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ABSTRACT 

DETECTION OF OUTLIERS IN TIME SERIES DATA 
 
 
 

Samson Kiware, B.A. 
 
 

Marquette University, 2010 
 
 
 

This thesis presents the detection of time series outliers. The data set used in this work 
is provided by the GasDay Project at Marquette University, which produces mathematical 
models to predict the consumption of natural gas for Local Distribution Companies (LDCs). 
Flow with no outliers is required to develop and train accurate models. GasDay is using 
statistical approaches motivated by normally distributed samples such as the 3 − σ rule and the 
5 − σ rule to aid the experts in detecting outliers in residuals from the models. However, the 
Jarque-Bera statistical test shows that the residuals from the GasDay models are not normally 
distributed.  

We present an explanation of Density Based Spatial Clustering of Applications with 
Noise (DBSCAN) and how it is used to detect time series outliers. We have introduced a new 
application for the DBSCAN algorithm by adapting it to detect outliers in natural gas flow. The 
performance of DBSCAN is compared with GasDay’s existing technique. Five data sets from 
temperature-sensitive operating areas with identified outliers and 1000 data sets with synthetic 
outliers are used in the evaluation process. The 1000 synthetic data sets are prepared using the 
same empirical distribution as one of the identified data set. This work indicates that DBSCAN 
has shown some improvement in detecting outliers over GasDays existing technique and merits 
further exploration.  
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CHAPTER 1

INTRODUCTION TO NATURAL GAS FLOW

Chapter one presents the GasDay project (1; 2) at Marquette University, which

has provided the data set (natural gas flow) used by this thesis. It provides a

background for outlier detection in gas flow and discusses GasDay’s mathematical

models and residuals from the models. We give mathematical and business statements

of the problem to be considered by this work. The chapter introduces the performance

evaluation of an outlier detection technique, and the organization of the rest of the

thesis is provided.

1.1 The GasDay Project

GasDay Project at Marquette University produces mathematical models to

predict the consumption of natural gas for Local Distribution Companies (LDCs).

Using inputs such as past weather data, previous flow, and current weather forecasts,

GasDay models make accurate gas flow forecasts that save LDCs time, money, and

effort (1). The Gasday project receives daily flow files from regional sets of customers.

We call these regional areas operating areas. The GasDay project works with two types
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of regional areas: temperature-sensitive and non-temperature-sensitive operating areas.

Temperature-sensitive operating areas use natural gas primarily for heating space,

while customers in non-temperature-sensitive operating areas use natural gas primarily

for other purposes, especially commercial or industrial processes. In this thesis, we

refer to temperature-sensitive and non-temperature-sensitive operating areas by the

generic names of JOTO and BARIDI, respectively.

We present several figures to help visualize the relationship between temperature

and flow for both types of operating areas. First, consider temperature and flow time

series. Figure 1.1 shows a temperature time series, showing higher temperatures in the

summer and lower temperatures in the winter. Figure 1.2 shows corresponding time
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Figure 1.1: Temperature time series plot.
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series for natural gas flow, with higher consumption during the winter and lower

consumption during the summer. Figure 1.3 shows flow versus 65◦F minus daily

temperature (Heating Degree Day, HDD) for a JOTO (temperature sensitive). It shows

significant variation of gas consumption versus HDD for an operating area. Flow is

nearly constant and then starts to increase linearly with increasing HDD.
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Figure 1.2: Gas flow for a JOTO.

Figure 1.4 shows gas flow for a typical BARIDI (non-temperature sensitive)

composed primarily of industrial customers. The consumption is not higher during the

winter and lower during the summer, but varies throughout the year. Figure 1.5 does

not show significant variation of gas consumption versus HDD. We cannot observe a
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Figure 1.3: Scatter plot of flow consumption vs, HDD for a typical JOTO
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Figure 1.4: Gas flow for a BARIDI

linear relationship similar to that in Figure 1.3 because natural gas consumption is not

highly affected by temperatures for industrial customers comprising a BARIDI. These

plots help us understand the data sets used in this work as provided by the GasDay

project.

This thesis presents techniques used to detect outliers in time series data. Daily

flow (real-time data) and weather are required as inputs into GasDay models

(explained in Section 1.3) when packaged and ready to use by customer. We develop a

technique that can be implemented by the GasDay project to detect incorrect data in

both historical and real-time data. The focus is natural gas flow data for operating

areas showing significant variation of gas consumption with temperature as shown in

Figure 1.3.

The rest of this chapter is organized as follows. In Section 1.2, we provide the
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Figure 1.5: Scatter plot of flow consumption vs, HDD for a BARIDI



7

background of outlier detection in gas flow. GasDay’s mathematical models are

presented in Section 1.3. The statement of the problem addressed by this research is

stated in Section 1.4. Section 1.5 introduces the evaluation data set used to evaluate

the performance of outlier detection techniques.

1.2 Outlier Detection in Gas Flow

In this Section, we discuss the problem of outlier detection in natural gas

consumption time series. An outlier is an entry in a data set that is anomalous with

respect to the behavior seen in the majority of the other entries in the data set (3; 4;

5). The data sets used in this thesis are provided by the GasDay project. Correct data

is required to develop and train accurate models. There is not a clear way of knowing

correct flow to be able to give a clear definition of a true outlier in flow data processed

by the GasDay project. For example, suppose there is a flow value (s) in a data set

that is high compared to the rest of the flow values. Using the statistical definition of

an outlier, (s) is considered an outlier. However, it might be that on that day, it was

very cold. Since consumption of natural gas is highly affected by temperature, we

expect a cold day to have higher flow than days with higher temperatures. Therefore in

this thesis, we assume that flow close to historical patterns followed by the majority of

the data are the correct data. Those data points that lie sufficiently far from their

immediate neighbors are outliers after considering all factors affecting consumption of

natural gas.
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The outliers in flow are mostly caused by errors in data file processing or

because of faulty meter measurements. Some of the outliers observed in natural gas

flow received at the GasDay project include (see Figures 1.6 and 1.7):
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Figure 1.6: Time series flow outliers as observed by the GasDay project

• Single abnormal flow measurement, points circled in red;

• Multiple abnormal flow measurements even up to a month, points circled in
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yellow;

−20 0 20 40 60 80 100
0

200

400

600

800

1000

1200

65 − OF

F
lo

w
 (

D
th

)

Figure 1.7: Flow outliers as observed by the GasDay project

• Same abnormal repeated flow values, points inside the green rectangle;

• Flow value at zero, points circled in green; and
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• Abnormal flow values as a result of events (hurricane, storms).

We have presented temperature and flow time series. The presentation has also shown

flow consumption in a JOTO is highly affected by temperature. The next section

presents mathematical models with an explanation of other factors that affect the

consumption of natural gas flow.

1.3 GasDay’s Mathematical Models

This section provides a brief discussion of the mathematical models used by the

GasDay project to predict the consumption of natural gas flow. There are two types of

models. One type deals with numeric and nonnumeric data types known as logical

models. The other type, mathematical models, only deals with numeric data types (6).

Mathematical models are described using mathematical operators to relate inputs and

desired outputs by mathematical equations (7). Mathematical model types include

fixed models, parametric models, and nonparametric models. Parameters are unknown

quantities that characterize a model. The parametric model explicitly uses

mathematical equations to characterize the structure of the relationship between inputs

and outputs. The GasDay projects uses parametric mathematical models to predict

the consumption of natural gas (2). Some of the inputs used include Heating Degree

Days with a reference temperature of 65 (HDD65), HDD with a wind correction

(HDDW65), Cooling Degree Days (CDD65), and the base load (βo). The indices for
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the cosine and the sine of the day of the week (DOW) and the day of the year (DOY)

also are used (6). For example, Equation (1.1) shows the relationship between the

model parameters for the multiple linear regression modeling technique as used by the

GasDay project. Let each βj be a parameter that specifies how the output is related to

the kth input, and let xk,j represent the kth input factor on day k. Then estimated flow

ŝk = βo +
∑

βkxkj. (1.1)

Equation (1.2) is said to be simple, linear in the parameters (βo), and linear in

the predictor variable (Xk), with an error term εk;

sk = βo + β1Xk + εk. (1.2)

The error term represents the residuals from the models as explained in the next

subsection.

1.3.1 Model Residuals

One approach to outlier detection is to fit a model of the desired form to the

data and then examine the residuals, looking for points that are poorly predicted by

the model (6; 8). We use the same terms used by GasDay’s models to define the

residual, defined as the difference between the flows estimated by the GasDay models
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Figure 1.8: Residuals from the models for a JOTO

and measured flows. Let ŝk be the flow estimated by the GasDay model and sk be the

measured flow for kth day. The residual (or error) is

rk = ŝk − sk.

