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ABSTRACT 

To more accurately model microcantilever resonant behavior in liquids and to 

improve lateral-mode sensor performance, a new model is developed to incorporate 

viscous fluid effects and “Timoshenko beam” effects (shear deformation, rotatory 

inertia). The model is motivated by studies showing that the most promising geometries 

for lateral-mode sensing are those for which Timoshenko effects are most pronounced. 

Analytical solutions for beam response due to harmonic tip force and electrothermal 

loadings are expressed in terms of total and bending displacements, which correspond to 

laser and piezoresistive readouts, respectively. The influence of shear deformation, 

rotatory inertia, fluid properties, and actuation/detection schemes on resonant frequencies 

(fres) and quality factors (Q) are examined, showing that Timoshenko beam effects may 

reduce fres and Q by up to 40% and 23%, respectively, but are negligible for width-to-

length ratios of 1/10 and lower. Comparisons with measurements (in water) indicate that 

the model predicts the qualitative data trends but underestimates the softening that occurs 

in stiffer specimens, indicating that support deformation becomes a factor.  For thinner 

specimens the model estimates Q quite well, but exceeds the observed values for thicker 

specimens, showing that the Stokes resistance model employed should be extended to 

include pressure effects for these geometries.  

 

Keywords/index terms -- microcantilevers, resonant frequency, quality factor, liquid-

phase sensing, lateral mode, vibrations. 



 

I. INTRODUCTION 

Chemical and biochemical sensing is an active and rapidly developing field, 

resulting in an ever-increasing presence of micro/nanoelectromechanical systems 

(MEMS/NEMS) in a variety of diagnostic, monitoring, and security applications. 

However, many of these applications necessitate liquid-phase sensing, which poses 

significant challenges for dynamic-mode sensors due to the drastic reduction in resonant 

frequency (fres) and quality factor (Q) that occurs due to the liquid [1-4]. To overcome 

such challenges, recent research has focused on the use of (a) alternative vibrational 

modes of microcantilevers in lieu of the fundamental transverse flexural mode or (b) 

efficient modes in structures of non-cantilever geometry. The former category includes 

investigations of higher modes of transverse flexure [2, 5-8], longitudinal modes [9-11], 

torsional modes [2, 6, 8, 12-15], and lateral (in-plane) flexural modes [10, 13, 16-22].  

Recent studies on novel, non-cantilever designs that reduce fluid resistance via in-plane 

oscillations include a bridge beam supporting two half-disks [23] and a microstructure 

comprising a rotating disk supported and driven by two tangentially oriented legs [24-

28].  All of these studies were primarily motivated by the desire to reduce the detrimental 

effects of fluid damping and fluid inertia, thus providing higher resonant frequencies, fres , 

and quality factors, Q , the latter corresponding to sharper resonant peaks. Within the 

context of sensing applications, such improvements in the resonant characteristics 

correspond to enhancements in sensor performance metrics such as mass or chemical 

sensitivity and limit of detection, especially for liquid-phase detection (e.g., [20, 29-31]).  

Several of the aforementioned studies on the use of the lateral flexural mode in 

microcantilevers in liquids demonstrated both theoretically [17-18, 22] and 



experimentally [19, 21] that the improvements in the in-liquid resonant characteristics 

will be most pronounced in microbeams that are relatively short and wide.  However, the 

conclusions in the theoretical studies were based on Euler-Bernoulli beam theory whose 

accuracy is known to deteriorate for short, wide beams deforming in the lateral mode.  

This loss of accuracy in the Euler-Bernoulli theory and a likely reason for the departure 

of Euler-Bernoulli theoretical results from the measured  fres and  Q data in liquids are the 

effects of shear deformation and rotatory inertia, neglected in Euler-Bernoulli theory, 

which become increasingly important in shorter, wider microcantilevers [21]. Because 

these are precisely the geometries that show the most promise in lateral-mode liquid-

phase sensing applications, a strong motivation clearly exists to generalize the previous 

Euler-Bernoulli modeling efforts to account for transverse shear strain as well as the mass 

associated with the rotation of beam cross sections, i.e., the so-called Timoshenko beam 

effects.  Hence, the aim of the present study is to derive and evaluate a Timoshenko beam 

model for a laterally vibrating microcantilever in the presence of a viscous fluid, as the 

predicted resonant behavior of such a system is of direct relevance to the performance of 

lateral-mode sensing devices.      

While there exist a few attempts to utilize Timoshenko beam models in 

MEMS/NEMS applications, their focus has tended to be on the transverse flexural mode 

and atomic force microscopy (AFM) applications [32-35] or on the influence of surface 

effects [36-37].  Moreover, with the exception of one reference [34], none of these 

models incorporates the effects of a surrounding fluid.  The objective of the investigation 

in [34] was to study the influence of fluid damping on the frequency response of 

(transverse-mode) AFM cantilevers; however, the damping coefficients employed in that 



study were not related to the fundamental properties of the surrounding fluid, nor was the 

fluid’s contribution to the system’s effective mass included.  In short, none of the existing 

Timoshenko beam models is relevant to lateral-mode, liquid-phase, microcantilever-

based sensing, the application of interest in the present study.      

