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Inwet lay-up process, dry fiber sheets are saturatedwith a polymer and applied to the concrete surface by hand.This causes relatively
large variation in properties of the cured FRP composite material. It is hard to know the exact mechanical properties of the FRP
constructed by wet lay-up process. In addition, the stiffness of FRP changes during debonding process due to different amount of
concrete attached to the debonded FRP at different locations. It is also inevitable to have considerable variations in the strength
of concrete. Therefore, the behaviour of FRP bonded concrete members varies among specimens even when the same materials
are used. The variation of localized FRP stiffness and concrete strength can be combined in a single parameter as variation of the
localized interfacial fracture energy. In an effort to effectively model the effects of the variation of interfacial fracture energy on the
load versus deflection responses of FRP bonded concrete specimens subjected toMode I andMode II loading, a randomwhite noise
using a one-dimensional standard Brownian motion is added to the governing equations, yielding stochastic differential equations.
By solving these stochastic equations, the bounds of load carrying capacity variation with 95% probability are found for different
experimental tests.

1. Introduction

Extensive research has clearly shown that externally bonded
fiber reinforced polymer (FRP) composites have good poten-
tial for use in strengthening of concrete members [1–3]. The
stiffness of FRP and compressive concrete strength are the
most effective parameters on the responses and behaviour
of strengthened concrete members [4–6]. However, there
are some variations in FRP stiffness (bending stiffness and
tension stiffness; hereafter called “stiffness” only unless the
tension or bending stiffness needs to be emphasized) and
concrete strength, particularly the localized strength. In the
following, the sources of the FRP stiffness and concrete
strength variations are briefly explained, respectively.

One of the common methods to use FRP to strengthen
existing concrete structures is wet lay-up bonding that con-
sists of installation by hand using unidirectional dry fiber

sheets or fabrics impregnated with a saturating resin on-site
[3]. Since it is hard to accurately determine Young’s modulus
of the cured FRP constructed by wet lay-up process and
there is variation of the cured FRP thickness, it is almost
impossible to obtain the accurate magnitude of the FRP
stiffness. Generally, the manufacturers provide the properties
of the fiber sheets, such as Young’s modulus and design sheet
thickness, based on the tests in laboratories. However, when
it is used in field, the properties of the FRP are affected by the
curing process and defects such as gouges or deep scratches
which may occur through the instalment of FRP [7, 8].
Typically it is difficult to get the same level of quality control
for wet lay-up FRP as for the FRP plates or strips precured in
the factory. Therefore, this operation may cause differences
between what is in the manufacturer’s reports and the actual
FRP stiffness achieved in situ. The FRP properties may also
be dissimilar at different locations even in the same specimen
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because the fibers may be curved to different extents at differ-
ent locations.

Existing experimental studies have shown that in the vast
majority of cases, except when a weak adhesive or a high
strength concrete is used, debonding failure of an FRP-con-
crete bonded joint is due to the fracture within the concrete
at a small distance from the concrete-adhesive interface [9,
10]. During the debonding failure, the concrete crack path
continuously changes direction and the thickness of substrate
concrete layer attached to the FRP varies at different locations
[11]. This phenomenon causes the stiffness variation during
debonding propagation.

Concrete is a mixture of water, cement, sand, aggregate,
admixtures, and air. Variations in the properties or pro-
portions of these constituents as well as variations in the
transporting, placing, compaction, and curing of the concrete
lead to variations in the strength of the finished concrete. In
addition, discrepancies in the tests will also cause apparent
differences in strength [12]. The concrete near the top of
concretemembers tends to be weaker than the concrete lower
down, probably because of increased water to cement ratio at
the top due to upward water migration after the concrete is
placed andby greater compaction of concrete near the bottom
due to the sinking of aggregates in the form during vibration
[13]. Therefore, there is variation of concrete strength at
different spots even in the same member.

Since FRP stiffness and concrete strength play important
roles in predicting the load carrying capacity and failure
modes in FRP-strengthened concrete members, it is useful
to find a way to determine the range of actual values of FRP
stiffness and concrete strength without testing each of them.
Since the fracture energy is a function of concrete strength
and FRP stiffness in FRP concrete bonds [6], FRP stiffness
and concrete strength variations can combine together as the
interfacial fracture energy variation. In this study, the con-
cepts of Brownian motion and white noise from probability
theory are used to find the fracture energy range instead
of variations of the FRP stiffness and concrete strength
separately.

