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Abstract 

Coarctation of the aorta (CoA) is often considered a relatively simple 

disease, but long-term outcomes suggest otherwise as life expectancies are 

decades less than in the average population and substantial morbidity often 

exists. What follows is an expanded version of collective work conducted by 

the authors’ and numerous collaborators that was presented at the 1st 

http://dx.doi.org/10.1016/j.ppedcard.2010.09.006
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International Conference on Computational Simulation in Congenital Heart 

Disease pertaining to recent advances for CoA. The work begins by focusing 

on what is known about blood flow, pressure and indices of wall shear stress 

(WSS) in patients with normal vascular anatomy from both clinical imaging 

and the use of computational fluid dynamics (CFD) techniques. Hemodynamic 

alterations observed in CFD studies from untreated CoA patients and those 

undergoing surgical or interventional treatment are subsequently discussed. 

The impact of surgical approach, stent design and valve morphology are also 

presented for these patient populations. Finally, recent work from a 

representative experimental animal model of CoA that may offer insight into 

proposed mechanisms of long-term morbidity in CoA is presented. 

Coarctation of the aorta (CoA) accounts for 8 to 11% of congenital 
heart defects resulting in between 3,000 and 5,000 patients annually 

in the United States (1, 7). Current methods of treatment including 
surgery and stenting can alleviate the blood pressure (BP) gradient 
across a coarctation and are associated with low morbidity (3, 11, 21), 

but long-term results are inconsistent with the putative notion of CoA 
as a simple disease since life expectancies are decades less than in the 

average population (3, 24) and substantial morbidity exists in the form 
of hypertension, early onset coronary artery disease, stroke and 
aneurysm formation (5, 10, 13). 

In 1971, O'Rourke and Cartmill suggested CoA-induced morbidity 

could be explained on the basis of abnormal hemodynamics and 
vascular biomechanics (19). Recent clinical literature has lost sight of 

this hemodynamic basis for the morbidity in CoA patients. At the 
present time, most studies primarily compare pre- and 
postintervention BP gradients as well as rates of mortality, 

hypertension, aneurysm formation and recoarctation to previous 
studies reporting the same or similar outcomes (5, 10, 13) and a 

relatively small fraction of studies hint that altered biomechanical 
properties may be present in CoA pts and contribute to the persistent 
morbidity discussed above (18, 23). 

Further investigation into the hemodynamic and biomechanical basis of 
morbidity and treatment outcomes for CoA patients is particularly 
interesting when we consider recent advancements in computational 

modeling tools (9, 32, 38). Patient specific anatomy can now be 
extracted, and geometrically representative computational models of 

the vasculature can be created, using information obtained during a 
routine clinical imaging session (22, 27). This anatomic data can be 
used with phase-contrast magnetic resonance imaging (PC-MRI) and 

BP data to create 3D, patient-specific, time-varying representations of 
hemodynamics that also consider biomechanical vascular properties 

associated with the current patient state (8, 39). This approach has 
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been successfully applied to other congenital heart defects, specifically 
malformations resulting in a single ventricle. In these patients, 

computational fluid dynamics (CFD) simulations of the Fontan 
procedure has led to widespread acceptance of several technical 

modifications demonstrated to be hemodynamically superior to 
previous surgical techniques (25). If these techniques were applied to 
CoA, similar studies would likely provide greater understanding of 

long-term morbidity, preoperative assessment of treatment options, 
and an additional tool for evaluation of current treatment practices 

when compared to comparable results from normal patients. 

What is normal anyway? 

To fully characterize hemodynamic alterations associated with CoA, 

we must first understand related indices under normal conditions. 
Hemodynamic and vascular biomechanics in the thoracic aorta and its 
branches are complex, but particularly depend on several key factors 

that should be implemented when performing CFD modeling for CoA 
patients. Importantly, consideration of these factors allows for the 

replication of normal physiology and thoracic aortic anatomy and likely 
the greatest chance for clinical impact from an associated CFD study. 

1. Blood flow patterns in the normal ascending and descending 
aorta range from axial during the early portion of systole, to 

helical during mid-to-late systole, and complex flow recirculation 
during end systole and diastole (15). The development of helical 

flow patterns during peak to late systole is thought to occur in 
response to the curvature of the ascending aorta and 

translational motion of the aortic root caused by the beating 
heart. Equivalent studies are currently lacking for CoA patients, 
likely as a result of the heterogeneity and additional cardiac 

abnormalities often present in this patient population. 
Nevertheless, simulation results should replicate flow patterns 

revealed by the available clinical data in order to draw 
reasonable conclusions. 

