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Abstract 

Purpose: To estimate organ and effective radiation doses due to 

backscatter security scanners using Monte Carlo simulations and a voxelized 
phantom set. 

Methods: Voxelized phantoms of male and female adults and children were 

used with theGEANT4 toolkit to simulate a backscatter security scan. The 

backscatter system was modeled based on specifications available in the 

literature. The simulations modeled a 50 kVp spectrum with 1.0 mm-

aluminum-equivalent filtration and a previously measured exposure of 

approximately 4.6 μR at 30 cm from the source. Photons and secondary 

interactions were tracked from the source until they reached zero kinetic 

energy or exited from the simulation’s boundaries. The energy deposited in 

the phantoms’ respective organs was tallied and used to calculate total organ 

dose and total effective dose for frontal, rear, and full scans with subjects 
located 30 and 75 cm from the source. 
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Results: For a full screen, all phantoms’ total effective doses were below 

the established 0.25 μSv standard, with an estimated maximum total 

effective dose of 0.07 μSv for full screen of a male child. The estimated 

maximum organ dose due to a full screen was 1.03 μGy, deposited in the 

adipose tissue of the male child phantom when located 30 cm from the 

source. All organ dose estimates had a coefficient of variation of less than 3% 

for a frontal scan and less than 11% for a rear scan. 

 

Conclusions: Backscatter security scanners deposit dose in organs 

beyond the skin. The effective dose is below recommended standards set by 

the Health Physics Society (HPS) and the American National Standards 

Institute (ANSI) assuming the system provides a maximum exposure of 

approximately 4.6 μR at 30 cm. 
 

INTRODUCTION  

X-ray backscatter and millimeter wave imaging systems are 

currently used by the Transportation Security Administration (TSA) for 
airport passenger and personnel security screening. X-ray backscatter 
systems use ionizing radiation; whereas millimeter systems use high 

frequency radio waves. These systems detect radiation scattered by 
the subject to generate low resolution images intended to depict high 

contrast between human anatomy and contraband on the surface of 
the subject. The scanners were first deployed in 2007 as a secondary 
screening tool and became a primary screening tool, with increased 

deployment, in 2010.1 

The American National Standards Institute (ANSI) and the 
Health Physics Society (HPS) suggest an effective dose upper limit of 

0.1 μSv per frontal scan and a reference effective dose of 0.25 μSv per 
full screening (frontal and rear).2,3 The reference effective dose is 
calculated by measuring the half-value layer and air kerma of a 

scanner at the point of maximum exposure at distance no closer than 
30 cm from the beam’s exit surface.3 In comparison, the average 

American receives an annual effective dose of approximately 3 mSv.4 

While the ANSI/HPS standard advises an upper dose limit, 
consensus has not yet been reached on the radiation dose and risk of 

backscatter scans.5–10 An interagency study by the Food and Drug 
Administration (FDA) and the TSA estimated an effective dose of 
0.0372 μSv for a child and 0.0236 μSv for an adult per frontal scan.11 

The report used mathematical subject models, Monte Carlo simulations 
with the software package PCXMC, exposure measurements (9.6 μR) 

obtained using a Rapiscan scanner with backplate and Radcal 10X5-
1800 ionization chamber, and proprietary system specifications.11 This 
study had limitations due to the use of a software package designed to 
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simulate medical x-ray systems with an inverse-square divergence, 
which is not necessarily representative of the system being 

investigated.11,12 A study at Johns Hopkins commissioned by the TSA 
estimated an effective dose of 0.0155 μSv for an adult due to a full 

screening using physical exposure measurements (4.6 μR) of a dual-
unit (master and slave scanners) Rapiscan scanner with a Radcal 10X-
1800 ionization chamber, and previously published conversion factors 

for converting air kerma and half-value layer values to a reference 
effective dose per ANSI N43-2009.13 

Scanner specifications and operation details are of limited 

availability in the public domain. Access to physical scanners for 
measurements and assessments is also limited. It should also be noted 

that the fast scan time and relatively low-energy spectrum introduce 
uncertainties in the exposure measurements obtained on traditional 
equipment.8,14 To circumvent these limitations, a previous study used 

image quality metrics, such as resolution and contrast, to estimate a 
lower bound for the number of detected x-rays per detector pixel 

required to generate images similar to those published from the 
scanner.7 A full screening (frontal and rear) effective dose of 0.88 μSv 
(3.5 times the ANSI N43.17-2009 standard) was estimated assuming 

this estimated number of detected photons, the known spectrum, and 
published x-ray fluence-dose relationships. 