Brownian motion is the macroscopic picture emerging
from a particle moving randomly in 𝑑-dimensional space.
The term “Brownianmotion” can also refer to themathemati-
cal model used to define such randommovements. If just one
direction for the movements in an instant of time is assumed,
then it is named one-dimensional Brownian motion. White
noise generally is a random signal that can be applied to
model a totally unpredictable process. It can be considered as
the derivative of a Brownianmotion existing in the stationary
sense. In the next section, Brownian motion and white noise
will be introduced briefly.

In this study, a randomwhite noise is added to the fracture
energy parameter in the governing equations to model fluc-
tuating differences between actual and theoretical values of
FRP stiffness and concrete strength.The governing equations
for FRP debonding from concrete subjected to Mode I
(normal stress perpendicular to the interface) and Mode
II (in-plane shear stress parallel to the interface) loadings
become stochastic differential equations, where the driven
noise is a one-dimensional standard Brownian motion.

By solving these equations and comparing the results with the
experimental data, the ranges of load carrying capacity with
95% probability are found for different experimental tests.

2. Background on Brownian Motion

In 1828, the Scottish botanist Robert Brown observed irreg-
ular movement of pollen suspended in water. As explained
by Einstein [14], this random movement is caused by the
buffeting of the pollen by water molecules and results in
dispersal or diffusion of the pollen in the water. The first
mathematically rigorous construction of Brownian motion is
credited to Wiener [15], and Brownian motion is sometimes
called the Wiener process. Deep studies of Brownian motion
and related topics can be found in Øksendal [16].

A real-valued stochastic process 𝑊 = {𝑊(𝑡) : 𝑡 ≥ 0}

defined on some probability space (Ω, 𝐹, 𝑃) is called a stand-
ard Brownian motion, if

(i) 𝑊(0) = 0;

(ii) 𝑊(𝑡) has continuous sample paths almost surely;

(iii) for all 0 ≤ 𝑠 < 𝑡, the increment 𝑊(𝑡) − 𝑊(𝑠) is
independent of 𝐹

𝑠
:= 𝜎{𝑊(𝑢) : 0 ≤ 𝑢 < 𝑠} and has

Gaussian distribution with: 𝐸[𝑊(𝑡) − 𝑊(𝑠)] = 0, and
𝐸[|𝑊(𝑡) − 𝑊(𝑠)|

2

] = 𝑡 − 𝑠.

In the above, 𝐸 is the mathematical expectation with respect
to the probabilitymeasure𝑃, and𝐹

𝑠
:= 𝜎{𝑊(𝑢) : 0 ≤ 𝑢 < 𝑠} is

a 𝜎-algebra. One can think 𝐹
𝑠
as all the information available

to the observer by time 𝑠. Note that 𝐹
𝑠
⊂ 𝐹
𝑡
for all 0 ≤ 𝑠 <

𝑡. The collection of 𝜎-algebra {𝐹
𝑠
}
𝑠≥0

is the natural filtration
generated by 𝑊. Also, for each 𝑤 ∈ Ω, the function 𝑡 →

𝑊(𝑡, 𝑤) can be regarded as a sample path or a realization of
the Brownian motion.

In a random experiment, for example, infinite number of
coin tossing, the outcome determines the sample path of the
Brownian motion.Then𝑊(𝑡) is the value of this path at time
𝑡, and this value of course depends on which path resulted
from the random experiment. Figure 1 presents five different
sample paths of a 1-dimensional standard Brownian motion
obtained by using MATLAB.

Even though the Brownian motion 𝑊 has continuous
sample paths, it can be shown that𝑊 is nowhere differentia-
ble with probability 1, a mathematical fact explaining the
high irregularity of Brownian motion. This means that the
derivative of the function 𝑡 → 𝑊(𝑡, 𝑤) does not exist in
the ordinary sense for almost all 𝑤 ∈ Ω. Still, we may
interpret their time derivative in a distributional sense to
get a generalized stochastic process called the white noise
[16]. White noise generally is a random signal that can be
applied to model a totally unpredictable process. It can be
considered as the derivative of a Brownianmotion existing in
the generalized sense. Figure 2 plots a numerical realization
of a white noise.
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Figure 1: Five sample paths of a 1-dimensional standard Brownian
motion.
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Figure 2: Numerical realization of a white noise.

