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An analytical model for transient deformation of viscoelastically coated
beams: Applications to static-mode microcantilever chemical sensors
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The problem governing the transient deformation of an elastic cantilever beam with viscoelastic
coating, subjected to a time-dependent coating eigenstrain, is mathematically formulated. An
analytical solution for an exponential eigenstrain history, exact within the context of beam theory,
is obtained in terms of the coating and base layer thicknesses, the elastic modulus of the base
material, the initial coating modulus, the coating relaxation percentage �0%–100%�, and the time
constants of the coating’s relaxation process and its eigenstrain history. Approximate formulas, valid
for thin coatings, are derived as special cases to provide insight into system behavior. Main results
include �1� the time histories of the beam curvature and the coating stresses, �2� a criterion
governing the response type �monotonic or “overshoot” response�, and �3� simple expressions for
the overshoot ratio, defined as the peak response scaled by the steady-state response, and the time
at which the peak response occurs. Applications to polymer-coated microcantilever-based chemical
sensors operating in the static mode are discussed. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3148291�

I. INTRODUCTION

A. Background

In recent years the development of microcantilever
�MC�-based chemical and biochemical sensors has created
another important application area for theoretical models for
understanding the deformation of coated beams. These sen-
sors may be operated in a dynamic �resonant� or static
mode.1,2 In the case of dynamic mode operation, the change
in mass associated with the sorption of analyte into the se-
lective beam coating causes a shift in resonant frequency,
which may be correlated to the ambient concentration of the
target substance. For the static-mode case, the sorption of
analyte causes a quasistatic curvature that is often induced by
the tendency of the coating to expand upon analyte sorption,
not unlike the behavior of a bimetallic strip subjected to
temperature change. In this mode of operation, the objective
is to correlate the quasistatic MC sensor response �deflection�
to the ambient analyte concentration; this, of course, requires
a sufficiently accurate model of the coated-beam deforma-
tion.

When the coating material may be modeled as elastic
�the case for most metals�, the modeling of beam deforma-
tion �dynamic or static� is relatively straightforward. For the
dynamic mode, the equivalent flexural rigidity of the elastic
composite may be calculated using the concept of a trans-
formed section,3 and this property may then be utilized in
conjunction with classical solution methods for elastic canti-

lever beam vibrations.4 Complications associated with elastic
beam vibrations in a fluid medium have also been taken into
consideration.5 For static-mode operation of MC chemical
sensors, classical results such as Stoney’s equation6 and Ti-
moshenko’s bimetallic strip solution,7 as well as several ex-
tensions of these results,8–18 may be applied; however, most
of these solutions are based on the assumption that the coat-
ing is elastic.

In many cases of practical interest the coating material
utilized in MC-based chemical sensors is a polymer, for
which an elastic material model might not be sufficient due
to the energy dissipation that occurs during polymer defor-
mation. To account for these energy losses, polymers are
often modeled as viscoelastic.19,20 The incorporation of coat-
ing viscoelasticity into dynamic-mode models of MC sensors
is relatively simple. Once the effective complex flexural ri-
gidity of the composite section is determined by one of sev-
eral existing methods,21–23 one may utilize an appropriate
form of correspondence principle for steady-state harmonic
vibrations24 to convert a dynamic solution for an elastic
beam to the corresponding viscoelastic solution.25 However,
for the static mode the effects of coating viscoelasticity are
not handled as easily.

To the authors’ knowledge, analytical solutions analo-
gous to the classical elastic bilayer beam solutions of Stoney
and Timoshenko do not exist for the case in which one of the
layers is viscoelastic, yet such a solution is precisely what is
needed to account for the viscoelasticity of polymer coatings
in static-mode MC sensors. Moreover, as illustrated in Fig. 1,
experimental data for polymer-coated, static-mode MC sen-
sors may exhibit either a monotonic transient response or one
that “overshoots” the steady-state deflection.1,26,27 While the
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latter behavior is inconsistent with that predicted by elastic
models during sorption, it may be explained by stress relax-
ation effects associated with coating viscoelasticity. This ob-
servation provides the motivation for the present study,
whose goals are �1� to present a rigorous derivation of the
initial-value problem �IVP� governing the deformation of an
elastic cantilever beam with viscoelastic coating, subjected
to an arbitrary coating “eigenstrain” history, and �2� to derive
analytical solutions for the practical case in which the coat-
ing eigenstrain approaches its steady-state value exponen-
tially in time, with a step function being included as a special
limiting case.

In this paper the term eigenstrain is used to denote any
stress-free straining that the coating would experience if it
were not constrained by the base layer. While the physical
source of the eigenstrain in static-mode, MC-based chemical
sensors is analyte sorption, other sources of eigenstrain could
include temperature change, hygroscopic swelling, phase
transformation, misfit strains, etc.28,29 Therefore, the math-
ematical formulation and analytical solutions presented
herein are of fundamental interest and need not be restricted
to the modeling of MC-based chemical sensors.

B. Related work

In a recent paper by the authors30 the problem of a static-
mode MC sensor with viscoelastic coating was formulated
and solved using a numerical approach. Because the focus of
that paper was to model the beam deformation caused by an
arbitrary time history of ambient analyte concentration, in-
cluding the modeling of sorption kinetics, coating viscoelas-
ticity, and concentration-dependent coating plasticization, the
formulation presented in the earlier paper was necessarily
more general than that of the present work. As a result, a
numerical solution of the governing equations was required.

Unlike the authors’ recent work, the primary goal of the
present paper is to derive analytical �closed-form� solutions
to the problem of interest as such solutions �a� may provide
insight into the specific roles that the various system param-
eters play in determining the response of viscoelastically
coated beams and �b� may serve as valuable benchmark so-

lutions �e.g., for verifying numerical solution techniques�. To
this end, the problem of transient beam deformation will be
formulated by assuming that the coating eigenstrain is speci-
fied a priori. �In the case of MC chemical sensor applica-
tions, this would require a theoretical understanding or ex-
perimental characterization of the sorption kinetics and the
sorption-induced expansion associated with the analyte/
coating pair.� In addition, the governing IVP will be formu-
lated in dimensionless form in order to minimize the number
of independent parameters appearing in the analytical results
and in the corresponding plots that are generated to display
the system behavior.

C. Specific objectives of present study

The specific objectives of this study are �a� to math-
ematically formulate the problem of determining the re-
sponse �i.e., stress, strain, curvature, and deflection histories�
of a cantilever beam with viscoelastic coating when the coat-
ing is subjected to an arbitrary eigenstrain history, �b� to
derive an “exact” analytical solution and an approximate
“thin-coating solution” for the system response when the
coating eigenstrain increases exponentially in time to its
steady-state value, �c� to utilize the thin-coating solution to
develop a simple “overshoot criterion” that may be used to
predict if an overshoot �i.e., nonmonotonic� response will
occur, and �d� to derive simple expressions to quantify the
magnitude of the overshoot and the time at which the peak
response occurs. Applications of the results that are relevant
to MC-based chemical sensors will also be discussed.