2. The potential relationship between coarctation-related long-term 

morbidity and altered hemodynamics in the ascending aorta and 
its branches dictates that outflow boundary conditions must be 

selected in these vessels to replicate physiologic blood flow and 
BP distributions measured clinically. The reader is referred to 
several recent thorough articles discussing the application of 

realistic boundary conditions in computational models (30, 31). 
In addition to replicating current patient state, these physiologic 

outlet boundary conditions also facilitate the investigation of 
predictive surgical or interventional treatment planning in cases 
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where outflow information is not clinically available such as 
determining the acute response to theoretical stent implantation 

for the relief of CoA, or changes occurring in response to 
exercise. 

3. The hallmark of the ascending aorta is its unique ability to store 
blood during systole and deliver it to the rest of the body during 
diastole. This property is disrupted by CoA. Therefore, 

computational models for use in studying CoA should consider 
the compliance of the aorta. This is complicated by differences 

in tissue properties along the length (17) and within a given 
circumferential region (6) of the aorta, as well as differences 
between the aorta and its branches (37). Although differences in 

these tissue properties have been previously reported for 
normal vasculature using experimental techniques, their 

estimation from non-invasive imaging and computational 
implementation is not trivial. The precise location and vascular 
influence of a particular treatment for CoA such as patch 

aortoplasty or balloon angioplasty is also difficult to decipher 
from medical imaging data. However, this information is 

necessary for the physiologic assessment of disease severity. 
4. The aorta and innominate, carotid and subclavian arteries 

contain smaller branches with calibers near the detection limits 
of MR imaging that may be of interest for computational 
modeling of CoA patients. For example, the intercostal arteries 

are thought to take between 7 and 11% of the flow from the 
level of the coarctation to the level of the diaphragm under 

normal conditions, and are often recruited to serve as collateral 
vessels in patients with native CoA (26, 28). Including these 
vessels in a computational model (or accounting for their 

impact) can likely provide more physiologic results for indexes 
such as wall shear stress (WSS, defined as the tangential force 

per unit area exerted on a blood vessel wall as a result of 
flowing blood) throughout the descending thoracic aorta. 
Similarly, luminal wall motion in the ascending and descending 

aorta and their branches is curtailed by the presence of 
supporting structures including the spine, connective tissue and 

the intrinsic tension of arterial system that provides radial and 
axial tethering. 

5. To be clinically applicable, the use of CFD for this application 

must ultimately provide unique information that is not available 
by other techniques. The ability of CFD to meet this criterion is 

somewhat inherent as it provides information that would be 
difficult or impossible to assess using experimental techniques. 
However, simply using CFD to assess blood flow and BP 

distributions is inadequate as current imaging and 
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catheterization techniques are routinely used for the same 
purpose. Instead investigators rely on CFD to provide estimates 

for indices of WSS, vascular deformation and strain and changes 
in these indices in response to virtual treatments or under 

simulated exercise conditions. 

Many of the factors discussed above can be implemented using 
current CFD techniques while others await future progress, or are not 

yet ubiquitously applied, with current imaging and computational 
methods. Following the above review of CFD model considerations that 
should be implemented to replicate normal thoracic flow features and 

elucidate alterations in CoA patients, we now offer several examples of 
results from CoA patients that underwent surgical or interventional 

treatment. 

Do previous and current treatments restore 
normalcy? 

Traditionally surgery by resection with end-to-end anastomosis 
has been the gold standard for repair of CoA. While CFD has been used 

extensively to study possible morbidity due to altered flow conditions 
in smaller blood vessels prone to atherosclerosis, the potentially 
deleterious effects of alterations in blood flow patterns in the human 

thoracic aorta have not been as widely studied. 