3. FRP-to-Concrete Interface under
Mode II Loading Condition

Figure 3 shows anFRP/concrete interface under a single shear
pull-out action; that is, the specimen is subjected to Mode II
loading (in-plane shear stress). In this figure, 𝑎

0
is the initial

crack length between the FRP sheet/plate and the concrete
substrate, and 𝑎 is the new crack length during debonding
propagation. As it is alreadymentioned, experimental studies
suggest that the failure of FRP/concrete joints generally
occurs in concrete at a fewmillimetres from the FRP/concrete
interface. The ultimate load of the joint therefore depends
strongly on concrete failure behaviour.

For a brittle material, the debonding region does not
transfer any stresses. Theoretically, there should not be
further increasing in load carrying after debonding initiation
[4]. For a quasi-brittle material like concrete, the new crack
surfaces formed by debonding may be in contact and are
tortuous in nature. This leads to toughening mechanisms at
the tip of the crack that is taken into account by a conceptual
fracture process zone (FPZ). As a result of FPZ, the newly

Concrete

FRP

Interfacial slip is measured at this point
(tip of initial crack)

Enlarged fully debonded zone 
(new crack)

N N
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aa0

Δ
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Figure 3: FRP-bonded concrete joint subjected to single shear pull-
out (Mode II) force.
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Figure 4: Typical bond-slip behaviour in single shear pull-out test.

formed crack surfaces may continue to sustain more stresses
after debonding initiation, which is characterized by a soft-
ening branch in a traction-separation relationship [19]. The
traction-separation relationship in FRP bonded concrete
joints in a single shear pull-out test is known as bond-slip
behaviour. Figure 4 shows typical bond-slip behaviour of a
single shear pull-out test specimen. Area under the bond-
slip curve is considered as required interfacial Mode II
fracture energy,𝐺

𝑓II, for debonding propagation of FRP from
concrete surface subjected to shear stress.

Existing studies indicate that the interfacial fracture en-
ergy of FRP/concrete joint is a function of concrete strength
and FRP stiffness. Therefore, it is assumed that variation of
the interfacial fracture energy can present the variations of
concrete strength and FRP stiffness together.

The theoretical ultimate interfacial pull-out force in the
FRP sheet,𝑁

𝑢
, which is equal to the axial force in FRP, can be

expressed as

𝑁
𝑢
= 𝐸
𝑓
𝑡
𝑓
𝑏
𝑓
𝜀max, (1)

where 𝐸
𝑓
is the elastic modulus of FRP; 𝑡

𝑓
is the thickness of

FRP; 𝑏
𝑓
is the width of FRP sheet; and 𝜀max is the maximum

strain of FRP sheets corresponding to the maximum pull-out
force. On the other hand, the interfacial fracture energy can
be calculated by [6]

𝐺
𝑓II =

1

2
𝐸
𝑓
𝑡
𝑓
𝜀
2

max. (2)
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This relation is independent of bond-slip relation and suitable
for any other type of bond-slip models [20]. By substituting
(2) into (1), the maximum bearing load is a function of the
interfacial fracture energy as shown in the following:

𝑁
𝑢
= 2𝐺
𝑓II𝑏𝑓

1

𝜀max
. (3)

Regarding Figure 3, FRP strain at the tip of the initial
crack is equal to 𝜀 = (𝛿

1
− 𝛿
2
)/𝑎, where 𝛿

1
is the interfacial

slip at the tip of the initial crack and 𝛿
2
is the interfacial slip

at the end of the new crack. When “𝑎” reaches a sufficiently
long value “𝑎max”, 𝛿1, which is the elongation of FRP over the
fully debonded zone, will be much larger than 𝛿

2
, which is

the elongation of FRP over the bonded zone. In other words,
𝛿
2
is negligible compared to 𝛿

1
. Using this assumption, the

FRP strain at the tip of the initial crack is equal to 𝜀max =

𝛿max/𝑎max, where 𝛿max is the maximum interfacial slip at the
tip of the initial crack and 𝑎max is the maximum crack length
in front of the initial crack corresponding to the ultimate
pullout force,𝑁

𝑢
, during the interface crack propagation (i.e.,

macro interface debonding).
By substituting 𝜀max = 𝛿max/𝑎max into (3), it can be rewrit-

ten as

𝑁
𝑢
= 2𝐺
𝑓II𝑏𝑓𝑎max

1

𝛿max
. (4)

