
                forceVector[509] = -8.0 * contactPressure * Math.PI; 
                forceVector[611] = -10.0 * contactPressure * Math.PI; 
                forceVector[713] = -12.0 * contactPressure * Math.PI; 
                forceVector[815] = -6.75 * contactPressure * Math.PI; 
            } 
 
            if (contactRadius >= 7.5) 
            { 
                area = Math.PI * Math.Pow(8.0, 2); 
                contactPressure = wheelLoad / area; 
 
                forceVector[101] = -0.25 * contactPressure * Math.PI; 
                forceVector[203] = -2.0 * contactPressure * Math.PI; 
                forceVector[305] = -4.0 * contactPressure * Math.PI; 
                forceVector[407] = -6.0 * contactPressure * Math.PI; 
                forceVector[509] = -8.0 * contactPressure * Math.PI; 
                forceVector[611] = -10.0 * contactPressure * Math.PI; 
                forceVector[713] = -12.0 * contactPressure * Math.PI; 
                forceVector[815] = -14.0 * contactPressure * Math.PI; 
                forceVector[917] = -7.75 * contactPressure * Math.PI; 
            } 
 
            return forceVector; 
        } 



244 
 

     
    } 
} 
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Class: Mesh 
 
using System; 
using System.Collections.Generic; 
using System.Text; 
using System.Collections; 
 
// 
//Creates mesh coordinates for rectangular model 
// 
 
namespace MPave 
{ 
    class Mesh 
    { 
        int[] xValues; 
        int[] yValues; 
 
        public Mesh(int[] xValues, int[] yValues) 
        { 
            this.xValues = xValues; 
            this.yValues = yValues; 
            //xValues =  
            //    new int[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 18, 25, 32, 39 }; 
             
            //yValues = 
            //    new int[] { 0, 9, 15, 21, 24, 27, 30, 33, 35, 36, 37, 38, 39, 
            //        40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 }; 
        } 
 
        /// <summary> 
        /// Returns an n x 2 array of the global coordinates  
        /// for each model node, n. 
        /// </summary> 
        public int[,] CreateModelNodeCoord() 
        { 
            int nNodes = xValues.Length * yValues.Length; 
            int[,] globalCoord = new int[nNodes, 2]; 
            int rowCount = 0; 
 
            //Loop building the nodal coordinates 
            for (int i = 0; i < xValues.Length; i++) 
            { 
                for (int j = 0; j < yValues.Length; j++) 
                { 
                    globalCoord[rowCount,0] = xValues[i]; 
                    globalCoord[rowCount,1] = yValues[j];                    
                     
                    rowCount++; 
                } 
            }           
             
            // 
            //For debugging... 
            // 
 
            //for (int i = 0; i < nNodes; i++) 
            //{ 
            //Console.WriteLine(globalCoord[i, 0].ToString() + 
            //    ", " + globalCoord[i, 1].ToString()); 
            //    if (i % 100 == 0) 
            //    { 
            //        Console.ReadLine(); 
            //    } 
            //} 
            //Console.ReadLine(); 
            return globalCoord; 
 
        } 
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        /// <summary> 
        /// Returns an n x 4 array - each row containing  
        /// connected nodes for n-th element. 
        /// </summary> 
        public int[,] CreateModelConnectivity() 
        { 
            int nElements = (xValues.Length - 1) * (yValues.Length - 1); 
            int[,] elemNodes = new int[nElements, 4]; 
            int node = 0; 
 
            for (int i = 0; i < nElements; i++) 
            {  
                if (i % (yValues.Length-1) == 0 && i != 0) 
                { 
                    node++; 
                } 
 
                elemNodes[i, 0] = node; 
                elemNodes[i, 1] = node + yValues.Length; 
                elemNodes[i, 2] = node + yValues.Length + 1; 
                elemNodes[i, 3] = node + 1; 
                 
                
 
                node++; 
            } 
 
            return elemNodes; 
 
            //For debugging... 
            // 
            //for (int i = 0; i < nElements; i++) 
            //{ 
            //    Console.WriteLine(elemNodes[i, 0].ToString() + ", " + 
            //        elemNodes[i, 1].ToString() + ", " + 
            //        elemNodes[i, 2].ToString() + ", " +  
            //        elemNodes[i, 3].ToString()); 
            //} 
        }         
    } 
} 
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Class: METIterator 
 
using System; 
using System.Collections.Generic; 
using System.Text; 
 
// 
//Iterates through method of equivalent thickness and solves 
//until convergence is met. 
// 
 
namespace MPave 
{ 
    class METIterator 
    { 
        //***************Material Constants************************************* 
        int[] materialCode = new int[] { 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2 }; 
        double[,] materialParameters = new double[3, 7]; 
        double[] effectiveDepth = new double[13]; 
        //**********************************************************************        
 
        double stressAngle = 45 * Math.PI / 180; //Radians  
        //Optional angle found through Load Time Analysis = 65 degrees (both) 
 
 
        //********************************************************************** 
        double loadTimeAdjust = 1.0;  //Factor of the load time 
        //********************************************************************** 
 
        bool axleGroup = false; 
        double[] stiffness, temperature;         
        double vehicleSpeed, subGradeStiffness, contactRadius; 
        double tandemSpacing = 0; 
 
        public METIterator(double[] temperature, double vehicleSpeed,  
            double subGradeStiffness, double contactRadius, bool axleGroup) 
        { 
            this.temperature = temperature; 
            this.vehicleSpeed = vehicleSpeed; 
            this.subGradeStiffness = subGradeStiffness; 
            this.contactRadius = contactRadius; 
            this.axleGroup = axleGroup; 
            if (axleGroup) 
            { 
                tandemSpacing = 53;  //53 inch tandem spacing -  
                                     //averaged from WIM data of class 9 vehicles 
                                     //120 inch spacing used as a test of sensivity 
            } 
            InitializeLayerStiffnessData(); 
        } 
 
        public double[] SolveStiffness() 
        { 
            //Retrieve initial loading time, t from somewhere as  
            //function of vehicle speed 
            double loadTime = .05; //This doesn't really affect anything,  
                                   //just a starting point 
 
            stiffness = new double[13]; 
 
            // 
            //Estimate initial stiffness parameters 
            // 
             
            for (int i = 0; i < stiffness.Length; i++) 
            { 
                int material = materialCode[i]; 
                DynamicModulus modulus =  
                    new DynamicModulus(materialParameters[material, 0], 
                    materialParameters[material, 1],  
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                    materialParameters[material, 2], 
                    materialParameters[material, 3],  
                    materialParameters[material, 4], 
                    materialParameters[material, 5],  
                    materialParameters[material, 6]); 
 
                double layerTemperature = temperature[i]; 
 
                stiffness[i] =  
                    modulus.CalculateStiffness(layerTemperature, loadTime); 
 
