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A Parallel Histogram-based Particle Filter for

Object Tracking on SIMD-based Smart Cameras

Henry Medeiros, Germán Holguín, Paul J. Shin, Johnny Park

School of Electrical and Computer Engineering, Purdue University

Abstract

We present a parallel implementation of a histogram-based particle �lter for object tracking on smart cameras based on
SIMD processors. We speci�cally focus on parallel computation of the particle weights and parallel construction of the
feature histograms since these are the major bottlenecks in standard implementations of histogram-based particle �lters.
The proposed algorithm can be applied with any histogram-based feature sets � we show in detail how the parallel
particle �lter can employ simple color histograms as well as more complex histograms of oriented gradients (HOG). The
algorithm was successfully implemented on an SIMD processor and performs robust object tracking at up to 30 frames
per second � a performance di�cult to achieve even on a modern desktop computer.

Key words: tracking, particle �lter, smart cameras, SIMD processors

1. Introduction

As the demand for low-power, portable, and networked
computing devices continues to increase, it is natural that
the number and the complexity of services provided by
such devices will only grow. The operating speed of these
devices, however, is bound to be much lower than that
of standard desktop computers due to power consumption
and size constraints. In order to support these new, more
complex applications, there has been a major e�ort to de-
sign alternative processing architectures for small comput-
ing devices. Since these architectures are fundamentally
di�erent from those of general purpose processors, exist-
ing algorithms often need to be redesigned in order to be
implemented in these systems.

In the speci�c case of computer vision systems, object
tracking is a building block for a number of applications.
As a consequence, many successful approaches have been
devised for visual tracking. One such approach is the color-
based particle �lter [1, 2, 3, 4, 5]. In this method, a ref-
erence histogram of the target is initially provided to the
tracker, which then uses Bayesian estimation to search for
the most likely new location of the target in each of the
subsequent frames. The results reported in the literature
show that the method is suitable for tracking non-rigid
objects since the color histogram is relatively independent
of the target deformation and is robust to partial occlu-
sion of the target object and variations in the color of the
background.
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Recently, new histogram-based particle �lters that em-
ploy not only histograms of color but also histograms of
edge orientations have been proposed [6, 7, 8]. The his-
togram of oriented gradients (HOG) [9] is one example
of a feature set based on histograms of edge orientations.
It has been reported that HOG is robust to photometric
and background variations, and hence complements some
weaknesses of histograms purely based on color.

Although the particle �lter has been proved to be an
e�ective method for object tracking, it is computation-
ally expensive, thus not suitable for the current genera-
tion of wireless smart cameras based on low-power general-
purpose microcontrollers (e.g. the Cyclops camera [10]).
The computation of the weights of a large number of par-
ticles is beyond the capability of these smart cameras. On
the other hand, the algorithm lends itself to e�ective par-
allel implementation since there are no data dependencies
among particles. Therefore, we show in this paper that,
by devising a parallel histogram-based particle �lter, it is
possible to achieve robust real-time object tracking on a
smart camera based on an SIMD processor such as the
WiCa camera [11].

There has been much work on the parallelization of
the particle �lter [12, 13, 14, 15, 16]. The main objec-
tive of these studies was to parallelize the resampling step.
However, as we will show later, the resampling step is
not the major source of computational burden of a typ-
ical histogram-based particle �lter. Instead, the major
computational bottleneck is the evaluation of the parti-
cle weights, more speci�cally the construction of the his-
tograms of the regions surrounding each hypothesized tar-
get position.

This paper is an extension of our previous work [17, 18]
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in which we proposed a method for the parallel computa-
tion of the particle weights in the color-based particle �lter
on an SIMD processor. In this paper, we show that our
methodology is valid for any histogram-based feature set
� we show in detail how the parallel particle �lter can
employ not only simple color histograms but also complex
feature descriptors, speci�cally the histograms of oriented
gradients (HOG). Furthermore, we have successfully im-
plemented the algorithm in the WiCa camera, thus our
experimental results show the performance of the algo-
rithm running on a real embedded smart camera.

2. Parallel Implementation of the Particle Filter

In this section, we show that, as long as the processor
architecture allows for e�cient access to an external mem-
ory, it is possible to compute in parallel the multiple his-
tograms required by a histogram-based particle �lter and
the corresponding particle weights, thereby overcoming its
greatest bottleneck.

