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Abstract: The purpose of this retrospective study was to gain insight into 

the contribution of the dorsolateral pons to the coordination of swallowing and 

breathing in awake goats. In 4 goats, cannulas were chronically implanted 

bilaterally through the lateral (LPBN) and medial (MPBN) parabrachial nuclei 

just dorsal to the Kölliker-Fuse nucleus (KFN). After >2 wks recovery from 

this surgery, the goats were studied for 5 ½hrs on a control day, and on 

separate days after receiving 1 and 10µl injections of ibotenic acid (IA) 

separated by 1wk. The frequency of swallows did not change during the 

control and 1µl IA studies, but after injection of 10µl IA, there was a transient 

65% increase in frequency of swallows (P < 0.05). Under control conditions 

swallows occurred throughout the respiratory cycle, where late-E swallows 

accounted for 67.6% of swallows. The distribution of swallow occurrence 

throughout the respiratory cycle was unaffected by IA injections. Consistent 

with the concept that swallowing is dominant over breathing, we found that 

swallows increased inspiratory (TI) and expiratory (TE) time and decreased 

tidal volume (VT) of the breath of the swallow (n) and/or the subsequent 

(n+1) breath. Injections of 10 µl IA attenuated the normal increases in TI and 

TE and further attenuated VT of the n breath. Additionally, E and I swallows 

reset respiratory rhythm, but injection of 1 or 10µl IA progressively 

attenuated this resetting, suggesting a decreased dominance over respiratory 

motor output with increasing IA injections. Post mortem histological analysis 

revealed about 50% fewer (P < 0.05) neurons remained in the KFN, LPBN, 

and MPBN in lesioned compared to control goats. We conclude that 

dorsolateral pontine nuclei have a modulatory role in a hypothesized 

holarchical neural network regulating swallowing and breathing particularly 

contributing to the normal dominance of swallowing over breathing in both 
rhythm and motor pattern generation. 

2 Introduction 

Neuromechanical coordination of breathing and swallowing is 

essential, as both functions share common neurological and 

http://dx.doi.org/10.1016/j.resp.2010.12.002
http://epublications.marquette.edu/
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oropharyngolaryngeal anatomy. The neuromechanical coupling is 

critical for proper feeding and execution of mucociliary clearance 

(Schindler A. et al., 2008; Matsuo K. et al., 2009). Loss of this 

coordination may result in aspiration leading to bacterial infection, 

aspiration pneumonia, pulmonary fibrosis, malnutrition, dehydration, 

and/or developmental deficits, particularly in children (Prasse J. et al., 

2009). Implicit in proper coordination is efficient performance of each 

behavior with limited compromise of the alternate behavior. In other 

words, deglutition should minimally alter breathing, breathing should 

not delay delivery of a bolus to the stomach, and both behaviors 

should be performed with minimal energy expenditure. 

Despite its importance, the neurological sites involved in the 

coordination between breathing and swallowing, and for other 

behaviors (vomiting, coughing, etc.) utilizing the same muscles and 

oropharyngolaryngeal anatomy, are not well understood. One 

proposed site contributing to this coordination is the Kölliker-Fuse 

nucleus (KFN) in the rostral pons (Gastreau C. et al, 2005). The role of 

the KFN and the lateral (LPBN) and medial (MPBN) parabrachial nuclei 

in the dorsolateral pons in respiratory rhythm and pattern generation 

has long been recognized, confirmed recently by Abdala et al. who 

found that these sites contributes to the generation of the three-phase 

eupneic pattern, as sequential transections through the pons 

eliminated phase 2 of the normal, eupneic, inspiration, post-

inspiration, and active expiration respiratory patterns (Abdala A. et al., 

2009). The importance of the dorsolateral pons was further 

demonstrated by the effect of neurotoxic lesions of this area in 

unanesthetized, awake goats which had a biphasic effect on pulmonary 

ventilation, accompanied by apneic and apneustic-like breathing 

patterns (Bonis J.M. et al., 2010b). 

In addition to respiratory control, the data of Gestreau and 

colleagues provide evidence for a role of the KFN in the coordination of 

breathing and swallowing. Electrolytic lesions of the intermediate 

portion of the KFN in decerebrate rats augmented hypoglossal activity 

associated with swallowing (Gestreau C. et al., 2005). Based on these 

results, the authors theorized that the mechanism for this 

augmentation was a disinhibition of surviving pontine hypoglossal 

premotor neurons spared by the electrolytic lesion (Gestreau C. et al., 

2005). This postulate fits with other observations, where glutamate 

http://dx.doi.org/10.1016/j.resp.2010.12.002
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injections into the intermediate KFN attenuated hypoglossal activity 

associated with swallowing, and in addition, with inspiratory activities 

of the hypoglossal nerve and external intercostal muscles (Gestreau C. 

et al., 2005). 

The purpose of the retrospective analyses reported herein was 

to examine the effects of spontaneous, solitary swallows on respiratory 

output and timing in unanesthetized, awake goats instrumented with 

chronically placed cannulas through the LPBN and MPBN just dorsal to 

the KFN. The analyses were retrospective in that the study was 

designed to examine the effects of dorsolateral perturbations on the 

control of breathing (Bonis J.M. et al., 2010b). Based on past studies 

referred to above, we hypothesized that injection of ibotenic acid into 

the dorsolateral pons would 1) alter the frequency of occurrence of 

swallows relative to control conditions, 2) attenuate any resetting of 

respiratory phase observed under control conditions, and 3) alter 

ventilatory output parameters relative to control conditions, 

particularly for swallows occurring during the inspiratory phase. 

3 Methods 

We used adult goats for our studies due to their large size, 

which permitted chronic implantation of stainless steel cannulas into 

the brainstem and enabled microinjection into target sites during the 

awake state. Furthermore, our laboratory has considerable background 

data concerning respiratory rhythm and pattern generation (Krause K. 

et al., 2009; Martino P. et al., 2007; Wenninger J et al., 2004) and 

coordination of breathing and swallowing (Feroah T. et al., 2002a and 

2002b) in goats. 