                // 
                //Begin iteration loops 
                //            
                bool converged = false; 
                double trialDepth = 0; 
                double power = 1.0 / 3.0; 
                do 
                { 
                    trialDepth = 0; 
                    for (int j = 0; j <= i; j++) 
                    { 
                        double depth = 0; 
 
                        if (j == i) 
                        {                             
                            double moduluarRatio =  
                                stiffness[j] / subGradeStiffness; 
                            depth = 0.5 * Math.Pow(moduluarRatio, power); 
                            trialDepth += depth; 
                        } 
                        else 
                        { 
                            double moduluarRatio =  
                                stiffness[j] / subGradeStiffness; 
                            depth = Math.Pow(moduluarRatio, power); 
                            trialDepth += depth; 
                        }                         
                    } 
 
                    double effLength =  
                        2 * (contactRadius + trialDepth/Math.Tan(stressAngle))+ 
                        tandemSpacing; //inches 
 
                    double updatedLoadTime =  
                        effLength / (17.6 * vehicleSpeed /** 2 * Math.PI*/) * 
                        loadTimeAdjust;  //seconds - //'out 2Pi for normal frequency 
                     
                    double updatedStiffness =  
                        modulus.CalculateStiffness(temperature[i], updatedLoadTime); 
                     
                    double convergence =  
                        (stiffness[i] - updatedStiffness) / stiffness[i] * 100; 
                     
                    stiffness[i] = updatedStiffness; 
                    if (Math.Abs(convergence) < 0.1) 
                    {                         
                        converged = true; 
                        effectiveDepth[i] = trialDepth; 
                    } 
                } while (converged == false);                 
            } 
 
 
            //For debugging 
            //Console.WriteLine("Temperature: " + temperature[0].ToString() + 
            //    "\tSpeed: " + vehicleSpeed.ToString()); 
            //Console.WriteLine("Stiffness,Effective Depth"); 
            //int m = 0; 
            //foreach (double d in stiffness) 
            //{ 
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            //Console.WriteLine(stiffness[m].ToString() +  
            //    "," + effectiveDepth[m].ToString()); 
            //    m++; 
            //} 
            //Console.ReadLine(); 
 
 
            return stiffness; 
        } 
 
        //Hard-coded material data from MRUTC study 
        private void InitializeLayerStiffnessData() 
        { 
            //SMA 
            materialParameters[0, 0] = 4.1560d;//Delta 
            materialParameters[0, 1] = 2.4244d;//Alpha 
            materialParameters[0, 2] = -0.3918d;//Beta 
            materialParameters[0, 3] = 0.4794d;//Gamma 
            materialParameters[0, 4] = 1.6996d;//C 
            materialParameters[0, 5] = 8.458896d;//A 
            materialParameters[0, 6] = -2.78133d;//VTS 
 
            //E30 
            materialParameters[1, 0] = 2.5566d;//Delta 
            materialParameters[1, 1] = 4.2125d;//Alpha 
            materialParameters[1, 2] = -1.5623d;//Beta 
            materialParameters[1, 3] = 0.3937d;//Gamma 
            materialParameters[1, 4] = 1.6214d;//C 
            materialParameters[1, 5] = 9.773228d;//A 
            materialParameters[1, 6] = -3.26367d;//VTS 
 
            //C2 
            materialParameters[2, 0] = 1.6841d;//Delta 
            materialParameters[2, 1] = 5.1418d;//Alpha 
            materialParameters[2, 2] = -1.7168d;//Beta 
            materialParameters[2, 3] = 0.3650d;//Gamma 
            materialParameters[2, 4] = 1.6905d;//C 
            materialParameters[2, 5] = 9.773228d;//A 
            materialParameters[2, 6] = -3.26367d;//VTS 
        }         
    } 
} 
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Class: ModelConstants 
 
using System; 
using System.Collections.Generic; 
using System.Text; 
using Mapack; 
 
// 
//Creates x and y coordinates for mesh and also contains patterning 
//for striping material across elements in model. 
// 
 
namespace MPave 
{ 
    class ModelConstants 
    { 
        //*******************1178 Element Mesh - Created 03152009*************** 
        int[] xValues = new int[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 
            20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 65, 70}; 
        int[] yValues = new int[] { 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 
            36, 39, 42, 45, 48, 51, 54, 56, 58, 60, 61, 62, 63, 64, 65, 66, 67, 
            68, 69, 70, 71, 72, 73, 74, 75, 76, 77 }; 
        int[] materialPattern = new int[] { 18, 18, 18, 18, 18, 18, 18, 18, 17, 17, 
            17, 17, 16, 16, 16, 16, 16, 16, 15, 15, 15, 14, 14, 14, 14, 13, 12, 11, 
            10, 9, 8, 7, 6, 5, 4, 3, 2, 1 }; 
 
 
 
        ////*******************522 Element Mesh - Created 01282009************** 
        //int[] xValues = new int[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 
        //    20, 25, 30, 35, 40}; 
        //int[] yValues = new int[] { 0, 3, 6, 9, 12, 15, 18, 21, 24, 27, 29, 31, 33, 
        //    34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 }; 
 
        //int[] materialPattern = new int[] { 7, 7, 7, 6, 6, 6, 6, 6, 6,  
        //                    5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2,  
        //                    2, 2, 2, 1, 1 }; 
 
        ////*************Split Material Layers 522 Elemement Mesh****************** 
        //int[] materialPattern = new int[] { 17, 17, 17, 16, 16, 16, 16, 16, 16, 15, 
        //    15, 15, 14, 14, 14, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 }; 
 
 
        //*************************322 Element Mesh***************************** 
        //int[] xValues = new int[] { 0, 1, 2, 3, 4, 5, 6, 7, 8, 10,  
        //    12, 18, 25, 32, 39 }; 
        //int[] yValues = new int[] { 0, 9, 15, 21, 24, 27, 30, 33, 35,  
        //    36, 37, 38, 39, 40, 41,42, 43, 44, 45, 46, 47, 48, 49, 50 }; 
        //int[] materialPattern = new int[] { 7, 6, 6, 6, 6, 5, 5, 4, 4, 4, 
        //                    3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 1, 1 }; 
 
        //************************2000 Element Mesh***************************** 
        //int[] xValues = new int[] {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,  
        //    11, 12, 13, 14, 15,16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 
        //    26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40}; 
        //int[] yValues = new int[] {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,  
        //    11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 
        //    26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 
        //    41, 42, 43, 44, 45, 46, 47, 48, 49, 50}; 
        //int[] materialPattern = new int[] {7,7,7,7,7,7,7,7,7,6,6,6,6,6,6,6,6,6 
        //    ,6,6,6,6,6,6,6,6,6,5,5,5,5,5,5,4,4,4,4,3,3,3,3,2,2,2,2,2,2,2,1,1}; 
 