2.1. Hardware Architecture

We propose an algorithm for an SIMD linear processor
array architecture [19, 20, 21, 22]. The Xetal family of
SIMD processors, illustrated in Figure 1, is one example of
such architecture. It is composed of a linear processor ar-
ray (LPA) of P processing elements (PEs), each containing
an arithmetic logic unit and a small amount of memory.
Each PE has direct read and write access to the memory
of its two nearest neighbors. The line memory, i.e., the
overall memory of the PEs, can be directly accessed by a
digital input processor and by a digital output processor,
which are responsible for transferring information between
the LPA and the external memory and video devices. A
global control processor (GCP) controls the operation of
the LPA and is also able to carry out global digital signal
processing operations.

The architecture is designed based on the stream pro-
cessing paradigm [23]. That is, data must be processed as
soon as it becomes available. In the case of image process-
ing, this implies that the digital input processor provides
one video line to the LPA as soon as it becomes avail-
able from the image sensor. This video line either has to
be processed or stored before the next video line becomes
available. Moreover, the PEs have access only to the cur-
rent video line or to video lines that have been previously
stored in the memory. Therefore, if random access to ele-
ments of the image is required, they must be stored in the
external memory in advance.

2.2. Reorganization of Particle Regions

The left side of Figure 2 illustrates a typical distribu-
tion of the particle regions over an image for one iteration
of the histogram-based particle �lter. The particles xi cor-
respond to the hypothesized positions of the target, and
the measurements zi are given by the histograms of the
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Figure 1: Hardware architecture of an SIMD linear pro-
cessor array.

regions surrounding each particle. The particle likelihoods
are computed based on the similarity between the mea-
surements and the target reference histogram [3, 5, 18].
In order to process the particle regions in parallel, it is
necessary to allocate a certain number of PEs to handle
each region. Since the particle regions are randomly dis-
tributed in an image with many parts overlapping with
one another, they must be reorganized so that each PE is
provided the information about the region for which it is
responsible.

Reorganization of the particle regions requires that the
PEs have random access to the individual pixels of the
image. Therefore, instead of processing the input video
lines directly, we �rst extract the relevant image features
and store them in the external memory so that they can
be randomly accessed by the digital I/O processors, and
consequently, by the PEs. Finally, for each particle region,
the corresponding features stored in the external memory
are reorganized into the line memory, as illustrated in the
right side of Figure 2.

Let P denote the number of PEs and M the number
of particle regions employed by the algorithm. We assume
that all particle regions have the same size of rx × ry el-
ements. The elements in each particle region are reorga-
nized into an area of sx × sy elements in the line memory.
Note that the value sx is pre-assigned by the application
depending on the values of M , P , rx, and ry (we will
shortly discuss di�erent cases of these values and a pre-
ferred value of sx in each of these cases). Once the value

of sx is selected, then sy is simply set to
⌈
rx·ry

sx

⌉
.

The reorganization proceeds as follows. In each pro-
cessing step, sx elements of each particle region are copied
into the corresponding line memory space so that they can
be processed in parallel. This is repeated sy times until
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Figure 2: Extraction of features and reorganization of the particle regions in a parallel histogram-based particle �lter.

all elements of the particle regions are processed. Since

there are only P PEs, at most
⌊
P
sx

⌋
particle regions can

be copied to the line memory simultaneously. In the ex-

ample shown in Figure 2,
⌊
P
sx

⌋
= 5. If

⌊
P
sx

⌋
< M , there

will be more than one row of particle regions in the line
memory, as is the case in the above example whereM = 6.
In any case, at most m =

⌈
M ·sx

P

⌉
rows of particle regions

are necessary in the line memory.
After the regions are reorganized, each row of particle

regions can be processed in parallel in sy steps. In the
case of multiple rows (m > 1), m · sy steps are required
to process all the regions. Since sx PEs are allocated to
handle each particle region, additional sx−1 steps are then
required for the PEs to share the results of their individual
computations. The total time required to process all the
particle regions is therefore given by O (m · (sx + sy)). A
more detailed explanation of particle region processing in
the context of parallel histogram computation is given in
Section 2.3.