II. PROBLEM STATEMENT    

Consider a microcantilever beam immersed in a viscous fluid which experiences a 

flexural vibration along the y-direction of Fig. 1.  The effects of shear deformation and 

rotatory inertia in the beam (“Timoshenko beam effects”) are to be included, as are the 

inertial and damping effects of the surrounding fluid. The relevant geometric and material 

parameters of the system are specified in Fig. 1, while the loading parameters for the two 

load cases of interest are indicated in Fig. 2.  The geometric parameters include the length 

(L), width (b), and thickness (h) of the cantilever.  Because the microcantilever thickness 

is typically small relative to the width, the flexural vibrations along the y-direction are 

termed “in-plane” or “lateral.”  Material properties for the beam include its mass density  

( b ), Young’s modulus (E), and shear modulus (G).  (When applied to an anisotropic 

material such as silicon, the latter two properties correspond to the longitudinal (x) and 

in-plane (x-y) directions, respectively.)  The fluid is characterized by its mass density       

( f ) and dynamic viscosity ( ).   

Two particular forms of in-plane loading are considered (Fig. 2): Load Case I 

involves a harmonically varying imposed rotation at the supported end, with amplitude 0  

and (circular) frequency  . In Load Case II the beam is excited by a harmonically 

varying tip force of amplitude 0F  and frequency  .  These two load cases are considered 

because they represent two of the more common excitation types used in microcantilever-



based sensing applications.  For example, Load Case I simulates an electrothermal 

excitation scheme that has been successfully implemented recently for lateral-mode 

sensing applications (e.g., [19]).  That method, which involves imposing longitudinal 

thermal strains at the extreme fibers near the support, may be represented kinematically 

as an imposed harmonic rotation at the support [18], thus providing the motivation for 

Load Case I.   The second loading case is chosen because a tip force loading may be 

induced when electromagnetic actuation methods are used in dynamic-mode sensing 

applications.  For each of the two load cases, we wish to formulate and solve the 

boundary value problem (BVP) that governs the in-plane vibration of the Timoshenko 

cantilever beam in fluid.   

Our focus shall be on determining two particular response histories:  (1) the total 

displacement at the beam tip, ( , )v L t , and (2) the bending-deformation displacement, 

( , )B Dv L t , at the beam tip, i.e., that portion of the total tip displacement that is due to 

bending deformation only (not due to shear deformation or, for Load Case I, rigid body 

rotation).  The total displacement at the tip is the relevant response quantity for sensor 

applications that utilize optical (laser) monitoring of the tip position, while the tip’s 

bending-deformation displacement at or near resonance will be approximately 

proportional to the beam’s bending strain, i.e., it will correspond to the output signal of 

sensors that employ local piezoresistive elements for monitoring beam response (e.g., the 

piezoresistive Wheatstone bridge employed in [19]).  

For each load case and each response history [ ( , )v L t  and ( , )B Dv L t ], the 

following resonant characteristics will be determined: the resonant frequency fres , defined 

as the exciting frequency corresponding to maximum displacement amplitude, and the 



quality factor Q associated with viscous losses in the surrounding fluid.  The primary 

emphasis of the study is on the fundamental (i.e., mode-1) in-plane flexural/shear 

response, although the theoretical solutions obtained may be used to generate multi-

modal in-plane response.  Once the resonant characteristics are determined, they may be 

related to sensor performance metrics, i.e., mass and chemical sensitivity (Sm, Sc) and 

limit of detection (LOD) (e.g., [20, 29-31]).    

 

Figure 1: Definitions of reference axes and geometric and material parameters. 

 

 

Figure 2: (a) Load Case I – Imposed harmonic support rotation;  
(b) Load Case II – Imposed harmonic tip force. 

 

III. DERIVATION OF BOUNDARY VALUE PROBLEM 

A. Assumptions 



The physical system comprising the microcantilever and surrounding fluid is 

idealized by employing the following assumptions: (1) The beam is homogeneous and 

made of a material that is linear elastic and isotropic. (2) The beam is of uniform, 

rectangular cross section. (3) The slope of the deformed beam centerline is much smaller 

than unity. (4) The beam support is rigid (support deformation is neglected). (5) The 

loading is harmonic and applied in-plane, resulting in only in-plane flexural/shear 

deformation. (6) The cross section is relatively thin, i.e., h<<b , so that the fluid 

resistance associated with the pressure on the top and bottom faces in Fig. 1 and the shear 

stress and pressure on the end face (at x=L) is negligible compared with that due to the 

fluid’s shear resistance on the two largest faces. (7) The shear stress exerted by the fluid 

on the beam is modeled by local application of the solution of Stokes’s second problem 

for harmonic, in-plane oscillations of an infinite rigid surface in contact with a viscous 

fluid ([38], e.g., [39]). (8) Viscous energy losses in the fluid are the dominant loss 

mechanism. The combination of assumptions 6 and 7 are referred to here as the 

assumption of  “Stokes fluid resistance,” which is a generalization to the case of 

Timoshenko beam theory of the assumption made in Heinrich et al. [17-18] for Euler-

Bernoulli beam theory.   

B. Derivation of Equations of Motion 

The basis of Timoshenko beam theory is the decomposition of the total deflection 

into bending and shear contributions [40-41], i.e., 

   ( , ) ( , ) ( , )B Sv x t v x t v x t  ,    (1) 

where Bv  is the deflection due to bending and Sv  is the deflection due to shear. A similar 

decomposition of the slope of the deformed beam axis therefore results from Eq. (1): 



   , ,SB vvv
x t x t

x x x
 

   
  

,   (2) 

in which   represents the rotation of the beam cross section and   is the transverse 

shear strain.   