II. PROBLEM STATEMENT

Consider an elastic cantilever beam of rectangular cross
section coated with a viscoelastic layer �Fig. 2�. The coating
is subjected to a uniform eigenstrain history �

0
*�t� and the

mechanical behavior of the coating is taken to be that of a
three-parameter viscoelastic solid. The resulting deformation
history of the beam �curvature ��t� or tip deflection w�t�� and
the time-varying strain and stress profiles within the coated
beam are to be determined. The problem parameters include

FIG. 1. Overshoot and monotonic responses for polymer-coated, static-
mode MC-based chemical sensors. Data correspond to two different coating/
analyte pairs and are taken from Loui et al. �Ref. 27�. FIG. 2. Problem parameters for cantilever beam with viscoelastic coating

under eigenstrain: �a� beam profile; �b� beam cross section.
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h1 and h2, the thicknesses of the base layer and coating,
respectively the beam length L and width b, the base mate-
rial’s biaxial elastic modulus M �E / �1−��, where E and �
are the �uniaxial� Young’s modulus and Poisson’s ratio of the
base material, respectively, and the in-plane properties of the
viscoelastic coating material, which include its instantaneous
and asymptotic biaxial moduli M0 and M�, respectively, and
the corresponding relaxation time constant �R, all three of
which will be explained subsequently. The only load on the
system is the coating eigenstrain �

0
*�t�. The time-dependence

of the solution will arise due to the time-dependence of both
the eigenstrain and the creep/relaxation behavior of the vis-
coelastic coating material.

Of particular interest in this study is the derivation of an
overshoot criterion for determining what combinations of
problem parameters will result in a beam response that ex-
hibits an overshoot phenomenon. Moreover, in order to
quantify the overshoot, expressions will be derived for �a�
the “critical time” tcr at which the peak curvature �or deflec-
tion� occurs and �b� a response parameter referred to as the
“overshoot ratio �OSR�,” defined as

OSR �
�max

����
, �1�

i.e., the ratio of the maximum beam curvature to the steady-
state curvature. Definition �1� implies that a monotonically
increasing curvature �no overshoot� would result in OSR=1,
while for a response exhibiting overshoot, the value of the
OSR would exceed unity and its value would characterize
the magnitude of the overshoot.

III. FORMULATION OF INITIAL-VALUE PROBLEM

A. Assumptions

The mathematical formulation of the title problem will
be based on the following assumptions: �1� Planar cross sec-
tions remain planar and normal to the deformed beam axis
�Bernoulli–Euler assumption of elementary beam theory�
and beam rotations �slopes� are small;3 �2� the base material
is elastic, while the in-plane behavior of the coating material
is assumed to be that of a three-parameter viscoelastic
solid;19 �3� the coating eigenstrain is uniform, has a specified
time-history, and is isotropic within the x-y plane �Fig. 2�;
�4� perfect bond exists between coating and base layer �a
result that follows from assumption �1��; �5� the beam is
initially straight and in a state of zero stress and strain prior
to the introduction of the coating eigenstrain; �6� edge effects
due to the clamped support at x=0 and the traction-free sur-
faces at x=L and y= �b /2 are not considered �Fig. 2�. �As a
result, the stress distributions derived herein are not expected
to include localized effects near the free end of the cantile-
ver, but these effects are assumed to have a negligible effect
on the beam curvature and deflection for sufficiently long
beams.�; �7� as the present model will be based on the kine-
matic assumptions of beam theory, the localized stresses as-
sociated with the interface between the coating and the base
material will not be considered, and their effects on the

stresses away from the interface and on the overall beam
deformation are assumed to be negligible; �8� inertial effects
are ignored.

B. Derivation of governing equations

For completeness and clarity, a summary of relevant por-
tions of the authors’ previous derivation30 of the governing
equations will be given in the present section. As a direct
result of the Bernoulli–Euler assumption, the total longitudi-
nal strain on the beam cross section, �tot�z , t�, will vary lin-
early along the beam depth and be related to the beam cur-
vature ��t� as follows:

�tot�z,t� = − ��t��z − n�t�� , �2�

where z is measured downward from the interface and n�t�
denotes the value of z corresponding to the neutral-axis po-
sition at time t �Fig. 2�. Equation �2� is based on the conven-
tion that positive curvature is concave downward �downward
cantilever deflection�. The neutral axis is defined to be the
locus of points on the cross section for which �tot vanishes.
This total strain may be decomposed into the �stress-free�
eigenstrain �*�z , t� and the stress-related strain, denoted by
��z , t�:

�tot�z,t� = ��z,t� + �*�z,t� . �3�

Employing the assumptions that only the coating is subjected
to an eigenstrain and that this eigenstrain is uniform, Eqs. �2�
and �3� result in

��z,t� = �− ��t��z − n�t�� − �0
*�t� , − h2 � z 	 0, �4a�

− ��t��z − n�t�� , 0 	 z � h1, �4b� �
where �

0
*�t� is the specified eigenstrain. It can be shown that

the strain distribution of Eqs. �4a� and �4b� implies a bilinear
stress distribution of the form30


�z,t� = 	
1 +
z

h2
�
c

bot�t� −
z

h2

c

top�t� , − h2 � z 	 0, �5a�

− M��t��z − n�t�� , 0 	 z � h1, �5b�
�

where 
c
bot�t� and 
c

top�t� are the stresses at the bottom and
top of the coating. Note that the biaxial modulus, M
�E / �1−��, has been used in Eq. �5b� to reflect the stiffening
effect associated with plate behavior, which results from
eigenstrain components along both the x- and
y-directions.8,28 �See assumption 3.�

Because the beam is not subjected to any external me-
chanical loads, the resultant axial force and bending moment
on the cross section must be zero. Imposing these conditions
on Eqs. �5a� and �5b� results in the following expressions
relating the neutral-axis position and the beam curvature to

c

bot�t� and 
c
top�t�:

n�t� = h1
�2h1 + h2�
c

bot�t� + �2h1 + 2h2�
c
top�t�

�3h1 + 2h2�
c
bot�t� + �3h1 + 4h2�
c

top�t�
, �6�

��t� = −
h2

Mh1
3 ��3h1 + 2h2�
c

bot�t� + �3h1 + 4h2�
c
top�t�� . �7�
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Next, a particular constitutive law will be introduced so
that the coating stresses and strains may be related. Using the
three-parameter solid model for the coating material, the
stress and stress-related strain in the coating are related by19


 + �R
d


dt
= M�� + �RM0

d�

dt
, �8�

where M0 and M� are the instantaneous and asymptotic bi-
axial moduli of the coating material and �R is the relaxation
time constant of the coating material associated with an iso-
tropic, biaxial loading. The physical meanings of these coat-
ing parameters are indicated in Fig. 3. Note that parameter �R

provides a measure of how quickly the coating stress relaxes
�under constant strain�, with larger �R corresponding to
slower relaxation.