 
        Matrix materialElementCode; 
 
        public ModelConstants() 
        { 
            GenerateMaterialCodes(); 
        } 
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        //Stripe material codes across all  
        //elements (vetically from bottom to top) 
        private void GenerateMaterialCodes() 
        { 
            materialElementCode = new Matrix(this.NumElements, 2); 
            int materialCounter = 0; 
 
            for (int m = 0; m < this.NumElements; m++) 
            { 
                materialElementCode[m, 0] = m; 
                materialElementCode[m, 1] = materialPattern[materialCounter]; 
                materialCounter++; 
                if (materialCounter == yValues.Length-1) 
                { 
                    materialCounter = 0; 
                }                 
            } 
        } 
 
        /// <summary> 
        /// Returns array of x-coordinate values for model nodes. 
        /// </summary> 
        public int[] XValues 
        { 
            get 
            { 
                return xValues; 
            } 
        } 
        /// <summary> 
        /// Returns array of y-coordinate values for model nodes. 
        /// </summary> 
        public int[] YValues 
        { 
            get 
            { 
                return yValues; 
            } 
        } 
        /// <summary> 
        /// Returns the number of model elements. 
        /// </summary> 
        public int NumElements 
        { 
            get 
            { 
                int n = xValues.Length - 1; 
                int m = yValues.Length - 1; 
 
                int numElements = n * m; 
 
                return numElements; 
            } 
        } 
        /// <summary> 
        /// Returns the number of model nodes. 
        /// </summary> 
        public int NumNodes 
        { 
            get 
            { 
                int n = xValues.Length; 
                int m = yValues.Length; 
 
                int numNodes = n * m; 
 
                return numNodes; 
            } 
        } 
 
        public Matrix MaterialCodes 
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        { 
            get 
            { 
                return materialElementCode; 
            } 
        } 
    } 
} 
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Class: MPaveAnalysis 
 
using System; 
using System.Collections.Generic; 
using System.Text; 
using MySql.Data.MySqlClient; 
using System.Data; 
using System.IO; 
 
// 
//Main class for analysis program.  Handles database access and  
//distributes data into FE program. 
// 
 
namespace MPave 
{ 
    class MPaveAnalysis 
    { 
        //Class variables 
        DataTable WIMDataTable = new DataTable(); 
        DataTable wheelDataTable = new DataTable(); 
        DataTable environmentalDataTable = new DataTable(); 
        DataTable radialStrain = new DataTable(); 
        DataTable tangentialStrain = new DataTable(); 
        DataTable verticalPressure = new DataTable(); 
        DataTable verticalPressureBase = new DataTable(); 
        DataTable resilientModulus = new DataTable(); 
        DataTable stiffnessData = new DataTable(); 
        string yearWeek = "0811"; 
 
        //Creates event log 
        TextWriter tx = new StreamWriter("E:\\...\\ErrorLog.txt"); 
 
        //Set up MySQL connection params 
        MySqlConnection myConn, myConn2; 
        MySqlDataAdapter da1, da2, da3, da4, da5; 
        MySqlCommandBuilder cb1, cb2, cb3, cb4, cb5; 
        string connString = "server=localhost;user id=*****;Password=*****;" + 
            "persist security info=True;database=analysis;port=****"; 
        string connString2 = "server=localhost;user id=*****;Password=*****;" + 
            "persist security info=True;database=fea_trucks;port=****"; 
 
        //Primary key in MySQL DB 
        string wheelID; 
 
        //Set poissons ratio for materials 
        double[] poissonsRatio =  
            new double[]{0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4,  
                0.4, 0.4, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 
            0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 0.35, 
            0.35, 0.35, 0.35, 0.35, 0.35, 0.35}; 
 
        //Stores stiffness data for unbound layers 
        double[] resilientModuli = new double[5]; 
 
        public void RunAnalysis() 
        { 
            GetDBData(); 
            EnvironmentDateTimeFixer(); 
            int vehicleCount = 0; 
            int errorCount = 0; 
 
            foreach (DataRow r in WIMDataTable.Rows) 
            { 
                string wimID = r["vehicle_number"].ToString(); 
 
                string selectFilter = "wim_id = " + wimID; 
                string sortFilter = "date_time ASC"; 
 
                DataRow[] results = wheelDataTable.Select(selectFilter, sortFilter); 
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                int numberOfWheels = results.Length; 
                if (results.Length != 0) 
                { 
                    wheelID = results[0]["wheel_id"].ToString(); //Beginning wheel ID 
 
                    DateTime dateTime = DateTime.Parse(r["date_time"].ToString()); 
                    int month = dateTime.Month; 
                    setResilientModuli(month); 
 
                    //********Set layer temperatures for vehicle**************** 
                    string envSelectFilter = "date_time >= '" + dateTime + "'"; 
                    string envSortFilter = "date_time ASC"; 
 
                    DataRow[] envResults =  
                        environmentalDataTable.Select(envSelectFilter,  
                        envSortFilter); 
                     
                    double airTemp =  
                        Convert.ToDouble(envResults[0]["air_temperature"]) / 10; 
 
                    double[] layerTemperature = GetLayerTemperatures(airTemp); 
 
                    //********Develop layer stiffness values******************** 
                    double vehicleSpeed = Convert.ToDouble(r["speed"]); 
                    double subGradeModulus = (resilientModuli[0] + resilientModuli[1] 
                        + resilientModuli[2] + resilientModuli[3] 
                        + resilientModuli[4]) / 5; 
                    //try 
                    //{ 
                        for (int i = 0; i < numberOfWheels; i++) 
                        { 
                            //Get wheelID and determine if it is a single or dual 
                            int currentWheelID = Convert.ToInt32(wheelID) + i; 
                            bool single = dualOrSingle(currentWheelID); 
                             
                            //Grab wheel load for current axle. 
                            int wheelLoadIndex = i + 1; 
                            string wheelLoadString =  
                                "wheel_load_" + wheelLoadIndex.ToString(); 
                            double wheelLoadRaw =  
                                double.Parse(r[wheelLoadString].ToString()); 
 
                            if (!single) { wheelLoadRaw = wheelLoadRaw / 2; } 
 
                            double wheelLoad =  
                                wheelLoadRaw * 1000 / 2; //Divide by 2 to  
                                                         //convert from axle load 
                                                         //to wheel load 
                            int vehicleClass = Convert.ToInt32(r["class"]); 
                             
                            //For debugging. 
                            //Console.WriteLine("Wheel ID = {0};  WIM ID = {1}", 
                            //    wheelID, wimID); 
                                                         
                            double contactRadius =  
                                GetContactRadius(wheelLoad, vehicleClass); 
                             
                            double[] systemStiffness =  
                                CalculateStiffness(layerTemperature, vehicleSpeed, 
                                subGradeModulus, contactRadius, currentWheelID); 
                             