Figure 1.8 shows time series of residuals for a JOTO from the models that

estimates flow using inputs including HDD65, HDDW65, CDD65, βo, Cosine and Sine

of DOW, Cosine and Sine of DOY, and Holidays. In the next section, we argue that

the residuals from the GasDay models are not normally distributed.
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Figure 1.9: Histograms showing distribution of residuals for four JOTO compared with
a normal distribution.
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1.3.2 Statistical Test

This subsection explains statistical tests applied to the residuals from GasDay

models.

Skewness is a measure of the asymmetry of the probability distribution of a

real-valued random variable (9). The skewness of a set of values measures the degree to

which the values are symmetrically distributed around the mean. We know the ith

moment about the mean (or ith central moment) of a real-valued random variable X is

the quantity µi := E[(X −E[X])i], where E is the expectation operator (9). If µi is the

third moment about the mean µ, and σ is the standard deviation, skewness of a

distribution is (10)

γ1 =
µ3

σ3
. (1.3)

Kurtosis is a measure of the peakedness of the probability distribution of a

real-valued random variable (11). Kurosis is a normalized form of the fourth central

moment µ4 of a distribution (10),

g2 =
µ4

µ2
2
. (1.4)

The Jarque-Bera (JB) statistical test is used to test if a given set of samples

come from a normal distribution (12). Bera et al. (13) define the Jarque-Bera test as a

measure of departure from normality, based on the sample kurtosis and skewness. If we
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let n be the number of observations, γ1 be the sample skewness, and g2 be the sample

kurtosis (13),

JB =
n

6

(
γ2 +

(g2 − 3)2

4

)
. (1.5)

MATLAB has implemented the Jarque-Bera test in a function called “jbtest”

whose null hypothesis is that the sample X comes from a normal distribution. The test

returns the value of 1 if it rejects the null hypothesis at the 5% significance level and

the value of 0 if it cannot (14).

Chapter 2 explains the existing GasDay technique for detecting outliers. It uses

techniques that are motivated by normally distributed data sets. However, the

Jarque-Bera test shows that the residuals from the GasDay models are not normally

distributed. The MATLAB function “jbtest” returns a value of 0 for the model

residuals of all the operating areas shown in Figure 1.9.

Histograms plots also can be used to illustrate the distribution of a data set.

For example, Figure 1.9 illustrates that residuals for operating areas often are not

normally distributed. The red lines are normal distributions. The empirical

distributions do not fit the red lines.

The JB statistical test and visualization from histograms conclude that the

residuals of the GasDay flow models are not normally distributed. One motivation of
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this work is to find techniques to detect outliers in time series that are not motivated

by normally distribution samples. The next section gives the statement of the problem

considered by this research in both mathematical and business forms.

1.4 Statement of the Problem

This work addresses a problem which can be stated in a business or in a mathematical

form:

• Business statement: Develop techniques that can be implemented in GasDay

to detect outliers in both historical and real-time data. The focus is natural gas

flow for temperature-sensitive operating areas.

• Mathematical statement: Let x1, ..., xn be the points of a time series data set

X, and let K be a set of points (K ⊂ X) that follows the historical pattern. We

define an outlier as a point p in X not belonging to K. Develop a technique to

find p from X.

1.5 Introduction to Performance Evaluation

An outlier detection technique presented in this thesis is evaluated against

GasDay’s existing technique. For this evaluation approach to work, we need data sets

for which outliers are known. In practice, we never know for sure because of faults in
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flow measurements. Also, when asked, sometimes operating area personnel cannot say

for sure which flow values are true outliers.

Two strategies are used to generate the evaluation data sets. First, we use real

data with outliers identified by experts. Second, we use empirical distributions of

observed outliers to make synthetic outliers. More details on the use of these strategies

are provided in Chapter 3. We construct evaluation data sets that contain a

combination of a single outlier, multiple outliers, repeated outliers, and flow values at

or near zero.

The following metrics are used in the fields of science, engineering, industry, and

statistics to evaluate the performance of a classification technique (3):

True Positive (TP) - an outlier is classified correctly as an outlier.

False Positive (FP) - correct value is classified as an outlier.

True Negative (TN) - correct value is classified as a correct value.

False Negative (FN) - an outlier is wrongly classified as a correct data.

Using metrics TP, FP, TN, and FN, we define four performance metrics (3; 15):

• Accuracy is the degree of closeness of measurements of a quantity to its actual

value.

A =
TP + TN

TP + TN + FN
. (1.6)

• Precision is a measure of exactness.
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P =
TP

TP + FP
. (1.7)

• Recall is a measure of completeness.

R =
TP

TP + FN
. (1.8)

• F1 measures the balance between precision and recall; it is a harmonic mean

between them.

F1 =
2 · P ·R
P + R

. (1.9)

Using both the proposed and the existing GasDay techniques, Accuracy, Precision,

Recall, and F1 measures are computed for each of the evaluation data sets. The

performance of each technique is presented in Chapter 4.

1.6 Organization of Thesis and Summary

Chapter 2 surveys the literature discussing various time series outlier detection

techniques. Chapter 3 presents Density Based Spatial Clustering of Applications with

Noise (DBSCAN) applied specifically to natural gas flow. In Chapter 4, results are

presented to show the performance of GasDay’s existing technique and our DBSCAN

technique. Chapter 5 serves as the conclusion to the thesis and describes future work
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involving time series outlier detection techniques.
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CHAPTER 2

TIME SERIES OUTLIER DETECTION TECHNIQUES LITERATURE

SURVEY

This chapter provides a summary of the literature discussing various outlier

detection techniques. It covers statistical and clustering-based outlier detection

techniques. It also outlines different Density Based Spatial Clustering of Applications

with Noise (DBSCAN) applications. The chapter starts with the discussion of time

series outliers.

2.1 Time Series Outliers

Figure 2.1 shows daily natural flow consumption in Decatherms (Dth) over a

period of one year for one temperature-sensitive operating area (JOTO) with 369 daily

flow points. This data set is part of an operating area selected randomly among other

operating areas. Flow starts on Jan 6, 2008, and ends on Jan 09, 2009. All data values

fall between 80,000 Dth and 580,000 Dth. There are isolated flow points on Feb 15th,

2008, and Aug 15th, 2008, (points marked in red) that lie sufficiently far from their

immediate neighbors to qualify as time series outliers. Looking at the total range of
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data variation, these points are not extreme relative to the range of variation, but they

are extreme relative to the variation observed by immediate neighbors (locally).

Specifically, time series outliers are data points that do not follow the general

(historical) pattern of regular variation seen in the data sequence (3; 4; 5).
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Figure 2.1: Daily flow illustrating the phenomenon of time series outliers

GasDay wants to detect errors in their data sets. A true flow value might be

1000 Dth, and the value reported can be 1001 Dth, which is erroneous. We have no

hope of detecting that. We settle for detecting outliers. Most outliers observed by

GasDay result from human error during manual entry and manual intervention or from

file processing error and equipment data recording errors. One consequence of outliers



22

in a data set is a cost incurred by not detecting the outliers.

Data mining techniques are used to remove or replace outliers from the data set

to make it clean. Clean, correct data is required to train high quality models. The

presence of outliers affects the training process resulting in poor models (45).

Therefore, it is important that these outliers are detected and removed or replaced

with modeled values from the data sets. The next section presents GasDay’s existing

technique for detecting outliers using approaches motivated by normally distributed

samples.

2.2 Detecting Outliers Using Approaches Motivated by Normally

Distributed Samples

The GasDay project uses approaches that are motivated by normally

distributed samples to detect outliers in residuals from models. The Gaussian (normal)

distribution frequently is used in statistics and analysis. We use it to describe a simple

approach to statistical outlier detection used by the GasDay project. The normal

distribution N(µ, σ) has two parameters, the mean (µ) and the standard deviation

(σ) (3; 38). Figure 2.2 shows the density function of the distribution with (µ = 1) and

(σ = 0). In (3), Tan states “that there is little chance that an object (value) from an

N(0, 1) distribution will occur in the tails of the distribution.” Given a constant value c

such that prob(|x| ≥ c), Tan defines an outlier as an object with attribute value x from
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Figure 2.2: Probability density function of a Gaussian distribution N(1,0)

a Gaussian distribution with µ = 0 and σ = 1 if

|x| ≥ c. (2.1)

In general, prob(|x| ≥ c) decreases rapidly as c increases. An object that lies beyond

the central area between ±3 standard deviations often is considered to be an outlier.