 The classical solution to Stokes’s second problem [38] for the harmonic, in-plane, 

translational oscillation of an infinite, rigid surface in contact with a viscous fluid results 

in a simple form for the shear stress, ( )fluid t ,exerted by the fluid on the oscillating 

surface: 

         . .( ) ( ) ( )
2 2

f f
fluid surf surft V t V t

   



 

         
, (3) 

 
where .( )surfV t  and .( )surfV t  are the (harmonic) velocity and acceleration of the surface 

and   is the frequency of oscillation. To apply Eq. (3) to the present problem, we assume 

that each cross section translates and rotates rigidly and that Eq. (3) may be applied 

pointwise on the slice dx of Fig. 1. This leads to a relatively simple, yet mechanics-based, 

fluid resistance model to provide a first attempt at understanding how the fluid properties 

influence the dynamic response of a micro-scale Timoshenko beam. More specifically, 

applying Eq. (3) locally at all points on the front and rear faces of the differential element 

of Fig. 1, followed by an appropriate integration over the y-coordinate, results in the 

following fluid-induced force and couple distributions (per unit length) along the beam 

[31]: 

2

2

( , ) ( , )
( , )fluid f f

v x t v x t
q x t m c

t t

 
  

 
,   (4a) 

 
2 22

2
,

12 12
f f

fluid

m b c b
c x t

t t

  
  

   ,   (4b) 



where the coefficients in Eq. (4a), 

22 f
fm

b 


  ,  22 ffc b    ,   (5a,b) 

are, respectively, the effective translational fluid mass and fluid damping coefficients per 

unit length of beam. Similarly, the coefficients in Eq. (4b) may be interpreted as effective 

rotational fluid mass and fluid damping coefficients. Using the fluid-induced loads 

determined above, one may easily generalize the derivation of the in-vacuum equations 

of motion for a Timoshenko beam (e.g., [42]) by incorporating these loads into the 

translation and rotational dynamic equilibrium statements for the differential element, 

thus yielding the following equations of motion [31]:   

 
2 2

2 3 2 3
2 2

0
v v v

s s
     

   
   

    
   

,
   

 (6a)
 

 
2 2

2 2 2 3 2 2 3
2 2

0
v

s r s r s
       
   
   

     
   

,  (6b) 

where /v v L  is the dimensionless total deflection, /x L   is a dimensionless spatial 

coordinate, and t   is dimensionless time.  The “Timoshenko beam parameters” are 

defined as the rotational inertia parameter and the shear deformation parameter, 

respectively, via 

2

2

2

1
 
12

r
I b

AL L
    
 

 ,     (7a) 

2

2

2

1
 
12

s
EI b E

kAGL L kG
        

   
  ,    (7b) 

where A and I represent the cross-sectional area and the second moment of area of the 

rectangular cross section, the latter corresponding to in-plane bending (I=hb3/12), and k  



(  5/6) is the shear coefficient for a rectangular cross section [43].  The dimensionless 

frequency and fluid resistance parameters (λ and ζ, respectively) are defined by   

          

1/41/4 2 24 2

2 1/2 3

4812
,  fb

b

L L

Eb hb E

   


 
  
       

   .  (8a,b) 

The fluid effects appear in Eqs. (6a,b) through those terms that involve  .  When this 

parameter is set equal to zero, the equations reduce to the well-known in-vacuum results 

(e.g., [42, 44]). 

C. Boundary Conditions 

For each load case four boundary conditions (BCs) must be specified as follows: 

Load Case I (Harmonic Support Rotation, Fig. 2a): 

0(0, ) 0 (0, )
(1, ) (1, )

,   ,   (1, ) 0i v
v e    

 
     

  
 

  ; (9a-d) 

Load Case II (Harmonic Tip Force, Fig. 2b): 

2
0(0, ) (0, )

(1, ) (1, )
0 ,   (1, ) iv

v s F e   
 

     
  

 
   ; (10a-d) 

where a dimensionless tip force amplitude has been introduced in Eq. (10d): 

2
0 0 /F F L EI  .    (11) 

For each load case the BCs correspond, respectively, to imposed values of deflection and 

rotation at the supported end and bending moment and shear force at the unsupported 

end.    

 The BVPs to be solved consist of the governing equations, Eqs. (6a,b), and the 

corresponding set of BCs:  Eqs. (9a-d) for Load Case I or Eqs. (10a-d) for Load Case II.   