Physiologic data were acquired from 4 female adult goats, 

weighing 46.4 ± 6.8kg. Six additional goats were used for histological 

purposes only (44.1 ± 2.9kg). Goats were housed and studied in an 

environmental chamber with a fixed ambient temperature and 

photoperiod. All goats were allowed free access to hay and water, 

except during periods of study. All aspects of the study were reviewed 

and approved by the Medical College of Wisconsin Animal Care 

Committee before the studies were initiated. 

http://dx.doi.org/10.1016/j.resp.2010.12.002
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3.1 Experimental design, protocols, and surgical 

procedures 

Data were obtained from goats that were studied as part of a 

larger experimental series that determined the effects of attenuating 

cholinergic modulation through microdialysis of atropine (Bonis J.M. et 

al., 2010a), and the effects of neurotoxic lesions in the dorsolateral 

pons on respiratory rhythm and pattern in an in vivo awake/asleep 

animal (Bonis J.M. et al., 2010b). Thus, the experimental design and 

surgical procedures have been reported previously (Bonis J.M. et al., 

2010b). Briefly, each goat underwent an initial instrumentation 

surgery in which electromyographic (EMG) electrodes were implanted 

into the posterior cricoarytenoid (PCA), genioglossus (GG), thyroid 

arytenoid (TYA), thyropharyngeus (TP), diaphragm, and transverse 

abdominal muscles, and a 5cm segment of carotid arteries lifted to 

subcutaneous levels for ease of arterial blood gas sampling. At least 

two weeks later, in a second surgery, cannula were bilaterally 

implanted through the LPBN and MPBN to just dorsal to the KFN in the 

dorsolateral pons. The cannula implantations required a single occipital 

craniotomy created through a posterior midline incision after which the 

dura mater was excised to expose the posterior cerebellum and 

medulla for visualization of obex. To standardize stereotaxic 

coordinates, the orientations of the dorsal medullary surface, obex, 

and midline were used to determine the dorsoventral, rostrocaudal, 

and mediolateral planes. To avoid the superior sagittal sinus, an 

angled approach was adopted whereby cannulas were inserted caudal 

to the confluence of the sinus, through the mid-cerebellum, at angles 

of 10.5–24° from normal (relative to the dorsal medullary surface). 

The coordinates for individual goats varied with their size and ranged 

from 0–2mm ventral, 4–5mm lateral, and 20–24mm rostral to 

respective reference points. After placement, cannulas were anchored 

to the surrounding bone using screws and dental acrylic. 

After both surgeries, animals were allowed to recover for ≥ 

2wks before being studied. After completing cholinergic modulation 

experiments referred to earlier, control studies were performed in 

which eupneic breathing and spontaneous swallows were recorded for 

at least 5 ½hrs while breathing room air. On subsequent days, 

injection protocols consisted of a 30min control period followed by two 

http://dx.doi.org/10.1016/j.resp.2010.12.002
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unilateral (ipsilateral, then contralateral) microinjections (1 or 10µl) 

through the chronically implanted cannulas of ibotenic acid (IA, 

50mM), an irreversible glutamate receptor agonist and excitotoxin. 

Small injection tubes were preloaded with IA and inserted into the 

cannulas, such that the injection was made directly at the distal-most 

aspect of the cannulas without penetrating the tissue. These injections 

were separated by at least an hour or until breathing frequency was 

stable. The total study time was 5 ½hrs, and the 1 and then 10µl IA 

injections were separated by 1wk. Seven days after the large volume 

IA injection the animal was euthanized and histological analyses were 

performed on the brainstem. 

3.2 Data analyses 

Pulmonary ventilation (VI; l/min), breathing frequency (f; 

breaths/min), tidal volume (VT; l/breath), expiratory (TE; s) and 

inspiratory (TI; s) times, and diaphragm, abdominal, and PCA muscle 

activities (mV) were analyzed on a breath-by-breath basis. Respiratory 

muscle activity was recorded via Windaq using the chronically 

implanted EMG electrodes. The airflow signal was calibrated against a 

known airflow value, whereas the EMG baseline was set to zero. 

Calibrated airflow and zeroed EMG signals were rectified and time 

averaged (0.33s time constant). During the experimental control 

periods, these rectified and time averaged signals were used to 

recalibrate the EMG signals with the assignment of arbitrary peak (1) 

and baseline (0) values. These recalibrated signals were again rectified 

and time averaged. From the calibrated airflow values for each breath, 

VT was calculated. Using the recalibrated airway muscle EMG signal, a 

new baseline value was arbitrarily assigned just above the normal 

basal activity, so as to produce a signal in which only the activity of 

swallows was present. The airflow and EMG signals were converted to 

a .txt file and input into a custom-designed program that output all 

parameters on a breath-by-breath basis. 

Ventilation was analyzed using the processed airflow signal as 

described above. We defined the occurrence of inspiration (I) when 

airflow was greater than 0.01 l/s for at least 0.2s in duration, and the 

occurrence of expiration (E) when airflow returned to zero l/s for at 

least 0.3s. The respiratory cycle was defined as an I followed by an E, 

http://dx.doi.org/10.1016/j.resp.2010.12.002
http://epublications.marquette.edu/
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with the total time (TTot) calculated as the sum of TI and TE. TI/TTot and 

VT/TI were also calculated. Breaths were categorized as “quiet,” 

regular breaths or those that were “irregular/disrupted,” characterized 

by respiratory muscle activity caused by swallowing, coughing, 

mastication, and eructation, or any other abnormal behavior, based on 

the previously defined categorization (Bonis J.M. et al., 2010b). In 

addition to the respiratory variables reported above, for each breath 

the presence of one or more swallows and the timing parameters of 

the swallow(s) relative to the corresponding respiratory cycle were 

also analyzed. 

Since data reported herein were a retrospective analysis of 

swallows, the gain of the airway muscle activity was not set to 

quantify the magnitude of the burst in activity caused by swallows, but 

the gain was set to detect phasic respiratory-related airway muscle 

activity; thus, the much larger swallow-related activity was always 

clipped. As a result, we were unable to complete a retrospective 

quantification of swallow-related airway muscle activity. We always 

recorded activity of the PCA airway muscle and we processed this EMG 

signal for analysis of swallows. Activity of at least one additional 

airway muscle (GG, TYA, or TP) (Fig. 1) was also recorded, but not 

processed other than visual verification of the swallow. The processed 

PCA signal had no baseline activity; thus, a swallow was considered to 

have occurred when the signal was greater than 0.01mV for 0.2 to 

0.5s in duration. The start of the swallow was defined as the beginning 

of the signal which met these criteria. To be considered solitary, a 

single swallow must have occurred within the fourth breath of a six-

breath set (Fig. 2A). This breath containing the swallow was labeled 

the n breath, with preceding (n−1, n−2 and n−3) and succeeding 

(n+1 and n+2) breaths labeled accordingly (Fig. 2A). The first, second, 

and sixth breaths served as controls. The “quiet” and “disrupted” 

breath categorizations were used such that only the n breath was 

“disrupted,” while the other 5 breaths of the 6 breath set were “quiet”, 

ensuring that swallows due to coughing, mastication, eructation, etc. 

were not included for further analysis. 

http://dx.doi.org/10.1016/j.resp.2010.12.002
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Figure 1. Respiratory motor output of spontaneous, solitary swallows during the 

control period (Panel A), post-ipsilateral 10µl ibotenic acid (IA) injection (Panel B), 
post-contralateral 10µl IA injection (Panel C), and at a point near the end of the study 