The strain in the coating may be expressed in terms of
the coating stresses by substituting Eqs. �6� and �7� into Eq.
�4a�. When the resulting strain expression is placed into Eq.
�8�, the latter may be evaluated at the top and bottom of the
coating. This yields the equations governing 
c

bot�t� and

c

top�t� for a specified coating eigenstrain �
0
*�t�,

�1 + M̄0f1���� M̄0f2���

M̄0f3��� �1 + M̄0f4����
�� 
̇̄c

bot�t̄�


̇̄c
top�t̄�

�
+ �1 + M̄�f1���� M̄�f2���

M̄�f3��� �1 + M̄�f4����
��
̄c

bot�t̄�


̄c
top�t̄�

�
= − M̄� M̄0

M̄� M̄0

���0
*�t̄�

�̇0
*�t̄� � , �9�

where

f1��� � �2 + 2� , �10a�

f2��� � 2�2 + 2� , �10b�

f3��� � 2�3 + 4�2 + 2� , �10c�

f4��� � 4�3 + 5�2 + 2� . �10d�

The following normalized quantities have been introduced to
render the governing equations dimensionless:


̄ �



M
, �11a�

t̄ �
t

�R
, �11b�

� �
h2

h1
, �11c�

M̄0 �
M0

M
, �11d�

M̄� �
M�

M
. �11e�

�The “dot” notation in Eq. �9� denotes differentiation with
respect to t̄.� The assumption that the system is initially
stress-free leads to the following initial conditions:


̄c
bot�0� = 
̄c

top�0� = 0. �12�

Equations �9� and �12� represent an IVP that may be
solved for a specified input �

0
*�t̄�. Once the coating stress

histories, 
̄c
bot�t̄� and 
̄c

top�t̄�, are obtained, the neutral-axis
position and beam curvature are given by the normalized
forms of Eqs. �6� and �7�,

n̄�t̄� =
�2 + ��
̄c

bot�t̄� + �2 + 2��
̄c
top�t̄�

�3 + 2��
̄c
bot�t̄� + �3 + 4��
̄c

top�t̄�
, �13�

�̄�t̄� = − ��2�2 + 3��
̄c
bot�t̄� + �4�2 + 3��
̄c

top�t̄�� , �14�

where n̄�n /h1 and �̄�h1�. If desired, the �normalized�
stress profile throughout the cross section may be obtained
by substituting 
̄c

bot�t̄�, 
̄c
top�t̄�, n̄�t̄�, and �̄�t̄� into the normal-

ized form of Eqs. �5a� and �5b�. Similarly, the strain profile is
given by placing n̄�t̄� and �̄�t̄� into the normalized form of
Eqs. �4a� and �4b� for �, or into Eq. �2� for �tot.

The dimensionless formulation is convenient as it clearly
illustrates that, for a given eigenstrain history, �

0
*�t̄�, the his-

tory of any normalized response quantity �stress, strain, cur-
vature� depends on only three normalized parameters: the
thickness ratio � and the normalized biaxial coating moduli,

M̄0 and M̄�.
By virtue of the assumptions that the deformation is

small and the eigenstrain is uniform, the curvature may be
integrated twice with respect to x to yield the deflection at
the free end,

w�t� = 1
2��t�L2. �15a�

This may be expressed in dimensionless form as

w̄�t̄� = �̄�t̄� , �15b�

in which w̄�2h1w /L2. Thus, the dimensionless curvature is
the same as the normalized tip deflection.

FIG. 3. Plot of the biaxial relaxation modulus of a hypothetical three-
parameter viscoelastic solid. Biaxial stress 
�t� corresponds to an imposed
step-function biaxial strain of magnitude �0.
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IV. ANALYTICAL SOLUTIONS

A. Assumed loading: Exponential coating eigenstrain
history

In order to solve the IVP a specific form of eigenstrain
must be assumed. A plausible form is

�0
*�t� = �

�
*�1 − e−t/��� , �16a�

where �
�
* is the steady-state value of coating eigenstrain and

�� is the eigenstrain time constant that characterizes the rate
at which the steady-state eigenstrain is approached. Note
that, if the coated cantilever is designed as a chemical sensor
such that the eigenstrain source is an absorbed target sub-
stance, then the form of Eq. �16a� is consistent with the as-
sumptions that �a� the ambient analyte concentration is a step
function in time and �b� the absorption rate is proportional to
the difference between the ambient and coating
concentrations.30 Expressing the eigenstrain in terms of t̄
yields

�0
*�t̄� = �

�
*�1 − e−t̄/�̄� , �16b�

where

�̄ �
��

�R
�17�

is the “relative time constant” of the eigenstrain history with
respect to the coating relaxation. Plots of Eq. �16b� for vari-

ous values of �̄ are shown in Fig. 4. A small �large� value of
�̄ corresponds to an eigenstrain history that occurs relatively
quickly �slowly� compared with the coating’s relaxation pro-
cess. The limiting case of �̄→0, for which the eigenstrain
history reduces to a step function, shall be referred to as the
“rapid-eigenstrain” case.

B. Exact solution for arbitrary coating thickness

An exact solution to the IVP may be obtained by classi-
cal means when the input eigenstrain is given by Eq. �16b�.
One may confirm by direct substitution into Eqs. �9� and �12�
that the exact solution may be expressed as


̄c
bot�t̄� = − �

�
*�c0�M̄� − �̄c1c2e−t̄/�̄� + C1e−1t̄ + C2e−2t̄� ,

�18a�


̄c
top�t̄� = − �

�
*�c0c3�M̄� − �̄c1c4e−t̄/�̄� + �1C1e−1t̄

+ �2C2e−2t̄� , �18b�

�̄�t̄� = − ��3� + 2�2�
̄c
bot�t̄� + �3� + 4�2�
̄c

top�t̄�� , �18c�

where

�̄ � �1 − 
 M̄�

M̄0

��̄

1 − �̄
�M̄0, �19a�

c0 �
1 + �3�2 + 4�3�M̄�

1 + �4� + 6�2 + 4�3�M̄� + �4M̄�
2

, �19b�

c1 �
1 + �4� + 6�2 + 4�3�M̄� + �4M̄�

2

1 + �4� + 6�2 + 4�3��̄ + �4�̄2
, �19c�

c2 �
1 + �3�2 + 4�3��̄

1 + �3�2 + 4�3�M̄�

, �19d�

c3 �
1 − �3�2 + 2�3�M̄�

1 + �3�2 + 4�3�M̄�

, �19e�

c4 �
1 − �3�2 + 2�3��̄

1 − �3�2 + 2�3�M̄�

, �19f�

1,2 �
1 + �2� + 3�2 + 2�3��M̄0 + M̄�� + M̄0M̄��4 � 2��1 + ���1 + � + �2�M̄0 − M̄��

1 + �4� + 6�2 + 4�3�M̄0 + �4M̄0
2

�0 � 1 � 2� , �19g�

�i �
�1 + M̄0�2� + �2��i − �1 + M̄��2� + �2��

�2� + 2�2��M̄� − M̄0i�
, i = 1,2, �19h�

FIG. 4. Exponential eigenstrain histories �normalized form�:
�

0
*�t̄�=�

�
*�1−e−t̄/�̄�. Increment in �̄ is 1.
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C1 �
c0