D. Secondary Fields  



Since the Timoshenko beam response is completely described using the “primary 

fields,” v  and φ, any additional “secondary” fields are derivable directly from v  and φ 

once they have been determined.  In particular, the time-dependent beam displacement 

due to bending is obtained by integrating the rotation angle:  

0

( , ) ( , )Bv d


          ,    (12)
 

where /B Bv v L .  For Load Case I a portion of Bv  is due to rigid-body rotation associated 

with the end-rotation loading (Fig. 2a).  Thus, the deflection due to bending deformation 

in the two load cases may be written as 

0

0

0

( , ) ,   Load Case I;

( , )

( , ) ,   Load Case II.

i

B D

d e

v

d






     

 

   



  


 


 





    (13a,b)

 

The normalized shear displacement, if desired, may be obtained for either load case by 

substituting ( , )v    and Eq. (12) into Eq. (1): 

    
0

( , )
( , ) ( , ) ( , )S

S

v
v v d

L

             .  (14) 

IV. METHOD OF SOLUTION 

The steady-state solution of the BVP for either load case is assumed to be of the 

form   

     ,( , ) ( )   ,      ii ev V e           ,   (15a,b) 

where ( )V   and    are the complex amplitudes to be determined.  It follows from 

Eqs. (6a,b) that ( )V   and    must satisfy  



3 0V k V    ,    (16a) 

 2
3

2 1 0r ks V      ,  (16b) 

which may also be expressed in the following uncoupled form [32, 44]: 

1 2 0V k V k V    ,   (17a) 

1 2 0k k       ,   (17b) 

where  

   3 2 2
1 1k r s i        ,   (18a) 

    3 2 2 3
2 (1 ) 1 1k i r s i              ,  (18b) 

 2 2
3k s i          ,   (18c) 

and the primes in Eqs. (16) and (17) indicate differentiation with respect to  .  Next we 

determine the steady-state solution for each particular load case. 

Load Case I: Harmonic Support Rotation  

For Load Case I we write the general solutions of Eqs. (17a,b) as 

 0 1 1 2 1 3 2 4 2( ) cosh( ) sinh( ) cos( ) sin( )V C n C n C in C in         , (19a) 

0 1 1 2 1 3 2 4 2( ) sinh( ) cosh( ) sin( ) cos( )C n C n C in C in             
 

, (19b) 

where 1n  and 2n  are the two roots of  

4 2
1 2 0n k n k       (20) 

that have positive real parts.  By virtue of Eq. (16a) or (16b), the constants iC  and 
iC ,  

i=1, 2, 3, 4, are related by  



    
 2

1 3
1, 2 3, 4

1 2

2
2 3

  ,        1, 2 3, 4

in k

n n

n k
C C C C


 


   .       (21a-d) 

Imposing the BCs (9a-d) yields the specific values of 1C  through 4C  as detailed in the 

Appendix.  The values of these four constants, in conjunction with Eqs. (15a,b), (19a,b), 

and (21a-d), determine the steady-state solution for the case of harmonic support rotation. 

Load Case II: Harmonic Tip Force 

For Load Case II we write the general solutions of Eqs. (17a,b) as 

 0 1 1 2 1 3 2 4 2( ) cosh( ) sinh( ) cos( ) sin( )V F C n C n C in C in        , (22a) 

0 1 1 2 1 3 2 4 2( ) sinh( ) cosh( ) sin( ) cos( )F C n C n C in C in            
 

, (22b) 

where the constants, Ci , Ci
' , will take on different values than in the previous load case.  

However, the definitions of 1n  and 2n  through Eq. (20) and the relationships between Ci 

and  Ci
'  (Eqs. (21a-d)) are still applicable for Load Case II.  Imposing the BCs (10a-d) 

for Load Case II yields the specific values of 1C  through 4C  as detailed in the Appendix.  

The values of these four constants, in conjunction with Eqs. (15a,b), (22a,b), and (21a-d), 

determine the steady-state solution for the case of a harmonic tip force. 

 

 

 

V. RESULTS AND DISCUSSION 

A. Normalized Response Quantities 



 Having obtained the solutions for the in-fluid Timoshenko beam response for the 

two load cases of interest, any secondary field of interest (e.g., displacements due to 

bending deformation or shear deformation) may be determined in the manner specified in 

Sect. III-D.  In particular, as explained in Sect. II, since cantilever response is often 

detected using either optical techniques to track the beam tip position or piezoresistive 

elements to monitor bending strain, the magnitudes of both the total tip displacement 

amplitude and the bending–deformation displacement amplitude at the tip are of practical 

interest.  Therefore, the numerical results to be presented in subsequent sections will be 

based on the following normalized response metrics associated with these two types of 

output signals (subscripts T and B-D denoting “total” and “bending-deformation,” 

respectively): 
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These quantities may be interpreted as “dynamic magnification factors” in the following 

senses:  TD  and B DD   are, respectively, the magnitudes of the total tip displacement 



amplitude (bending plus shear, including rigid-body rotation in Load Case I) and the 

bending-deformation tip displacement, each scaled by the corresponding quasi-static 

Euler-Bernoulli results (i.e., 0L  for Load Case I and 3
0 / 3F L EI  for Load Case II).  

The analogous result for SD , the normalized magnitude of the tip displacement 

amplitude due to shear deformation only (scaled in the same manner as TD  and B DD  ), 

is 
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Finally, we emphasize that the analytical solution presented in the previous 

section may be used to obtain other relevant mechanical response quantities that 

correspond to other readout methods. 