(Panel D). The motor pattern of a swallow is in part characterized by the near 
simultaneous deflection in the genioglossus (GG), posterior cricoarytenoid (PCA), 
thyroid arytenoid (TYA), and thyropharyngeus (TP) muscle signals, identifiable in each 
Panel. Blood pressure (BP), pulmonary ventilation (VI), diaphragm (DIA) and 
abdominal (ABD) muscle activity.  
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Figure 2. Depiction of swallow detection (Panel A) and derivation of variables for 

gamma (Panel B) and phase (Panel C) analyses. A) Swallows were considered solitary 
if the three breaths preceding (n−1, n−2, and n−3) and the two breaths succeeding 

(n+1 and n+2) the breath of the swallow (n) did not contain swallows. A breath was 
considered to begin with inspiration followed by expiration. The n−3, n−2, and n+2 
breaths served as control breaths. The vertical line indicates the start of a swallow as 
evidenced by the raw and moving time average thyropharyngeus (TP) muscle signals. 
B) Gamma-expiratory (γE) and gamma-inspiratory (γI; not shown) were defined as 
the time from the beginning of the respective phase to the start of the swallow. Note 

that in the gamma analysis, the respiratory cycle was defined as an expiration 
followed by an inspiration. C) Old phase (φ) was defined as the time from the start of 
the swallow to the beginning of the n breath. Cophases (θ) were defined as the time 
from the start of the swallow to the beginning of the preceding breath (θn−1) and 
three succeeding breaths (θn+1, θn+2, and θn+3). Values are normalized as a 
fraction of control breaths.  

Two specific analyses were performed to examine the 

coordination of breathing and swallowing, a gamma (γ) analysis and a 

phase analysis (Figs. 2B & C). The γ analysis investigated whether the 

time of occurrence of a swallow within the I (γI) or E (γE) phase, had 

http://dx.doi.org/10.1016/j.resp.2010.12.002
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an effect on ventilatory parameters in the n and/or n−1 breath. For 

the γ analysis, the respiratory cycle was defined as an E followed by 

an I. γI was calculated as the time from the beginning of I to the start 

of the I swallow, expressed as a percent of the control TI. γE was 

calculated as the time from the beginning of E to the start of the E 

swallow (Fig. 2B), expressed as a percent of the control TE. TI, TE, TTot, 

TI/TTot, VT, and VT/TI for the n and n−1 breaths were then expressed as 

a percent of the control breaths and plotted against γI or γE. γI or γE 

greater than 100 were possible when swallows occurred after the 

duration of the respective control TI or TE had been exceeded. 

The phase analysis investigated whether swallows affected the 

respiratory rhythm generator. The old phase (φ) was calculated as the 

time from the beginning of the n breath to the start of the swallow 

(Fig. 2C). Cophases (θ) were calculated as the time from the beginning 

of the n−1 (θn−1), n+1 (θn+1), n+2 (θn+2), and n+3 (θn+3) breaths to 

the start of the swallow (Fig. 2C). φ and θ were expressed as a ratio of 

the average TTot of the control breaths. Solitary swallows were 

subdivided into 4 subtypes according to their time of occurrence within 

the respiratory cycle labeled as E, I, late-E, or early-I. Swallows that 

occurred during the E phase with a θn+1/φ ratio <0.35 were classified 

as late-E, while those with a θn+1/φ ratio >0.35 were classified as E. 

Similarly, swallows that occurred during the I phase with a θn+1/φ ratio 

>20 were classified as early-I, while those with a θn+1/φ ratio <20 

were classified as I. We recognize that swallows that occurred during 

the I phase created a deglutition apnea, but these temporary pauses 

in airflow generally did not exceed the 0.3s duration criteria necessary 

to trigger a newly defined E phase, and thus used an “I” nomenclature 

to swallows occurring during the I phase. 

3.3 Statistical analyses 

To determine if the occurrence of swallows significantly changed 

over time (5 ½hrs), or condition (control, 1 and 10µl IA injections), we 

used a two-way ANOVA with repeated measures and Tukey’s post hoc 

analysis on the number of swallows per 30 minute bin as a percent of 

the control periods. Similarly, condition effects were determined with 

the same tests for: 1) the number of swallows occurring within the 

phases of the respiratory cycle (number of swallows per 10% 

http://dx.doi.org/10.1016/j.resp.2010.12.002
http://epublications.marquette.edu/
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respiratory phase bin), 2) the gamma analysis slope and y-intercept 

(comparing n and n−1 breaths for all ventilatory variables), 3) when 

swallows occurred with respect to φ (number of swallows per 10% φ 

bin), 4) the difference between cophases with respect to φ (number of 

swallows per 10% φ bin), and 5) ventilatory variables with respect to 

φ (ventilatory variables expressed as a percent of control breaths per 

10% φ bin). A threshold for significance was set to P < 0.05. 

3.4 Histological analyses 

Histological analyses have been reported previously (Bonis J.M. 

et al., 2010b) for these lesioned goats as well as for control goats. 

Briefly, all goats were euthanized (Beuthanasia, intravenously), and 

then the brain was perfused with physiological buffer solution (PBS) 

and fixed with 4% paraformaldehyde in PBS. The brain stem was 

excised and placed in 4% paraformaldehyde in PBS for 24 h, and then 

sequentially in 20 and 30% sucrose solutions. The brain stem was 

frozen and serially sectioned (25µm) from obex to the superior 

colliculi, and the sections were adhered to gelatin-chrome-alum-coated 

slides. Sections were acquired such that every fourth section was 

contained within a respective “series.” Thus there were four series in 

total; within a series, each section was 100µm from the next section in 

sequence, allowing for high-resolution neuronal and anatomical 

profiling. The four series were stained for Nissl substance, muscarinic 

type-2 immunoreactivity, and stains unrelated to the purposes of this 

report. Single Nissl-stained tissue sections in the rostral pons were 

imaged every 200µm at 4× magnification utilizing a Nikon Eclipse 

E400 microscope after Kohler alignment, flat field subtraction and 

white-balance correction. About 20 image files per slide were then 

photomerged in Adobe Photoshop, calibrated, and analyzed after 

importation into MetaMorph Offline v. 7.1.3.0. The KFN, MPBN, and 

LPBN stain positive for M2 receptors (Mallios, V., 1995); thus, the 

count region for each was determined using the anti-M2 receptor 

antibody staining. The boundaries of these regions were then 

transferred to adjacent Nissl-stained sections for quantification made 

every 200µm. The two laboratory staff members who completed the 

computer-assisted analyses were aware of the experimental treatment 

in the lesion groups, but they strictly adhered to the objective 

quantification outlined so as to not bias the results. Classic 

http://dx.doi.org/10.1016/j.resp.2010.12.002
http://epublications.marquette.edu/
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stereological counting methods were not used in obtaining the cell 

counts. There was excellent agreement between the two staff 

members in results derived from a repeat analysis of identical images 

(<1% difference in total number of cells counted per section). 