When P ≥M ·sx, the line memory can store all the par-
ticle regions side-by-side in a single row of particle regions,
as illustrated in Figure 3(a). In that case, m = 1 and the
time to process all the particle regions is O(sx+sy). In the
speci�c case of sx = rx, the processing time is O(rx + ry),
which is linear on the dimensions of the particle regions.
As the number of particle regions M increases, m may be-
come a large factor in the processing time. In that case,
it is possible to reduce this factor by decreasing the value
of sx. Figure 3(b) shows the case for sx = 1 where each
particle region is organized as a column in the line mem-
ory. In that case, as long asM ≤ P , the processing time is
O (rx · ry), and each PE is responsible for processing one
particle region so that up to P particles can be computed
in parallel.

Table 1 summarizes the preferred reorganization ap-
proaches for di�erent values of M with respect to P , rx,
and ry. Note that for each case, a speci�c value for sx is

Line Memories

Final Histograms

     line   
memories

steps 

steps 

Figure 4: Parallel computation of the histograms.

assigned.

2.3. Parallel Histogram Computation

One straightforward approach to compute the histograms
of M rectangular image regions would be to employ inte-
gral histograms [24]. The main drawback of this approach,
however, is that we need to store one histogram per pixel.
Since each histogram consists of a relatively large data
structure, the memory requirement of integral histograms
is generally too high for embedded systems.

Instead, in an SIMD linear processor array, it is prefer-

able to compute the histograms of
⌊
P
sx

⌋
image regions in

parallel as illustrated in Figure 4 � similar approaches
were used in [22, 25]. This process is divided into two
phases: vertical accumulation and horizontal accumula-
tion. During vertical accumulation, the histograms of the
columns of the regions are computed. Subsequently, the
horizontal accumulation phase computes the total histograms
of each image region by sequentially adding the histogram
of a given column to that of its immediate neighbor. This
procedure computes the histograms of all the image re-
gions in O (m · (sx + sy)) steps.
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Figure 3: Organization of the particle regions in the line memory (a) as a single row of particle regions (i.e., when
⌊
P
sx

⌋
≥

M) and (b) as columns (i.e., when m� 1).

Di�erent values of M Reorganization approach sx Computation time

M ≤
⌊

P
rx

⌋
Single row of particle regions rx O (rx + ry)⌊

P
rx

⌋
< M ≤

⌊
P ·ry

rx+ry

⌋
Multiple rows of particle regions rx O (m · (rx + ry))

M >
⌊

P ·ry

rx+ry

⌋
Columns 1 O (rx · ry)

Table 1: Preferred reorganization approaches for di�erent values of M .

2.3.1. Parallel Computation of Color Histograms

In a color-based particle �lter, each particle region con-
sists of rx × ry elements, where each element has a corre-
sponding bin number. Therefore, the feature extraction
step (described earlier in Section 2.2) for the speci�c case
of a color-based particle �lter corresponds to computing
the bin number of each pixel and storing it in the external
memory. To determine the bin number, a function h(u)
discretizes the values of the color space of each pixel into
nb bins and assigns the corresponding bin number to the
pixel. Using that approach, only log2 nb bits are required
to store each pixel. Figure 5(a) illustrates the organization
of the color information in the external memory.

Once the bin numbers are stored in the external mem-
ory, we can then proceed with the particle region reorga-
nization process, as described in Section 2.2. Finally, the
color histograms can be computed in parallel as described
in Section 2.3.

2.3.2. Parallel Computation of Histograms of Oriented Gra-

dients

In the feature extraction step for an HOG-based par-
ticle �lter, instead of storing the gradient orientations of
each individual pixel in the external memory, it is more ef-
fective to �rst compute the histograms of the HOG blocks
in the entire image and then store them in the external
memory, as illustrated in Figure 5(b). That is, as the video
lines are received from the image sensor, nb-bin block his-
tograms are computed and stored in the external memory
(to reduce the dimensionality of the HOG descriptor we
compute one histogram per block instead of concatenat-

ing individual cell histograms). For the HOG features, one
particle region corresponds to bx×by blocks of histograms,
each with nb bins. To compute the particle weights in par-
allel, after the block histograms are stored in the external
memory, those corresponding to each particle region are
reorganized into the line memory as described in Section
2.2.