By setting 𝑋 = 1/𝛿max and 𝐾0 = 2𝐺
𝑓II𝑏𝑓𝑎max, (4) in differ-

ential equation form is

𝑑𝑁
𝑢

𝑑𝑋
= 𝐾
0
. (5)

Interfacial fracture energy,𝐺
𝑓II, is amaterial property [19]

and theoretically it has a constant value. Previous research has
shown that “𝑎max” has a fixed relationship with the interfacial
fracture energy 𝐺

𝑓II [21] and therefore is assumed to be
constant in this study. The width of FRP, 𝑏

𝑓
, can also be

considered as a constant. Therefore, 𝐾
0
= 2𝐺

𝑓
𝑏
𝑓
𝑎max is

assumed as a constant in this study.
The interfacial fracture energy is a function of the FRP

stiffness and the concrete strength. As discussed in the
previous section, the actual FRP tension stiffness achieved
in situ is not the same as the calculated value. It is inevitably
subjected to random fluctuations, resulting from the wet lay-
up process and different amount of concrete attached to the
debonded FRP at different locations. Also there are some
sources for concrete compressive strength variation. In order
to find the effect of the FRP tension stiffness and concrete
strength variations on the ultimate load carrying capacity
(i.e., the maximum pullout load) of the specimens, a white
noise is added to the parameter𝐾

0
as in the following:

𝐾 = 𝐾
0
+ 𝛼�̇�, (6)

where 𝛼 is a constant positive value (𝛼 > 0) that presents
the distribution or variation of experimental data, and �̇�

is a one-dimensional white noise. Since the measured value
of 𝛿 is a parameter which varies due to the wet lay-up con-
struction process and different amount of concrete attached

95%

3210
0

0.1

0.2

0.3

0.4

−1−2−3

w(X)/√X

Figure 5: Probability density function for standard Brownian
motion.

to the debonded FRP at different locations, �̇� is a function
of 𝛿 (𝑋 here). By substituting (6) into (5), the ultimate axial
force can be written as

𝑑𝑁
𝑢
= 𝐾
0
𝑑𝑋 + 𝛼�̇�𝑑𝑋. (7)

Since white noise can be formally considered as the
derivative of a Brownian motion, (7) can be rewritten as

𝑑𝑁
𝑢
= 𝐾
0
𝑑𝑋 + 𝛼𝑑𝑊(𝑋) , (8)

where 𝑊(𝑋) is a one-dimensional standard Brownian
motion. In this application, a Brownian motion is introduced
to present the effect of totally unpredictable interfacial frac-
ture energy variation on the load versus deflection responses
of the specimens. Equation (8) is a stochastic differential
equation and the solution is

𝑁
𝑢
= 𝐾
0
𝑋 + 𝛼𝑊(𝑋) . (9)

It is well known that if the random variable 𝜉 has normal
distribution with mean 𝜇 and variance 𝜎2, then (𝜉 − 𝜇)/𝜎 has
a standard normal distribution with mean 0 and variance 1
[22]. Recall that if a stochastic process 𝑊 = {𝑊(𝑋), 0 ≤

𝑋 < ∞} is a Brownian motion, then𝑊 has independent and
stationary increments [16], and for each𝑋,𝑊(𝑋) is a normal
random variable with mean 0 and variance 𝑋. Therefore,
𝑊(𝑋)/√𝑋 has a standard normal distribution. Then,

𝑃{−1.96 <
𝑤 (𝑋)

√𝑋
< 1.96} = 95%. (10)

See Figure 5 for an illustration.
By substituting (9) into (10), with 95% probability, the

upper and lower bounds can be found for the ultimate axial
force,𝑁

𝑢
, as

−1.96 <
𝑁
𝑢
− 𝐾
0
𝑋

𝛼√𝑋
< 1.96, (11)

𝑁lower = 𝐾0𝑋 − 1.96𝛼√𝑋,

𝑁upper = 𝐾0𝑋 + 1.96𝛼√𝑋.

(12)

In (12), the value of constant 𝛼, which represents the
distribution of experimental data, is needed to determine
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the lower and upper bounds of the ultimate load. This value
has been obtained in this study by using the experimental
data from Dai et al. [6].