4 Results 

4.1 Histology 

In goats, the LPBN and MPBN course bilaterally through the 

middle and rostral pons flanked about the superior cerebellar 

peduncles, spanning 6–8mm rostrocaudally (Fig. 3). The KFN spans 2–

3mm (Fig. 3) rostrocaudally at the ventrolateral aspect of the 

parabrachial complex, and is roughly spherical making it amenable to 

targeting via chronically implanted cannula and neurotoxic lesioning. 

Post-mortem histological analyses showed that in the lesioned goats, 

the deficit in neurons in the LPBN and MPBN tended to be most 

extensive in the more rostral regions while in the KFN, the greatest 

deficit was in the mid- range region (Fig. 3). In the lesioned goats, the 

average number of neurons was reduced (P < 0.05) to 52 ± 12, 51 ± 

16%, and 51 ± 20% of control goats in the LPBN, MPBN, and KFN 

respectively. Throughout all 3 subnuclei, the variation in number of 

neurons was similar in the lesioned and control goats (Fig. 3). We did 

not quantify neuron loss beyond the borders of the LPBN, MPBN, and 

KFN, but from visual inspection, it was clear that the loss was less than 

in areas shown in Figure 3. In spite of variation among the goats in 

loss of neurons throughout the dorsolateral pons, the physiologic 

effects of the perturbations was uniform across all the goats as 

indicated by the small variance in most parameters altered by the 

perturbations. 

http://dx.doi.org/10.1016/j.resp.2010.12.002
http://epublications.marquette.edu/
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Figure 3. Number of neurons of control and lesioned goats in the LPBN, MPBN, 

and KFN caudal and rostral to the peak number of neurons in the KFN (pKFN). Neuron 

counts were made on single tissue sections at 200 ✪m intervals. The horizontal lines 

and asterisks indicate where neuron counts were significantly (P < 0.05) reduced in 
the lesioned goats compared to controls.  
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4.2 Spontaneous, solitary swallows 

The sequential motor activation pattern of the 4 airway muscles 

was consistent throughout the 5 ½hr studies (Fig. 1). Moreover, the 

duration of motor activity of individual muscles was consistent and did 

not significantly change (P > 0.05) throughout all studies. For 

example, the duration of PCA activity was 0.254, 0.261, 0.269, and 

0.258 during control conditions and during 15 minute intervals 30, 

120, and 180 minutes respectively after the first 10µl injection of IA. 

The breath-to-breath coefficients of variation in duration of muscle 

activity were 7.9 ± 2.1, 7.5 ± 2.1, 7.9 ± 1.5, and 8.2 ± 0.9% for the 

4 intervals. These consistent motor patterns suggest that the IA 

injections did not elicit dysphagic swallows. However, since our PCA 

EMG recordings did not permit quantifying the magnitude of the 

swallow-related burst in activity, we can not eliminate the possibility 

that IA injections induced dysphagic swallows. 

Within the 52,935 breaths analyzed, there were 10,928 

spontaneous swallows and of these, 5,705 (52% of total swallows) 

were solitary and met additional selection criteria for inclusion (see 

Methods). Expiratory (E), inspiratory (I), late-E, and early-I swallows 

accounted for 2.5% (144), 24.7% (1411), 67.6% (3855), and 5.2% 

(295) of solitary swallows, respectively. 

4.3 Effects of ibotenic acid injections on swallowing 

During the control study, the occurrence of swallows was 

constant over the 5 ½hr time period (Fig. 4) at a rate of approximately 

1.5 swallows per minute (10% of breaths contained a solitary 

swallow). Over the course of the 5 ½ hour injection protocol, the 1µl 

volume had no significant (P > 0.10) effect on the occurrence of 

swallows. However, the first 10µl IA injection elicited an increase (P < 

0.05) in swallows to 65% above control levels 60 to 90 minutes after 

injection which was not accentuated by the contralateral injection. The 

increase was followed by a significant attenuation (P < 0.05) of 

swallows relative to the increase but not significantly (P > 0.05) lower 

than control (Fig. 4). The swallowing response to IA injection into the 

dorsolateral pons was similar to the ventilatory response reported 

previously (Bonis J.M. et al., 2010b). 

http://dx.doi.org/10.1016/j.resp.2010.12.002
http://epublications.marquette.edu/
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Figure 4. Frequency of swallows over 5 ½ hours of a control study and over 5 

hours after injecting 1 and 10µl ibotenic acid (IA) bilaterally into the dorsolateral pons. 
Note that during control studies and with injection of 1µl IA, the occurrence of 
swallows did not significantly differ from control levels. Within 60 to 90 minutes after 
injection (arrows indicate times of ipsilateral and contralateral injections, respectively) 
of 10µl IA into the pons of awake goats, the occurrence of swallows was significantly 

(asterisk, P < 0.05) increased 65% above levels seen during the control study at the 

same time point. Following this increase, the occurrence of swallows was significantly 
(daggers, P < 0.05) attenuated relative to the initial transient increase. Data plotted 
as a percent of control levels ± SE. 

The occurrence of swallows within different phases of the 

respiratory cycle is shown in Figure 5. The vast majority of 

spontaneous swallows in the pre-lesion control studies showed a peak 

occurrence between 80–90% of the E phase (late E or the E-I 

transition), where these late-E swallows were E-terminating swallows. 

This general pattern of occurrence of swallows continued after bilateral 

1 and 10µl IA injections. The 10µl, but not the 1µl IA injections 

increased (P < 0.05) the occurrence of swallows between 90–100% of 

the E phase, with average occurrence 82 swallows more (P < 0.05) 

than during the control study (Fig. 5). However, there was no 

significant difference in the total number of swallows among all the 

studies. 

http://dx.doi.org/10.1016/j.resp.2010.12.002
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Figure 5. Histogram of swallow occurrence within respiratory expiratory (E) and 

inspiratory (I) phases during control and ibotenic acid injection protocols. Note that: a) 
injection of 10µl IA into the dorsolateral pons of awake goats significantly (asterisk, P 
< 0.05) increased the number of swallows between 90 and 100% of E compared to 
the control study within the same 10% bin, b) regardless of study conditions, the 

occurrence of swallows tended to increase throughout E, while the occurrence of 

swallows during I was more evenly distributed, c) the pattern of occurrence of 
swallows was well conserved irrespective of study conditions, and d) the majority of 
swallows occur late in E and are thus E-terminating swallows.  