Estimating the risk of backscatter scans is also challenging, as 

the effects of low-dose radiation are not well understood.5,6,8,9 
Mathematical models of risk assume whole body irradiation, whereas 
backscatter systems are expected to deposit radiation primarily in 

superficial organs/regions. While there is consensus that the risk to an 
individual passenger is likely small, the risk to the population may be a 

concern due to the expected 750 × 106 passenger enplanements in 
U.S. airports in 2012, increasing to an expected 1 × 109 enplanements 

by 2030.15 However, estimates of population risk rely on estimates of 
individual risk which further depend on dose estimates. Therefore, 

difficulties in estimating risk are compounded by uncertainties in the 
amount and distribution of dose by backscatter scans. 

This study estimated the organ and effective dose due to 

ionizing radiation of backscatter scanners in adults and children using 
Monte Carlo simulations of radiation transport. Unlike previous studies 
that relied on mathematical anatomical models and exposure-dose 

relationships, this study used more anatomically realistic voxelized 
models representing a broader range of the population.11,13 
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Materials and Methods 
  

II.A. Voxelized phantoms  

Four members of the Virtual Family voxelized phantoms 
representing a 34-yr-old male, a 26-yr-old female, an 11-yr-old 
female, and a 6-yr-old male were selected to represent a range of the 

general population.16 The selected phantoms have a voxel resolution of 
2 mm in each dimension. The initial segmentations were simplified to 

include 30 or 31 materials (the adult female included glandular breast 
tissue, thus an additional material) to decrease the amount of virtual 
memory and computation required for a simulation. For example, the 

original segmentations consisted of the skull and the mandible as two 
distinct materials. These two were simplified to one material, hard 

bone. Tissue compositions were taken from the International 
Commission on Radiation Protection Report 110, with the exception of 

glandular breast tissue which was modeled based on results of 
Woodard and White.17,18 The skeletal regions in the phantoms were 
segmented into regions of red bone marrow surrounded by hard bone. 

The breast region was segmented into regions of glandular tissues 
surrounded by adipose tissue, representing a relatively dense breast. 

II.B. Simulation  

A backscatter security scan procedure was simulated using the 
Monte Carlo radiation transport toolkit, GEANT4 (version 9.3).19 The 

simulations modeled the backscatter system procured by the TSA 
(Rapiscan Secure 1000, OSI Systems, Hawthorne, CA), using 

assumptions based on industry standards, scientific, and patent 
literature.1–3,10–12,21 A 50 kVp spectrum with 1.0 mm aluminum-
equivalent filtration was modeled using the SPEC78 software.20 The 

aluminum–equivalent filtration thickness of 1.0 mm was chosen as it is 
the minimum amount of aluminum-equivalent filtration per the ANSI 

N43.17-2009 standard.3 The simulations modeled a point x-ray source 
with the cone-beam confined to irradiate a 6-mm (height) × 100-cm 

(width) area on the 200 cm (height) by 100 cm (width) scan plane 
located 75 cm from the source.21 In practice, for each vertical position 
of the source, collimators scan in the horizontal direction to limit the 

irradiated area for detection purposes.21 In the current study, the 
collimators were not simulated; thus, the complete cone-beam 

irradiated the subject for each vertical position of the source. The 
source was translated in the vertical direction to discrete positions 
separated by 6 mm (i.e., the vertical extent of the beam at 75 cm 

form the source), as suggested by the patent literature.21 In this 
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configuration, the translated beams are contiguous at the plane 75 cm 
from the source (i.e., the expected position of the subject) but are 

separated by a 0.24 cm gap in the vertical direction between adjacent 
beams at 30 cm from the source, which is the distance where 

exposure measurements were simulated, per ANSI N43.17-2009.3 
Conversely, this model results in beam overlap at distances greater 
than 75 cm from the source. 