                            if (wheelLoadRaw != 0) 
                            { 
                                //*********nter FE Analysis********************* 
 
                                //Added wheelLoad divider of 2 because of  
                                //doubling from half of Contact Area. 20090509 
                                Analysis newFEA =  
                                    new Analysis(contactRadius, wheelLoad / 2,  
                                        systemStiffness, poissonsRatio); 
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                                //********Comment Out To Skip FE**************** 
                                newFEA.StartAnalysis(); 
 
                                DataRow newRow = radialStrain.NewRow(); 
                                double[] radialHStrain =  
                                    newFEA.GetBottomHMARadialStrain(); 
 
                                DataRow newRow2 = verticalPressure.NewRow(); 
                                double[] verticalPres =  
                                    newFEA.GetVerticalPressure(); 
 
                                DataRow newRow4 = verticalPressureBase.NewRow(); 
                                double[] verticalPresBase =  
                                    newFEA.GetBaseVerticalPressure(); 
 
                                DataRow newRow5 = tangentialStrain.NewRow(); 
                                double[] tangentialHStrain =  
                                    newFEA.GetBottomHMATangentialStrain(); 
 
 
                                for (int n = 0; n < radialHStrain.Length; n++) 
                                { 
                                    newRow[n + 1] = radialHStrain[n]; 
                                    newRow2[n + 1] = verticalPres[n]; 
                                    newRow4[n + 1] = verticalPresBase[n]; 
                                    newRow5[n + 1] = tangentialHStrain[n]; 
 
                                    if (double.IsNaN(radialHStrain[n])) 
                                    { 
                                        string errTxt =  
                                            "rStrain NaN, Column " +  
                                            n.ToString() + " wheel_id = " + 
                                            wheelID.ToString(); 
                                         
                                        tx.WriteLine(errTxt); 
                                        tx.Flush(); 
                                        newRow[n + 1] = 0; 
                                    } 
                                    if (double.IsNaN(tangentialHStrain[n])) 
                                    { 
                                        string errTxt = "tStrain NaN, Column "  
                                            + n.ToString() + " wheel_id = " +  
                                            wheelID.ToString(); 
                                         
                                        tx.WriteLine(errTxt); 
                                        tx.Flush(); 
                                        newRow5[n + 1] = 0; 
                                    } 
                                    if (double.IsNaN(verticalPres[n])) 
                                    { 
                                        string errTxt =  
                                            "Vertical Press NaN, Column " + 
                                            n.ToString() + " wheel_id = " +  
                                            wheelID.ToString(); 
                                         
                                        tx.WriteLine(errTxt); 
                                        tx.Flush(); 
                                        newRow2[n + 1] = 0; 
                                    } 
                                    if (double.IsNaN(verticalPresBase[n])) 
                                    { 
                                        string errTxt =  
                                            "Vertical Press Base NaN, Column "  
                                            + n.ToString() + " wheel_id = " +  
                                            wheelID.ToString(); 
                                         
                                        tx.WriteLine(errTxt); 
                                        tx.Flush(); 
                                        newRow4[n + 1] = 0; 
                                    } 
                                } 
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                                //Console.ReadLine(); 
                                int wheelIdentification =  
                                    Convert.ToInt32(wheelID) + i; 
                                 
                                newRow[0] = wheelIdentification; 
                                newRow2[0] = wheelIdentification; 
                                newRow4[0] = wheelIdentification; 
                                newRow5[0] = wheelIdentification; 
 
                                if (!single) 
                                { 
                                    newRow = SuperImposeLoads(newRow); 
                                    newRow2 = SuperImposeLoads(newRow2); 
                                    newRow4 = SuperImposeLoads(newRow4); 
                                    newRow5 = SuperImposeLoads(newRow5); 
                                } 
 
                                radialStrain.Rows.Add(newRow); 
                                verticalPressure.Rows.Add(newRow2); 
                                verticalPressureBase.Rows.Add(newRow4); 
                                tangentialStrain.Rows.Add(newRow5); 
 
                                try 
                                { 
                                da1.Update(radialStrain); 
                                da2.Update(verticalPressure); 
                                da4.Update(verticalPressureBase); 
                                da5.Update(tangentialStrain); 
 
                                //******End Comment for FE Skip***************** 
 
                                    //Update stiffness data 
                                    DataRow newRow3 = stiffnessData.NewRow(); 
                                    for (int n = 0; n < systemStiffness.Length; n++) 
                                    { 
                                        newRow3[n + 1] = systemStiffness[n]; 
                                    } 
 
                                    newRow3[0] = Convert.ToInt32(wheelID) + i; 
                                    stiffnessData.Rows.Add(newRow3); 
                                    da3.Update(stiffnessData); 
 
                                } 
                                catch 
                                { 
                                    Console.WriteLine( 
                                        "Error updating database.  Wheel ID = " + 
                                        currentWheelID.ToString()); 
                                } 
 
                            } 
                        } 
                     
                    Console.WriteLine("Vehicle Count: " + vehicleCount.ToString()); 
                    vehicleCount++; 
                } 
            } 
 
            Console.ReadLine(); 
        } 
 
        // 
        //Calculate layer stiffness values 
        // 
         
        private double[] CalculateStiffness(double[] layerTemperature,  
            double vehicleSpeed, double subGradeModulus,  
            double contactRadius, int currentWheelID) 
        { 
            MySQLConn myConn = new MySQLConn(yearWeek, connString); 
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            //Determine if the axle is part of a tandem group 
            bool axleGroup =  
                myConn.GetSingleGroup(currentWheelID.ToString());   
                                             
            METIterator solveHMAStiffness = new METIterator(layerTemperature,  
                vehicleSpeed, subGradeModulus, contactRadius, axleGroup); 
            
            double[] hMAStiffness = solveHMAStiffness.SolveStiffness(); 
             
            //Assemble pavement system stiffness array. 
            double[] systemStiffness = new double[18]; 
             
            for (int m = 0; m < hMAStiffness.Length; m++) 
            { 
                systemStiffness[m] = hMAStiffness[m]; 
            } 
 
            systemStiffness[13] = resilientModuli[0]; //Open graded 
            systemStiffness[14] = resilientModuli[1]; //Dense graded 
            systemStiffness[15] = resilientModuli[2]; //Select 
            systemStiffness[16] = resilientModuli[3]; //Native soil - upper 
            systemStiffness[17] = resilientModuli[4]; //Native soil - lower 
           
            return systemStiffness; 
        } 
 
        // 
        //Calculate contact radius for wheel load 
        // 
 
        private double GetContactRadius(double wheelLoad, int vehicleClass) 
        { 
            int pressure = 75; //psi 
            if (vehicleClass < 4) 
            { 
                pressure = 35; 
            } 
            //Console.WriteLine("Wheel_ID: " + wheelID.ToString()  
            //    + "\t Class: " + vehicleClass.ToString()); 
            //Console.WriteLine("Initial Pressure: " + pressure.ToString()); 
            double contactArea = wheelLoad / pressure; 
            double contactRadius = Math.Sqrt(contactArea / Math.PI); 
             