4.4 Within-breath effects of swallows on breathing: a 

gamma (γ) analysis 

A gamma analysis was performed for swallows occurring during 

I or E to determine whether the time of occurrence of a swallow during 

the respiratory cycle had differential effects on the characteristics of 

the breath in which a swallow occurred (n) or the breath preceding the 

swallow (n−1), and subsequently whether injection of IA altered these 

characteristics. Figure 6 illustrates one example from the γE analysis, 

plotting the effect of time of occurrence of E swallows versus 

expiratory time (TE). The gamma analysis yields two variables, slope 

and y-intercept, which describe the relationship of the time of 

http://dx.doi.org/10.1016/j.resp.2010.12.002
http://epublications.marquette.edu/
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occurrence within the E phase with the TE of the n and n−1 breaths 

(Fig. 6). For the n−1 breath, the slope and y-intercept is 0.04 and 

0.97, respectively, consistent with the concept that the swallow in the 

n breath had no effect on TE in the n−1 breath (Fig. 6). The slope 

(0.8431) of the γE vs. TE relationship was increased and the y-intercept 

(0.273) was decreased for n breaths relative to n−1, consistent with 

most swallows being E-terminating (Fig. 6). In other words, swallows 

occurring early in E relative to control predictably have a small TE, 

while swallows occurring late in E relative to control have a large TE, 

neither of which significantly affects the n−1 breath. 

 

Figure 6. Depiction of gamma-expiratory (γE) analysis for n and n−1 breaths 

during the control study. During the control study, the slope of the gamma-expiratory 
(γE) versus expiratory time (TE) relationship was greater for n breaths compared to 
n−1 breaths. The y-intercept of the trendline for n breaths was decreased versus the 
y-intercept of the trendline for n−1 breaths. The linear regression for n breaths is y = 
0.8431× + 0.273 and for n−1 breaths is y = 0.0419× + 0.9699. Note that the 
majority of expiratory (E) swallows terminate E, and thus occur late in the respiratory 

phase (see Figure 4). Therefore, E-terminating swallows largely dictate the effect 
shown for TE, i.e. swallows occurring early in E have a small TE while swallows 

occurring late in E have a large TE. γE values greater than 100 are possible because 
some expirations containing swallows are longer than those of the control breaths.  
 

In the γE analysis for the control study, the slope from n−1 to n 

breaths increased (P < 0.05) for the TI, TE, and TTot vs. γE relationship, 

http://dx.doi.org/10.1016/j.resp.2010.12.002
http://epublications.marquette.edu/
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and decreased (P < 0.05) for the TI/TTot vs. γE relationship (Table 1). 

The y-intercept from n−1 to n breaths decreased (P < 0.05) for the TI, 

TE, TTot, and VT vs. γE relationship, and increased (P < 0.05) for the 

TI/TTot vs. γE relationship (Table 1). Physiologically, this indicates that 

for swallows occurring progressively later in E, TE and TI for the n 

breath were proportionately lengthened to accommodate the swallow. 

The increase in slope from n−1 to n breaths for the TI vs. γE 

relationship was attenuated (P < 0.05) with the 10µl IA injection 

(Table 1). This TI effect also resulted in a more negative (P < 0.05) 

slope and a more positive (P < 0.05) y-intercept from n−1 to n 

breaths for the TI/TTot vs. γE relationship compared to control 

conditions. Physiologically, this indicates that with KFN perturbation 

via 10µl IA injection, the usually requisite lengthening of n breath TE 

and TI to accommodate E swallows is attenuated, such that ventilatory 

output may be reduced or temporarily insufficient. Injection of 1µl IA 

increased (P < 0.05) the slope from n−1 to n breaths for the VT vs. γE 

relationship (Table 1). Injection of 1 or 10µl IA attenuated or even 

reversed (P < 0.05) the increase in the y-intercept from n−1 to n 

breaths for the VT/TI vs. γE relationship (Table 1). 

 

Table 1 

Gamma-Expiratory 

 Slope Y-intercept 

 Control 1µl IA 10µl IA Control 1µl IA 10µl IA 

 n−1 n n−1 n n−1 n n−1 n n−1 n n−1 n 

TI 
0.11 

(0.06) 
* 0.20 
(0.05) 

0.14 
(0.07) 

* 0.29 
(0.02) 

0.16 
(0.09) 

0.23 
(0.07) 

0.93 
(0.07) 

* 0.66 
(0.02) 

0.89 
(0.07) 

* 0.61 
(0.04) 

0.86 
(0.08) 

* 0.71 
(0.05) 

TE 
0.05 

(0.01) 
* 0.81 
(0.06) 

0.07 
(0.02) 

* 0.90 
(0.03) 

0.03 
(0.02) 

* 0.88 
(0.06) 

0.97 
(0.01) 

* 0.29 
(0.06) 

0.96 
(0.02) 

* 0.23 
(0.05) 

0.95 
(0.02) 

* 0.21 
(0.06) 

TTot 
0.07 

(0.02) 
* 0.63 
(0.06) 

0.09 
(0.01) 

* 0.71 
(0.02) 

0.08 
(0.02) 

* 0.68 
(0.05) 

0.95 
(0.02) 

* 0.40 
(0.05) 

0.94 
(0.02) 

* 0.35 
(0.04) 

0.92 
(0.03) 

* 0.35 
(0.04) 

TI/TTot 
0.06 

(0.06) 

* 
−0.68 
(0.13) 

0.07 
(0.08) 

* 
−0.78 
(0.12) 

0.15 
(0.10) 

†* −0.96 
(0.15) 

0.97 
(0.05) 

* 1.50 
(0.14) 

0.95 
(0.07) 

* 1.60 
(0.11) 

0.92 
(0.08) 

†* 1.81 
(0.12) 

VT 
0.18 

(0.06) 
0.22 

(0.07) 
0.21 

(0.09) 
* 0.34 
(0.01) 

0.21 
(0.11) 

0.32 
(0.10) 

0.85 
(0.06) 

* 0.66 
(0.05) 

0.82 
(0.08) 

* 0.58 
(0.02) 

0.83 
(0.10) 

* 0.61 
(0.07) 

VT/TI 
0.10 

(0.02) 
0.06 

(0.05) 
0.11 

(0.03) 
0.08 

(0.04) 
0.08 

(0.05) 
0.14 

(0.06) 
0.90 

(0.01) 
* 0.97 
(0.07) 

0.89 
(0.03) 

0.95 
(0.06) 

0.93 
(0.05) 

† 0.86 
(0.07) 

 

Expiratory gamma analysis. Asterisks denote significant (P < 0.05) difference of n 

breath from n−1 breath. Daggers denote significant (P < 0.05) difference from 
respective control value. Shaded cells indicate departures from control study trends 
due to injection of 1 and/or 10µl of ibotenic acid (IA). TI, inspiratory time; TE, 
expiratory time; TTot, total respiratory cycle time; TI/TTot, inspiratory drive; VT, tidal 
volume; VT/TI, volume per inspiration. 
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The gamma analysis of inspiration (γI) yielded few significant 

effects, where there were no effects of I swallows on the slopes, but 

the y-intercept from n−1 to n breaths decreased (P < 0.05) for the 

VT/TI vs. γI relationship (data not shown). There were no significant 

effects of IA injection in the γI analysis (data not shown). 