�1 − �2
��M̄� − �̄c1c2��2 − c3�M̄� − �̄c1c4�� , �19i�

C2 �
c0

�1 − �2
�c3�M̄� − �̄c1c4� − �1�M̄� − �̄c1c2�� . �19j�

Letting t̄→� in Eqs. �18a� and �18b� leads to the following
steady-state values of the coating stresses and the curvature:


̄c
bot��� = − �

�
*M̄�

1 + �3�2 + 4�3�M̄�

1 + �4� + 6�2 + 4�3�M̄� + �4M̄�
2

,

�20a�


̄c
top��� = − �

�
*M̄�

1 − �3�2 + 2�3�M̄�

1 + �4� + 6�2 + 4�3�M̄� + �4M̄�
2

,

�20b�

�̄��� = �
�
*M̄�

6��1 + ��

1 + �4� + 6�2 + 4�3�M̄� + �4M̄�
2

. �20c�

Note that Eq. �20c� is consistent with published generaliza-
tions of Stoney’s formula for thick elastic coatings,7,13,31 pro-
vided that the coating is assigned a biaxial modulus of M�.

As can be seen from Eq. �19a�, the form of solution is
degenerate for the case of �̄=1, in which case appropriate
limiting processes must be performed on Eqs. �18a� and
�18b�. �See Appendix A.�

The functional dependence of the exact solution indi-
cates that the normalized coating stresses and curvature, if
further scaled by the steady-state eigenstrain �

�
*, depend on

four parameters: �, M̄0, M̄�, and �̄. This dependence will be
explored in detail later in the paper.

C. Rapid-eigenstrain solution „�̄=0…
The rapid-eigenstrain solution may be obtained by tak-

ing the �̄→0 limit of the general solution �Eqs. �18� and
�19��, in which case the time-dependence of the response is
due solely to the coating relaxation. As a result, both the
coating stresses and the curvature instantaneously reach their
maxima at time zero, and these maxima correspond to an
initial elastic response; thereafter, the response decreases
monotonically as the coating relaxes.

For fixed values of �, M̄0, M̄�, and �
�
*, the rapid-

eigenstrain case represents an extreme-case scenario. More
specifically, the maximum response �stress, strain, curvature,
or deflection� of the �̄=0 solution will exceed that for any
case in which �̄�0. Thus, the rapid-eigenstrain solution pro-
vides a means for determining a simple upper bound on the
exact value of the OSR for an arbitrary value of �̄:

OSRexact �
�max

����
� �OSR��̄→0, �21a�

where

�OSR��̄→0 =
1 + �4� + 6�2 + 4�3�M̄� + �4M̄�

2

1 + �4� + 6�2 + 4�3�M̄0 + �4M̄0
2

M̄0

M̄�

.

�21b�

Because M��M0, the expression on the right-hand side of

Eq. �21b� is bounded above by M̄0 /M̄�=M0 /M� �property of
the coating material�, regardless of the value of �. Inequality
�21a� and Eq. �21b� provide a potentially useful theoretical
upper limit on the overshoot magnitude of the coated-beam’s
response. In addition, the simple analytical result of Eq.
�21b� is an exact result for the rapid-eigenstrain case, is valid
for arbitrary coating thickness and arbitrary initial and
asymptotic moduli of the coating, and can serve as an accu-
rate approximation of the exact OSR for small, but nonzero,
values of �̄.

D. Thin-coating solution

1. First-order approximate solution

While numerical results may easily be generated from
the exact solution for a general exponential eigenstrain, the
complexity of the solution form may hide relatively simple
relationships that exist in cases of practical interest. In par-
ticular, for MC-based chemical sensor applications the vis-
coelastic �e.g., polymer� coating is often relatively thin in
comparison with the elastic �e.g., silicon� base layer. There-
fore, a thin-coating approximation for the beam response will
be pursued. Such an approximate solution may be obtained
by expanding the exact solution in powers of � and ignoring
higher-order terms.

In this section approximate results for both the curvature
and stress histories will be presented. These results will be
denoted as a “first-order solution” because all terms of order
�n ,n�1, will be ignored in the curvature expansion. For
consistency, the order of the corresponding approximate
stress will be one degree lower than that of the curvature, as
indicated by Eq. �18c�. Thus, the first-order solution will
involve an O��� curvature expression �with O��2� error� and
stress expressions of O�1� accuracy �with O��� error�. Ex-
pansions of Eqs. �18a�–�18c� result in the desired first-order
solution:


̄c
bot�t̄� � 
̄c

top�t̄� � − �
�
*�M̄��1 − e−t̄� + �̄�e−t̄ − e−t̄/�̄�� ,

�22a�

�̄�t̄� � 6��
�
*�M̄��1 − e−t̄� + �̄�e−t̄ − e−t̄/�̄�� . �22b�

Note that this solution yields equal stresses at the top and
bottom of the coating, i.e., the coating stress is approximated
as uniform; thus, by Eq. �13�, the neutral axis is fixed and
given by n̄�t̄�=2 /3 �a result consistent with Stoney’s classi-
cal analysis�. The approximate formulas are degenerate when
�̄=1; the appropriate limits for this case are therefore in-
cluded in Appendix B.

Also of note is the proportionality exhibited between
coating stress and curvature in the first-order solution �Eqs.
�22a� and �22b��, which is simply a time-dependent restate-
ment of Stoney’s formula ��̄=−6�
̄c in our notation�.6 Re-

124903-6 Heinrich et al. J. Appl. Phys. 105, 124903 �2009�

 



call that, in the derivation of Stoney’s equation, no assump-
tions were made regarding the coating properties, provided
that the coating is infinitesimally thin. Therefore, one should
not be surprised that Stoney’s equation holds pointwise in
time for the case of a thin, viscoelastic coating. However, the
first-order solution clearly shows how the curvature and
stress evolve over time, and therefore represents a potentially
useful extension of Stoney’s solution for cases involving
coatings that may be modeled as three-parameter solids.