The block histograms are computed using the approach
described in Section 2.3. However, since there is ver-
tical overlap among adjacent HOG blocks (as shown in
Fig. 5(b)), the horizontal accumulation step would over-
write column histograms of the neighboring blocks before
their values were used in the computation of the block
histogram. To overcome this problem, we allocate nh ad-
ditional line memories to accumulate the histogram bins
in the positions corresponding to non-overlapping blocks.
Histograms of vertically overlapping blocks are computed
sequentially by temporarily storing the overlapping video
lines.

2.4. Weight Computation

After the histogram distributions are computed, the
likelihoods and corresponding unnormalized particle weights
can be evaluated in parallel as long as the PEs have access
to the common reference histogram. Weight normalization
is then carried out by left- or right- shifting the weights
and accumulating the total weight over all elements. The
total weight is used by the GCP to compute a global scale
factor which is multiplied by all the weights in parallel.
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Figure 5: (a) Organization of the color information in the external memory. (b) Organization of the HOG block
histograms in the external memory.

3. Performance Analysis

In this section, we provide a performance analysis of
our algorithm. Since external memory access is a critical
component of the platform that has a direct impact on
the overall speed of the tracking algorithm, this section
focuses on the constraints imposed by external memory
access. With the purpose of creating a realistic evaluation
scenario, the analysis is based on the hardware parameters
of our experimental platform, which can be summarized on
the following assumptions:

• The digital I/O processors are able to access up to
qmax = 640 elements in the external memory during
one video line interval. The maximum number of
video line intervals per frame is lmax = 480.

• The relevant features are extracted and stored in the
external memory in the �rst frame and the initial
qo = qmax · lmax

2 external memory accesses take place
during that period. Afterwards, qmax · lmax elements
can be accessed per frame interval.

• lc video line intervals � the time required to com-
pute the particle weights after the particles are reor-
ganized in the line memories � are negligible com-
pared to the memory access time (this assumption
will be justi�ed in Section 4.2).

Let q be the total number of external memory accesses
required by the tracking algorithm in each frame. If q < qo,
all the information can be read from the external memory
during image acquisition, and only one frame is necessary
to estimate the target position. Otherwise, the number
of additional video line intervals required to process one

video frame is l =
⌈
q−qo

qmax

⌉
. The number of video frame

intervals required to process one input video frame is then

given by f =
⌈

l
lmax

⌉
+ 1.

For the color features, the number of external memory
accesses is given by the size of each particle region multi-
plied by the number of particles M , i.e. q = M · rx · ry.
For the HOG features, the number of external memory

accesses is given by the total number of histogram bins
within a particle region multiplied by the number of par-
ticles, i.e. q = M · bx · by ·nb. In the case of HOG features,
it is important to notice that the actual size of each parti-
cle region is typically larger than the number of histogram
bins needed to represent it. Expressing the size of a par-
ticle region in terms of the size of HOG blocks, ex × ey,
and the number of non-overlapping pixels between adja-
cent HOG blocks, px and py, we have rx = ex+(bx−1) ·px
and ry = ey + (by − 1) · py.

Figure 6(a) shows the number of frames required to
estimate the target position as a function of the size of
each particle region. Here 320 particles were used for both
trackers, and the HOG features consisted of blocks of ex =
ey = 16 pixels and px = py = 4 pixels. It can be seen that
the I/O requirements of the color-based particle �lter are
much more stringent than those of the HOG-based tracker.
The discontinuities shown on the graphs correspond to the
times when the number of video line intervals required
to read the elements from the external memory are exact
multiples of lmax. Therefore, to make the optimal use of
the available resources, it is highly desirable to make the
region size a multiple of lmax.

Figure 6(b) shows the number of frames required to
estimate the target position as a function of the number
of particles with the particle region size �xed at 480 pixels.
For up to 320 particles, both algorithms are able to track
the target at 30fps, but we can see again that the color-
based particle �lter requires much more frequent access to
the external memory than the HOG version. Although the
�gure shows up to 4000 particles, this number is neither
practical nor desirable. In practice, memory limitations
would not allow thousands of particles to be processed
since that would require each PE to store a large amount
of data. Moreover, as will be shown in Section 4.1, in
our application, the bene�ts of increasing the number of
particles above 320 are negligible.

