






 

3.3.2 Overall Gray Matter Diffusivity
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Figure 3.9: Ex vivo diffusion characteristics in the cervical spinal cord gray matter 
recovery time points two weeks, fifteen weeks and twenty five weeks post injury. * =  P 
< 0.05, compared to controls. ** = P < 0.05, compared to two weeks. Error bars = +1 SD.
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Ex vivo diffusion characteristics in the cervical spinal cord gray matter at 
recovery time points two weeks, fifteen weeks and twenty five weeks post injury. * =  P 
< 0.05, compared to controls. ** = P < 0.05, compared to two weeks. Error bars = +1 SD. 
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3.3.3 Motoneuron Size 

 In order to verify that the changes in the cervical gray matter diffusion values 

reflected an underlying change in the neuronal structure of the gray matter, motoneuron 

sizes in the lamina IX of the ventral horns were obtained from the control group (n=4), 

two weeks post injury group (n=4) and twenty-five weeks post injury group (n=4). Group 

analysis of the size of the motor neurons showed a significant increase in the motoneuron 

size at two weeks (P < 0.01) and twenty five weeks (P < 0.01) post injury as compared to 

controls.  The motoneurons also showed a significant increase in size at twenty five 

weeks post injury (P < 0.01) as compared to the motor neuron size at two weeks post 

injury (Figure 3.10A).  At two weeks post injury the size of the motor neurons increased 

approximately by 9% from the size of the motoneurons in controls; whereas at twenty 

five weeks post injury, the size of the motoneurons increased by approximately 42% 

compared to controls. At twenty five weeks post injury there was an increase in the 

variability of the size of the motoneurons as compared to the variability in the 

motoneuron size among the control and two weeks post injury groups.  Among the 

control and the two weeks post injury group, the two weeks post injury group had higher 

variability among the motoneuron sizes as seen in the histogram in Figure 3.10b. 

 



 

A 
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Figure 3.10: A) Motoneuron size in 
five weeks post injury groups.* = P < 0.01, compared to control. ** = P <
to two weeks post injury. B) Histogram showing the variance in the size of the motor 
neurons (µm2) among control, two weeks post injury and twenty five weeks post injury 
groups. 
 
 
 

 

A) Motoneuron size in µm2 in control, two weeks post injury and twenty 
five weeks post injury groups.* = P < 0.01, compared to control. ** = P <
to two weeks post injury. B) Histogram showing the variance in the size of the motor 

) among control, two weeks post injury and twenty five weeks post injury 
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) among control, two weeks post injury and twenty five weeks post injury 
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3.4 Discussion 

3.4.1 Review of hypothesis and specific aims 

 The current study was motivated by the desire to quantify the diffusion properties 

using ex vivo DTI in the rat cervical spinal cord gray matter following a distal contusion 

spinal cord injury.  We hypothesized that ex vivo DTI can detect changes in the diffusion 

characteristics in the rat cervical spinal cord gray matter remote from the lesion during 

long-term recovery from traumatic SCI.  Further, we hypothesized that ex vivo diffusion 

characteristics in the dorsal horns of the rat cervical gray matter vary from the ex vivo 

diffusion characteristics in the ventral horns of the rat cervical gray matter and that DTI is 

sensitive to these variations.  In order to test these hypotheses we developed an algorithm 

to automatically segment dorsal and ventral ROIs in the rat cervical gray matter based on 

histology templates and then use these ROIs to quantify the changes in the ex-vivo rat 

cervical DTI indices, temporally as well as spatially after a distal (T8) contusion spinal 

cord injury.  Lastly, we hypothesized that ex vivo DTI values in the rat cervical spinal 

cord gray matter reflect the underlying microstructure of the spinal cord gray matter, 

specifically the structure of the neurons.  In order to test this hypothesis we measured the 

size of the motoneurons in the cervical spinal cord gray matter remote during long term 

recovery from traumatic SCI. 