2. First-order solution with asymptotic
correction

The first-order solution may be improved by recognizing
that the exact steady-state results are known and take rela-
tively simple forms �Eqs. �20a�–�20c��. This knowledge en-
ables one to apply multiplicative correction factors to the
first-order results, thereby ensuring that they are exact in the
limit as t̄→�. The resulting approximate solution will be
referred to as the “corrected first-order solution.” The coating
stresses of the corrected solution may be obtained by multi-
plying Eq. �22a� by the following correction factors to ob-
tain, respectively, the stress histories at the bottom and top of
the coating:

K
,bot =
1 + �3�2 + 4�3�M̄�

1 + �4� + 6�2 + 4�3�M̄� + �4M̄�
2

, �23a�

K
,top =
1 − �3�2 + 2�3�M̄�

1 + �4� + 6�2 + 4�3�M̄� + �4M̄�
2

. �23b�

The curvature of the corrected first-order solution is given by
multiplying Eq. �22b� by

K� =
1 + �

1 + �4� + 6�2 + 4�3�M̄� + �4M̄�
2

. �23c�

Because all correction factors are O�1� as �→0, their appli-
cation to the �uncorrected� first-order solution does not alter
the order of the error terms. Also note that, prior to applying
the correction factors, the first-order solution predicts uni-
form coating stresses; however, the corrected solution yields
unequal stresses at the top and bottom of the coating, i.e., a
nonuniform coating stress distribution, which is consistent
with the linear distribution exhibited by the exact solution.

3. Overshoot criterion/characteristics

The qualitative behavior of the theoretical beam re-
sponse due to an exponential eigenstrain may be classified as
one of two types. In some cases the response monotonically
increases with time, while in others it exhibits an overshoot
phenomenon. The observation of both types of response sig-
natures in MC sensor data �e.g., Fig. 1�1,26,27 provides the
motivation to seek a simple mechanics-based criterion by
which the response type may easily be predicted. In addition,
such a criterion could be useful in �a� extracting a system
parameter from a response signature or �b� in the case of
sensor applications, correlating transient response character-
istics to ambient analyte concentration. In this section a

simple overshoot criterion will be derived for predicting the
response type, as will expressions for the OSR and the “criti-
cal time” at which the peak response occurs.

Due to the complexity of the exact solution, derivation
of an exact overshoot criterion is not feasible. However, the
first-order approximate solution is relatively simple and,
thus, conducive to the development of a corresponding over-
shoot criterion. A straightforward analysis of the first-order
solution �Eq. �22b� or its “corrected” counterpart� leads to
the overshoot criterion summarized below. While this crite-
rion will, strictly speaking, only be valid for relatively thin
coatings, it may also provide a useful guideline for under-
standing the behavior of systems with thicker coatings.

Overshoot criterion (based on first-order solution):
Overshoot �in the curvature or stress response� occurs if and
only if the coating may experience relaxation �i.e., M� /M0

	1� and

� �
1

�̄

M0

M�

� 1, �24�

where � is deemed the “overshoot parameter.”
When the value of the overshoot parameter is unity, the

system response is on the “boundary” between overshoot and
monotonic responses. Values greater than unity correspond to
overshoot behavior, with larger values representing more sig-
nificant overshoot. Thus, parameter � may be interpreted as
a figure of merit with regard to the tendency of a particular
coated beam to exhibit overshoot in response to a particular
exponential coating eigenstrain history.

When overshoot does occur, a straightforward analysis
of Eq. �22a� or Eq. �22b� leads to an expression for estimat-
ing the critical time at which the maximum stress or curva-
ture occurs:

t̄cr �
�̄

�̄ − 1
ln
 �̄� − 1

� − 1
� . �25�

Placing Eq. �25� into Eq. �22b� and scaling by Eq. �20c�
yields an estimate of the OSR:

OSR � 1 − e−t̄cr + �� − 1�
�̄

1 − �̄
�e−t̄cr − e−t̄cr/�̄� . �26�

�The same expression is applicable to a stress-based OSR.�
This form is degenerate for �̄=0 or �̄=1, in which cases the
appropriate limit must be taken. For the rapid-eigenstrain
case ��̄=0�, Eq. �26� reduces to the following simple first-
order estimate applicable to thin coatings:

�OSR��̄→0 �
M0

M�

, �27�

which also could have been derived directly from the exact
expression for the OSR, Eq. �21b�. The limiting result for the
�̄=1 case is included in Appendix B.

Several comments are in order regarding the overshoot
criterion and overshoot characteristics. First, if one recog-
nizes that the reciprocal of the relative time constant, 1 / �̄,
may be viewed as a “relative eigenstrain rate” and defines
M� /M0 to be the “relaxation ratio” of the coating, then the
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overshoot criterion given by inequality �24� may be written
as

1

�̄
�

M�

M0
�28�

and interpreted as follows: overshoot will occur if and only if
the relative eigenstrain rate is larger than the relaxation ratio
of the coating. Thus, the overshoot phenomenon is governed
by the relative magnitude of the two competing rates—the
eigenstrain rate and the coating relaxation rate. In particular,
if the coating material is capable of full relaxation �M� /M0

=0�, the response will exhibit overshoot regardless of the
relative eigenstrain rate. This is to be expected since the
steady-state curvature in this case must be zero because the
fully relaxed coating cannot transfer stress to the base layer;
therefore, any transient curvature that occurs prior to com-
plete relaxation of the coating must necessarily exceed the
zero steady-state value.

The overshoot criterion may be written in an even sim-
pler form if one notes that the creep time constant �C of the
coating material �corresponding to the strain history caused
by a step-function biaxial stress� is related to the relaxation
time constant �R by19

�C =
M0

M�

�R, �29�

which means that the overshoot criterion �24� may be ex-
pressed as

� �
�C

��

� 1, �30�

i.e., overshoot is governed by the relative magnitudes of the
creep and eigenstrain time constants of the coating.