Figures 7(a)-(c) show the computation times of the
HOG-based particle �lter using 320 particles for several
region sizes as a function of di�erent parameters of the
HOG descriptor. In Figure 7(a), the computation time is
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Figure 6: Analytical comparison of the particle �lter computation time: (a) as a function of the size of each particle
region and (b) as a function of the number of particles.

presented as a function of the number no of overlapping
pixels among adjacent HOG blocks with a �xed block size
of ex = ey = 16 and histograms of nb = 8 bins. The �gure
shows that for regions of up to approximately 1500 pixels,
it is possible to access all the required information in one
frame interval for up to 12 overlapping pixels. Figure 7(b)
shows the computation time as a function of the block size
with nb = 8, and no = 12. As the graph shows, for region
sizes of 480 pixels, it is possible to access the information
in one frame for block sizes as small as 196 pixels. Fig-
ure 7(c) shows the computation time as a function of the
number of block histogram bins nb with ex = ey = 16
and no = 12. As the �gure shows, for regions of up to
approximately 1500 pixels, it is possible to compute the
histograms in one frame interval employing histograms of
up to 9 bins. The bene�ts of using more than 9 bins are
negligible however, as shown in [26].

3.1. Memory Access Requirements for Integral Histograms

For the purpose of comparison, we evaluated the mem-
ory access requirements of a particle �lter in which the
histograms of the particle regions are computed using inte-
gral histograms. Since this approach requires temporarily
storing one histogram per image pixel, the total memory
required is qw = nb · x · y, where nb is the number of his-
togram bins and x and y are the horizontal and vertical
image resolutions respectively (assuming each histogram
bin can be represented by one byte using �xed-point no-
tation).

In addition to storing the histograms in the external
memory, in order to compute the histogram of each rect-
angular region, it is necessary to read the integral his-
tograms of each of its four corners from the external mem-
ory. Therefore, if a particle region consists of nr regions
(nr = 1 for the color-based particle �lter and nr = bx · by
for the HOG-based particle-�lter), the number of elements

that must be read from the external memory is qr =
4·nb ·M ·nr. The total number of external memory accesses
required by the particle �lter using integral histograms is
thus given by q = qw + qr = nb · (x · y+ 4 ·M · nr). Figure
8(a) shows the number of frames required to estimate the
target position as a function of the region size with the
number of particles �xed at 320 pixels and the image reso-
lution at 256×240. The parameters used to represent color
histograms and HOG descriptors are the same as those
presented in Figure 6(a). The graph shows that for both
the color-based particle �lter and the HOG-based parti-
cle �lter, integral histograms require substantially larger
numbers of frames to access the external memory than
our proposed approach.

Even if we de�ne a search window in the vicinity of
the last known position of the target so that it is not nec-
essary to compute the integral histograms over the entire
image, our approach performs substantially better. Figure
8(b) shows the percentage of the image area covered by the
search window of the integral histogram-based tracker so
that its computation time is equivalent to that of the corre-
sponding SIMD-based approach (i.e., color-based tracker
or HOG-based tracker using di�erent block sizes). The
results are for an image resolution of 256 × 240 and 320
particles. For small particle region sizes, it is clear that
the proposed algorithms greatly outperform the integral
histograms-based approach. For example, for particle re-
gions of 1600 pixels, the search window of the integral
histogram-based tracker would be able to cover only 4.5%
of the image area. As the particle region size increases,
so does the area that can be covered using the integral
histograms-based approach. In the extreme case of a parti-
cle region size of 10, 000 pixels, using a 16×16-block HOG,
the integral histograms search window is able to cover ap-
proximately 40% of the image area, but this search region
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Figure 7: Computation time of the HOG-based tracker as a function of (a) the number of overlapping pixels, (b) the
block size, and (c) the number of bins.

1000 2000 3000 4000 5000 6000 7000
0

5

10

15

20

Region size (pixels)

C
o

m
p

u
ta

ti
o

n
 t

im
e 

(#
 f

ra
m

es
)

 

 
HOG

Color

Integral Histograms HOG

Integral Histograms Color

(a)

2000 4000 6000 8000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Region size (pixels)

S
ea

rc
h

 r
eg

io
n

 /
 I

m
ag

e 
ar

ea

 

 16x16−block HOG

24x24−block HOG

32x32−block HOG

Color

(b)

Figure 8: Performance comparison with integral histograms: (a) computation time with unrestricted search window,
(b) integral histograms maximum search window size that allows performance equivalent to the proposed approach.
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is only 50% larger than the size of the particle region itself.