     

B. Theoretical Numerical Results 

1. Frequency Response 

 The theoretical solutions obtained may be used to generate frequency response 

functions for the tip displacement amplitude for any output signal ( TD , B DD  , or SD ) 

and for either load case (harmonic support rotation or tip force).  While our main interest 

is to focus on resonant characteristics and not the entire frequency spectrum, for 

illustrative purposes we show some examples of the relevant frequency response 



functions in Figs. 3a and 3b for Load Cases I and II, respectively.  These figures 

correspond to fixed values of r=0.2 and ζ =0.2 while the value of the material parameter 

     
E

e
kG

      (26) 

is allowed to vary.  Note that an increase in e corresponds to a reduction in shear modulus 

relative to the Young’s modulus, so that e may be viewed as a shear deformation 

parameter in lieu of parameter s.  The plots indicate that an increase in e results in a 

decrease in the resonant frequency as measured by any of the signals.  This is to be 

expected since the reduction in beam stiffness due to a lower shear stiffness will cause a 

corresponding reduction in resonant frequency since the mass characteristics remain 

unchanged for a fixed r value.  These figures also show that an increase in e in the case of 

harmonic support rotation (Fig. 3a) causes a decrease in the resonant amplitude of the 

total tip displacement ( TD ), while for the harmonic tip force case (Fig. 3b) the resonant 

amplitude increases with increasing e.  However, if one considers the resonant amplitudes 

of the bending-deformation and shear portions of the tip displacement ( B DD   and SD ) as 

the value of e increases, one finds that the strength of the B DD   signal at resonance 

decreases for both load cases, while the strength of the shear signal increases.  Similar 

conclusions apply with respect to changes in the value of  r , although the corresponding 

figures are not included here.  

 

 

 



 
  (a) 

 
  (b) 

 Figure 3: Theoretical frequency response functions for tip displacement amplitude: 
(a) Load Case I – Imposed harmonic support rotation; (b) Load Case II – Imposed 

harmonic tip force. 
 

The different resonant amplitudes of the various output signals could have 

important implications with regard to the appropriate design of detection schemes for 

these types of sensing devices.  For example, a detection scheme based on monitoring of 

bending strain (e.g., via piezoresistors at the extreme fibers of the beam) might only “see” 

a small portion of the deformation response if a significant amount of shear deformation 

is present.  In such a case, one may wish to replace or supplement the bending-strain 

detection scheme with shear strain measurements near the neutral axis of the beam’s 

cross section.  



 All of the numerical results that follow will focus on the resonant frequency and 

quality factor of lateral-mode mirocantilevers in liquids.  Theoretical values of these 

resonant quantities may easily be extracted from frequency response curves of the type 

shown in Figs. 3a,b.  In the present study our interest is in micro-scale devices in liquids 

whose properties are on the same order as that of water.  As such, a practical range of the 

fluid resistance parameter for these types of applications is 0 0.2  .  (As a reference, 

a silicon device of dimensions (L, b, h)=(500, 200, 10) μm and operating in water 

corresponds to 0.043  .  If water is changed to a hypothetical liquid of twice the 

density and 10 times the viscosity, then 0.19  .)  Over this range the values of 

resonant frequency and quality factor are very insensitive to both the load case and the 

output signal employed [45].  Therefore, unless stated otherwise, all results that follow 

will be based on Load Case I (harmonic support rotation) and the total tip displacement 

signal.  The analogous results for Load Case II and/or other output signals will be 

practically identical over the range of  considered.  (For example, despite the significant 

differences in the amplitude spectra of Fig. 3 for the different load cases and detection 

signals, the peak locations, i.e., resonant frequencies, are very insensitive to the 

load/detection type, even at the upper limit of this range of  .  Although less apparent, 

this same insensitivity is exhibited by the mode-1 quality factor for [0,0.2]  .  Details 

may be found in [31].  The same reference includes results and discussion associated with 

higher values of the fluid resistance parameter.)  However, at higher values of  , which 

may be encountered for more viscous and/or denser liquids or for nano-scale devices, the 

values of resonant frequency and quality factor will show increased sensitivity to load 

type and the response monitoring scheme; therefore, in such cases one should employ the 



specific solution that applies to the particular methods of actuation and detection in the 

physical device [45].     

2. Resonant Frequency 

The resonant frequency parameter, res  , for the first lateral mode is plotted in 

Figs. 4a-d for the case of harmonic support rotation.  These figures show the dependence 

of resonant frequency on the fluid resistance parameter, ζ, and the Timoshenko 

parameters, as characterized by parameters r and e.  These resonant frequency values 

correspond to the first peaks of the frequency response functions for the total tip 

displacement (curves of the type labeled “DT” in Fig. 3a).   

Figure 4 clearly illustrates several trends.  As expected, there is a reduction in 

resonant frequency associated with an increase in the fluid resistance parameter. 

Moreover, for the range of  ζ considered the dependence of res on  ζ  is essentially linear. 

This was also seen in the results of the previously published resonant frequencies of the 

Euler-Bernoulli model [18], which are a special case (r=e=0 or, equivalently, r=s=0) of 

the results shown here.  Also observed in Fig. 4 is how higher levels of r and e values, 

corresponding to increased beam inertia and decreased shear stiffness, will result in a 

reduction in resonant frequency.  Over the practical ranges of parameters considered in  

 



 
      (a) 

 

 
      (c) 

 
       (b) 

 

 
       (d) 

 
Figure 4: Resonant frequency based on DT signal for Load Case I: (a) e=0, (b) e=1, 

(c) e=2, (d) e=3.  
 