The modeled beam provided reduced exposure toward the 
edges of the scan plane in the horizontal direction, due to the 
divergence of the fan beam, which corresponds with physical exposure 

measurements.11 Because the simulated configuration translated the 
source position in the vertical direction, and because of the small beam 

divergence in the vertical direction (half cone angle of 0.23°), the 
exposure was nearly constant across the vertical direction at the scan 
plane (75 cm from the source). Another embodiment of the scanner 

design tilts in the vertical direction rather translating vertically.11 
Previous exposure measurements quantified a decrease in exposure 

with vertical distance from the center position, although the decrease 
in exposure was less than that predicted by the inverse-square law. In 
the current study, the vertically translating source model was chosen 

to provide conservative dose estimates. 

Our study aimed to simulate realistic scanner exposure. The 
exposures of the Rapiscan 1000 for a frontal and rear scan were 

previously measured to be 4.574 and 4.606 μR, respectively (∼0.04 
μGy air kerma) in the Johns Hopkins/TSA study that used a horizontal 

chamber orientation.3,12 In order to provide radiation dose estimates 
that reflect realistic scanner output and conditions, Monte Carlo 
simulations of the modeled backscatter system were performed to 

calculate the photon fluence that provided an exposure approximately 
equal to the previously measured values. In other words, the same 

source configuration and translation was modeled in the exposure 
simulations as in the phantom simulations. In the exposure 
simulations, an 1800 cm3 cylinder of water with a 0.32 cm 

polycarbonate shell modeled the Radcal 10X-1800 (Radcal Corp., 
Monrovia, CA) chamber used in the physical exposure measurements 

in the FDA/TSA study and the Johns Hopkins/TSA study. As in the 
Hopkins/TSA study, the simulated chamber was centered 30 cm from 
the source per ANSI N43.17-2009 and oriented horizontally.3 Different 

exposure values (9.6 μR) were obtained in the FDA/TSA study when 
the chamber was placed in the vertical orientation (chamber axis 

perpendicular to the beam), due to the larger irradiated surface 
area.11,12 The horizontal orientation was selected in the current study 
because the Hopkins/TSA exposure measurements are those officially 
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made public by the TSA. The chamber was simulated as a water 
cylinder instead of air due to the low number of photon interactions in 

air. Air kerma was calculated by scaling the dose in water by an f-
factor of 0.971.22 The number of photons was adjusted until the 

simulations produced exposure estimates equal to the measured 
values. 

Based on results of the exposure simulations, 3.6 × 106 photons 

were simulated per cone-beam (area of 6000 mm2 at a distance of 75 
cm) for all phantom simulations. Dose is expected to depend on 
subject position relative to the source. The ANSI N43.17-2009 

standard states that 30 cm is the minimum distance from the source 
at which an exposure measurement can be performed.3 The patent 

literature suggests that the subject is positioned 75 cm from the 
source.21 Based on these suggested distances, our study estimated 

organ doses with the central coronal plane of the phantom located 30 
and 75 cm from the plane on which the source is located. X-ray 
photons and secondary particles were tracked until absorption or exit 

from the phantom. The simulations tallied the energy, in electronvolts 
(eV), deposited in each voxel. 

II.C. Dose estimates  

Organ dose was calculated in units of grays (Gy) by dividing the 
energy deposited in an organ by the organ mass. The mean, μ, 
standard deviation, σ, and percent coefficient of variation (%COV), 

100% × σ/μ, of the organ doses were calculated across three 
independent simulations of each phantom. Three simulations were 

performed to estimate the %COV, thus allowing an estimate of the 
uncertainty of the dose estimates. Due to the computational nature of 

the full-body Monte Carlo simulations, there is a tradeoff between the 
number of simulations per phantom and the uncertainty in the dose 
estimates. In this work, numerous factors contribute to the uncertainty 

of the dose estimates in addition to the Monte Carlo simulations, as 
will be discussed in Sec. IV. Three trials per phantom was considered 

an adequate tradeoff between computation time and uncertainty. 
Radiation dose estimates for a full screening were equal to the sum of 

the frontal-scan and rear-scan dose estimates. 