Table 1 includes the material properties and experimental
results of the single shear pullout tests conducted by Dai et al.
[6].Thewidth of the FRP sheets, 𝑏

𝑓
, is 100mm. In order to use

data from different tests with different materials, normalized
𝐾
0
𝑁
𝑢
against 𝐾

0
√𝑋 curves are drawn in Figure 6. In this

figure, the thin line represents the theoretical response
calculated from (4), the thick lines are the results from (12),
and∗ points are the experimental data. By adjusting the value
of 𝛼 in (12), the band between the lower and upper𝑁

𝑢
values

can be changed to involve all experimental data. For these
test results, 𝛼 = 1200 is a good estimation to cover the
experimental data.

Because 𝑁
𝑢
is between 𝑁upper and 𝑁lower, and 𝜀max =

Δmax/𝑎max, using (4) and (12), the bounds of interfacial Mode
II fracture energy, (𝐺

𝑓II)exp, with 95% probability can be
expressed as

(𝐺
𝑓II −

1.96𝛼√1/𝛿max
2𝑏
𝑓
𝑎max

) < (𝐺
𝑓II)exp

< (𝐺
𝑓II +

1.96𝛼√1/𝛿max
2𝑏
𝑓
𝑎max

) .

(13)

Using 𝛼 = 1200 and (13), the range of Mode II fracture
energy bounds has been determined as presented in Table 1.
On average, Mode II fracture energies for this group of
specimens are within plus or minus 25.4% of the theoretical
values.

To give an instance, the ultimate load versus maximum
slip for the first specimen in Table 1 (CR1L1) is shown in
Figure 7.The thin line is the theoretical one from (4), and the
thick lines are the upper and lower bounds of ultimate load

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10 12 14 16

×104

−0.5

1/𝛿max (1/mm)

N
u

 (N
)

Sample path

Ntheory

Nlower, Nupper

Figure 7: Ultimate load versus maximum slip for specimen CR1L1.
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Figure 8: Experimental versus theoretical ultimate loads for the
tests by Dai et al. [6].

based on (12) with 𝛼 = 1200. Due to the Brownian motion,
(9) represents a stochastic process, which has many different
sample paths. The dashed line in Figure 7 plots one of such
sample paths.

Figure 8 shows the experimental ultimate loads (𝑃ex)
against the theoretical ones (𝑃th). Because the relationship
between the ultimate load and Mode II interfacial fracture
energy, 𝐺

𝑓II, is linear (4), the ultimate bearing load changes
25.4% when the fracture energy changes 25.4%. In Figure 8,
the thick lines are the bounds of experimentalmaximum load
versus theoretical one; that is, 𝑃ex = (1 ± 0.254)𝑃th. This may
explain why the debonding strength of FRP always exhibits
quite large scatter [23, 24].

As it can be seen in Figure 8, all experimental ultimate
loads are in the bounds. Therefore, it confirms that the pro-
posedmethod is valid to predict the load capacity variation of
the FRP bonded concrete specimens under Mode II loading.
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Table 1: Specimens of Dai et al. [6] and their fracture energy bounds.

Specimen 𝜀max
𝛿max
(mm)

𝑁
𝑢

(KN)
Theoretical 𝐺

𝑓II
(N/mm)

𝐺
𝑓II lower bound

(N/mm)
𝐺
𝑓II upper bound

(N/mm)

𝐺
𝑓II upper and lower
bounds away from
theoretical 𝐺

𝑓II
(%)