Fig. 4, the maximum effect of r and e  is to cause a reduction of 23% in res  which, 

according to Eq. (8a),  is equivalent to a decrease in the resonant frequency, res , of 

40%.  These reductions correspond to the case of r=0.2, e=3.  If we consider the case 

e=2, which corresponds to “textbook” values of moduli for silicon for the case in which 

the cantilever is aligned with the [110]-direction of a standard (100) Si wafer (E=169 

GPa, G=50.9 GPa [46]) and shear coefficient k=5/6, Fig. 4c shows that the largest 

influence of the Timoshenko effects on the resonant frequency is a 15% (28%) decrease 



in res  ( res ), which occurs at r=0.2.  Clearly, significant error may be introduced in the 

resonant frequency estimate if the Timoshenko effects are ignored in such cases.  

Conversely, calculations based on the results of Fig. 4 show that, over the practical 

ranges of ζ and e considered, the influence of the Timoshenko effects on resonant 

frequency ( res ) is less than 2% provided that the ratio L/b is 10 or greater (or, 

equivalently, that r does not exceed 0.029).   Finally, as a verification of the resonant 

frequency results, we find that the values in Figs. 4a-d for the case r =  ζ = 0 (i.e., the 

starting values of the four upper curves) are all given by res  = 1.8751, which agrees with 

the well-known eigenvalue for an Euler-Bernoulli beam in vacuum (e.g., [47]).  

3. Quality Factor 

Applying the -3dB bandwidth method (e.g., [48]) to the response curves of the type 

shown in Fig. 3, one may obtain the quality factor for a range of fluid resistance and 

Timoshenko parameters. For example, the quality factor based on the total tip 

displacement for the harmonic support rotation case is plotted in Fig. 5 over the range 

[0,0.2]   for the case of  r=0.13. Clearly, there is a very strong impact of ζ on Q with 

the quality factor following an inverse relationship with ζ.  Recalling the definition of ζ  

[Eq. (8b)], the viscosity and density of the fluid participate to an equal extent in 

determining Q when a Stokes-type fluid resistance model is employed.  Unlike the strong 

dependence of Q on ζ, the effect of increasing the Timoshenko parameter e from 0 to 3   



 

Figure 5: Quality factor at first resonance for r=0.13 (based on the DT signal for 
Load Case I). 

 

 
 

Figure 6: Quality factor at first resonance for ζ=0.05 (based on the DT signal for 
Load Case I).  

results in a relatively modest 15% reduction of the  quality factor, even for the relatively 

large value of r considered.  Similar trends apply for a specified value of e and varying r 

from 0 to 0.2, except the effects of changing r over this range are of even lesser 

magnitude than the effects of varying e. 



Figure 6 contains the same type of information displayed in Fig. 5, but this 

information is plotted vs. the Timoshenko parameter r so its effect on Q may be 

ascertained.  Again, the effects of the fluid resistance parameter on the quality factor are 

seen to be significant.  The curves shown in Fig.6 show negligible sensitivity of Q to 

changes in r at small values of r , but this sensitivity increases with increasing r values, 

especially for larger values of e.  This indicates that the effects of r on Q become 

increasingly significant for larger values of both r and e.  Figure 6 also reinforces the 

earlier commentary that the Timoshenko effects, as characterized by r and e, cause a 

reduction in Q, as do the fluid effects associated with increases in ζ.  Over the practical 

ranges of 0<ζ<0.2 and Timoshenko parameters considered in Fig. 6, the results of the 

present model show that the maximum effect of r and e on Q is to cause a reduction of 

approximately 23% regardless of the particular value of ζ.  On the other hand, 

calculations based on the results such as those of Fig. 6 show that, over the practical 

ranges of ζ and e considered, the influence of the Timoshenko effects on Q is less than 

1% provided that the ratio L/b is at least 10 (i.e., r does not exceed 0.029). 

Previous theoretical investigations of lateral-mode Euler-Bernoulli beams with 

Stokes-type fluid resistance [17-18] have established an approximate analytical 

expression for Q. That expression indicated that Q is of the form Q ≈ 1.8751/ζ , i.e., Q 

depends inversely on ζ  as was also surmised by a visual examination of the results of the 

present Timoshenko beam model in Fig. 5.  Given that the dependence of Q on the 

Timoshenko parameters appears to be relatively simple as suggested by Figs. 5 and 6, we 

are motivated to pursue an approximate analytical formula for Q that will maintain the 

same ζ –dependence as the Euler-Bernoulli result while incorporating the r- and e-



dependence in a simple manner.  Here we propose such an expression for the following 

ranges of parameters, which have been chosen based on micro-scale devices and common 

fluid properties: ζ = [0.01, 0.05], r = [0, 0.2] and / [0, 3] e E kG .  The expression is 

based on surface-fitting the results of the present model over the stated rectangle of the (r, 

e)-plane and maintaining the inverse relationship to ζ, thus yielding 

2.529 1.578 1.6461.8751 3.427 0.8267r r e
Q


   ,  (27a) 

or, in terms of the fundamental system parameters (taking k=5/6), 
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While the constants in Eqs. (27a,b) were based on fitting the model’s results for the case 

of ζ = 0.03, the accuracy of these equations relative to the model’s results over the 

practical range ζ = [0.01, 0.05] (and possibly beyond) is excellent (within 3%).  