In examining Eqs. �25� and �26�, one notices that the
first-order results for t̄cr and the OSR depend only on �̄ and
M� /M0. This implies that, when a MC sensor with a thin
selective coating experiences exponential analyte sorption,
the values of t̄cr and OSR depend only on the coating/analyte
pair, not on the system geometry or the base material’s prop-
erties. This result could therefore be useful in selecting a
coating to obtain desirable transient response characteristics
for detecting a particular analyte. Correlation of the transient
signature with analyte concentration could minimize detec-
tion times by eliminating the need to wait for the steady-state
signal. A similar idea has been successfully employed by
others for metal-coated �palladium� MC sensors. In particu-
lar, the transient bending rate of the monotonic response was
correlated to steady-state deflection and hydrogen
concentration.32

Finally, one should note that the OSR estimate �Eq. �26��
takes an even simpler form �Eq. �27�� when �̄=0, which
provides an upper bound on Eq. �26�. Equations �27� and
�28� show that, within the context of first-order �thin-coating�
theory, the value of the coating property M0 /M� furnishes
two important response characteristics of the coated beam.
Its value provides �a� the OSR for the rapid-eigenstrain ��̄
=0� case, which is an upper bound on the OSR for other �̄
values, and �b� the “transitional” value of �̄ that separates

overshoot response from monotonic behavior. These obser-
vations may provide a theoretical basis for extracting the
biaxial relaxation ratio of a thin coating from the coated-
beam response signature. An analogous approach has been
implemented to deduce the biaxial elastic modulus and coef-
ficient of thermal expansion of thin elastic films by measur-
ing the thermal deformation of coated beams.33

V. NUMERICAL RESULTS AND DISCUSSION

Numerical results for the case of exponential coating
eigenstrain will now be presented. Results corresponding to
the exact and thin-coating solutions will be included. For all
of the time-history plots presented, dimensionless quantities
will be utilized in order to increase the generality of the
results. Normalized time-histories of both curvature �deflec-
tion� and stress will be plotted for fixed values of the four

dimensionless parameters, ��h2 /h1, M̄0�M0 /M, �̄
��� /�R, and a new parameter called the coating’s “relative
relaxation parameter” �, defined by

� �
M0 − M�

M0
= 1 −

M�

M0
= 1 −

M̄�

M̄0

. �31�

While parameter M̄� appeared “naturally” in the mathemati-
cal formulation as the fourth system parameter �see, e.g., Eq.
�9��, parameter � is a more convenient choice for presenting
results because �a� it depends only on the coating material,
�b� its values are confined to the range �0, 1�, and �c� it has a
simple physical meaning: it represents the percent relaxation
that is possible in the coating, i.e., �=0.25 denotes 25% re-
laxation capability.

In order to limit the number of figures, all results will
correspond to the following input values unless stated other-

wise: �=0.1 and 0.5 �thin and thick coatings�; M̄0=0.1 �rela-
tively flexible coating material�; �=0.1 and 0.5 �10% and
50% coating relaxation�; and �̄=0, 0.1, 0.5, 1, 2, and 5. Thus,
the �̄ values range from the rapid eigenstrain �or slow relax-
ation� case to a very slow eigenstrain �or rapid relaxation�
case. Results may easily be generated for other parameter
values.

Exact results for beam deformation. The exact time-
histories of the beam deformation, shown in Figs. 5�a�–5�d�,
were generated using Eqs. �18� and �19� and, in the �̄=1
case, Eqs. �A1a� and �A1b�. As expected, the curvature is
positive �downward tip deflection� when the eigenstrain is
positive �extensional�. Also of note is that all curves in each
figure approach the same steady-state value, but at different
rates depending on the �̄ value. For a given � value, the
steady-state curvature depends on the relative relaxation pa-
rameter �, and its value corresponds to that predicted by an
elastic model that utilizes a coating modulus equal to the
relaxed modulus of the viscoelastic material. �See Eq. �20c�.�
Of course, for a coating material that may experience full
relaxation ��=1, not shown�, the asymptotic curvature would
be zero.

Also observed in Figs. 5�a�–5�d� is an overshoot for par-
ticular values of �̄. As �̄ decreases, overshoot becomes more
prominent. The first-order overshoot criterion is able to ac-
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curately predict which of the exact curves exhibit overshoot.
For the chosen � values of 0.1 and 0.5, the criterion predicts
that the transitional values of �̄ that separate overshoot be-
havior from monotonic behavior are 1.11 and 2.0, respec-
tively. All curves having �̄ values less than �greater than� the
corresponding transitional value do indeed exhibit overshoot
�monotonic� behavior. �In the �̄=1 case of Fig. 5�a�, a rela-
tive maximum occurs just beyond t̄=10; the peak, however,
is barely perceptible because the response is very close to the
transition from overshoot to monotonic behavior.� Thus, al-
though the overshoot criterion was based on a thin-coating
�first-order� approximation, it can also serve as an accurate
guideline even for thicker coatings ��=0.5 in this case�.

The timing of the overshoot in Figs. 5�a�–5�d� follows a
clear trend: as �̄ decreases the overshoot peak occurs earlier,
approaching time zero as �̄→0. The �̄=0 response displays
the expected behavior of the rapid-eigenstrain solution: the
response begins with a sudden elastic curvature, followed by
a gradual decrease toward steady state as the coating relaxes.

Comparing the deformation magnitudes in Figs. 5�a� and
5�b� with those in Figs. 5�c� and 5�d�, one sees that, as the
thickness ratio � increases fivefold, the magnitude of the
deformation increases by approximately the same factor.
This was to be anticipated given the form of the first-order
solution �Eq. �22b��, which indicates that the deformation
history is approximately linear in � for small �, with the
higher-order effects being relatively insignificant.

Exact results for coating stresses. Plots of the exact coat-
ing stresses �Eqs. �18a� and �18b�� are shown in Figs.
6�a�–6�d�. As expected, the coating stresses are compressive
for the case of a positive �extensional� eigenstrain due to the
restraining effect of the base layer on the coating expansion.
The stress at the interface �bottom of the coating�, where the
restraining effect is most pronounced, has a larger magnitude
than that at the top. Also, on each figure all the curves for the
coating stress at the top approach the same asymptotic value
at large times, as do those for the bottom coating stresses
�although not the same asymptotic value�. The value of �̄

FIG. 5. Exact response vs time for exponential eigenstrain history: M̄0=0.1 and �̄= �0,0.1,0.5,1.0,2.0,5.0�.

124903-9 Heinrich et al. J. Appl. Phys. 105, 124903 �2009�

 



affects the rate at which the steady-state value is approached.
Similar to what was noted for beam deformation, the steady-
state values of coating stress would be zero for the case of
�=1 because a fully relaxed coating is incapable of sustain-
ing stress. The existence of overshoot in the stress histories is
dictated by the value of �̄ and, as was true for the curvature,
the first-order overshoot criterion is able to predict if over-
shoot exists in the stress histories. All previous comments
regarding curvature overshoot also apply to the stress histo-
ries.