The GasDay project uses an absolute measure ±3σ or ±5σ thresholds to detect outliers

in residuals from the models as an initial step to help an expert. The GasDay expert(s)

visualize the points indicated as outliers and decide whether they should be considered

as outliers. For example, Figure 2.3 shows flow points marked as outliers (red X) and

flow modeled points (red circle) as displayed by GasDay’s existing technique. Using

visualization, an expert decides which red Xs should be considered as outliers.
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Figure 2.3: Time series and scatter plots display outliers detected by the existing GasDay
technique

Although the approaches used are those motivated by normally distributed data sets,

as explained in Chapter ??, residuals from the models are not normally distributed.

That is why the outliers detected might not really be outliers. Also, most operating

areas do not have negative flows. For example, if the actual flow value for a given day

is 500 Dth, the lowest the model can predict is 0, making an error of -500 Dth, while

positive error made can be unbounded. The error made in the negative direction is not

the same as the error made in the positive direction. Hence, the use of ±3σ or ±5σ for

both tails in the distribution of residuals also leads to false positive and false negative
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classifications. The identified and approved outliers are replaced with values estimated

by the model. Also, a relative measure approach is used where flow value less than half

the modeled value or more than twice the modeled value is flagged as an outlier. Even

if GasDay uses statistical approaches motivated by normally distributed samples to

detect outliers, it does not depend entirely on results obtained by those approaches.

The GasDay expert(s) are required to approve the results.

There several robust statistical methods used to detect outliers as explained by

Pearson in (40). The Hampel identifier is regarded as one of the most robust outlier

identifiers (40). By replacing the mean (µ) with the median and the standard deviation

(σ) with the Median Absolute Deviation (MAD), the Hampel identifier is obtained (6;

40). GasDay lab uses a variant of Hampel outlier detection in one of its

customer-specific services (6).

The next section provides an overview of non-statistical clustering techniques

used to detect outliers. One of these techniques is used by this work as a different and

more effective approach that can be used by the GasDay project to detect outliers.

2.3 Clustering Algorithms

In this section, we provide a brief overview of clustering algorithms. Cluster

analysis is the process of assigning a set of observations into clusters so that

observations in the same cluster have similar features (43). Clustering is the task of
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grouping similar points together with respect to distance or, equivalently, a similarity

measure (25). Most clustering algorithms are based on one of the following:

• Hierarchical techniques organize data in a nested sequence of groups displayed in

a form of a tree structure called a dendrogram. It is divided into two types;

agglomerative, in which one starts at the leaves and successively merges clusters

together; and divisive, in which one starts at the root and recursively splits the

clusters (31; 32).

• Grid-based techniques quantize the object space into a finite number of cells that

form a grid structure. Each object falls into a grid cell whose corresponding

attribute intervals contain the values of the object (3; 36).

• Model-based techniques assume that the data were generated by a model and

tries to recover the original model from the data. The model recovered from the

data then defines clusters and an assignment of data to clusters (3).

• Graph-based techniques represent data objects using nodes. The proximity

between two objects is represented by the weight of the edge between the

corresponding nodes (3).

• Density-based algorithms typically regard clusters as dense regions of objects in

the data space that are separated by regions of low density. They find and

separate regions of high density from low-density regions. Density-based

algorithms make it easy to discover arbitrary clusters (25; 35).
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2.3.1 Clustering-Based Techniques for Outlier Detection

Clustering finds groups of strongly related objects. Outlier detection finds

objects that are not strongly related to other objects. Thus, an object is a

cluster-based outlier if the object does not belong strongly to any cluster (3). In

detecting outliers, small clusters that are far from other clusters are considered to

contain outliers. This approach is sensitive to the number of clusters selected. It

requires thresholds for the minimum cluster size and the distance between a small

cluster (with outliers) and other clusters. If a cluster is smaller than the minimum size,

it is regarded as a cluster of outliers.

This thesis presents a density-based clustering technique known as Density

Based Spatial Clustering of Applications with Noise (DBSCAN). The detection of time

series outliers using the DBSCAN technique is discussed in detail in the next section.

2.4 Density Based Spatial Clustering of Applications with Noise

(DBSCAN)

In this section, we present a density-based clustering technique which estimates

similarities between points from a data set with respect to distance and partitions

them into subsets known as clusters, so that the points in each cluster share some

common trait (42). We use the clustering technique used in data mining known as

Density Based Spatial Clustering of Applications with Noise (DBSCAN).
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Figure 2.4: Illustrates DBSCAN’s key concepts: core (A), border (B), and noise (C)
points

DBSCAN is designed to discover the clusters and the noise from a given set of

points by classifying a point (i) inside of a cluster (core point), (ii) in the edge of a

cluster (border point), or (iii) as neither a core point nor a border point (noise) (3).

DBSCAN requires two important parameters; Eps, which is a specified radius around a

point to other points, and MinPts, which is the minimum number of points required

to form a cluster. Further discussion how these parameters are selected is given in

Section 2.3.2. In the next subsection, we provide the key concepts to help understand

the DBSCAN algorithm.
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2.4.1 Key Concepts

The following definitions are the key concepts in understanding the DBSCAN

algorithm::

Definition 1 (16) The Eps− neighborhood of a point p, denoted by NEps(p), is

defined by NEps(p) = {q ∈P | dist(p,q) <= Eps }.

A point is a core point if it has more than a specified minimum number of points

required to form a cluster (MinPts) within an Eps− neighborhood. These are points

that are in the interior of a cluster. A border point has fewer than MinPts within an

Eps, but it is in the Eps− neighborhood of a core point. A noise point is any point

that is neither a core point nor a border point. For example, given MinPts = 4 and

Eps = 1 as illustrated in Figure 2.4 (3), A is a core point, B is a border point, and C is

a noise point (16).

Definition 2: (3) The density-based approach is an approach that regards clusters as

regions in the data space in which the objects are dense and separated by regions of

low object density (outliers).

Definition 3: (16) Considering points p1 and p2 from Figure 2.5, p1 is directly

density reachable from p2 if

1. Points are close enough to each other such that dist(p1,p2) < Eps, as measured

using Euclidean distance or using any other distance measure.
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2. There are at least MinPts points in its neighborhood. For example, if MinPts =

6, then p1 must have at least 6 points as its neighbors.

This concept of direct density-reachability is shown by Figure 2.5. In this case,

the figure shows that p1 is density reachable from p2 because the dist(p1,p2) < Eps,

and p1 has enough points as its neighbors.

p
1

p
2

Figure 2.5: Point p1 is density reachable from p2

Definition 4: (16) A point p1 is density reachable from a point p2 wrt. Eps and

MinPts if there is a chain of points p1, ..., pn, such that pi+1 is directly

density-reachable from pi.

Definition 5: (16) A point p0 is density-connected to a point pn wrt. Eps and MinPts

if there is a point q such that both p0 and pn are density-reachable from q wrt. Eps

and MinPts.
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The scatter plot of consumption vs. HDD in Figure 2.6 illustrates the

density-connectivity concept. A cluster is a set of all density-connected points. In the

next section, we present the DBSCAN algorithm.
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Figure 2.6: A point p0 is density-connected to a point pn

2.4.2 The Algorithm

In general, using parameters Eps and MinPts, DBSCAN finds a cluster by

starting with an arbitrary point p from a set of points and retrieves all points

density-reachable from p wrt. Eps and MinPts. Suppose p is a core point, if p has

neighboring points greater than or equal to the value of MinPts, a cluster is started.

Otherwise, the point is labeled as an outlier, and a new unvisited point is retrieved and
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processed leading to the discovery of a further cluster of core points (3). A point can

be in a cluster, and it can be an outlier. After all the points have been visited, any

points not belonging to any clusters are considered outliers. The formal details are

given in Table 2.1, and Algorithm 1 presents MATLAB-like pseudocode for the

DBSCAN algorithm (16).

Table 2.1: DBSCAN Algorithm

0. Select the values of Eps and MinPts for a data set P to be clustered.
1. Start with an arbitrary point p and retrieve all points density-reachable.
2. If p is a core point that contains at most MinPts points
2.1 A cluster is formed,
2.2 Otherwise, label p as an outlier.
3. A new unvisited point is retrieved and processed leading to the discovery
of further clusters of core points.
4. Repeat step 3 until all the points have been visited.
5. Label any points not belonging to any cluster as outliers.
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Algorithm 1

%Aim:

Clustering the data with Density-Based Scan Algorithm with Noise (DBSCAN)

%Input:

SetOfPoints (P) - data set (m,n); m-objects, n-variables;

Eps - neighborhood radius

MinPts - minimal number of objects required to form a cluster

-------------------------------------------------------------------------

%Output:

A vector specifying assignment of a point to certain cluster.