4.5 Respiratory rhythm: a phase analysis 

To determine whether swallows affected the respiratory rhythm 

and subsequently whether injection of IA altered these effects, a phase 

analysis (see Fig. 2C) was performed. While the histogram in Figure 5 

emphasizes the importance of the timing of swallows within a 

particular phase (E or I) of the respiratory cycle, Figure 7 emphasizes 

the importance of the timing of swallows within the respiratory cycle 

(TTot) relative to control breaths (n−3, n−2, and n+2). In other words, 

Figure 5 bins swallows based on occurrence within a particular phase 

(E or I) but doesn’t take into consideration that the n breath has been 

lengthened by the occurrence of the swallow, while Figure 7 bins 

swallows based on occurrence within a control respiratory cycle (TTot) 

to account for the effects on respiratory rhythm, irrespective of when 

the swallow occurred during that phase (E or I). 
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Figure 7. Histogram of swallow occurrence within the respiratory cycle 

during control and ibotenic acid injection protocols. The number of swallows in 

the 10µl ibotenic acid (IA) studies was significantly (P < 0.001) less than 

during the control and 1µl IA studies. The phase transition between 

inspiration and expiration (IE trans; denoted by grey bar) is between an old 

phase (φ) of 0.25 to 0.35 for all study conditions. Note that the pattern of 

occurrence of swallows is relatively well preserved across φ, and that the 

peak in expiratory swallows is near an φ of 1. Open symbols indicate 

inspiratory (I) swallows, while closed symbols indicate expiratory (E) 

swallows. φ values greater than 1 are possible because some respiratory 

cycles are longer than the total respiratory cycle time (TTot) of control 

breaths, some presumably due to the effects of swallowing on respiratory 

timing parameters (See Figure 11).  

Figure 7 illustrates the relationship of I or E swallows vs. old 

phase (φ), or the representative TTot. For all study conditions, the 

phase transition from I to E swallows occurred between an φ of 0.25 

to 0.35 (Fig. 7). The pattern of occurrence of swallows is well 

preserved across φ, with peak E swallow occurrence at a φ of 1 (Fig. 

7). However, injection of 10µl IA decreased (P < 0.05) the overall 

number of solitary swallows compared to control and 1µl IA studies 

(Fig. 7) with respect to φ. 
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Hypothetically, if swallows did not affect the respiratory rhythm 

in the breaths preceding and following the swallow, then a plot of 

cophases (θ) vs. φ would resemble Figure 8A - a series of parallel lines 

with a slope of −1 and an amplitude difference of θ = 1. 

 

Figure 8. Depiction of the phase analysis of an idealized example (Panel A) and 

data during the control study (Panel B). In Panel A, the idealized plot of θn versus φ 

depicts swallows having no effect on respiratory rhythm indicated by the respective 

points organizing into series of parallel lines with a slope of −1 and an amplitude 
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difference where θ = 1. Thus, respiratory rhythm was not reset. In Panel B, during the 

control study the pattern of n+1 breaths deviated from that in Panel A and persisted 

through subsequent breaths (n+2 and n+3). Thus, swallows reset respiratory rhythm, 

with amplitude changes where θ < 1 indicating phase advances and θ > 1 indicating 

phase delays. The linear regression for θn−1 is y = −1.0088× − 0.9915, confirming 

no anticipation of the phase shift prior to swallows.  

Deviation below or above these parallel lines indicate a phase 

advance or delay, respectively, and the resetting of respiratory 

rhythm. During the control study in Figure 8B, the θn−1 series (y = 

−1.0088× − 0.9915; red data points) closely approximates the 

idealized θn−1 series in Figure 8A (y = −1× − 1), establishing that 

there was no respiratory phase shifting prior to swallows, or 

“anticipation” of the occurrence of a swallow. In contrast, the θn+1 

series in Figure 8B deviated from that in Figure 8A, indicating marked 

phase shifting in the breath following swallows. Furthermore, this 

phase shifting continued through the θn+2 and θn+3 series, suggesting 

the phase shifting in the θn+1 series was not a transient rhythmic 

perturbation, but rather a persistent and complete resetting of the 

respiratory rhythm following a swallow. 

 

The relationship among φ and θn+1 (and other subsequent 

breaths) appears to be nonlinear, with the data apparently “clustering” 

in different groups. To gain further insight into this relationship, we 

separated the swallows based on their occurrence within the 

respiratory cycle. After this separation, it became apparent that any 

phase shifting by early-I and late-E swallows had a predictable and 

consistent effect on θ. Early-I swallows largely did not effect the 

respiratory rhythm, while late-E swallows with a φ < 1 caused phase 

advancing (below idealized line), at a φ =1 did not effect phase, and 

at a φ > 1 caused phase delay (above idealized line; Fig. 9). When 

considering only I and E swallows, a linear regression analysis (y = 

0.0336× + 0.9798) suggested that during the control study, there was 

a near zero slope (0.0336) and y-intercept near 1 (0.9798) indicative 

of complete resetting of respiratory rhythm. In contrast, bilateral 

injections of IA into the KFN of awake goats attenuated respiratory 

rhythm resetting by I and E swallows, as evidenced by the slope of the 

linear regressions for the 1µl (y = −0.2024× + 1.0049) and 10µl (y = 

−0.6493× + 1.0133) IA injections. In other words, the effects of 
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increasing volumes of neurotoxin injections altered the relationship 

between swallowing and the resetting of respiratory rhythm, more 

closely aligning with the idealized θn+1 series (y = −1× + 1) in Figure 

8A. 

 

Figure 9. The phase analysis for n+1 breaths for the control study and for studies 

after 1 and 10µl injection of ibotenic acid (IA) into the Kölliker-Fuse nucleus (KFN) of 

awake goats. The swallows are categorized as inspiration (I; blue), expiration (E; 

orange), early-I (gray), and late-E (purple). A trendline is fitted to I and E swallows. 

Note the slope of the θn+1 trendlines decreases with increasing injection volumes, 

indicating there is less phase shifting (i.e., a more negative slope) for I and E 

swallows. The linear regression for the control, 1µl IA, and 10µl IA studies are as 

follows: 1) y = 0.0336× + 0.9798, 2) y = −0.2024× + 1.0049, and 3) y = −0.6493× 

+ 1.0133. Early-I and late-E swallows phase shift in predictable and consistent 

manners, and were thus not analyzed in this fashion.  

We next determined if any phase resetting that occurred 

persisted in the subsequent respiratory cycles by a θ subtraction 

analysis (Fig. 10). This analysis plots the respective θ subtracted from 

the succeeding θ relative to φ, allowing determination of any θ 

differential between the series found in Figure 8B, for example, in 

addition to those for the 1 and 10µl IA studies. For all study 

http://dx.doi.org/10.1016/j.resp.2010.12.002
http://epublications.marquette.edu/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033492/figure/F8/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033492/figure/F8/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033492/figure/F9/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033492/figure/F10/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3033492/figure/F8/


NOT THE PUBLISHED VERSION; this is the author’s final, peer-reviewed manuscript. The published version may be 
accessed by following the link in the citation at the bottom of the page. 