C. Comparisons between Theory and Experiment 

1. Specification of Model Input Parameters 

Experimental data were collected on a variety of silicon specimens excited 

laterally in water (
f  1000 kg/m3,    0.001 Pa-s).  The specimen geometries 

corresponded to nominal silicon thicknesses of hnom = (5, 8, 12, 20) μm and length and 

width dimensions of L = (200, 400, 600, 800, 1000) μm and b = (45, 60, 75, 90) μm.  

Estimates of the total thickness (h), which includes the thicknesses of silicon and several 

passivation layers [21] was used as model input in lieu of hnom and are listed in Table 1.  

To generate theoretical results it is also necessary to specify values of the material 

parameters /12 be E  and /e E kG  , which may be interpreted as parameters 



associated with bending and shear deformation, respectively.  However, the 

aforementioned multi-layer structure of the cantilevers makes it difficult to specify a 

priori the values of the effective moduli, E and G, and, thus, e  and e . Therefore, two 

methods of specifying these parameters were explored.   

In Method 1 the value of e  was determined by performing a single-parameter fit 

of the in-vacuum resonant frequencies predicted by the model to in-air resonant 

frequency data, resulting in a value of e =2.254 km/s which, using the density of silicon 

(2330 kg/m3), corresponds to an effective E of 142 GPa. This fit was performed only on 

the data corresponding to specimen lengths L = (800, 1000) μm in order to avoid  

 inclusion of additional effects associated with the shorter, “stubbier” specimens (i.e., 

Timoshenko beam effects and support compliance effects)  in determining what is 

essentially a flexural stiffness parameter.  Having determined e  in this manner, the 

accompanying e (and G) value was then obtained by performing a second single-

parameter fit of the in-air frequency data (with fitting parameter e) for each thickness set 

but for all specimen lengths; thus, any observed softening due to shear deformation will 

be reflected in the value of the material parameter e.  This methodology resulted in the 

values of e  and e  (and E and G) listed under “Method 1” in Table 1.  Using these as 

input, comparisons could then be made between in-water data and the predictions of the  

present model for both resonant frequency and quality factor.  Sample comparisons for 

the thinnest specimen set (hnom=5 μm) are shown in Fig. 7.  While these results, based on 

Method 1 for prescribing input values, capture the fres and Q trends quite well both 

 

 



 

Table 1: Material parameters e  and e and effective elastic moduli for each 
specimen thickness set, obtained by (a) Method 1 and (b) Method 2. 

 
(a) Method 1 (e based on fitting 

in-air frequency data) 
(b) Method 2  (e based on  

properties of pure Si) 

hnom  

(μm) 
h 

(μm) 
e  

(km/s) 
e 

 
E 

(GPa) 
G 

(GPa) 
e  

(km/s) 
e 

 
E 

(GPa) 
G  

(GPa) 

5 7.02 2.254 4.129 142 10.0 2.254 2 142 42.6 

8 10.32 2.254 3.761 142 12.1 2.254 2 142 42.6 

12 14.48 2.254 3.378 142 14.9 2.254 2 142 42.6 

20 22.34 2.254 3.512 142 13.8 2.254 2 142 42.6 

 

 
   (a) 

 
   (b) 

Figure 7: Comparison of present model (with Method 1-based input values of E=142 
GPa, G=10.0 GPa) to experimental data in water [49] and Euler-Bernoulli theory 

[17-18] for hnom=5 μm: (a) resonant frequencies and (b) quality factors for first 
lateral flexural mode.   

 



qualitatively and quantitatively, examination of the G values that were used as input 

(column (a) of Table 1) shows that they are much lower (only 7-10% of E) than what 

would be expected for a multi-layer structure that is primarily silicon, for which 

G/E=0.30 for our case of cantilevers aligned with the [110]-direction of a (100) wafer 

[46]. A possible reason for this discrepancy could be that the G values based on Method 1 

are artificially low to account indirectly for support compliance effects [50] that are not 

included in the present model.  Therefore, to avoid such “overfitting” to account for non-

Timoshenko beam effects, a second approach (“Method 2”) was deemed to be a more 

rational method for specifying material input parameters to the model and was employed 

to generate all of the remaining numerical results in what follows.   

Method 2 utilized the same methodology as Method 1 for determining the 

effective value of E=142 GPa, but prescribed the value of e (and thus G) to be consistent 

with the previously mentioned ratio of G/E=0.3 for single-crystal silicon.  Thus, all 

theoretical results that follow will be based on the Method-2 input value of 

( / ) / (1/ 0.3) / (5/ 6) 2  e E G k , i.e., an effective shear modulus of 

2 2/ ( ) 142/[(5/6)(2) ] G E ke =42.6 GPa.  (See column (b) of Table 1.)      

2. Comparisons for Lateral-Mode Resonant Frequency and Quality 

Factor in Water:  Model Predictions vs. Experimental Data 

One of the primary motivations for the present study was the softening behavior 

exhibited by experimental data for lateral-mode resonant frequency and Q as 

microcantilevers become less slender. (E.g., see the departure from linearity of the data of 

Fig. 7 for the higher-Q specimens.) In what follows we therefore compare the results of 

the new model, using the Method-2 input parameters of Table 1, with experimental data 



to ascertain the degree to which Timoshenko beam effects may account for the observed 

softening trends.  