E.g 1st and 3rd points can be in cluster

#1 and 2nd and 4th points can be in cluster #2, etc

-------------------------------------------------------------------------

function [IsPointAnOutlier] = DBSCAN(SetOfPoints, MinPts, Eps)

SetOfPoints = Normalize(SetOfPoints)

Clusterid = 0

FOR each unvisited point p in a SetOfPoints

mark p as visited

PListOfNeigbors = getNeighbors(SetOfPoints, P, Eps)

IF sizeof(PListOfNeigbors) < MinPts

mark p as OUTLIER

ELSE

Clusterid = next cluster

expandCluster(SetOfPoints, P, N, Clusterid, Eps, MinPts)

ENDIF

ENDFOR

ENDDBSCAN

function expandCluster(SetOfPoints, P, N, Clusterid, Eps, MinPts)

add p to cluster Clusterid

WHILE there is unvisited point p’ in ListOfNeighbors

mark p’ as visited

PListOfNeigbors’ = getNeighbors(p’, Eps)

IF PListOfNeigbors’ <= MinPts

PListOfNeigbors = PListOfNeigbors joined with PListOfNeigbors

add p’ to cluster Clusterid

ENDIF

ENDWHILE

RETURN

ENDEXPANDCLUSTER

function = getNeighbors (SetOfPoints, P, Eps)

RETURN Eps-Neighborhood of p in SetOfPoints as a list of points

ENDGETNEIGHBORS
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DBSCAN has several advantages including its ability to find arbitrarily shaped

clusters. It does not require the user to know the number of clusters in the data in

advance. DBSCAN is very robust to outliers and requires just two parameters, Eps

and MinPts (3; 16). However, DBSCAN is highly affected by the distance measure

used in finding the distance between two points. Its effectiveness in clustering data

points depends on the distance measure used. The Euclidean distance measure is

commonly used, but any other distance measure can be used. Also, before computing

the distances between two points with different units, the data points must be

normalized (42).

2.4.3 Selecting the Parameters Eps and MinPts

The DBSCAN algorithm requires two user-defined parameters Eps and

MinPts. The values of these parameters have a big impact on the performance of the

DBSCAN (16; 25). For instance, if Eps is large enough, then all points form a single

cluster, and no points are labeled as outliers. Likewise, if Eps is too small, majority of

the points are labeled as outliers. There are several approaches that can be used to

determine the values of Eps and MinPts.

The first approach uses the parameters specified by the experts. The

parameters are provided by an expert who is very familiar with the data set to be

clustered. An expert can provide the parameters and run the DBSCAN algorithm,

which provides graphs showing which points from the data sets are considered to be
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outliers. Using visualization, an expert looks at the graphs, adjusts the parameters,

and runs the algorithm until he/she gets good results. Good results are determined by

the expert knowledge of the data set. An expert selects parameters that can be used as

default parameters for that data set.

The k − dist approach looks at the behavior of the distance from a point to its

kth nearest neighbor. If k is not larger than the cluster size, the value of k − dist is

small for points that belong to the same cluster. The k − dist for points not in the

cluster is relatively large. The idea is to pick a value of k to be the MinPts. The

following steps are performed to find the value of k:

• Compute the k − dist, (distance to its kth nearest neighbor) for each of the data

points.

• Sort k − dist measures in increasing order.

• Plot the sorted k − dist values. We expect to see a sharp change at the value of

k − dist that corresponds to a suitable value of Eps.

For example, Figure 2.7 shows sorted distances of the fourth nearest neighbor

(k = 4) from the same operating area discussed in Section 2.1 with 369

two-dimensional normalized points. In this example, MinPts is 4, and Eps is

approximately 2 (the value corresponding to the knee of the curve) (16).

DBSCAN algorithm has not been used previously to detect outliers in natural
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Figure 2.7: k − dist plot for a JOTO with 369 two dimensional points

gas flow. Searching various academic databases do not yield any papers related to the

use of DBSCAN in detecting outliers in natural gas flow. The last section in this

chapter outlines some of the DBSCAN applications discussed in the literature.

2.5 DBSCAN applications

This section lists several DBSCAN applications discussed in the literature:

Internet traffic classification using DBSCAN (18). The authors apply DBSCAN
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algorithm as a machine learning technique for Internet traffic classification. A technique

which overcomes some short-comings of traditional classification technique which

involves the security and privacy. Authors lists three merits of the DBSCAN algorithm:

(1) minimal requirements of domain knowledge to determine the input parameters; (2)

discovery of clusters with arbitrary shapes; (3) good efficiency on large data sets.

Evaluation of Fuzzy ARTMAP using DBSCAN in a VLSI Application (30). The

authors present a new model for partitioning a circuit using DBSCAN and a fuzzy

ARTMAP neural network. Analysis of the investigational results proved that the fuzzy

ARTMAP with a DBSCAN model achieves greater performance than only a fuzzy

ARTMAP in recognizing sub-circuits with the lowest amount of interconnections

between them.

NET-DBSCAN: Clustering the nodes of a dynamic linear network (33). The

authors presents a new DBSCAN method known as NET-DBSCAN, a method for

clustering the nodes of a linear network whose edges may be temporarily inaccessible.

Although the applications presented are not related to the detection of flow time

series outliers, they provide insights on how the DBSCAN algorithm can be adapted to

natural gas flow. For example, the three merits outlined in (18) helped theoretically to

believe that DBSCAN can be adapted to detect outliers in flow time series.

Chapter 2 has provided a literature survey for statistical and clustering-based

outlier detection techniques. In Chapter 3, we present two strategies used to evaluate
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the performance of DBSCAN and GasDay’s existing outlier detection techniques. All

the classes developed in MATLAB used by this work are presented in this Chapter.

More important, we propose a new DBSCAN application by adapting it specifically for

natural gas flow time series data.
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CHAPTER 3

DENSITY BASED SPATIAL CLUSTERING OF APPLICATIONS WITH

NOISE ADAPTED TO NATURAL GAS FLOW

Chapter 2 presented several outlier detection techniques, including the technique

known as Density Based Spatial Clustering of Applications with Noise (DBSCAN). In

Chapter 3, we present two strategies used to evaluate the performance of DBSCAN

and GasDay’s existing outlier detection techniques. More importantly we describe how

DBSCAN is adapted specifically for natural gas flow time series data. The entire outlier

detection process developed in this thesis is presented as well. The chapter starts with

the discussion of evaluation of the performance of outlier detection algorithms.

Table 3.1: Definitions for notational used in Chapter 3

Notation Definition
n number of days of data
δT inter-arrival times between outliers
x a value of a uniform random variable
X a data set with synthetic outliers
Y a historical data set with identified outliers
Z a real time data set
σ standard deviation
MAD mean absolute deviation
r residual of JOTO
t date
P set of points t and r
d distance
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3.1 Evaluating an Outlier Detection Algorithm

In this Section, we discuss how we will evaluate the performance of DBSCAN

and GasDay’s existing techniques. For this evaluation approach to work, we need data

sets for which outliers are known so we can assess how well each technique finds

outliers. To compare the performance of both techniques in detecting outliers, two

strategies are used, real and synthetic evaluation data sets. The data used in both sets

are daily residuals from the GasDay models of natural gas flow as discussed in

Chapter 2.

3.1.1 Real Evaluation Data Sets

Real evaluation data sets are created by experts from the GasDay project. From

the raw flow files of different operating areas, there is no way of knowing which flow

values are outliers. In practice, we never know for sure. An expert, (Dr. Ron Brown,

Director), uses the existing technique discussed in Section 2.2 to specify which flow

values are believed to be outliers. These outliers are not removed from the data set; we

call them identified outliers. They are the outliers detected by the existing technique

and approved by the expert. An advantage of using this data set is that we are working

with real data. This data set provides more confidence than synthetic data sets

because if a technique can detect outliers in this data set, same technique should work

the same with any other real data sets. One disadvantage is not knowing for sure that

the identified outliers are true outliers. Five operating areas with identified outliers are

used to evaluate the performance of both techniques, and the results are presented in

Chapter 4.



41

3.1.2 Synthetic Evaluation Data Sets

A second evaluation strategy uses synthetic evaluation data sets containing

synthetic outliers. With these evaluation data sets, we know for sure which values are

really outliers because we injected them. The synthetic outliers introduced in these sets

have the same empirical distribution as identified outliers from operating areas. If a

technique can detect these synthetic outliers, it also detects true outliers from

operating areas. We can make as many data sets as we wish. Its disadvantage is that

we are not working on exactly the same outliers coming from operating areas. We have

developed a class in MATLAB to make 1000 different synthetic evaluation data sets

that are used to evaluate the performance of DBSCAN and GasDay’s existing

techniques. The next subsection discusses the process of developing synthetic

evaluation data sets using the same empirical distribution as identified outliers.