Respiratory Physiology & Neurobiology, Vol 175, No. 2 (February 15, 2011): pg. 272-282. DOI. This article is © Elsevier and 
permission has been granted for this version to appear in e-Publications@Marquette. Elsevier does not grant permission 
for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier. 

24 

 

conditions, the θn+1 − φ series changed significantly (P < 0.05) with 

respect to φ (Fig. 10), with phase delay by I swallows (φ = 0 – 0.3), 

phase advance by early-E swallows (φ = 0.3 – 0.9), and phase delay 

by late-E swallows (φ > 1.1). However, the θ differential was not 

significantly affected by injection of IA (Fig. 10). Thus, once the 

resetting of respiratory rhythm had occurred, it persisted in 

subsequent breaths. 

 

Figure 10. Injections of ibotenic acid (IA) did not significantly effect the difference 

in cophase (θ) from the previous θ. Irrespective of study conditions, the ‘θn+1 − old 

phase (φ)’ series changed significantly (P < 0.05) with respect to φ by two-way RM 

ANOVA. Specifically, φ’s during the inspiratory phase (≈ φ 0 to 0.3) were phase 

delayed, φ’s during the early expiratory phase (≈ φ 0.3 to 0.9) were phase advanced, 

and φ’s during the late expiratory phase (≈ φ > 1.1) were phase delayed. Note that 

values > 1 were phase delayed, values < 1 were phase advanced, and values ≈ 1 had 

no effect on respiratory timing.  
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4.6 Effects of ibotenic acid injections on breathing with 

respect to old phase 

In the control study, early-I swallows (φ = 0 – 0.1) decreased 

inspiratory time (TI) in the n and n+1 breaths, and decreased TE and 

VT in the n breath (Fig. 11). I swallows (φ = 0.1 – 0.3) increased TI in 

the n breath, decreased TI in the n+1 breath, decreased TE in the n 

breath, and decreased VT in the n and n+1 breaths (Fig. 11). 

Compared to the control study, injection of 1 and 10µl IA significantly 

(P < 0.05) increased TI and attenuated TE and VT decreases in the n 

breath of I swallows (φ = 0 – 0.3) and attenuated TI decreases in the 

n+1 breath of I swallows (φ = 0 – 0.3) (Fig. 11). Under all conditions, 

early-E swallows (φ = 0.3 – 0.9) decreased TE in the n breath, and 

decreased TI and VT in the n+1 breath (Fig. 11). Also under all 

conditions, late-E swallows (φ > 1.1) increased TE in the n breath (Fig. 

11). 
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Figure 11. Injection of either 1 or 10µl ibotenic acid (IA) significantly (P < 0.05) 

increased the inspiratory time (TI) and attenuated the expiratory time (TE) and tidal 
volume (VT) decreases seen in the n breath of inspiratory swallows (≈ φ 0 to 0.25) 
under control conditions. Under all conditions, early-E swallows (≈ φ 0.35 to 0.9) 
decreased TE in the n breath, and decreased TI and VT in the n+1 breath. Also under 
all conditions, late-E swallows (≈ φ > 1.1) increased TE in the n breath. Asterisks 
denote significant (P < 0.05) differences from respective control value.  

5. Discussion 

The results of this retrospective analysis support the concept 

that dorsolateral pontine neurons contribute to coordination of 

breathing and swallowing in an unanesthetized, awake animal. Our 

first hypothesis regarding frequency of occurrence of swallows was 

validated in that the 10µl IA injection into the dorsolateral pons elicited 

a transient increase in swallow frequency, largely paralleling the 

ventilatory response to IA (Bonis et al 2010b). Our second hypothesis 

regarding attenuation of respiratory phase resetting was validated in 

that the slope of the θn+1 linear regression was increasingly negative 

with increasing volumetric IA injections. Our last hypothesis regarding 

ventilatory output parameters was validated in that TI, TE, and VT were 

altered from control conditions in the n and/or n+1 breath(s) during I 

swallows (φ = 0 – 0.3). 

5.1 Limitations 

A potential limitation of this study was its retrospective nature; 

thus, the study was not specifically designed to investigate the 

coordination between swallowing and breathing. However, the study 

design was appropriate to test our current hypotheses. Another 

potential limitation is the absence of swallowing and breathing data 

prior to the surgical implantation of cannula into the pons as 

conceivably cannula implantation alone may have affected 

coordination of breathing and swallowing. However, we have 

previously reported the effects on swallowing and breathing of cannula 

implantation into multiple medullary sites (Feroah T. et al., 2002b; Fig. 

3), where no significant differences were found between pre-cannula 

and post-cannula values. Additional limitations have been described 

elsewhere including an inability to unequivocally define the anatomic 

regions affected by IA injections (Bonis J.M. et al., 2010b); thus, the 
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conclusions need to be general to effects of lesions in the dorsolateral 

pons. 

5.2 Effect of IA on the occurrence of swallows 

The swallowing data reported herein were obtained utilizing 

nearly the same procedures on goats as in two previous studies on 

goats by our laboratory (Feroah T. et al., 2002a and 2002b). The 

occurrence of solitary swallows during the control study (10% of 

breaths) herein was relatively comparable to the previous studies 

(15% of breaths). In this study we found that 10µl but not 1µl 

injections of IA into the dorsolateral pons caused a transient increase 

in the frequency of swallows. This change closely followed the 

temporal pattern of the change in breathing after the IA injections 

(Bonis J.M. et al., 2010b). IA is an excitotoxin, meaning it initially 

binds to glutamate receptors on neurons and excites them as would 

glutamate, but remains irreversibly bound to the receptor ultimately 

causing osmotic destruction of the neuron, creating a neuron-specific 

lesion. During the 5 hours after the IA injections reported herein, it is 

likely the excitatory phase of IA was initially at least dominant. The 

transient nature of the response could be due to IA activation of a 

heterogeneous population of initially excitatory and subsequently 

inhibitory neurons (Bonis J.M. et al., 2010b). Indeed, Gestreau et al., 

reported that glutamate injections into the rostral and caudal KFN 

have stimulatory effects on hypoglossal bursting activity associated 

with swallowing, whereas glutamate injections into the intermediate 

KFN have inhibitory effects on hypoglossal bursting activity associated 

with swallowing (Gestreau C. et al., 2005). An alternative explanation 

is that transient nature of the increase in swallowing is due to removal 

of the IA stimulation as the neurons die due to the neurotoxic effect of 

IA. We interpret the similarity in effects on swallowing and breathing 

frequency of IA injections as indicative of a “modulatory” role of the 

dorsolateral pons to respiratory and swallowing pattern generators 

presumably in the medulla (Jean A. et al., 1996; Kessler J.P. et al., 

1990; Bianchi A.L. et al., 1995; Abdala A. et al., 2009). 
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5.3 Effect of IA on where swallows occur within the 