Figure 1 shows results from an ongoing investigation in which patient-
specific CFD modeling was performed for control subjects and 

corresponding age and gender matched CoA patients that underwent 
surgical repair by resection with end-to-end anastomosis. Realistic 

inflow and outflow boundary conditions derived from PC-MRI and BP 
measurements were implemented to determine indices of WSS in the 
thoracic aorta and arteries of the head and neck. Spatiotemporal 

alterations in velocity streamlines, time-averaged WSS (TAWSS) and 
oscillatory shear index (OSI, an index of directional changes in WSS, 

low OSI indicates the WSS is oriented predominantly in the direction of 
blood flow, while a value of 0.5 is indicative of bidirectional WSS with a 
time-average value of zero throughout the cardiac cycle (40)) were 

observed for CoA patients compared to the control subjects. Axial and 
circumferential patterns of TAWSS and OSI for CoA patients revealed 

significantly higher TAWSS between 1 to 3 descending aortic diameters 
distal to the left subclavian artery and significantly higher OSI between 
3 to 5 diameters distal to the left subclavian artery. 
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Figure 1 
Spatial patterns of time-averaged WSS for an 11 yo female patient with CoA 

treated surgically by resection with end-to-end anastomosis repair (right) and 

an age and gender matched control subject (left). 

In a related study (Figure 2), indices of WSS were also 
determined for a group of CoA patients previously surgically treated by 

patch aortoplasty and corresponding age- and gender-matched control 
patients. Heterogeneity within this CoA group is particularly striking 

and the presence of aneurysms in the region of ductal tissue, which is 
common with this repair type, can be seen in patient shown in the 
figure. This type of surgical correction is no longer implemented, but 

CFD can still be useful for planning future interventions or determining 
the impact of local hemodynamics on the growth and potential rupture 

of aneurismal corrections. 
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Figure 2 
Spatial patterns of time-averaged WSS for a 26 yo male patient with CoA 

treated surgically by Dacron patch aortoplasty (right) and an age and gender 

matched control subject (left). 

These results indicate that, in addition to any pre-existing 
alterations in vascular function, locations involving the surgical 

correction are often now those associated with potentially deleterious 
alterations in indices of WSS. For the studies mentioned above, the 

group of CoA patients undergoing surgical correction by resection and 
end-to-end anastomosis were younger, and therefore closer to the 
date of their surgical correction, than the patients from which the 

Dacron patch CFD models were created. While it is possible that the 
end-to-end repairs used for CFD modeling may undergo deleterious 

geometric remodeling as has occurred for many of the Dacron patch 
patients, the current results strongly suggest the end-to-end repair 
results in more favorable results from a hemodynamic perspective. 

Collectively these results facilitate greater understanding of the effects 
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of surgical repair on local hemodynamics in CoA patients by providing 
quantifiable values throughout the entire aorta. This data may be 

useful for clinicians when implementing future surgeries. 

Local hemodynamics alterations after stenting for 
CoA 

The invasive nature of surgical treatments combined with the 

shorter hospitalization, reduced pain and decreased cost of catheter-
based therapies has led to stent implantation playing an increasing 
role in the treatment of CoA. Although currently there are no FDA-

approved stents specifically designed for children, several stents are 
commonly used off-label with CoA patients and recent studies have 

documented some fundamental concerns regarding the use of these 
stents in a manner other than that for which they were intended. 
Among these concerns is the impact of different stent types on blood 

flow patterns in the descending thoracic aorta. The following example 
illustrates how CFD can be used to provide additional insight related to 

this question. 

A patient-specific model was created from CT and MRI data sets 
obtained within several days of each other. A computational 
representation of the implanted stent was then created and included 

within the patient-specific CFD model using computer aided design 
software. A computational version of a second stent also commonly 

used in the treatment of CoA was also created and virtually implanted 
for comparison of downstream flow disturbances (Figure 3). The 
results illustrated in Figure 3 suggest there is a region of elevated 

TAWSS along the posterior wall of the descending thoracic aorta distal 
to the stents as well a difference in the amount of the anterior wall 

within this region that is exposed to low TAWSS. Importantly, low 
TAWSS is associated with the onset and progression of cardiovascular 

disease in many vascular beds and TAWSS above a certain preferential 
value may also be associated endothelial injury, plaque rupture, or 
thrombogenesis (12, 14). The Numed CP stent appears to be 

associated with a greater percentage of low TAWSS along the anterior 
wall and accentuate values within the region of elevated WSS along 

the posterior aorta, but this hypothesis remains to be tested in further 
detail. Additional questions pertaining to potential for the stent to 
cause adverse changes in the stiffness and structural components of 

the aorta (9), or impart residual stress on the left ventricle of the heart 
(16) could similarly be examined through the use of CFD. 
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Figure 3 
Time-averaged WSS results obtained from CFD models containing 

computational representations of two stents commonly used to treat CoA. The 

results reveal differences in low time-averaged WSS along the anterior wall 

and regions of elevated time-averaged WSS along the posterior wall of the 

descending thoracic aorta distal to the stents. 