4. Experimental Results

4.1. Accuracy and Speed

To evaluate the performance of our tracking algorithms
and validate our choice of parameters, we implemented
them on a standard desktop computer and performed ex-
periments on �ve video sequences from the PETS 2001
data set.1 In the HOG-based particle �lter, we tracked
regions of 2 × 4 blocks of 16 × 16 pixels with 12 pixels
of overlap. In the color-based particle �lter, we tracked
regions of 12× 25 pixels. In both �lters, we used 320 par-
ticles.

Based on the ground-truth information, we computed
the root mean squared (rms) error of the target position
estimated by the HOG-based tracker. Figure 9(a) shows
the accuracy improvement obtained as the number of par-
ticles is increased. The results correspond to the average
rms error over �ve di�erent targets. The experiment was
repeated 40 times for each target. The results indicate that
the accuracy gains obtained by increasing the number of
particles above 320 are negligible.2

Figure 9(b) compares the average execution speed of
the HOG-based and of the color-based particle �lters im-
plemented in a standard desktop computer to the expected
execution speed of the SIMD versions of the algorithms.
The results were obtained using an Intel Xeon Quad Core
2.83GHz.3 In the case of the HOG-based tracker, it can
be seen that our method outperforms the standard imple-
mentation when more than 175 particles are used. Al-
though the standard implementation of the color-based
tracker outperforms our approach for a small number of
particles, it is important to notice that the performance of
the parallel color-based particle �lter is limited mainly by
the fact that our platform can acquire at most 30 image
frames per second.

4.2. Performance Evaluation of the Proposed Algorithms

on an Embedded Platform

This section describes the implementation and perfor-
mance evaluation of the proposed algorithms on an em-
bedded platform, speci�cally on the WiCa smart camera.
The WiCa camera consists of four main components: VGA
color image sensor, IC3D/Xetal SIMD processor, general

1http://www.cvg.cs.rdg.ac.uk/PETS2001/pets2001-dataset.html
2The minimum number of particles necessary depends on the com-

plexity of the task that one wishes to accomplish. In our speci�c
application 320 particles su�ce, but that may not be the case in
more complex applications such as tracking targets that undergo
drastic appearance changes or that move among a highly dynamic
background. In fact, under such conditions simple color histograms
or HOG descriptors may not be powerful enough to perform robust
tracking.

3Since we are interested in evaluating the performance of the al-
gorithms on a sequential processor, our implementation was not op-
timized to use the four processing cores.

purpose processor, and Dual Port RAM (DPRAM) shared
by the processors. The LPA of the IC3D/Xetal processor
consists of P = 320 RISC PEs, each endowed with 64
words of memory (10 bits wide).

In our implementation, the target is tracked on im-
ages of resolution of 256 × 240 pixels, which are obtained
by down-sampling the VGA frames provided by the im-
age sensor. To track the target at 30fps, we employ a
pipelined processing approach in which extraction of fea-
tures of the current frame is interleaved with histogram
computation of the previous frame during the odd and
even video line intervals. The distribution of the target
state is approximated by 320 particles, and the observation
likelihoods are computed based on the Bhattacharyya dis-
tances between the histograms of the particle regions and
the target reference histogram. Since we are employing a
large number of particles, they are organized into columns
in the memory (as illustrated in Figure 3(b) of Section
2.2), so that each PE is responsible for one particle.

For the color-based particle �lter, we track the target
based on its hue histogram. Due to memory constraints,
we use 40-bin histograms. Each particle region consists
of a rectangular area of rx × ry = 21 × 22 pixels, which
corresponds to the largest region that can be tracked at
30fps using 320 particles.

For the HOG-based particle �lter, we compute the gra-
dients using gray scale images and use simpli�ed HOG his-
tograms employing a binary voting scheme (i.e., each pixel
counts as one vote for the corresponding bin regardless of
the gradient magnitude). We chose nb = 8 bins and nh = 2
line memories, which makes the block overlap no = 12 pix-
els. Each particle region consists of bx × by = 4× 9 blocks
of 16× 16 pixels.