The plots in Figs. 6�a� and 6�b� illustrate that the stresses
at the top and bottom of the coating are essentially identical
for the relatively thin coating ��=0.1�, i.e., the coating stress
is uniform. However, for the thicker coating case ��=0.5� of
Figs. 6�c� and 6�d�, the coating stress is clearly nonuniform
as indicated by the different values of stress at the top and
bottom of the coating. Comparing the results of these latter
two figures shows that, as � increases �more coating relax-
ation�, the stresses tend to become more uniform throughout
the coating. Also noteworthy is that, unlike the curvature

magnitude, the coating stress magnitude does not change sig-
nificantly as � changes from 0.1 to 0.5. This is a reflection of
the fact that the leading term of the coating stress expansion
is constant ��-independent� while the leading term in the
curvature series is linear in �. �Compare Eqs. �22a� and
�22b�.�

Approximate versus exact beam deformation history. In
order to explore the accuracy of the first-order solutions �un-
corrected and corrected�, the exact and approximate curva-
ture histories are plotted in Figs. 7�a� and 7�b� for a thin
coating ��=0.1� and in Figs. 7�c� and 7�d� for a thick coating
��=0.5�. All of these figures correspond to a coating for
which �=0.5. For both the thin- and thick-coating cases, two
values of �̄ have been considered: �̄=0.5, representing rela-
tively fast eigenstrain causing overshoot, and �̄=5, corre-
sponding to a slow eigenstrain process and, thus, a mono-
tonic response. All four figures indicate that the uncorrected
thin-coating solution underestimates the exact curvature.
However, when the asymptotic correction factor is applied,
the vast majority of the error is removed throughout the en-

FIG. 6. Exact coating stresses vs time for exponential eigenstrain history: M̄0=0.1 and �̄= �0,0.1,0.5,1.0,2.0,5.0�.
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tire range of the response. For the thin coating �Figs. 7�a� and
7�b�� the corrected solutions are essentially exact. As ex-
pected, the accuracy of the approximate solution decreases as
the coating thickness is increased �Figs. 7�c� and 7�d�� and
the uncorrected solution exhibits significant departure from
the exact response. However, the corrected solution shows
marked improvement. When the response is monotonic �Fig.
7�d��, the corrected solution is virtually exact, even for the
thick coating case. When the response includes overshoot
�Fig. 7�c��, the corrected solution still contains some residual
error that is concentrated near the response peak, resulting in
an overestimation of the exact response. Nevertheless, the
corrected solution is still quite good.

A quantitative comparison of the errors of the approxi-
mate solutions in Figs. 7�a�–7�d� is given in Table I. The
error metric involves normalization with respect to the maxi-
mum value of the exact curvature instead of the local exact
value. This definition avoids indeterminate relative errors at
time zero �where all approximations are exact�. The tabu-
lated data show that the corrected first-order solution yields
errors of no more than 10% in all cases considered. For more

flexible coatings �M̄0	0.1� or coating relaxations less than
50% �not shown�, these errors are reduced even further. �The
errors would increase for stiffer coatings or coatings with
more relaxation.� The tabulated results also show that the
accuracy of the corrected solution decreases as the coating
thickness increases or as �̄ decreases. Although not included
here, figures comparing the exact and approximate coating

FIG. 7. Comparisons of exact and approximate responses for exponential eigenstrain history: M̄0=0.1 and �=0.5 in all cases.

TABLE I. Maximum normalized error in curvature for the approximate

solutions in Figs. 7�a�–7�d� �M̄0=0.1, �=0.5�. The “normalized error” is
defined as the magnitude of the absolute error in the curvature ��exact
−approx.�� divided by the maximum value of the exact curvature.

� �̄
First-order

�%�
Corrected first-order

�%�

0.1 0.5 6.2 1.4
5 6.9 0.4

0.5 0.5 17.4 10.0
5 19.7 2.9
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stresses lead to similar conclusions as did the curvature com-
parisons regarding the accuracy of the uncorrected and cor-
rected thin-coating stress formulas.

First-order estimate for t̄cr. When the coating thickness
is sufficiently small, the analytical result �Eq. �25�� may be
used to obtain an accurate estimate of the critical time t̄cr in
terms of only two dimensionless parameters, �̄ and �, i.e., the

time of the peak response is independent of � and M̄0. Using
Eqs. �24�, �25�, and �31� enables one to obtain the desired
analytical expression for t̄cr, the results of which are shown
in Fig. 8. The curves clearly show that the peak response
occurs earlier as �̄ decreases or � increases. Thus, for a fixed
value of �R, either of the following will result in an earlier
peak response: �a� an increase in the coating eigenstrain rate
�decrease in ��� or �b� an increase in the amount of stress
relaxation in the coating. Each curve displayed in Fig. 8
approaches a vertical asymptote at the transitional value of �̄
given by �1−��−1 �or M0 /M��, which corresponds to the
overshoot parameter � being equal to 1; as a result, any
value of �̄ in excess of this transitional value corresponds to
a monotonic response, i.e., t̄cr→�.

Because the results of Fig. 8 are approximations based
on first-order theory, a few comments are in order concerning
their accuracy. A detailed examination of exact curvature his-
tories indicates that the t̄cr values in Fig. 8 provide lower
bounds to the exact results, i.e., the exact peak response oc-
curs later than the time predicted by Fig. 8. However, in
many cases of practical interest, the difference is quite small.
In particular, the relative error magnitude for the t̄cr values of
Fig. 8 �versus the exact values� will not exceed 5% provided

that ��0.2, M̄0�0.1, ��0.5, and �̄�0.5 / �1−��. The latter
inequality states that �̄ lies in the lower half of the overshoot
range of �̄.

First-order estimate for OSR. The dependence of the
OSR on the system and load parameters will now be exam-
ined, as will the accuracy of the simple first-order estimate
�Eq. �26��. In Fig. 9 both the exact and approximate values of
the OSR are plotted versus �̄ for thin and thick coatings and
for 10%, 30%, and 50% coating relaxations. As noted earlier,
when �̄ increases beyond a particular value, the response is
monotonic and, thus, the OSR=1. The figure illustrates that

the OSR increases as �̄ decreases, as � increases, and �to a
lesser extent� as � decreases, reflecting in a more succinct
manner the trends that were observed earlier in the time-
history plots. Also apparent is that the simple analytical es-
timate for the OSR gives an excellent result in the thin-
coating case ��=0.1� for the coating relaxations considered,
exceeding the exact OSR by no more than 2.3%, regardless
of the rate at which the eigenstrain occurs. For the thick
coating ��=0.5�, the approximate formula overestimates the
exact OSR, with the error magnitude tending to increase as �
increases and as �̄ decreases. This results in a maximum
relative error of 17% for �=0.5 and �̄=0. Therefore, for coat-
ings that are thick and/or have a large amount of relaxation,
the first-order OSR formula should be used judiciously in
estimating the OSR value. Also, the accuracy of the first-
order formula is expected to decrease as stiffer coatings

�M̄0�0.1� are considered.
Rapid-eigenstrain formula for OSR. For those cases in

which coating eigenstrain occurs very quickly �small �̄�, one
need not resort to using the first-order OSR formula. Recall
that a simple exact OSR formula was derived for the �̄→0
limiting case, and this formula is applicable for arbitrary
values of coating thickness and material properties. More-
over, extensive calculations have confirmed that, for all �

�1 and M̄0�1, the rapid-eigenstrain formula �Eq. �21b��
will yield results within 5% of the exact OSR for ��0.5 and
within 10% for arbitrary coating relaxation ���1�, provided
that �̄	0.02. Hence, this formula can be used over a very
broad range of system parameters to predict the OSR when
the eigenstrain rate �e.g., analyte sorption rate in MC sensor
applications� is much higher than the relaxation rate of the
coating material.