            //For debugging 
            //Console.WriteLine("Pressure = {0}", pressure.ToString()); 
            //Console.WriteLine("Wheel Load = {0}", wheelLoad.ToString()); 
            //Console.WriteLine("CA = {0}", contactArea.ToString()); 
            //Console.WriteLine("CR = {0}", contactRadius.ToString()); 
            //Console.ReadLine(); 
 
            return contactRadius; 
        } 
 
        // 
        //Calculate layer temperatures based on data and regression models 
        // 
 
        private double[] GetLayerTemperatures(double airTemp) 
        { 
            double[] temperature = new double[13]; 
            double depth = 0.5; //inches, incremented by 1 in to meet mid-depth 
                                //of each HMA layer 
           
            //Console.WriteLine("Air Temp: " + airTemp.ToString()); 
            for (int t = 0; t < 13; t++) 
            { 
                double temp = 8.6953 + 0.8365 * airTemp + 0.0720 * depth; 
                 
                temperature[t] = temp; 
                //Console.WriteLine("Temperature: " +  
                //    temperature[t].ToString() + "\tDepth: " + depth.ToString()); 
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                depth += 1.0; 
            } 
            return temperature; 
        } 
 
        //Fixes format of date and time in environment DB 
        private void EnvironmentDateTimeFixer() 
        { 
            environmentalDataTable.Columns.Add("date_time", typeof(DateTime)); 
 
            foreach (DataRow r in environmentalDataTable.Rows) 
            { 
                DateTime date = DateTime.Parse(r["date"].ToString()); 
                TimeSpan time = TimeSpan.Parse(r["time"].ToString()); 
 
                date = date.Add(time); 
                r["date_time"] = date; 
            } 
        } 
 
        #region GetDBData 
        /// <summary> 
        /// Gets wheel, WIM, environmental, and load-time data. 
        /// </summary> 
        private void GetDBData() 
        { 
            MySQLConn connection = new MySQLConn(yearWeek, connString); 
            //wheelWIMDataTable = connection.GetWheelWIMData();             
            //loadTimeDataTable = connection.GetLoadTimeData(); 
            WIMDataTable = connection.GetWIMData(); 
            wheelDataTable = connection.GetWheelData(); 
            environmentalDataTable = connection.GetEnvironmentalData(); 
             
            myConn = new MySqlConnection(connString); 
            myConn2 = new MySqlConnection(connString2); 
 
            da1 = new MySqlDataAdapter(); 
            cb1 = new MySqlCommandBuilder(da1); 
            string selectString = "SELECT * FROM `radial_strain" + 
                yearWeek + "`"; 
            da1.SelectCommand = new MySqlCommand(selectString, myConn2); 
            da1.Fill(radialStrain); 
 
            da2 = new MySqlDataAdapter(); 
            cb2 = new MySqlCommandBuilder(da2); 
            string selectString2 = "SELECT * FROM `vertical_pressure" +  
                yearWeek + "`"; 
            da2.SelectCommand = new MySqlCommand(selectString2, myConn2); 
            da2.Fill(verticalPressure); 
 
            da4 = new MySqlDataAdapter(); 
            cb4 = new MySqlCommandBuilder(da4); 
            string selectString5 = "SELECT * FROM `vertical_pressure_base" + 
                yearWeek + "`"; 
            da4.SelectCommand = new MySqlCommand(selectString5, myConn2); 
            da4.Fill(verticalPressureBase); 
 
            da3 = new MySqlDataAdapter(); 
            cb3 = new MySqlCommandBuilder(da3); 
            string selectString3 = "SELECT * FROM `modulus`"; 
            da3.SelectCommand = new MySqlCommand(selectString3, myConn); 
            da3.Fill(resilientModulus); 
 
            string selectString4 = "SELECT * FROM `modulus" + yearWeek + "`"; 
            da3.SelectCommand = new MySqlCommand(selectString4, myConn2); 
            da3.Fill(stiffnessData); 
 
            da5 = new MySqlDataAdapter(); 
            cb5 = new MySqlCommandBuilder(da5); 
            string selectString6 = "SELECT * FROM `tangential_strain" +  
                yearWeek + "`"; 
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            da5.SelectCommand = new MySqlCommand(selectString6, myConn2); 
            da5.Fill(tangentialStrain); 
 
        } 
        #endregion 
 
        //Set resilient modulus based on preset monthly averaged values 
        private void setResilientModuli(int month) 
        { 
            string selectString = "month = " + month; 
            DataRow[] selectedRows = resilientModulus.Select(selectString); 
 
            resilientModuli[0] = (double)selectedRows[0]["open"]; 
            resilientModuli[1] = (double)selectedRows[0]["dense"]; 
            resilientModuli[2] = (double)selectedRows[0]["rselect"]; 
            resilientModuli[3] = (double)selectedRows[0]["upper_subgrade"]; 
            resilientModuli[4] = (double)selectedRows[0]["lower_subgrade"];  
        } 
 
        //Determines if wheel is a dual or single 
        private bool dualOrSingle(int wheelID) 
        { 
            DataTable singleDual = new DataTable(); 
            string myQuery = "SELECT * FROM `single_group" + yearWeek + 
                "` WHERE wheel_id = " + wheelID; 
 
            MySqlConnection myConnection = new MySqlConnection(connString); 
            MySqlDataAdapter myAdapter =  
                new MySqlDataAdapter(myQuery, myConnection); 
 
            myAdapter.Fill(singleDual); 
 
            int singleorDual = 0; 
            if (singleDual.Rows.Count != 0) 
            { 
                singleorDual = (int)singleDual.Rows[0]["singleGroup"]; 
            } 
 
            bool single = true; 
            if (singleorDual == 1) { single = false; } 
 
            return single; 
        } 
 
        //Superimposes loads in the case of duals 
        private DataRow SuperImposeLoads(DataRow dataRow) 
        { 
            double[] superimposedValues = new double[radialStrain.Columns.Count]; 
            double[] dataRowValues = new double[superimposedValues.Length]; 
            for (int n = 1; n < superimposedValues.Length; n++) 
            { 
                dataRowValues[n] = Convert.ToDouble(dataRow[n].ToString()); 
            } 
                         