Table 2(a) shows the time required for each processing
step of the color-based particle �lter. Only the �rst step
of the algorithm, i.e., conversion to HSV color space, is
carried out during the odd video line intervals. As we can
see in the table, this step takes 6.5µs per video line, or
approximately 9% of one video line interval.

Table 2(b) shows the time required for each process-
ing step of the HOG-based particle �lter. During the odd
video line intervals, the orientations of the gradients of
each image pixel are computed and accumulated in the
line memory to allow the computation of the histograms,
which takes places at every py = 4 video lines. Gradient
orientation computation takes 7.5µs per video line. His-
togram computation takes 16.4µs and is executed 240

4 = 60
times. In the HOG-based particle �lter, the LPA is busy,
on average, for 11.6µs or 17% of the time during the odd
video line intervals.

Since we chose to organize the particle regions as columns
in the line memory, during the even video line intervals, ev-
ery step of the algorithm is computed in parallel for all the
particles. In the color-based particle �lter, histogram com-
putation � the �rst step executed during the even video
lines � requires

⌈ rx·ry

2

⌉
= 231 iterations of 2.4µs (since

two elements per PE are read into the line memory at each
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Figure 9: (a) Accuracy of the HOG-based tracker as a function of the number of particles. (b) Comparison of the
execution speeds of particle �lter trackers.

video line interval) and is followed by the computation of
the Bhattacharyya distances. In the HOG-based particle
�lter, since the block histograms are computed during the
odd video line intervals (at every 4 video lines), the Bhat-
tacharyya distances between each block histogram and the
corresponding reference histogram can be computed dur-
ing the even video line intervals in bx · by = 36 steps of
18µs.

The remaining steps of the particle �lter take place
during the subsequent lc video line intervals, and their
execution times are shown in Table 2(c). The compu-
tation time for weight normalization is data-dependent
due to the use of iterative routines for integer division.
The table shows its average value and standard deviation
over 20 iterations of the algorithm while tracking a tar-
get. The weighted average of the particles is computed
using a shift/accumulate procedure similar to that used to
normalize the particle weights, therefore its computation
time is also data-dependent. The table shows its minimum
and maximum values given the valid range of the weighted
particles. The resampling time shown in the table corre-
sponds to the time to copy the replicated particles to their
corresponding PEs since the resampling factors are com-
puted during weight normalization at every iteration of
the �lter. Therefore, after the histograms have been com-
puted, between 271.5µs and 318.7µs are required to esti-

mate the target position. Thus,
⌈

271.5µs
69.5µs

⌉
≤ lc ≤

⌈
318.7µs
69.5µs

⌉
or 4 ≤ lc ≤ 5. For both approaches, the total computation
time during one frame is below 4ms or 12% of one frame
interval.

Table 3(a) shows the line memory usage of the color-
based particle �lter. As we can see, more than 64% of the
line memories are used to store the histograms. Regarding
program memory usage, the current implementation of the
algorithm consists of 1368 instructions out of the 2048 in-

Conversion to HSV 240 · 6.5µs
Histogram computation 231 · 2.4µs
Bhattacharyya distances 79.6µs

Total 2.2ms

(a)

Gradient orientation 240 · 7.5µs
Histogram computation 60 · 16.4µs

Bhattacharyya distances 36 · 18µs

Total 3.4ms

(b)

Particle prediction 10.6µs

Likelihoods 3.5µs

Weight normalization 61.4µs/4µs

Weighted average of the particles 2 · 36µs to 55.6µs

Resampling 128µs

Total 271.5µs to 318.7µs

(c)

Table 2: Processing times of each step of the algorithm
on the WiCa camera. (a) Color and (b) HOG histogram
extraction and distance computation and (c) particle �l-
tering.
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Target state 4

Particle weights 1

Histograms 40

Video line bu�ers 3

Temporary variables 14

Total 62

(a)

Target state 4

Particle weights 1

Histograms 16

Temporary gradient

storage

16

Edge mask data 2

Video line bu�ers 3

Temporary variables 22

Total 64

(b)

Table 3: Line memory usage. (a) Color-based particle
�lter. (b) HOG-based particle �lter.

structions of program memory available in the IC3D/Xetal
processor. Table 3(b) shows the line memory usage of the
HOG-based particle �lter. In the HOG-based tracker, over
50% of the line memories are used for histogram compu-
tation. Regarding program memory usage, the algorithm
consists of 1704 instructions.