3.1.3 Developing a Synthetic Evaluation Data Set

We wish to create synthetic evaluation data sets with the same empirical

distribution as real evaluation data sets (described in Section 3.1.1). To show both

data sets have the same empirical distribution, we need to show they are similar in

some sense. Similarity between the two is shown using selected statistics and graphs as

presented in Section 3.1.6. The GasDay experts have two roles in making synthetic

outliers. They provide a data set with identified outliers as explained in Section 3.1.1,

and they use visualization approaches to approve synthetic evaluation data sets as

discussed in Section 3.1.6. In making synthetic outliers, two questions must be

addressed;

1. When to insert the next outlier?

2. What is the magnitude of the outlier?
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Table 3.2: Inter-arrival times between identified outliers with CDF values

δT 1 2 3 5 14 21
CDF 0.27 0.33 0.39 0.40 0.43 0.46

We address each of those questions in turn in the following sub-sections.

3.1.4 When to Insert the Next Outlier?

In developing a synthetic evaluation data set, we need to provide the time

intervals between synthetic outliers. We use an example to show how to insert the next

outlier and then discuss the general case. As an example, we start with 369 points

(same data set introduced in Section 2.1) of clean flow containing 24 identified outliers.

We compute the cumulative distribution frequency (CDF) for the inter-arrival times

(δT ) between those outliers to get their distribution. Table 3.2 displays some of the

intervals between identified outliers. For example, if δT = 1, it means identified outliers

arrive successfully to each other. If δT = 2, the next outlier arrives 2 days later.

Figure 3.1 shows the CDF plot generated. From this plot, we see that almost 60% of
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Figure 3.1: Displays (CDF) values for inter-arrival times between identified outliers.
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all the points have their inter-arrival times between outliers less than or equal to 50.

There are no points with inter-arrival times between 150 and 250 as indicated by a

straight line between δT = 150 and δT = 250. Only 0.1% of the points have time

intervals greater than 250. In this example, we have added the δT values and CDF

values to allow for more time between outliers. The last δT value is multiplied by two,

and a special equation is used to generate a smoother CDF function as shown by the

red line in Figure 3.2. This CDF plot is the one used to find the next time to insert a

synthetic outlier.
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Figure 3.2: Displays a smoother CDF function indicated by a red line.

Suppose, from JOTO with 369 daily residual points with no known outliers

(from daily flow operating area discussed in Section 2.1), we want to find when to

insert the next outlier. To find the time to the next outlier, we generate a random

number from a uniform distribution on [0,1] and compare it with the CDF value in

Table 3.2. In this example, the first random number generated was 0.35. From

Table 3.2, 0.35 is greater than 0.33 but less than 0.39. So, δT = 5 is the time to the

next outlier. The first outlier was inserted on March 23rd since data starts on March
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Figure 3.3: Displays a position of the first outlier in a residual time series.

18th. Our new initial point became March 23rd. 0.30 was the next random number

generated. So, the new δT was 2, and the next outlier was inserted on March 25th. We

repeated the generation of random numbers until we got to the last date corresponding

to the last point of 1861. At the end, we had inserted 18 outliers.

The algorithm we have outlined for inserting outliers assumes that each outlier

is an independent event. However, we know that the times of arrival between outliers in

natural gas flow can be dependent on each other. For instance, if a meter is stuck, the

same readings of flow values are expected from the meter until it is fixed. In general, we

Assume the time of arrival between outliers is independent of each other.

We can find the next time to insert an outlier as follows:

1. Start with uncleaned flow with identified outliers marked.

2. Generate a Cumulative Distribution Frequency (CDF) plot for inter-arrival times

(δT ) between identified outliers. Generate a smoother CDF function as explained

previously using Figure 3.2.
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3. Starting at the first day of the data as the starting point, generate a uniform

random number x between 0 and 1. Compare the value of x with the CDF values

from a smoother CDF function. If the value of x is less than or equal to a CDF

value, then its corresponding δT value becomes the time to the next synthetic

outlier. The start point plus δT becomes the new start point.

4. Repeat step 3 until the start point is less than or equal to n.

A sample flow with synthetic outliers and its residuals is presented in Section 3.1.6.

3.1.5 What is the magnitude of the outlier?

The steps in Section 3.1.4 have described when to insert the next outlier. Next,

we need to find the magnitude of that outlier, how much the residual should be

modified. This implies how much the flow should be modified. The steps to find the

magnitude of an outlier are very similar to those used to find the inter-arrival times

between outliers. In finding the magnitude, we use identified residual outlier values

instead of intervals between the identified outliers.

At this point, we have time series for flow (synthetic data set) with outliers

introduced artificially into a cleaned real flow. In the next Section, we argue that both

synthetic and identified data sets are similar.

3.1.6 Similarities between Synthetic and Identified Outliers

We want natural gas flow time series with inserted synthetic outliers to be

“similar” to actual gas flow time series GasDay receives from customers. That is

impossible because we do not know the true outliers in the actual data from customers.

We settle for asking that the synthetic flow be similar to operating areas flow with

outliers identified by GasDay experts. This subsection discusses two ways that can be
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used to show similarity between synthetic outliers and those identified by GasDay

experts. We use statistics and graphs to show similarity.
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Figure 3.4: Inter-arrival times of identified and synthetic outliers histograms to show
their similar distributions.

Let X be a data set with synthetic outliers, Y be a historical data set with

identified outliers, and Z the real-time data, daily flow with unknown outliers used by

LDCs as inputs to the models. All data sets are for the same operating area. We need

to develop a technique to detect outliers from Z. We assume that outliers in Y and Z

have the same empirical distribution K because they belong to the same operating

area. If we can show that X is similar to Y, then a technique that detects outliers from

X can also detect outliers from Y and Z. Therefore, it is important to show that a data

set with synthetic outliers is similar to the one with identified outliers.

We show that outliers in X are “similar” to those in Y by presenting the

distribution of inter-arrival times between outliers of both X and Y using histograms

and cumulative distribution frequencies (CDF). We see that histogram in Figure 3.4
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and the CDF plot in Figure 3.5 show the inter-arrival times between identified and

synthetic outliers have very similar empirical distributions.
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Figure 3.5: Inter-arrival times of identified and synthetic outliers CDFs to help visualize
their distributions.

We present flow and residual time series plots (unmarked) for identified and

synthetic data sets to experts from GasDay to see if they can tell the difference

between the two data sets. Figure 3.6 and Figure 3.7 are presented. The red marks are

outliers. It is not easy for the experts to tell the difference. Thus, using the graphs with

the approval of the experts, the time interval between synthetic outliers and the outlier

magnitudes are similar to intervals between identified outliers and their magnitudes.

Apart from using graphs, we use statistics to show similarity between two data

sets. We use the mean, exponential mean, median, standard deviation, and Mean

Absolute Deviation (MAD). We have used those statistics because they easy to

understand, and they are commonly used. In Table 3.3, we present inter-arrival times

for one identified data set used to develop synthetic data sets. We picked 7 random

synthetic data sets to show statistics for when to insert the next synthetic outliers as

presented in Table 3.3. Table 3.5 shows the same statistics for the distribution of the
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Figure 3.6: Identified and synthetic flow time series to show outlier’s time interval simi-
larity
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Figure 3.7: Identified and synthetic residual time series to show similarity in magnitudes
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Table 3.3: Statistics for inter-arrival times for identified and synthetic outliers.

Number of Outliers Mean Exp Mean Stdev Median MAD
Identified 18 40.41 40.41 143.26 1.00 65.25
Synthetic 19 58.33 58.33 145.06 2.00 90.55

25 37.75 30.64 95.01 1.50 56.93
21 49.10 49.10 115.40 1.00 70.87
18 54.58 54.58 92.01 3.00 73.18
9 144.75 144.75 248.58 4.00 175.44
17 66.06 66.06 126.22 3.00 94.96
19 56.77 56.77 159.75 2.00 84.43

magnitude between identified and synthetic outliers. Table 3.4 and Table 3.6 show

statistics for a total of 1000 synthetic data sets with an average of 46 synthetic outliers.

By observing all the four tables, we see the values for statistics used are close to each

other between identified data set and synthetic data set. The small difference between

statistics is also observed in Table 3.4 when considering the average of 1000 synthetic

data sets. Still we cannot draw conclusions based only on the small differences.