How does the aortic valve impact normal? 

The prevalence of a bicuspid aortic valve (BAV) is ~2% in the 
general population (33), but 50-80% of patients diagnosed with CoA 

also have a BAV (33, 34). This is particularly concerning as reports 
have documented a nine-fold increased risk of ascending aortic 

dissection with BAV (33). Imaging studies using Doppler ultrasound 
(2) and 4D MRI flow measurements (35) have indicated BAV cause 
flow disturbances in the ascending aorta and progressive ascending 

aortic dilatation. Past studies have shown that some turbulence exists 
in the aortic arch (4, 15), but that diseases of the aortic valve are 
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almost always associated with more pronounced turbulence in the 
ascending aorta (29). Collectively these findings indicate the presence 

of a BAV in CoA patients inevitably alters hemodynamics in the 
ascending aorta that could lead to the progression of disease in this 

region and contribute to observed long-term morbidity. 

As an extension of the studies discussed above, Wendell et al. (36) 
recently implemented idealized bicuspid and tricuspid valve 

morphologies into CFD models of three arch types commonly 
developing after surgical treatment for CoA by resection with end-to-
end anastomosis (20). TAWSS, OSI, and turbulent kinetic energy 

(TKE) values were compared with those from an assumed parabolic 
inlet velocity profile. The influence of the aortic valve generally 

persisted into the mid-transverse arch for WSS and TKE and 
throughout the thoracic aorta for OSI, but varied due to features of 
each arch type including arch orientation, curvature and length of the 

ascending aortic segment. Deleterious indices of WSS (low time-
averaged WSS and elevated OSI) quantified in 3 mm circumferential 

bands were generally more pronounced for the BAV inlet condition 
regardless of arch type. One of the key findings from the study was 
that post-surgical arch shape greatly impacts which portions of the 

luminal surface will be exposed to potentially subnormal values of WSS 
indices. Since contours for circumferential indices of WSS were 

generally similar across inflow types, regions of varying susceptibility 
resulting from surgical correction are established regardless of the 
number of functioning valve leaflets, but can be mitigated or worsened 

by valve morphology, particularly in the ascending aorta. 

In vivo rabbit model of CoA 

Despite notable efforts underway for the projects summarized 

above, the precise cause of long-term morbidity for CoA patients is 
difficult to assess due to the small number of patients at any 

institution, and their heterogeneity. A modified rabbit coarctation 
model was therefore created to assess hemodynamic indices including 
blood flow, BP and WSS caused by CoA using a coupled imaging and 

CFD approach. The experimental MRI protocol mirrors the protocol 
that was used to obtain the human MRI data sets presented above in 

that rabbits with surgically-induced CoA, or CoA that has been treated 
to mimic surgical and stent corrections, undergo MRI. The MRI data is 
then used to create a CFD model revealing changes in blood flow in 

the same manner as is being performed with the human data. 
Additionally, the experimental protocol provides histological results 

showing how changes in blood flow, BP, vessel stiffness and WSS 
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(Figure 4) can be associated with local structural changes in the vessel 
wall. 

 
Figure 4 
Representative mean intensity projections obtained from MRI angiography of 

the thoracic aorta of rabbits under several experimental conditions (top) with 

examples of corresponding CFD models (below). The experimental MRI 

protocol mirrors the protocol for obtaining the human MRI data used to create 

the CFD models shown above. 

Summary 

The examples discussed above show that computational simulation is 

currently being used to address many of the questions that persist related to 

treatment for CoA. Although larger studies are necessary, these recent results 

support the hypothesis of O'Rourke and Cartmill from nearly four decades 

ago. We anticipate that as the severity of hemodynamic and vascular 

biomechanics alterations continue to be elucidated through computational 

simulation, engineers and clinicians will be able to work together to identify 

and alleviate regions of susceptibility and, with them, potential sources of 
long-term morbidity for CoA patients. 
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