Theoretical in-water resonant frequency predictions using the present model are 

compared with experimental data in Fig. 8. The model yields frequency results that show 

the same qualitative softening trend as the data for larger b/L2 values. However, of 

particular note is that the use of a more realistic G value in the model shows that the 

magnitude of the decrease in frequency for the stubbier beams cannot be explained solely 

by Timoshenko beam effects (shear deformation and rotatory inertia).  A visual 

comparison of Figs. 8a-d indicates that the Timoshenko effects only account for roughly 

one-third of the frequency decrease relative to the Euler-Bernoulli model. Moreover, this 

observation seems to be independent of the specimen thickness.  From a quantitative 

perspective, the current model overestimates the experimental frequency by 20-30% for 

the stubbiest specimens.  This discrepancy is most likely due to support compliance 

effects and, in the case of the thicker specimens, the breakdown of the Stokes fluid 

resistance assumption (i.e., the neglected fluid pressure acting on the leading and trailing 

faces of the beam becomes significant for the thicker beams). 

The theoretical in-water Q values predicted by the present model (applying the  

-3dB bandwidth method to the theoretical frequency response curves) are compared to 

experimental results and Euler-Bernoulli theory in Fig. 9, leading to the following 

observations: (1) while the current theoretical Q values consistently overestimate the 

experimental Q data, they provide a tighter upper bound than the previous Euler- 
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        (c) 
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        (d)

 
Figure 8: Comparison of present model (with Method 2-based input values of E=142 GPa, G=42.6 

GPa) to experimental data [49] and Euler-Bernoulli theory [17] for in-water resonant frequencies of 
first lateral mode and for nominal thicknesses of (a) 5 μm (b) 8 μm (c) 12 μm and (d) 20 μm.   

 

Bernoulli model (i.e., than the approximate analytical formula of [17-18]) for the less 

slender (higher b/L) specimens; (2) the theoretical Q based on the present model provides 

an excellent quantitative estimate for the thinner experimental specimen sets (i.e., 

nominal thicknesses of  5 μm and 8 μm), while for the thicker specimens the accuracy 

deteriorates due to the limitations (ignored pressure effects) of the Stokes-type fluid 

resistance assumption and potential support compliance effects; and (3) the theoretical Q 

predictions of the present model capture qualitatively the experimentally observed 

departure from linearity in Q (with respect to b½/L) at higher values of b½/L.  Also of note 

is that the departure from linearity (i.e., from the Euler-Bernoulli results) is less  



 
        (a) 

 

 
        (c) 

 
        (b) 

 

 
        (d)

 
Figure 9: Comparison of present model (E=142 GPa, G=42.6 GPa) to experimental data [49] and 

Euler-Bernoulli theory [17] for in-water quality factor of first lateral mode and for nominal 
thicknesses of (a) 5 μm (b) 8 μm (c) 12 μm and (d) 20 μm.   

  
 

pronounced for Q than for fres.  (Compare Figs. 8 and 9.) This may be explained by reference to 

fundamental vibration theory from which it is well known that for a single-degree-of-freedom 

system with effective stiffness K and effective mass M, the resonant frequency and quality factor 

are proportional to /K M  and KM , respectively.  Thus, since the Timoshenko effects tend to 

decrease K and increase M, their effect on fres will be more significant than on Q.  This is 

predicted by the present model and reflected in the experimental data.     

 

 



VI.     SUMMARY AND CONCLUSIONS 

A new analytical model has been developed for predicting the resonant characteristics of 

a Timoshenko cantilever beam in the presence of a viscous fluid.  Since lateral-mode liquid-

phase sensing applications provided the motivation for this study, an approximate, mechanics-

based model for the fluid-resistance, based on Stokes’s classical solution for in-plane 

oscillations, was introduced as a first attempt to rationally relate the inertial and damping effects 

of the fluid acting on the Timoshenko beam to the fluid’s density and viscosity. The new model, 

which may be applied to multiple types of actuation and detection schemes, shows that the 

Timoshenko effects of shear deformation and rotatory inertia become quite important for lateral-

mode cantilevers of small slenderness ratios, i.e., for those types of devices that have 

demonstrated higher quality factors (approaching 100) in liquids. Over the practical ranges of 

system parameters considered, the mode-1 results indicate that the Timoshenko effects can 

account for a reduction in fres and Q of up to 40% and 23%, respectively, but are negligible (no 

more than a 2% reduction in fres and a 1% reduction in Q) for length-to-width ratios of 10 and 

higher. Comparisons with experimental data in water indicate that the new model predicts 

qualitative trends in the data at higher b/L ratios and gives good quantitative estimates for Q for 

the thinner specimens considered. However, in other cases the model is seen to underestimate the 

softening trends in fres and Q . This discrepancy is likely attributable to support deformation, thus 

providing motivation for future modeling efforts that account for support compliance in addition 

to the Timoshenko beam effects.  Also, a generalization of the Stokes fluid resistance model to 

account for fluid pressure effects in future work is expected to improve the Q predictions for the 

case of thicker beams.  
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APPENDIX: DETERMINATION OF CONSTANTS Ci , i=1, 2, 3, 4 

 The coefficients C1, C2, C3, C4 are obtained by solving the following system of linear algebraic 

equations: 
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