Instead, we use the Kolmogorov-Smirnov statistical test to conclude that both data

sets are similar (34). MATLAB has implemented the Kolmogorov-Smirnov test in a

function called “kstest2”, which compares the distributions of the values in the two

data vectors x1 and x2. In our case x1 = identified data set, and x2 = synthetic data

set. Its null hypothesis is that x1 and x2 are from the same continuous distribution.

The alternative hypothesis is that they are from different continuous distributions. The

result is 1 if the test rejects the null hypothesis at the 5% significance level; 0

otherwise (14). For all the data sets in Table 3.3, kstest2 returns a value of 0. This

indicates that both data sets are similar. Since we have shown both data sets are

similar, the next section presents how DBSCAN is adapted specifically to detect

outliers in natural gas flow.
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Table 3.4: Statistics for inter-arrival times of one identified data set and an average of
1000 synthetic data sets.

Number of Outliers Mean Exp Mean Median Stdev MAD
Identified 18 40.41 40.41 143.26 1.00 65.25
Synthetic 22 48.20 48.20 120.40 2.00 70.40

Table 3.5: Statistics for the magnitude of residuals for identified and synthetic outliers

Number of Outliers Mean Median Stdev MAD
Identified 18 -2459.09 -2884.37 911.52 849.08
Synthetic 19 -2126.66 -1684.41 885.20 812.33

25 -2542.69 -3009.24 906.63 810.24
21 -2215.45 -3109.00 916.24 888.39
18 -2506.55 -3001.53 867.82 819.91
9 -2536.28 -3201.04 1024.44 901.74
17 -2514.41 -3001.53 991.41 942.70
19 -2270.63 -1745.64 892.95 830.55

3.2 Density Based Spatial Clustering of Applications with Noise Adapted

to Natural Gas Flow

This section explains how Density Based Spatial Clustering of Applications with

Noise (DBSCAN) is applied specifically to natural gas flow. The DBSCAN is

implemented in MATLAB (pseudocode 3.1) to be used by the GasDay project to

detect outliers in residuals from the models for any operating area. The results of its

performance in detecting outliers from data sets with identified and synthetic outliers

are presented in Chapter 4.

Table 3.6: Statistics for the magnitude of residual for one identified data set and an
average of 1000 synthetic data sets

Number of Outliers Mean Median Stdev MAD
Identified 18 -2459.09 -2884.37 911.52 849.08
Synthetic 22 -2115.45 -3009.00 946.24 867.30
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In adapting DBSCAN to natural gas flow, we use daily residuals from the

GasDay’s mathematical models as a set of points instead of using daily flows. We use

daily residuals from the models as explained in Chapter 2 because they capture most

significant factors that affect the consumption of natural gas flow. In adapting

DBSCAN to detect outliers from natural gas flow we use only residuals(r) as set of

points to be clustered. The class developed can also work with two-dimensional points.

In the event where we need to cluster two-dimensional points with different units, the

two points need to be normalized. For example, dates and residuals has different units,

days for dates (t) and Dth for residuals (r). We use this example to explain how the

two points are normalized.

There are various ways to normalize data; we have used the median and median

absolute deviation (MAD) approach to normalize dates and residuals (42). We decided

to use this approach because it is robust to outliers. Let y be all residuals. Then a

normalized residual is

r
′
=

r −median(y)

MAD(y)
. (3.1)

If we let z be all dates, then by replacing r with t and y with z in Equation( 3.2), the

normalized date is

t
′
=

t−median(z)

MAD(z)
. (3.2)

In our case we do not need to normalize residual so we have set of points P (r)

that need to be clustered. DBSCAN also needs the two parameters MinPts and Eps.

These parameters are different for each operating area. The MATLAB tool that uses

the DBSCAN algorithm can be set up to have default values for each operating area.

These default values can be set using the GasDay expert’s knowledge on a given

operating area or by using the k − dist approach discussed in Chapter 2. An expert

using the tool can also change the parameter values when necessary. For example,

using the data set with identified outliers from operating area N, different parameters

values are used by the DBSCAN to detect those identified outliers. The goal is to find
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parameter values that can detect most identified outliers at the same time not

detecting non-outliers. The parameter values that enable the technique to detect most

of the identified outliers are used as default parameter values. Hence, the next time

this technique is used to detect outliers from operating area N with unknown outliers,

the same default parameter values are used. We know those parameter values worked

satisfactorily in detecting identified outliers, so we have confidence when we use them

to detect unknown outliers.
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DBSCAN algorithm pseudocode 3.1
%Aim:

Clustering the data with Density-Based Scan Algorithm with Noise (DBSCAN)
%Input:

SetOfPoints - data set residuals(r));
Eps - neighborhood radius
MinPts - minimal number of objects required to form a cluster)

%Output:
A boolean vector with same length as SetOfPoint,
1 - outlier detected, 0 - no outlier detected

classdef DBCluster
properties

SetOfPoints = 0;
Eps = 0;
MinPts = 0;
IsPointVisited = false;
IsPointAnOutlier = false;

methods
function obj = DBCluster(SetOfPoints, Eps, MinPts)

%Load files and handles errors
ENDCONSTRUCTOR
function [IsPointAnOutlier] = SCAN(thisClass)

Clusterid = 0
FOR each unvisited point P(r) in SetOfPoints

mark P(r)as visited
PListOfNeigbors = getNeighbors (SetOfPoints, P(r), Eps)
IF sizeof(PListOfNeigbors) < MinPts

mark P(r) as OUTLIER
ELSE

Clusterid = next cluster
expandCluster(SetOfPoints, P(r), N,...
Clusterid, Eps, MinPts)

ENDIF
ENDFOR

ENDSCAN
function expandCluster(SetOfPoints, P(r), N,...
Clusterid, Eps, MinPts)

add P(r) to cluster Clusterid
WHILE there is unvisited point P’ in ListOfNeighbors

mark P(r)’ as visited
PListOfNeigbors’ = getNeighbors(P(r)’, Eps)
IF PListOfNeigbors’ <= MinPts

PListOfNeigbors = PListOfNeigbors joined with ...
PListOfNeigbors

add P(r)’ to cluster Clusterid
ENDIF

ENDWHILE
RETURN

end EXPANDCLUSTER
function = getNeighbors (SetOfPoints, P(r), Eps)

RETURN Eps-Neighborhood of P(r) in SetOfPoints as a list of points
ENDGETNEIGHBORS
function [] = Plot()

Use various time series plots to display outliers characterized
by GasDay’s existing DBSCAN techniques.

ENDPLOT
end methods

end classdef
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3.3 Main Outlier Detector
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Properties
       SetOfPoints
       MinPts
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Figure 3.8: Class diagram displaying the classes used in this work

The previous section presented pseudocode for the modified DBSCAN (class) to

show how Density Based Spatial Clustering of Applications with Noise is adapted

specifically to natural gas flow. To run the DBSCAN to detect outliers from natural

gas flow, the user needs to provide daily residuals, Eps, and MinPts.

Besides the DBSCAN class presented to show its algorithm, there other classes

developed by this work. This section describes all classes written in MATLAB.

Figure 3.8 shows a simple class diagram for the entire process, and the data flow

diagram in Figure 3.9 describes the entire process.

We outline the classes shown in Figure 3.8:

• MakeSyntheticOutliers: The member functions in this class prepare synthetic

data sets with the same distribution as identified data sets. They take unclean

flow with identified outliers, clean flow with outliers removed, and residuals from
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Figure 3.9: A data flow diagram describing the outlier detection process and its evalua-
tion.

clean and unclean flows. They return flow with synthetic outliers and the

positions of introduced synthetic outliers as a boolean vector with the same size

as cleaned flow. The pseudocode 3.2 presents some member functions of this class

without giving all the details.
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MakeSyntheticOutliers pseudocode 3.2
%Aim:

To make synthetic data sets using identified data set empirical
distribution

%Input:
Flows, residuals, temperatures, dates

--------------------------------------------------------------------
%Output:

Synthetic Outliers Positions and Flow with synthetic outliers

---------------------------------------------------------------------

classdef MakeSyntheticOutliers
properties

fileSize = 0;
syntheticOutliersPositions = 0;
flowsWithSyntheticOutliers = 0;

ENDPROPERTIES

methods

function thisMSO = MakeSyntheticOutliers(filePath, listOfFiles)
IF none of the file is empty

%Check to make sure files are read in correctly
ENDIF
syntheticOutliersPositions = GetSyntheticOutliersPositions();
flowsWithSyntheticOutliers = GetFlowsWithSyntheticOutliers();