Figure 10(a) shows snapshots of the tracking results
of our implementation of the parallel color-based particle
�lter in the WiCa camera. Figure 10(b) shows snapshots
of the tracking results of our implementation of the HOG-
based particle �lter.

4.3. Resampling

As we mentioned earlier, although resampling cannot
be performed in parallel, it is not computationally expen-
sive for a moderate number of particles. To validate this
claim, we implemented systematic resampling on an At-
mel AVR ATmega128 general-purpose processor running
at 8MHz. Figure 11 shows the computation times for a
varying number of particles. As the �gure shows, it is pos-
sible to resample 200 particles in less than 40ms in a low-
power general purpose processor. On the same platform,
computing the weights of 200 particles using 32-bin color
histograms of regions consisting of 16× 16 elements previ-
ously stored in the internal memory of the processor takes
588ms. If the number of histogram bins is not a power
of 2, due to the �oating point operations involved in the
computations, the processing time is much longer (1.7s for
histograms of 33 bins). Therefore, it is clear that weight
computation, rather than resampling, is the bottleneck of
a histogram-based particle �lter tracker.

5. Conclusions and Future Directions

Many previous studies have shown that it is possible
to port complex computer vision algorithms to smart cam-
eras based on SIMD processors [27, 28, 29, 30, 31]. As
we have demonstrated, the histogram-based particle �lter
using color and HOG features is another such algorithm.
In this paper, we have shown that not only is it possible
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Figure 11: Resampling computation times in a low-power
general-purpose processor.

to handle the major bottleneck of the algorithm � the
computation of the feature histograms, and consequently,
the particle weights � in a parallel manner suitable for
an SIMD architecture, but also that the non-parallelizable
steps can be implemented e�ciently. We have analyzed
the computational requirements of the algorithm and con-
cluded that it is possible to track targets at 30fps and
that this performance is scalable in terms of the size of
the tracked regions and the number of particles. We have
also demonstrated that it is possible to vary the HOG
parameters without compromising the computational per-
formance of the tracker. Our analysis also showed that the
proposed algorithms clearly outperform alternative ver-
sions that use integral histograms to compute the observa-
tions. Finally, our experimental results showed that both
the color-based and the HOG-based tracker are able to
track targets at 30fps on a low-power embedded platform,
a performance comparable to that obtained using a desk-
top computer. We believe that the real-time implementa-
tion of the histogram-based particle �lter on an embedded
camera will provide an invaluable building block for the
design of practical applications using portable embedded
devices and wireless camera networks.

One of the major limitations of our current approach
is that the target models are not updated. Therefore, the
algorithms are not robust to large variations in the ap-
pearance of the target. In particular, the color-based ap-
proach is sensitive to large illumination changes, whereas
the HOG-based tracker cannot handle large scale varia-
tions. One extension of our work that should greatly in-
crease the robustness of our algorithms would be to include
a model update method. Some approaches have been pro-
posed in the literature [6, 8, 32, 33], however, it is nec-
essary to evaluate to what extent these approaches can
be ported to an embedded system. It is also necessary to
devise methods to implement these approaches in parallel.

Another immediate extension of our work would be
to integrate both color- and HOG-based trackers into a
single algorithm so that the target can be tracked based
on both features simultaneously. Even though this inte-
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(a)

(b)

Figure 10: Tracking results. (a) Color-based particle �lter. (b) HOG-based particle �lter.

gration is conceptually straightforward, it is not trivial
to overcome the hardware constraints of our current plat-
form. One possible approach would be to employ multiple
cameras, but several research issues must be addressed to
allow multi-camera collaboration. We are currently inves-
tigating collaboration frameworks for multiple networked
cameras tracking the same target in order to increase the
robustness and accuracy of tracking. It should be possible,
for example, to employ a cluster-based architecture [34]
in which the cluster head is responsible for aggregating
individual tracking results from the cluster members.
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