3.4.2 Summary of results from the current study 

 To the best of our knowledge, the current investigation was the first to use ex vivo 

DTI to elucidate the spatial diffusion patterns in the rat cervical spinal cord gray matter 

following a distal contusion spinal cord injury.  This study was also novel in the way it 
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used a robust automatic segmentation algorithm to segment ROIs in the rat cervical 

spinal cord gray matter.  The segmentation technique, rather than being based on a 

histological atlas or user input, was based on the histology templates obtained from each 

specimen.   

 The diffusion parameters in the cervical spinal cord gray matter demonstrated a 

spatial variation.  Fractional anisotropy (FA) values in the dorsal horn were significantly 

higher than the FA values in ventral horn in all groups.  FA reflects underlying 

microstructural properties like myelin thickness, axon density and extracellular volume 

(Takahashi, Hackney et al. 2002; Mottershead, Schmierer et al. 2003; Gulani, Webb et al. 

2001).  Based on Rexed laminae, the ROI selected in the dorsal horns corresponded to 

laminae I, II and III.  The ROI selected in the ventral horns corresponded to laminae VII, 

VIII and IX.  Rexed laminae I, II and III showed the presence of thinly myelinated axons 

and high cellular density as compared to the Rexed laminae VII, VIII and IX.  Rexed 

laminae VII, VIII and IX contained neurons and cellular support structure and did not 

contain axons (Steiner and Turner 1972; McClung and Castro 1978; Paxinos 2004).  

Thus, the higher FA in the dorsal horn as compared to the ventral horn could be 

explained by the presence of thinly myelinated axons in the dorsal horn.  lADC values in 

the dorsal horn were significantly higher than the lADC values in all groups, except the 2 

weeks post injury.  Note that lADC reflects underlying microstructural properties such as 

myelin thickness, axon diameter along with neurofilament and microtubule density 

(Kinoshita, Ohnishi et al. 1999). The presence of thinly myelinated axons and the dense 

neurofilament and microtubules in the dorsal horn (Steiner and Turner 1972; McClung 
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and Castro 1978; Paxinos 2004) could explain the higher lADC values in the dorsal horn 

as compared to the ventral horns. 

 Diffusion parameters in the cervical spinal cord gray matter demonstrated changes 

over time post-injury.  These changes included a decrease in diffusivity in the gray matter 

at two weeks post injury followed by a gradual recovery at twenty five weeks post injury.  

This trend in diffusivity was reflected in both lADC and tADC values.  Our results 

support studies which report a similar decrease in the diffusivity values in the gray matter 

at the cervical level post SCI (Ellingson, Ulmer et al. 2006; Ellingson, Kurpad et al. 

2008). Ellingson et al. reported a significant decrease in lADC and tADC values at two 

weeks, fifteen weeks post injury and twenty five weeks post injury as compared to 

controls. They also reported a decrease in FA values from two weeks through fifteen 

weeks post injury followed by a significant increase in FA at twenty five weeks post 

injury.   

The observed decrease in the diffusion values in the cervical gray matter might be 

caused by a change in the ratio of intracellular to extracellular water volume due to 

cytotoxic edema (Haku, Miyasaka et al. 2006; Schwartz and Hackney 2003).  An 

increased interstitial pressure could also lead to a prolonged hypoperfusion seen after 

injury (Tator and Koyanagi 1997; Haku, Miyasaka et al. 2006).  This leads to an 

accumulation of water within the slow intracellular compartment further causing a 

decrease in the diffusion values at two weeks post injury  (Stanisz, Webb et al. 2004). 

Studies have shown that diffusion in white matter is reduced in a model of cytotoxic 

edema (Ebisu, Naruse et al. 1993). An increase in intracellular water leads to a reduction 

in tADC and lADC due to an increase in restricted diffusion (Stanisz and Henkelman 
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2001). Stanisz et al. provided a model to fit the diffusion parameters and have used that 

model to  predict the effects of axonal swelling on the diffusion characteristics  in white 

matter. They found that the water shift from the extracellular compartment into the highly 

restricted intracellular compartment was the major cause of decreased diffusion (Stanisz, 

Szafer et al. 1997; Stanisz, Henkelman et al. 2001).  At fifteen and twenty five weeks 

post injury, the decrease in the diffusion values can be explained by the increase in the 

cellular swelling due to chromatolysis.  This is supported by histological evidence which 

shows an increase in the size of the soma of motor neurons as well as the dissolution of 

Nissl substance both of which are indicators of chromatolysis (Paxinos 2004). 