ENDCONSTRUCTOR

function syntheticOutliersPositions = GetSyntheticOutliersPositions()
syntheticOutliersPositions(1:thisMSO.FileSize) = false;
currentPos = 0;
WHILE not at the end of the file

Find when to insert an outlier using smoother CDF function
IF (currentPos <= file size)

Insert an outlier
ENDIF
UPDATE currentPos;

ENDWHILE
ENDGETSYNTHETICOUTLIERSPOSITIONS

function flowsWithSyntheticOutliers = GetFlowsWithSyntheticOutliers()
FOR i = 1 to the length of the file size

IF (syntheticOutliersPositions(i) == true)
update Clean flow with synthetic flow

ENDIF
ENDFOR

ENDGETFLOWSWITHSYNTHETICOUTLIERS

function fitValues = GetDeltaTfromFit()
Find distribution for identified data set
RETURN fitValues from a smoother CDF function

ENDGETDELTATFROMFIT

ENDMETHODS
ENDCLASS
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• RunExistingTechnique: This class calls GasDay’s existing technique to get

residuals from a flow file with synthetic outliers, runs the technique to detect

outliers in residuals, and returns outlier positions. It accepts a flow file with

synthetic outliers. It returns residuals with synthetic outliers and the positions of

synthetic outliers detected by the existing technique as a boolean vector with the

same length as residuals.

• DBSCAN: This class runs the DBSCAN algorithm to detect outliers in

residuals and returns outlier positions. It accepts the residuals from flow with

synthetic outliers. It returns positions of synthetic outliers detected by the

DBSCAN technique as a boolean vector of size n. Also, this class generates flow

and residual time series plot to display the detected outliers. The pseudocode 3.1

presents modified DBSCAN class adapted specifically for natural gas flow.

• PerfomanceEvaluation: This class evaluates the performance of DBSCAN and

GasDay’s existing techniques in detecting outliers. It takes in the boolean vectors

with introduced synthetic outlier positions, outlier positions characterized by

GasDay’s existing technique, and outlier positions characterized by our DBSCAN

technique. It returns the count of True Positive, False Positive, True Negative,

False Negative, Accuracy, Precision, Recall, and F1 measures for both techniques.

The pseudocode 3.3 presents the member functions of this class.
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PerfomanceEvaluation pseudocode 3.3
%Aim:

To evaluate outlier detection techniques
% Input

Introduced outliers file, characterized outliers file
by GasDay and our DBSCAN

% Output
% Provides classification metrics for outlier detection technique
------------------------------------------------------------------------------

classdef PerfomanceEvaluation
properties

introducedOutliersPos = 0;
outliersCharacterizedbyGasDayTechnique = 0;
outliersCharacterizedbyDBSCANTechnique = 0;

ENDPROPERTIES;

methods

function obj = PerfomanceEvaluation(IntroducedOutliersPos,...
OCbyGasDayPos, OCbyDBSCANPos)
%load the files, handle errors
obj.IntroducedOutliersPos = IntroducedOutliersPos;
obj.OutliersCharacterizedbyGasDay = OCbyGasDayPos;
obj.OutliersCharacterizedbyDBSCAN = OCbyDBSCANPos;

ENDCONSTRUCTOR

function [TP, FP, FN, TN] = BinaryValues(IntroducedOutliers,...
OutliersCharacterized)

%Outliers are outliers (flag the correct ones) 1 and 1
RETURN TP
%Normal data are outliers (flag incorrect ones) 0 and 1
RETURN FP
%Outliers are normal didn’t flag them - bad) 1 and 0
RETURN FN
%Normal data are normal (didn’t flag them - good) 0 and 0
RETURN TN

ENDBINARYVALUES;

function [Accuracy] = GetAccuracy(m)
RETURN Accuracy

ENDGETACCURACY;

function [Precision] = GetPrecision(m)
RETURN Precision

ENDPRECISION

function [Recall] = GetRecall(m)
RETURN Recall

ENDGETRECALL

function [F1Value] = GetF1Value(A)
RETURN F1Value

ENDGETF1VALUE

ENDMETHOD

ENDCLASS
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By presenting the entire outlier detection and evaluation process, we have

demonstrated the ability to make synthetic data sets from real data sets while making

sure both data sets are similar. A technique that can detect synthetic outliers also will

detect unknown outliers. More important, we have adapted and shown that DBSCAN

can be used to detect time series outliers in natural gas flow.

Chapter 3 has presented the two strategies used to evaluate the performance of

DBSCAN and GasDay’s existing techniques. The discussion of both data sets with

identified and synthetic outliers is presented. This chapter explains how the DBSCAN

algorithm is adapted specifically to natural gas flow. The classes for the entire outlier

detection process also are presented. In Chapter 4, we present results showing the

performance of both techniques using the evaluation data sets.
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CHAPTER 4

RESULTS OF THE PERFORMANCE OF DBSCAN AND GASDAY’S

EXISTING TECHNIQUES

Chapter 3 explained the data sets used to evaluate the performance of

DBSCAN and GasDay’s existing techniques. Also, in Chapter 3 we explained how

DBSCAN is adapted to detect outliers in natural gas flow. In this chapter, we evaluate

the performance of DBSCAN and GasDay’s existing techniques. The chapter starts by

outlining the evaluation metrics for any classification technique.

4.1 Evaluation Metrics

Recall the following classification evaluation metrics from Section 1.5:

True Positive (TP) - an outlier is classified correctly as an outlier.

False Positive (FP) - correct value is classified as an outlier.

True Negative (TN) - correct value is classified as a correct value.

False Negative (FN) - an outlier is wrongly classified as a correct data.

Using a boolean vector, where true indicates an outlier is present, and false otherwise.

Let

IO be a boolean vector indicating outliers introduced into the evaluation data

set.

OD be a boolean vector indicating outliers characterized by a technique from

the evaluation data set.
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When the two boolean vectors are combined using &, true & true is true, true & false

is false, and false & false is false. If ’-’ denotes not,

• TP = sum(IO & OD)

• FP = sum(-IO & OD)

• FN = sum(IO & -OD)

• TN = sum(-IO & -OD)

We know that FN costs more than a FP. It costs the Local Distribution

Companies (LDCs) money if an outlier is incorrectly characterized as correct. A false

negative might lead to under-charge or over-charge their customers, the end-users of

natural gas flow. A false positive only costs LDCs time to investigate. The cost might

be something like

fcost = 10FN + TP. (4.1)

If we consider a technique with less ‘cost’ (where FP ≤ 10) to perform better, we use

tables to present cost, the counts of each TP, FN, and FP as metrics to evaluate the

performance of DBSCAN and GasDay’s existing techniques. 1000 synthetic data sets

and five data sets representing five different JOTO are used in this evaluation process.

Also, we use time series and scatter plots to display outliers as characterized by both

techniques.

4.2 Results for Synthetic Data sets

We use JOTO E from Section 4.3 as an identified data set that can be used to

make synthetic data sets using the approach discussed in Chapter 3. Recall from

Chapter 3, in making synthetic outliers, the data set with identified outliers should be

similar to the one with synthetic outliers. The similarity is shown by using different
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Table 4.1: Summary for 1000 data sets with synthetic outliers

Method TP FP FN cost
DBSCAN 39172 3159 6898 72149
GasDay 36814 2224 9256 94784

Table 4.2: Classification performance metrics

Technique Accuracy Precision Recall F1 value
DBSCAN 0.9969 0.9253 0.8502 0.8651
GasDay 0.9959 0.9430 0.7990 0.8651

graphs and statistics. Using this approach, the data set for JOTO E (presented in

Section 4.3) is used to make 1000 data with synthetic outliers. A total of 46,319 flow

values are inserted as synthetic outliers. Both DBSCAN and GasDay’s existing

techniques are applied to these data sets, and results are summarized in Table 4.1.

MinPts = 200 and Eps = 1.5 is used by DBSCAN. We conclude that, although

GasDay’s existing technique has fewer counts for FP but DBSCAN performed better

than GasDay’e existing technique because it characterized more outliers and has fewer

counts for the FN value.

Using 1000 synthetic data sets, the results for performance metrics introduced

in Chapter one are presented in Table 4.2.