            superimposedValues[1] = dataRowValues[1] + dataRowValues[11]; 
            superimposedValues[2] = dataRowValues[2] + (dataRowValues[10] +  
                dataRowValues[11]) / 2; 
            superimposedValues[3] = dataRowValues[3] + dataRowValues[10]; 
            superimposedValues[4] = dataRowValues[4] + (dataRowValues[9] +  
                dataRowValues[10]) / 2; 
            superimposedValues[5] = dataRowValues[5] + dataRowValues[9]; 
            superimposedValues[6] = dataRowValues[6] + dataRowValues[8]; 
            superimposedValues[7] = dataRowValues[7] + dataRowValues[7]; 
            superimposedValues[8] = dataRowValues[8] + dataRowValues[6]; 
            superimposedValues[9] = dataRowValues[9] + dataRowValues[5]; 
            superimposedValues[10] = dataRowValues[10] + dataRowValues[3]; 
            superimposedValues[11] = dataRowValues[11] + dataRowValues[1]; 
            superimposedValues[12] = dataRowValues[12] + dataRowValues[3]; 
            superimposedValues[13] = dataRowValues[13] + dataRowValues[5]; 
            superimposedValues[14] = dataRowValues[14] + dataRowValues[7]; 
            superimposedValues[15] = dataRowValues[15] + dataRowValues[9]; 
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            superimposedValues[16] = dataRowValues[16] + dataRowValues[10]; 
            superimposedValues[17] = dataRowValues[17] + dataRowValues[11]; 
            superimposedValues[18] = dataRowValues[18] + dataRowValues[12]; 
            superimposedValues[19] = dataRowValues[19] + dataRowValues[13]; 
 
            for (int m = 1; m < superimposedValues.Length; m++) 
            { 
                dataRow[m] = superimposedValues[m]; 
            } 
 
            return dataRow; 
        } 
    } 
} 
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Class: SparseSolver 
 
using System; 
using System.Collections.Generic; 
using System.Text; 
using dnAnalytics.LinearAlgebra; 
using dnAnalytics.LinearAlgebra.Solvers; 
 
// 
//Operates the dnAnalytics Sparse Solver 
// 
 
namespace MPave 
{ 
    class SparseSolver 
    { 
        public SparseSolver() 
        { 
 
        } 
 
        //Solve AX = B linear system 
        public double[] InvertSolver(double[,] matrix, double[] rightHandSideVector) 
        { 
             
            IPreConditioner precondtioner =  
                new dnAnalytics.LinearAlgebra.Solvers.Preconditioners.Diagonal(); 
            
            dnAnalytics.LinearAlgebra.Solvers.Iterative.GPBiCG solver =  
                new dnAnalytics.LinearAlgebra.Solvers.Iterative.GPBiCG(precondtioner); 
 
            SparseMatrix lhSideMatrix = new SparseMatrix(matrix); 
            Vector rhSideVector = new DenseVector(rightHandSideVector); 
 
            Vector solutionVector = solver.Solve(lhSideMatrix, rhSideVector); 
 
            double[] solutionVectorArray = solutionVector.ToArray(); 
            return solutionVectorArray; 
        } 
    } 
} 
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Appendix B - Material Properties 
 

 
The following contains property data for the materials used to construct the pavement test 

section.  During construction the materials were sampled and stored for testing at a later time.  

Laboratory testing of these materials was conducted as part of the overall research project and 

details can be found in the corresponding project report (Crovetti et al., 2008).  The following 

data represents a summary of the pertinent material properties. 
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B.0 - SMA Mix Design Data – Upper Layer 
 

 

 

Mix Type:    SMA

Mix Size:    12.5 mm

Mix Temperature:    155°C ‐ 165°C

Aggregate % Blend

AGG#1:  1/2" Chip 35.0

AGG#2:  3/8" Chip 23.0

AGG#3:  1/4" Chip 21.0

AGG#4:  1/4" Screenings 16.0

AGG#5:  Superfine 5.0

Compative Effort Ni: 8 Nd: 100 Nm: 160

Binder Data Grade: 70‐28 Srce: CRM, Milwaukee Gb = 1.025

AGG#1 AGG#2 AGG#3 AGG#4 AGG#5 JMF

35.0 23.0 21.0 16.0 5.0

2 50.0 mm 100.0 100.0 100.0 100.0 100.0 100.0

1‐1/2 37.5 mm 100.0 100.0 100.0 100.0 100.0 100.0

1 25.0 mm 100.0 100.0 100.0 100.0 100.0 100.0

3/4 19.0 mm 100.0 100.0 100.0 100.0 100.0 100.0

1/2 12.5 mm 85.0 100.0 100.0 100.0 100.0 94.8

3/8 9.5 mm 15.0 95.0 100.0 100.0 100.0 69.1

#4 4.75 mm 4.2 4.8 45.0 89.6 100.0 31.4

#8 2.36 mm 2.9 2.8 3.2 51.9 100.0 15.6

#16 1.18 mm 2.3 2.4 2.8 35.7 100.0 12.7

#30 0.60 mm 2.1 2.3 2.7 26.8 100.0 11.1

#50 0.30 mm 2.1 2.2 2.6 22.1 100.0 10.3

#100 0.15 mm 2.0 2.2 2.5 18.6 98.6 9.6

#200 0.075 mm 1.9 2.1 2.4 14.7 80.7 8.0

FAA 0.0 0.0 0.0 48.7 0.0 48.7

Gsb 2.764 2.741 2.736 2.756 2.717 2.749

**0.3% organic fibers (%wt. of mix) added.

Crush 1F/2F:   100.1 / 100.1 Gsb:   2.749 1.1 LA Wear:   0.0 (100)

FAA:   48.7 Gsa:   2.836 1.5 0.0 (500)

SE:   69 Gse:   2.814 0.0 Frz‐Thaw: 0.0

Elongated:   6.6 (3:1)

Total Pb Gmm Gmb Va VMA VFB Unit Wt.

JMF 6.1 2.543 2.442 4.0 16.6 75.9 2435

Volumetric Data

Aggregate Gradation

Mix Design Data

Aggregate Data

%Blend

Absorption:  

Dust %:  

Soundness:  

Aggregate Data for Blended Design JMF
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B.1 - E-30 Mix Design Data – Intermediate Layers 
 

 

Mix Type:    E‐30

Mix Size:    19.0 mm

Design ESAL Range (mil):    10 to < 30

Mix Temperature:    135°C ‐ 149°C

Aggregate % Blend

AGG#1:  #1 Stone 15.0

AGG#2:  1/2" Chip 15.0

AGG#3:  3/8" Chip 15.0

AGG#4:  1/4" Minus 5.0

AGG#5:  MFG'D Sand 40.0

AGG#6:  Natural Sand 10.0

Compative Effort Ni: 8 Nd: 100 Nm: 160

Binder Data Grade: PG 64‐22 Srce: BP Amoco (PAD) Gb = 1.020

AGG#1 AGG#2 AGG#3 AGG#4 AGG#5 AGG#6 JMF

15.0 15.0 15.0 5.0 40.0 10.0

2 50.0 mm 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1‐1/2 37.5 mm 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1 25.0 mm 100.0 100.0 100.0 100.0 100.0 100.0 100.0