CR1L1 0.00904 0.064 23.4 1.034 0.614 1.454 40.62
CR1L1 0.01046 0.066 23.1 1.384 0.905 1.863 34.70
CR1L1 0.00908 0.053 24.9 1.043 0.579 1.507 44.45
CR1L2 0.00664 0.069 33.5 1.115 0.818 1.412 26.63
CR1L2 0.00682 0.061 39.3 1.177 0.852 1.502 27.61
CR1L2 0.00732 0.077 39.3 1.356 1.046 1.667 22.86
CR1L3 0.00509 0.064 42.9 0.983 0.746 1.212 23.29
CR1L3 0.00554 0.057 38.4 1.165 0.892 1.438 23.43
CR1L3 0.00525 0.062 38.4 1.042 0.794 1.290 23.80
CR1L3 0.00496 0.059 36.9 0.930 0.690 1.170 25.81
AR1L1 0.01260 0.070 25.5 1.476 0.916 2.036 37.94
AR1L2 0.00955 0.073 833.6 1.450 1.034 1.856 28.00
AR1L3 0.00606 0.068 39.9 1.351 1.078 1.624 21.54
GR1L5 0.00732 0.062 33.4 1.171 0.825 1.517 29.54
CR2L1 0.01124 0.111 28.1 1.598 1.201 1.995 24.84
CR2L2 0.00809 0.123 43.2 1.656 1.385 1.927 32.73
CR2L3 0.00596 0.103 47.4 1.343 1.125 1.561 16.23
AR2L3 0.00668 0.111 47.1 1.642 1.406 1.878 14.37
GR2L3 0.00869 0.090 31.0 1.208 0.867 1.548 28.14
CR3L2 0.00980 0.290 47.7 2.430 2.216 2.644 8.80
CR3L3 0.00732 0.227 57.6 2.205 2.024 2.386 8.20
AR3L3 0.00923 0.309 60.9 3.135 2.940 3.330 6.22

Average (%) 25.4

Concrete

FRP
P

P

y y

ax x

Δ1

Δ2

Figure 9: Simulation of FRP on the concrete substrate as a cantilever
beam and a beam on elastic foundation for Mode I loading.

4. FRP-to-Concrete Interface under Mode I
Loading Condition

The relationship between the load and displacement in a
Mode I loading condition can be obtained in a similar way
as Mode II loading case. Figure 9 shows the schematic model
around the crack tip subjected to aMode I load,𝑃. If the value
of the crack (debonded) length, 𝑎, is small, the debonded FRP
can be assumed as a cantilever beam subjected to load 𝑃,
and the bonded parts of FRP can be assumed as an Euler-
Bernoulli beam on an elastic Winkler foundation [25, 26].

In this study, the Mode I displacement of the bonded parts
of FRP, Δ

1
, in Figure 9, is assumed equal to zero because it

is very small compared to the displacement at the crack tip,
Δ
2
. Therefore, the relationship between the ultimate Mode I

load, 𝑃
𝑢
, and the corresponding Mode I displacement, Δmax,

can be obtained as

𝑃
𝑢
= [

3𝐸𝐼

𝑎3max
]Δmax, (14)

where 𝐸𝐼 is the bending stiffness of FRP and 𝑎max is the crack
length corresponding to the ultimate load.

Based on the compliance method, the Mode I fracture
energy can be expressed as [17, 26]

𝐺
𝑓I =

𝑃
2

2𝑏
𝑓

𝑑𝐶

𝑑𝑎
, (15)

where 𝐶 is the compliance of the unbonded/debonded FRP
and can be expressed by

𝐶 =
Δ

𝑃
. (16)
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Table 2: Specimens of Wan et al. [17] and their fracture energy bounds.

Specimens 𝑃
𝑢

(N)
Δmax
(mm)

Theoretical 𝐺
𝑓I

(N/mm)
𝐺
𝑓I lower bound

(N/mm)
𝐺
𝑓I upper bound

(N/mm)

𝐺
𝑓I upper and lower
bounds away from
theoretical 𝐺

𝑓I
(%)

C4B1S1 515.86 0.58 0.545 0.467 0.622 14.13
C4B1S2 553.09 0.79 0.273 0.191 0.355 30.0
C4B1S3 518.63 0.87 0.417 0.347 0.467 12.0
C4B1S4 545.67 0.98 0.436 0.392 0.480 10.1
C4B1S5 380.97 0.68 0.391 0.342 0.440 12.5

Average (%) 15.74

Table 3: Specimens of Ouyang and Wan [18] and their fracture energy bounds.

Specimens 𝑃
𝑢

(N)
Δmax
(mm)

Theoretical 𝐺
𝑓I

(N/mm)
𝐺
𝑓I lower bound

(N/mm)
𝐺
𝑓I upper bound

(N/mm)

𝐺
𝑓I upper and lower
bounds away from
theoretical 𝐺

𝑓I
(%)

1 385.4 1.72 0.345 0.181 0.391 13.3
2 260.8 1.45 0.250 0.087 0.312 24.8
3 403.8 1.68 0.229 0.184 0.274 19.6
4 379.9 1.53 0.405 0.388 0.442 9.13
5 420.6 2.06 0.477 0.402 0.552 15.7
6 323.4 1.64 0.422 0.331 0.513 21.5
7 309.8 2.04 0.374 0.306 0.442 18.2
8 411.1 2.15 0.400 0.332 0.468 17.0