4.3 Results from Identified Data Sets

In this section, we evaluate both techniques using five JOTO. In the first

JOTO, 17 outliers are present. We see from Table 4.3, DBSCAN using MinPts = 300

and Eps = 3.5 characterized 14 as TP, 6 as FP, and 3 as FN. GasDay’s existing

technique characterized 12 as TP, 9 as FP, and 5 as FN. DBSCAN has cost = 44, and

GasDay’s existing technique has cost = 62. Hence, DBSCAN has performed better

than the existing technique for JOTO A. The results for the remaining operating areas
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Table 4.3: Classification metrics and cost for identified data sets:

OpArea Technique MinPts Eps TP FP FN cost
JOTO A GasDay 12 9 5 62

DBSCAN 300 3.5 14 6 3 44
150 1.7 17 46 0 17
500 3.5 12 10 5 62

JOTO B GasDay 5 12 2 25
DBSCAN 350 4.7 6 3 1 16

1000 4.7 12 12 6 82
350 1.5 15 383 3 45

JOTO C GasDay 8 8 3 38
DBSCAN 350 6.1 5 3 6 65

350 2.5 11 91 0 11
3000 6.1 10 13 1 20

JOTO D GasDay 15 1 6 75
DBSCAN 150 3.2 19 9 2 39

150 1 21 450 0 21
450 3.2 11 0 10 111

JOTO E GasDay 18 0 4 58
DBSCAN 250 5 16 1 6 76

250 1 22 770 0 22
1350 5 15 18 7 85

can be observed in Table 4.3. Observing costs values, we see that DBSCAN performed

better than GasDay’s existing technique for JOTO B and JOTO C, while GasDay’s

existing technique performed better on JOTO C and JOTO E.
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Using red circles to represent values characterized as outliers, outliers

characterized by DBSCAN and GasDay’s existing techniques are presented by

Figure 4.1 for JOTO A, Figure 4.2 for JOTO B, Figure 4.3 for JOTO C, Figure 4.4 for

JOTO D, and Figure 4.5 for JOTO E.

We use the results presented for the five operating areas and the 1000 synthetic

data sets in which the introduced outliers are known to conclude that DBSCAN has

shown some improvement in detecting outliers over GasDays existing technique and

merits further exploration.

The next chapter presents the conclusion and discusses a few ideas for

improving the work presented by this thesis.
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Figure 4.1: Flow time series and scatter plot showing outliers characterized by DBSCAN
and GasDay’s existing techniques for JOTO A.
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Figure 4.2: Flow time series and scatter plot showing outliers characterized by DBSCAN
and GasDay’s existing techniques for JOTO B.
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Figure 4.3: Flow time series and scatter plot showing outliers characterized by DBSCAN
and GasDay’s existing techniques for JOTO C.



69

                        
−200

0

200

400

600

800

1000

1200

 1−Jan−04

 1−Jul−04

 1−Jan−05

 1−Jul−05

 1−Jan−06

 1−Jul−06

 1−Jan−07

 1−Jul−07

 1−Jan−08

 1−Jul−08

 1−Jan−09

 1−Jul−09

Date

Fl
ow

 (D
th

)

−40 −20 0 20 40 60
−200

0

200

400

600

800

1000

1200

65 − ° F

Fl
ow

(D
th

)

                        
−200

0

200

400

600

800

1000

1200

 1−Jan−04

 1−Jul−04

 1−Jan−05

 1−Jul−05

 1−Jan−06

 1−Jul−06

 1−Jan−07

 1−Jul−07

 1−Jan−08

 1−Jul−08

 1−Jan−09

 1−Jul−09

Date

Fl
ow

 (D
th

)

−40 −20 0 20 40 60
−200

0

200

400

600

800

1000

1200

65 − ° F

Fl
ow

(D
th

)

Figure 4.4: Flow time series and scatter plot showing outliers characterized by DBSCAN
and GasDay’s existing techniques for JOTO D.
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Figure 4.5: Flow time series and scatter plot showing outliers characterized by DBSCAN
and GasDay’s existing techniques for JOTO E.
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CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

5.1 Conclusions

Our goal was to develop a technique that detects outliers in time series data.

We considered a technique that is not motivated by normally distributed data sets.

The focus was to develop a technique to detect outliers more accurately than the

existing GasDay outliers detection technique for temperature-sensitive operating areas.

We have used a density-based clustering technique known as Density Based Spatial

Clustering of Applications with Noise (DBSCAN), an idea from (3; 16; 25). This

technique can be used to detect outliers in any time series data set. In this thesis, we

have adapted the DBSCAN algorithm to natural gas flow to detect outliers in residuals

from the mathematical models used by the GasDay project.

We have presented two strategies to develop evaluation data sets that can be

used to evaluate the performance of an outlier detection technique. The first class of

data sets contains outliers identified by experts who have domain knowledge of the

data. The second data set contains synthetic outliers with the same empirical
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distribution as identified outliers. Both data sets are shown to be similar using

statistics and graphs.

We evaluated the performance of DBSCAN and GasDay’s existing techniques

by using four metrics; True Positive (TP), False Positive (FP), True Negative (TN),

and False Negative (FN) and cost values from the cost function. Accuracy, precision,

recall, and F1 measures were used as classification metrics to assess the performance of

both techniques using 1000 synthetic data sets. As presented in Chapter 4, we found

that three out of five identified data sets, DBSCAN showed increased performance over

GasDay’s existing technique. Although GasDay’s existing technique performed better

in some of the 1000 synthetic data sets with cost value = 56.78%, overall DBSCAN

with cost value = 42.22% has shown improvement in performance. We conclude that

DBSCAN has shown some improvement in detecting outliers over GasDay’s existing

technique and merits further exploration.

5.2 Future Research

To further this work, an approach of using Bayesian probability can be

considered in developing synthetic data set(s) (37). In detection of time series outliers,

a new clustering algorithm based on distance and density, which is an enhancement of

the DBSCAN technique can be explored (25). Also, a gas flow software package like

Flow-Cal can be investigated to see if it can be used by the GasDay project to detect
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outliers in natural gas flow (28). These ideas are discussed by the following subsections.

5.2.1 Developing Synthetic Data Sets Using Bayesian Probability

Although this work has shown both synthetic and identified data sets are

similar, there are still improvements which can be made in developing synthetic data

sets.

We suggest using a Bayesian probability (a conditional-based probability)

approach. The probability of a hypothesis given the data (the posterior) is

proportional to the product of the likelihood times the prior probability (37). In

making a synthetic data set, this work assumed the time of arrival between outliers was

independent of each other. There is no need to make the same assumption when using

the Bayesian probability approach. In flow measurements, if a meter is stuck, we

expect the same flow value is reported for several days until the meter is fixed. We

expect abnormal flow values as a result of events such as hurricane or storms. Also, we

know that we cannot have a negative flow value, so inserted outliers should not have

negative flows. All these can be used as conditions when using Bayesian probability in

developing synthetic data set(s).

In Section 1.2, outliers observed at the GasDay project are presented.

Researchers can choose one type and develop synthetic outliers for that one type using

approach used by this work or Bayesian probability approach proposed.
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5.2.2 A New Clustering Algorithm Based on Distance and Density

This work has studied and adapted the DBSCAN algorithm in detecting

outliers in natural gas flow. Although this technique has shown improvement over the

existing GasDay’s technique, it is difficult to set its two density thresholds (Eps and

MinPts) properly. Yu in (25) explains a new DBSCAN based on k-nearest neighbors

(KNN) as an algorithm which merges KNN and DBSCAN to enhance DBSCAN. Using

the entropy theory, local parameters (Eps, MinPts) of each fuzzy cluster (FC) are

determined using unsupervised learning techniques. Each local Eps is mapped to the

global Eps, and each FC is clustered separately (20; 25).

5.2.3 Using Gas Flow Measurement Software to Detect Outliers

The DBSCAN algorithm proposed in this work to detect outliers in natural gas

flow can work with any time series data sets. In detecting outliers specifically in

natural gas flow, the use of gas flow measurement software (e.g., Flow-Cal) can be

investigated. In (28), Flow-Cal, Inc., reports it is the industry leader in Electronic

Flow Measurement (EFM) data management software and says Local Distribution

Companies are using Flow-Cal software to manage the flow of gas measurement data

from field operations throughout their organizations. Perhaps the same software can be

used by the GasDay project to detect outliers in natural gas flow.

In this thesis, we outlined various DBSCAN applications, and we were able to
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introduce a new application by adapting DBSCAN to detect time series outliers from

natural gas flow. We have shown that DBSCAN can be used to detect outliers in a

time series data set. We recommend other researchers to try using DBSCAN to detect

outliers from a time series data set. Also, the future research ideas we proposed can be

studied and applied to different data sets to compare their performance in detecting

outliers over the DBSCAN. The idea of developing synthetic data set similar to real

data sets is also discussed. Researchers with limited real data sets but in need of more

data can explore and take advantage of the approach discussed.
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