3/4 19.0 mm 80.5 100.0 100.0 100.0 100.0 100.0 97.1

1/2 12.5 mm 10.2 84.1 100.0 100.0 100.0 100.0 84.1

3/8 9.5 mm 3.3 17.5 94.1 100.0 100.0 100.0 72.2

#4 4.75 mm 2.2 2.0 1.7 89.5 94.8 86.8 52.0

#8 2.36 mm 1.9 1.9 1.3 59.4 58.8 72.6 34.5

#16 1.18 mm 1.8 1.8 1.2 40.1 32.6 59.5 21.7

#30 0.60 mm 1.8 1.8 1.2 28.4 16.9 41.8 13.1

#50 0.30 mm 1.7 1.8 1.2 22.1 8.5 15.2 6.7

#100 0.15 mm 1.7 1.7 1.2 19.0 5.4 5.7 4.4

#200 0.075 mm 1.6 1.7 1.2 16.6 4.4 4.1 3.7

FAA 0.0 0.0 0.0 48.4 47.4 41.1 46.3

Gsb 2.740 2.750 2.770 2.760 2.760 2.660 2.750

**P‐0.075mm increased 0.5% at the request of the Project Manager.  P‐0.075mm JMF = 4.2%

Crush 1F/2F:   99.2 / 99.1 Gsb:   2.750 1.0 LA Wear:   0.0 (100)

FAA:   46.3 Gsa:   2.820 0.9 0.0 (500)

SE:   90 Gse:   2.790 0.0 Frz‐Thaw: 0.0

Elongated:   3.7 (5:1)

Total Pb Gmm Gmb Va VMA VFB Unit Wt.

JMF 4.6 2.590 2.480 4.0 13.7 70.8 2482

Soundness:  

Volumetric Data

Aggregate Gradation

%Blend

Aggregate Data for Blended Design JMF

Absorption:  

Dust %:  

Mix Design Data

Aggregate Source Data
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B.2 - C2 Mix Design Data – Lower Layer 
 

 

  

Mix Type:    C2

Mix Size:    19.0 mm

Design ESAL Range (mil):    NA

Mix Temperature:    135°C ‐ 149°C

Aggregate % Blend

AGG#1:  RAP 30.0

AGG#2:  #1 Stone 10.0

AGG#3:  1/2" Chip 10.0

AGG#4:  3/8" Chip 10.0

AGG#5:  1/4" Minus 20.0

AGG#6:  MFG'D Sand 15.0

AGG#7:  Natural Sand 5.0

Compative Effort Ni: 0 Nd: 40 Nm: 0

Binder Data Grade: PG 64‐22 Srce: CRM, Milwaukee Gb = 1.028 RAP Pb = 4.47

AGG#1 AGG#2 AGG#3 AGG#4 AGG#5 AGG#6 AGG#7 JMF

30.0 10.0 10.0 10.0 20.0 15.0 5.0

2 50.0 mm 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1‐1/2 37.5 mm 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

1 25.0 mm 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

3/4 19.0 mm 100.0 78.7 100.0 100.0 100.0 100.0 100.0 97.9

1/2 12.5 mm 100.0 9.4 87.9 100.0 100.0 100.0 100.0 89.7

3/8 9.5 mm 96.0 4.0 11.9 95.6 100.0 100.0 100.0 80.0

#4 4.75 mm 78.0 3.1 1.1 2.1 87.4 89.5 90.7 59.5

#8 2.36 mm 59.1 2.5 1.1 1.5 57.6 55.8 74.7 41.9

#16 1.18 mm 45.0 2.1 1.0 1.4 40.9 32.2 59.4 29.9

#30 0.60 mm 33.6 2.1 1.0 1.3 30.7 18.5 41.1 21.5

#50 0.30 mm 21.4 2.1 1.0 1.3 25.1 10.6 15.8 14.3

#100 0.15 mm 15.2 2.0 0.9 1.3 21.0 6.4 5.9 10.4

#200 0.075 mm 12.1 1.8 0.9 1.2 15.5 4.4 4.3 8.0

FAA 42.7 0.0 0.0 0.0 49.2 46.5 41.1 45.3

Gsb 2.673 2.776 2.760 2.762 2.772 2.756 2.653 2.731

Crush 1F/2F:   97.9 / 96.8 Gsb:   2.731 0.9 LA Wear:   0.0 (100)

FAA:   45.3 Gsa:   2.800 2.2 0.0 (500)

SE:   74 Gse:   2.793 0.0 Frz‐Thaw: 0.0

Elongated:   1.0 (5:1)

Added Pb Total Pb Gmm Gmb Va VMA VFB Unit Wt.

JMF 3.2 4.5 2.592 2.494 3.8 12.8 70.3 2487

Absorption:  

Dust %:  

Soundness:  

Volumetric Data

Aggregate Source Data

Mix Design Data

Aggregate Gradation

%Blend

Aggregate Data for Blended Design JMF
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B.3 - Open Graded Aggregate Material Properties 
 

Table 0-1 – Gradation and properties for Open Graded. 

   

 

Figure 0-1 - Open Graded particle size distribution chart. 
  

Mesh Opening, in. Opening, mm

1" 1 25.4 100

3/4" 0.75 19.0 97.7

3/8" 0.375 9.51 62.1

No. 4 0.187 4.76 26.7

No. 10 0.0787 2.00 3.8

No. 20 0.0331 0.841 3.1

No. 40 0.0165 0.420 3

No. 60 0.0098 0.250 2.8

No. 140 0.0041 0.105 2.6

No. 200 0.0029 0.074 2.4

Sieve
% Finer

Bulk Specific Gravity 2.743

Apparent Specific Gravity 2.809

Absorption, % 1.34

Max Dry Unit Weight, pcf 128.4

D10 2.75

D30 5

D60 9

Cu 3.27

Cc 1.01
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B.4 - Dense Graded Aggregate Properties 
 

Table 0-2 - Gradation and properties for Dense Graded. 

   

 

Figure 0-2 - Dense Graded particle size distribution chart. 
  

Mesh Opening, in. Opening, mm

1" 1 25.4 99.5

3/4" 0.75 19.0 90.2

3/8" 0.375 9.51 64.5

No. 4 0.187 4.76 35.8

No. 10 0.0787 2.00 22.2

No. 20 0.0331 0.841 13.9

No. 40 0.0165 0.420 8.2

No. 60 0.0098 0.250 4.8

No. 140 0.0041 0.105 2.3

No. 200 0.0029 0.074 1.7

Sieve
% Finer

Bulk Specific Gravity 2.396

Apparent Specific Gravity 2.594

Absorption, % 5.47

Max Dry Unit Weight, pcf 121.1

D10 0.55

D30 3.6

D60 8.5

Cu 15.45

Cc 2.77
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B.5 - Native Soil Layer Properties 
 

Table 0-3 - General soil properties. 