The effective dose due to a full screen (frontal and rear) for 
each phantom was also calculated similarly to the method described in 
ICRP Publication 103, as expressed in Eq. (1), where radiation quality 

factor, Q, equals one for x-ray Compton backscatter and the tissue 
specific weighting factors, W, are listed in Table I.23  
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(1) 

The voxelized phantoms did not contain all organs required by 
the effective dose calculation. Due to this limitation, dose to the 

salivary glands, oral mucosa, extrathoracic region, and lymphatic 
nodes were estimated as described in ANSI N43.17-2009.3 Also, the 
female child’s thyroid organ dose was used when calculating the male 

child’s effective dose due to its absence in the male child phantom. 
 

  
  

RESULTS 

Tables II–V display the mean organ dose estimates for all 
phantoms for frontal and rear scans. The coefficient of variation was 

less than 2.7% for all organ doses from a frontal scan at both 
distances (30 and 75 cm). For the rear scan, the coefficient of 
variation was 10.3% for the adult female’s eye lens at 75 cm, 7.1% for 

the adult male’s eye lens at 75 cm, 5.2% for the male child’s eye lens, 
and below 3% for all other organs of all phantoms at both distances. 

Table VI lists the effective doses for frontal scans, rear scans, and full 
screens estimated from the organ doses at 30 and 75 cm. 
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Discussion 

The purpose of our study was to estimate organ dose resulting 
from Compton backscatter security scanners to enable more accurate 

estimates of risk. The effective dose was determined from the 
estimated organ doses. The ANSI standard states the effective does 
shall not exceed 0.10 μSv for a frontal scan and 0.25 μSv for a full 

screening. All four phantoms received less than the recommended 
effective dose limits. The maximum effective dose for a frontal scan 

was 0.05 μSv (male child), which is about 50% of the recommended 
effective dose limit for a frontal scan. The maximum effective dose for 

a full screen was 0.07 μSv (male child), which is approximately 30% of 
the recommended full screen effective dose limit. The dose 
performance of the scanners with respect to the frontal dose limit may 

be more meaningful in terms of risk than the full screening limit, as 
the frontal scans generally irradiate more radiosensitive organs (i.e., 

eye lens and thyroid). For example, the eye lens had a maximum 
frontal scan mean dose of 1.33 × 10−7 Gy and a maximum rear scan 

mean dose of 2.99 × 10−10 Gy, a ratio of approximately 444:1. Both 
maximum effective dose values previously stated occurred with the 

phantom centered 30 cm from the source. As seen is Table VI, 
effective dose decreased by roughly a factor of two when the phantom 
was positioned at 75 cm from the source compared to 30 cm. Overall, 

results at the 30 and 75 cm phantom positions provide dose estimates 
at a range of expected subject positions. 

Including all phantoms at both distances, individual total organ 

doses ranged from 2.06 × 10−10 Gy (soft tissue of the adult female at 
75 cm) to 1.03 × 10−6 Gy (adipose of the male child at 30 cm) for a full 

screen. To put these numbers in perspective, the breast, skin, and eye 
lens dose from a full screen of an adult female was 0.09, 0.21, and 

0.14 μGy, respectively, compared to 4500, 504, and 2.9 μGy for a 
two-view mammogram of one breast (25 kVp, Mo/Mo).24 Thus, the 
organ doses from the backscatter scan are at least 1 order of 

magnitude and as much as 5 orders of magnitude lower than a two-
view mammography study. For further comparison, a maximum total 

effective dose of 0.07 μSv from a full screening is comparable to the 
dose due to cosmic radiation during about one minute, at 3.9 μSv/h, of 
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flight between New York, NY and Chicago, IL.25 However, it may be 
difficult to draw conclusions from this comparison, as the type and 

distribution (i.e., organ dose) differ between the two types of 
exposure. 

The effective dose values estimated in the current study for a 

full screen at 75 cm were approximately two times higher than those 
estimated in the study commissioned by the TSA, performed by Johns 

Hopkins Applied Physics Lab.13 This difference may be due to the fact 
that the TSA/Johns Hopkins study used half-value layer and exposure 
measurements to dose conversion factors rather than system specific 

simulations with voxelized phantoms. The effective dose values 
estimated for a frontal scan at 75 cm were approximately a factor of 

two lower for an adult, when compared to estimates by the FDA/TSA 
report, while the dose to a child was similar.11 This may be due to 
differences in the simplified mathematical phantoms compared to the 

current voxelized phantoms, limitations of the PCXMC software 
package, and potential differences in the studied scanner models.11 

Table VII displays the studies which rely on radiation exposure 
measurements for determining dose estimates. The effective dose 
estimated in the current study is approximately an order of magnitude 

lower than that previously estimated by a study that estimated the 
photon fluence by analyzing published images.7 While estimating the 

photon fluence from the published images eliminates the dependence 
on possibly inaccurate exposure measurements, additional issues may 
arise due to unknown image processing routines performed by the 

systems. 