VI. SUMMARY, CONCLUSIONS, AND FUTURE WORK

The initial-value problem governing the quasistatic de-
formation of an elastic cantilever with viscoelastic �three-
parameter solid� coating, subjected to an arbitrary, time-
dependent coating eigenstrain, has been formulated. Exact
analytical expressions for the curvature, tip deflection, and
coating stresses have been derived for the case in which the
eigenstrain varies exponentially in time, with a step function

FIG. 8. Time of peak overshoot response vs �̄, exponential eigenstrain his-
tory �first-order theory�; increment in � is 0.1.

FIG. 9. OSR vs �̄, exponential eigenstrain history: Comparison of exact and

first-order models. Exact results based on M̄0=0.1.

124903-12 Heinrich et al. J. Appl. Phys. 105, 124903 �2009�

 



being a special case. The solution is applicable for arbitrary
values of coating and base layer thicknesses, coating and
base layer properties, and eigenstrain time constant. In addi-
tion, simple approximate formulas for the thin-coating case
have been derived, thus providing insight into the fundamen-
tal system behavior. A simple criterion was obtained for de-
termining if the beam response will be monotonic or exhibit
overshoot. Also derived were simple approximate expres-
sions for estimating the time at which the peak response
occurs and the overshoot ratio �OSR�, i.e., the maximum
response scaled by the steady-state response. While the study
was performed with a focus on fundamental beam mechan-
ics, the results are expected to have important applications in
MC-based �bio�chemical sensors and in the experimental
characterization of thin polymer coatings. The solution
should also be relevant in other areas of application because
of the various physical phenomena that may cause eigen-
strain �e.g., temperature change, hygroscopic swelling, phase
transformation, and misfit strains�.

Among the major conclusions of the study are the fol-
lowing: �a� The exact solution yields a simple analytical re-
sult for the OSR in the rapid-eigenstrain ��̄→0� case. This
formula gives an upper bound on the OSR for arbitrary �̄
values and may be used to accurately estimate the OSR over
a wide range of system parameters provided that �̄�0.02. �b�
As the normalized coating thickness �→0, the deflection is
linear in � while the coating stress is �-independent. �c�
Overshoot occurs when the value of a simple overshoot pa-
rameter is greater than 1. This condition corresponds to the
relative eigenstrain rate being greater than the relaxation ra-
tio of the coating or, equivalently, the creep time constant of
the coating material being greater than the eigenstrain time
constant. Although this criterion was derived from the thin-
coating solution, it has been observed to provide a useful
guideline even for thick coatings. �d� When overshoot oc-
curs, the first-order theory yields simple expressions for the
OSR and the normalized time of the peak response �t̄cr�, and
these formulas are quite accurate over practical ranges of
system parameters. The expressions depend only on the coat-
ing’s relative eigenstrain rate �̄ and relative relaxation param-
eter �. Thus, within the context of sensor applications, these
two response metrics depend only on the coating/analyte
pair, not on the system geometry or the properties of the base
material. �e� When overshoot occurs, smaller values of �̄,
larger values of �, or smaller values of � correspond to more
pronounced overshoot occurring earlier in time.

The results of this theoretical study provide the motiva-
tion for future studies, including �a� experimental character-
ization of viscoelastic properties of thin polymer coatings,
especially the relaxation time constant, in various environ-
ments, �b� experimental verification of coated-beam response
predictions, �c� finite element modeling to verify the accu-
racy of the derived beam model, especially regarding local-
ized stresses near the interface and support and free-edge
effects,34 and making appropriate modifications to the
present model to incorporate such effects;35–37 �d� generali-
zation of the model to include through-thickness variation of
coating eigenstrain, analogous to the elastic model derived
by Freund,10,12 and �e� extension of the model to include the

effects of interfacial slip. Regarding the latter, prior work
related to elastic and elastic/perfectly plastic systems may
provide a useful point of departure.18,38 In addition, the form
of the present solution suggests that it may be applicable to
more general coated-cantilever systems whose behaviors are
governed by two competing time constants �not necessarily
related to coating eigenstrain or viscoelasticity�.39 Examples
of other mechanisms that could be accounted for by the cur-
rent solution �or its extension� include growth kinetics/
molecular rearrangement in self-aligned monomers on gold-
coated cantilevers40,41 and cantilever actuation using
polyelectrolyte brushes.42 These applications involve relax-
ation phenomena that appear to contribute to observed over-
shoot responses in certain instances, although this behavior
has yet to be placed upon a firm theoretical foundation. The
solution presented herein may provide a starting point for
such theoretical endeavors.
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APPENDIX A: EXACT SOLUTION FOR THE �̄=1 CASE
Letting �̄→1 in Eqs. �18� and �19�, one may show that

the exact stress histories for the �̄=1 case may be obtained

by replacing �̄c1c2 and �̄c1c4 in Eqs. �18a� and �18b� and Eqs.
�19i� and �19j� with the following values:

lim
�̄→1

�̄c1c2 =
3 + 4�

�2

1 + �4� + 6�2 + 4�3�M̄� + �4M̄�
2

1 + �3�2 + 4�3�M̄�

,

�A1a�

lim
�̄→1

�̄c1c4 = −
3 + 2�

�2

1 + �4� + 6�2 + 4�3�M̄� + �4M̄�
2

1 − �3�2 + 2�3�M̄�

.

�A1b�

The associated curvature history is obtained by substituting
the stresses into Eq. �18c�.

APPENDIX B: THIN-COATING APPROXIMATIONS FOR
THE �̄=1 CASE

Letting �̄→1 in Eqs. �22a� and �22b� leads to the fol-
lowing results:

�
̄c
bot�t̄���̄→1 � �
̄c

top�t̄���̄→1 �

− �
�
*M̄��1 − 1 − 
 M̄0

M̄�

− 1� t̄�e−t̄� ,

�B1a�

��̄�t̄���̄→1 � 6��
�
*M̄��1 − 1 − 
 M̄0

M̄�

− 1� t̄�e−t̄� ,

�B1b�
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�OSR��̄→1 � 1 + 
 M0

M�

− 1�e−1/�1−M�/M0�. �B1c�
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