respiratory cycle 

The time during the respiratory cycle in which the spontaneous 

swallows occurred in the control study described herein differed from 

previous studies. Feroah et al. (Feroah T. et al., 2002a and 2002b) 

found a nearly coequal distribution of swallows during E, late-E, and I 

phases of the respiratory cycle in adult goats, compared to our data 

showing 2% of swallows during E, 68% during late-E, and 25% during 

I. This distribution was very robust as it persisted throughout the 

frequency response to IA injections. Moreover, the present distribution 

is similar to that reported by Dick et al (Dick T.E. et al., 1993) who 

found in decerebrate, vagotomized, paralyzed cats that fictive 

swallows induced by superior laryngeal nerve stimulation occurred 

most prevalently in the E-I transitions. Most studies in adult humans 

(Clark G., 1920; Nishino T. et al., 1985; Smith J. et al., 1989; Shaker 

R. et al., 1992; Preksaitis H. et al., 1992) also found a predominance 

of swallows during E. In addition, Fontana et al (Fontana G.A. et al., 

1992) found in humans that the masseter muscle for mastication was 

activated preferentially at the E-I phase transition. However others 

(Issa F. et al., 1994; Paydarfar D. et al., 1995) found in adult humans 

that most spontaneous swallows occur between late-I and mid-E. 

Criteria used for classifying swallows into the aforementioned 

categories differed slightly between studies, which may account for a 

small part of the differences between studies in the timing of swallows. 

The importance of the timing of a swallow within the respiratory 

cycle is in the potential for aspiration and the efficiency of the two 

behaviors. For example, Paydarfar et al (Paydarfar D. et al., 1995) 

proposed that “respiratory timing influences the vulnerability for 

aspiration during deglutition” and the vulnerability is greatest with 

late-E swallows as the bolus may not have descended sufficiently 

before inspiration to prevent aspiration. On the other hand, we 

propose that late-E swallows maximize efficiency of respiration and 

deglutition as there is normally at rest a pause in airflow during late-E. 

In other words, in goats late-E swallows suggest proper coordination of 

the two behaviors and the most energetically-efficient phase to 

interrupt breathing. 
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5.4 Effects of IA on swallow induced changes in 

ventilatory parameters 

Based upon data presented herein, the effects of swallows on 

ventilatory parameters: 1) was dependent upon where the swallow 

occurred within the respiratory cycle, 2) was restricted to the n and 

n+1 breaths, with no effects in the n−1 and n+2 breaths, and 3) 

manifested primarily in changes to TI and TE, leading secondarily to 

changes in VT. These findings are consistent with the concept that the 

network for swallowing is hierarchically dominant to the network for 

breathing, most dramatically demonstrated by a finding that swallows, 

once initiated continue uninterrupted to completion in a consistent 

pattern (Dick T.E. et al., 1993). Swallows clearly disrupt breathing as 

there is a short pause of airflow and diaphragm activity when a 

swallow occurs during inspiration. Moreover, most swallows during 

expiration terminate this phase. Other examples are as we found, 

early-I swallows attenuated TI, TE, and VT for that breath, and for all E 

swallows, TE was altered in the n breath, with secondary attenuation in 

VT (φ = 0.3 – 0.9) following in the n+1 breath. It is interesting to note 

that while TI and TE both increased and decreased relative to control 

depending upon where the swallow occurred within the respiratory 

cycle, the secondary effect was a decrease and not a compensatory 

increase in VT. This particular finding is again consistent with the 

reasoning that swallows are hierarchically dominant to breathing, and 

that VT and presumably gas exchange are compromised in deference 

to the effects of swallows on timing, consistent with the observations 

of others (Feroah T. et al., 2002a and 2002b; Paydarfar D. et al., 

1995). Finally, the 10µl IA injection reduced the normal swallow 

induced lengthening of TE and TI which exacerbated the swallow-

induced decrease in VT, suggesting that this perturbation enhanced the 

normal dominance of the swallow pattern generator over the 

respiratory pattern generator. 

5.5 Effects of IA on swallow induced resetting of the 

respiratory rhythm 

During the control study, E and I swallows caused a complete 

resetting of the respiratory rhythm. However, 1 and 10µl IA injections 

into the dorsolateral pons progressively attenuated this phase shift 
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(Fig. 9). Operating within the concept that the network for swallowing 

is normally dominant to the network for breathing, it follows that IA 

injections preferentially modulated the network controlling swallowing, 

weakening the dominance of a swallow to reset respiratory rhythm. In 

other words, while swallows were not completely inhibited, their ability 

to reset the respiratory rhythm was not as robust as under control 

conditions, indicating that dorsolateral pontine neurons are normally a 

major determinant of this component of the hierarchical dominance of 

the swallowing network. This effect contrasts to the IA induced 

augmented dominance in swallow pattern generation described above. 

5.6 The relationship between the neural networks for 

swallowing and breathing 

The central pattern generator for swallowing has classically been 

thought of as a group of neurons dedicated to this particular behavior 

(Bianchi A.L. et al., 1995; Jean A. et al., 1996). Recent thinking favors 

a more distributed neural network, or holarchical system, capable of 

reorganizing such to provide motor output for multiple, hierarchically 

organized and coordinated behaviors, including swallowing and 

breathing (Bolser D. et al., 2006). Our unique, intact preparation 

allows observation of spontaneous swallows amidst other 

physiologically normal behaviors, with the additional ability to 

neurotoxically lesion and then study the animal during wakefulness. 

The capacity of this preparation to observe both the normal and 

disrupted neural network underlying swallowing and breathing 

facilitates meaningful extrapolations to both normal humans and 

patients suffering from dysphagia. 

The data reported herein are consistent with the concept of a 

modulatory role for dorsolateral pontine neural circuits subserving both 

swallowing and breathing. Since 10µl IA injection strengthened 

swallow pattern generation over respiratory pattern generation but 

had opposite effect on the normal swallow dominance in rhythm 

generation, it appears there is differential dorsolateral pontine 

modulation to two distinct aspects of the neural circuit. In addition, we 

find no evidence to support the concept of a single central swallow 

pattern generator within or near the dorsolateral pons, and our 

findings are not inconsistent with the concept that the dorsolateral 

http://dx.doi.org/10.1016/j.resp.2010.12.002
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pons is part of a holarchical network regulating both swallowing and 

breathing. These data do not provide insight into the specific substrate 

(neuronal subpopulation) within the dorsolateral pons contributing to 

these effects, but the data of Dick et al (Dick T.E. et al., 1993) and 

Dutschmann and Herbert (Dutschmann M. et al., 2006) implicate 

postinspiratory KFN neurons as contributors to respiratory phase 

transitions and interactions of swallowing and breathing. 
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