 

A limitation of the study is that organ doses were calculated for 

the specific phantom models, and may not be applicable to variations 
in subject size and anatomy. However, the dose estimates may be 

useful for calculating risk to typical adult and child subjects. Collimator 
penumbra is not included in the source modeling. The penumbra 
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contributes to the overall photon flux, which is estimated in the 
current study by matching the simulated and measured exposures. 

Furthermore, the presented results are based on numerous 

assumptions that affect the dose estimates. A simplification of the 
ionization chamber as a water cylinder encased in a polycarbonate 

shell was used when calibrating the simulation, whereas the physical 
equipment likely has more components and possibly more materials. 

This was done due to the proprietary design of the chamber. Also, the 
water chamber may introduce additional inaccuracies due to 
attenuation of the low-energy spectra. It is difficult to determine the 

impact of this on the results; however, results are relatively in 
agreement with standards and previously published work (Table VII). 

Using the vertically translating model instead of the stationary source 
model introduces error primarily due to the constant and smaller 
distance between the source and the scan plane as the vertical 

distance from center increases. Assuming a decrease in exposure 
according to the inverse-square law, the exposure of the translating 

source model is approximately 3 times greater at the upper and lower 
limits of the 200 cm scan plane compared to the stationary source 
model. However, a majority of the tissues used to calculate the 

effective dose are not located in these upper and lower scan plane 
regions, so this will likely have little effect on the effective dose 

estimate. When using a stationary source, dose to superior organs, 
such as the brain and eye lens, depend on an individual’s height, with 
taller subjects receiving a lower dose to superior organs. The vertically 

translating model source model used in the current work provides 
conservative dose estimates and may be useful from the perspective 

of radiation protection. 

Another limitation of the current work is that the dose estimates 
depend on previously measured exposure measurements, which may 
have limited accuracy. Also, the simulated chamber orientation may 

also impact dose values. It has been suggested that these published 
exposure measurements may underestimate the true exposure due to 

the high dose rate, low-energy spectrum, and limitations of the 
specific ion chambers.8,13 Furthermore, the patent literature, from 

which the simulated system was modeled, represents a preferred 
embodiment and may not represent the specifications of the 
manufactured product currently in use at airports. 

Additional investigation is required to provide more accurate 

dose estimates. Public disclosure of the system specifications would 
enable more accurate system modeling. Additional exposure 

measurements must be obtained with ionization chambers that have 
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been validated for the low-energy spectra, low exposure, and high flux 
rate produced by the backscatter scanners. To validate the Monte 

Carlo models, an additional exposure measurement should be 
performed in a second phantom and compared to the Monte Carlo 

predictions. The low-energy spectra and low fluence may make it 
challenging to design an appropriate validation phantom. Overall, the 
dose values estimated in the current study are intended to estimate 

the order of magnitude of the radiation dose, and may require 
modification as more detailed scanner specifications become available. 

 Conclusions 

Overall, this paper presents radiation dose estimates from 
backscatter security scanners for a range of subjects, which may be 

used for risk estimates and for understanding the impact of 
backscatter scanners on the average annual effective dose. The 
estimated doses comply with standards set by ANSI/HPS in N43.14-

2009 for radiation safety for personnel security screening systems 
using x-ray or gamma radiation assuming an exposure of 

approximately 4.6 μR at 30 cm, as previously measured according to 
the ANSI standard. A maximum total effective dose of 0.0529 μSv due 
to a frontal scan and a maximum total effective dose of 0.0730 μSv 

due to a full screening are below the 0.1 and 0.25 μSv limits. 
However, as with all imaging modalities using ionizing radiation, the 

risk must be weighed against the benefit, both of which must be 
quantified for backscatter security scans. 
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