 

Table 0-4 - Location and elevation soil properties. 

 

 

Table 0-5 – Upper layer soils gravimetric and volumetric computations. 

                 

 

Table 0-6 – Lower layer soils gravimetric and volumetric computations. 

                 

Soil
Liquid 

Limit, %

Plasticity 

Index, %

Shrinkage 

Limit, %

Specific 

Gravity

Optimum Moisture 

Content, %

Max Dry Unit 

Weight, pcf
USCS Classification

Group 

Index

AASHTO 

Classification

1A 17 3 14.445 2.705 10 127.5
ML / CL‐ML

Silt with Sand / Silty Clay with Sand
0 A‐4

1B 24 8 2 2.870 12.5 119 CL / CL‐ML
Lean Clay / Silty Clay with Sand

5 A‐4

2 NP NP NP 2.725 10.5 118.55
ML

Sandy Silt
0 A‐4

Soil
43NB ‐ 

Station, ft

Center ‐ 

Offset, ft.
Elevation, ft.

USCS 

Classification

Group 

Index

AASHTO 

Classification

2.69 Average 10.0% Average 86.4% Average 128.0 Average ML 0 A‐4

2.72 2.705 10.0% 10.0% 80.8% 83.6% 127.0 127.5 CL‐ML 0 A‐4

2.86 Average 12.5% Average 73.4% Average 120.0 Average CL 5 A‐4

2.88 2.870 12.5% 12.5% 68.8% 71.1% 118.0 119 CL‐ML 5 A‐4

2.75 Average 10.5% Average 65.9% Average 119.3 Average ML 0 A‐4

2.7 2.725 10.5% 10.5% 65.9% 65.9% 117.8 118.55 ML 0 A‐4

Soil 1A

Soil 1B

Soil 2

385+26.43 64.61 R

Specific Gravity
Maximum Dry 

Unit Weight, PCF

Optimum Gravitmetric 

Moisture Content, %

655.0' to 656.0'

385+40.84 63.67 R 654.4' to 656.4'

385+26.43 64.61 R 656.0' to 657.0'

Degree of Saturation 

at Optimum M.C., %

Test #1 Test #2 Average

Unit Weight, PCF 143.7 144.6 144.15

Moisture Unit Weight, PCF 19.8 21.3 20.55

Moisture Conent, % 16.0% 17.3% 16.6%

Dry Unit Weight, PCF 123.9 123.3 123.6

Specific Gravity

Porosity, = Vv / VT × 100% 33.0%

Property
Soil 1A and Soil 2 ‐ Upper Soils

2.715

= 0.3301 / 1.0 =

144.2 PCF 1 ft
3*

0 A 0.0000

20.6 W 0.3301

123.6 S

*Assumed volume.

**Sample assumed saturated.

0.3301
1.0597

0.7296

Property

Unit Weight, PCF

Moisture Unit Weight, PCF

Moisture Conent, %

Dry Unit Weight, PCF

Specific Gravity

Porosity, = Vv / VT × 100% 30.1%

Soil 1B ‐ Lower Soils

Test #1

146.2

18.8

= 0.3013 / 1.0 =

14.8%

127.4

2.87

146.2 PCF 1 ft
3*

0 A 0.0000

18.8 W 0.3013

127.4 S

*Assumed volume.

**Sample assumed saturated.

0.3013
1.0127

0.7114
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Table 0-7 – Soil property key for Tables 5 and 6 above. 

 

 
Table 0-8 - Lower soil layer resilient modulus calculations. 

 

 

Table 0-9 - Upper soil layer resilient modulus calculations. 

 

Total Weight, PCF Total Volume, ft
3

Wt. Air A Vol. Air

Wt. H20 W Vol. H20

Wt. Soil S

Vol.

Voids
Calc.

Total

Vol.Vol. Soil

Month θ ‐ A0 S Denom POW Native

January 39.6 0.919615 4.981882 ‐0.18939 3625

February 39.2 0.910326 4.737599 ‐0.18306 3679

March 39.4 0.91497 4.857807 ‐0.18626 3652

April 40.2 0.933548 5.378567 ‐0.19846 3550

May 41.6 0.96606 6.46471 ‐0.21759 3397

June 43.4 1.00786 8.266043 ‐0.23823 3240

July 44.9 1.042694 10.21313 ‐0.25235 3136

August 45.9 1.065917 11.7931 ‐0.26038 3079

September 45.6 1.05895 11.29259 ‐0.25808 3095

October 41.3 0.959093 6.211291 ‐0.21372 3428

November 40.6 0.942837 5.664744 ‐0.20421 3504

December 39.5 0.917292 4.919354 ‐0.18783 3638

Lower ‐ MrOpt = 5,261 psi, Sopt = 71.1%

Month θ ‐ A2 S Denom POW Native

January 37.4 0.759333 2.0378 ‐0.0118 11806

February 36.9 0.749182 1.9685 ‐0.0012 12097

March 37.3 0.757303 2.0236 ‐0.0097 11864

April 38.7 0.785727 2.2424 ‐0.0392 11084

May 40.9 0.830394 2.6845 ‐0.0842 9994

June 43.6 0.885212 3.4476 ‐0.1347 8897

July 45.8 0.929879 4.3186 ‐0.1705 8192

August 47 0.954242 4.9180 ‐0.1878 7873

September 46.5 0.944091 4.6561 ‐0.1808 8001

October 41.5 0.842576 2.8303 ‐0.0960 9727

November 39.8 0.808061 2.4467 ‐0.0620 10517

December 37.9 0.769485 2.1122 ‐0.0224 11522

Upper ‐ MrOpt = 11,642 psi, Sopt = 74.8%



270 
 

Table 0-10 – Resilient modulus summary for all unbound layers. 

 

Month θ ‐ A2 S Open Dense Select
Native

Upper

Native

Lower

January 37.4 0.759333 4523 12683 30000 11805 3625

February 36.9 0.749182 4616 12942 30000 12097 3678

March 37.3 0.757303 4523 12683 30000 11863 3651

April 38.7 0.785727 4431 12424 30000 11083 3550

May 40.9 0.830394 4339 12165 30000 9993 3397

June 43.6 0.885212 4246 11906 30000 8896 3239

July 45.8 0.929879 4154 11647 30000 8192 3136

August 47 0.954242 4062 11388 30000 7872 3078

September 46.5 0.944091 4154 11647 30000 8000 3094

October 41.5 0.842576 4246 11906 30000 9726 3427

November 39.8 0.808061 4339 12165 30000 10517 3503

December 37.9 0.769485 4431 12424 30000 11521 3638

Mr Summary
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