Average (%) 17.4

By substituting (15) and (16) into (14) and setting 𝐾
0

=

2𝑏
𝑓
𝐺
𝑓I𝑎 and 𝑋 = 1/Δmax, the ultimate Mode I load, 𝑃

𝑢
, can

be expressed as

𝑃
𝑢
= 𝐾
0
𝑋. (17)

To model the unpredictable changes in the Mode I
interfacial fracture energy, 𝐺

𝑓I, a white noise is added to the
parameter 𝐾

0
, where 𝐾

0
is calculated by the manufacturer

reported FRP material properties and concrete strength. The
process is similar to what has been done for the Mode II
loading case.The upper and lower bounds for ultimate Mode
I loading, 𝑃

𝑢
, with probability 95% are

𝑃lower = 𝐾0𝑋 − 1.96𝛼√𝑋,

𝑃upper = 𝐾0𝑋 + 1.96𝛼√𝑋.

(18)

To find themagnitude of𝛼, experimental data fromWan et al.
[17] and Ouyang and Wan [18] are used.

Wan et al. [17] used modified double cantilever beam
(MDCB) specimens to test the energy release rate of FRP
debonding from concrete subjected toMode I loading. CFRP
sheets were applied to the concrete substrates by wet lay-
up process. Ouyang and Wan [18] used the MDCB test to
measure the interfacial fracture energy of the CFRP plate
debonding from concrete substrate under Mode I loading.
The experimental results of these tests are shown in Tables
2 and 3, respectively.
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Figure 10: Application of experimental data fromWan et al. [17] to
find 𝛼.

The normalized 𝐾
0
𝑃
𝑢
against 𝐾

0
√𝑋 curves are drawn

in Figure 10 for the specimens in Table 2. The appropriate
magnitude for 𝛼 is equal to 200 to cover all experimental
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Figure 11: Application of experimental data from Ouyang andWan
[18] to find 𝛼.

data in Wan et al. [17]. The 𝛼 value for experimental data in
Ouyang and Wan [18] is equal to 240 as shown in Figure 11.

Because 𝑃
𝑢
(peak load) is between 𝑃upper and 𝑃lower at

Δmax, using (17) and (18), the bounds of interfacial Mode
I fracture energy, (𝐺

𝑓I)exp, with 95% probability can be ex-
pressed as

(G
𝑓I −

1.96𝛼√1/Δmax
2𝑏
𝑓
𝑎max

) < (𝐺
𝑓I)exp

< (𝐺
𝑓I −

1.96𝛼√1/Δmax
2𝑏
𝑓
𝑎max

) .

(19)

By using (19) and the obtained values of 𝛼, the range of
the bounds of theMode I interfacial fracture energy has been
determined for the experimental data, and they are presented
in Tables 2 and 3. It can be seen that, on average, the variations
of the actual fracture energies of the specimens tested byWan
et al. [17] are within plus or minus 15.7% of the theoretical
values, while it is 17.4% for the specimens tested by Ouyang
and Wan [18].

According to (17), the relationship between ultimate
bearing load and interfacial Mode I fracture energy is lin-
ear. Figure 12 shows the experimental ultimate load against
analytical ones for specimens in Wan et al. [17] and Ouyang
and Wan [18]. In this figure, the thick lines are bounds of
experimental maximum load versus theoretical one; that is,
𝑃ex = (1 ± 0.174)𝑃th. As it can be seen, all experimental
ultimate loads are within the bounds. Therefore, it confirms
that the proposed method can predict the load capacity
variation of the specimens subjected to Mode I loading.
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Figure 12: Experimental ultimate load versus theoretical ones for
the tests by Wan et al. [17] and Ouyang and Wan [18].

5. Conclusion

In this study, white noise and Brownian motion are intro-
duced to model the variation of interfacial fracture energy
in FRP bonded concrete specimens subjected to Mode I
and Mode II loadings. A systematic method is developed
to determine the range of interfacial fracture energy and
load carrying capacity. Experimental data from literatures are
used to demonstrate the validity of this methodology. For the
experimental data used in this research, Mode I and Mode
II load carrying capacities are within ±17.4% and ±25.4%,
respectively, of their theoretical values.
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