 Fractional anisotropy values in the whole cervical spinal cord gray matter 

decreased at two weeks followed by an increase to control levels at fifteen weeks.  At 

twenty five weeks the FA values are significantly higher than controls and at two weeks 

post injury.  These results support previous studies which report a similar trend in the FA 

values over time post SCI (Ellingson, Kurpad et al. 2008).  To verify that the increase in 

FA values at twenty five weeks post injury reflected the chronic response following 

spinal cord injury, the size of the motoneurons in the ventral horns was measured.  The 

size of the motor neuron in lamina IX showed changes which could explain the observed 

trend in FA values.  At twenty five weeks, the size of the motoneurons increased 

significantly as compared to controls and two weeks.  As the motoneurons increase in 

size, the extracellular volume is likely decreased.  This could be the driving factor behind 

the decrease in diffusivity at twenty five weeks as compared to controls and two weeks 

post injury.  Another factor that could contribute to the changes in the anisotropy is 

changes in the structure of dendrites post spinal cord injury.  Studies have shown a 
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correlation between motoneuron soma size and dendritic features like dendritic length 

and branching (Ulfhake and Kellerth 1982; Kitzman 2005).  Overall, histological 

evidence supports the notion that axotomized motoneurons in the cervical spinal cord 

gray matter are undergoing morphological changes which are consistent with cell 

swelling and chromatolysis following a distal contusion injury at the T8 level (McIlwain 

and Hoke 1999; McIlwain and Hoke 2005). We see similar changes in motor neurons in 

the ventral horn although these motor neurons are not axotomized. These changes could 

lead to a change in the ratio of the extracellular volume to the intracellular volume which 

could explain the increase in FA at chronic stages. 

3.4.3 Clinical Implications 

 Performing DTI to map the diffusion characteristics in the gray matter may be 

beneficial as these diffusion properties can be correlated to the cytoarchitecture of the 

gray matter.  Based on Rexed laminae, evaluation of the diffusion values in specific 

laminae can be correlated to functional characteristics.  Changes in diffusion values in 

specific laminae over different recovery time points can then be used to predict functional 

recovery or deterioration. 

 Acquiring DTI at the lesion center during recovery from traumatic SCI can be 

difficult due to morphological changes in the spinal cord around the lesion center, and 

due to artifacts associated with metal surgical implants used to stabilize the injured spine.  

In order to overcome these difficulties, performing DTI on regions remote from the 

traumatic lesion could be beneficial in monitoring the state of the spinal cord during 
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recovery post SCI.  Based on this study, gray matter in regions remote from the traumatic 

lesion are found to be sensitive to injury. 

3.4.4 Study Limitations 

 In this current study, diffusion characteristics in the gray matter were only 

correlated to motor neuron sizes in the lamina IX of the cervical gray matter. Additional 

in depth quantitative analysis of the changes in the microstructural characteristics of the 

cellular structure in the gray matter is necessary in order determine the specific 

mechanisms behind the observed changes in the diffusion properties in the gray matter. 

Specifically, neuron density and changes in the neuronal structure in different laminae in 

the gray matter have to be established at different recovery time points post spinal cord 

injury. 

 The current study utilized DTI data obtained from the injured spinal cord gray 

matter in the secondary acute to the chronic stages of recovery. Primary acute (< 2 weeks 

post injury) were not explored in this study due to concerns with increased mortality. In 

order to determine the accurate temporal and spatial progression of changes in DTI 

values during primary acute stages, DTI needs to performed in specimens at recovery 

points less than two weeks. 

 In this current study, it was established that ex vivo DTI measurements in regions 

rostral to the injury site show changes which are specific and sensitive to the injury post a 

contusion spinal cord injury at the T8 level. However, in order to completely understand 

the mechanism of changes in diffusion characteristics in the gray matter throughout the 
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spinal cord gray matter, DTI values needs to be analyzed in the gray matter caudal to the 

injury site as well. 
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