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ABSTRACT

Motivation: In order to construct gene regulatory networks of
higher organisms from gene expression and promoter sequence data
efficiently, we developed FastMEDUSA. In this parallelized version
of the regulatory network-modeling tool MEDUSA, expression
and sequence data are shared among a user-defined number
of processors on a single multi-core machine or cluster. Our
results show that FastMEDUSA allows a more efficient utilization
of computational resources. While the determination of a regulatory
network of brain tumor in Homo sapiens takes 12 days with
MEDUSA, FastMEDUSA obtained the same results in 6 h by utilizing
100 processors.
Availability: Source code and documentation of FastMEDUSA are
available at https://wiki.nci.nih.gov/display/NOBbioinf/FastMEDUSA
Contact: hfine@mail.nih.gov
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Among the numerous ways to determine gene regulatory networks
of higher organism (Bussemaker et al., 2001; Elemento et al.,
2007; Segal et al., 2003), MEDUSA is a well-known and powerful
computational tool (Kundaje et al., 2008). Utilizing a boosting
algorithm (Freund and Shapire, 1997), MEDUSA models promoter
sequences and gene expression data from various experimental
conditions. Providing a global predictive model of condition-specific
expression states of target genes, MEDUSA has been successfully
used to discover novel regulators in oxygen and heme regulatory
networks in Saccharomyces cerevisiae (Kundaje et al., 2008).

Although MEDUSA is a powerful computational tool for inferring
gene regulatory networks, it has certain limitations. MEDUSA
requires the commercially available software package, MATLAB.
In addition, the execution time of MEDUSA increases dramatically
with larger sizes of input data sets. For example, MEDUSA needed
>4 weeks for the modeling and analysis of about 7000 genes
using 1000 iterations. Parallel computing has been used to solve
the latter problem for several bioinformatics applications to date
(Xiaohong et al., 2009). Here we introduce FastMEDUSA, a fast,
parallelized, open source implementation of MEDUSA in C++ that
uses freely available libraries. Our benchmark results showed that

∗To whom correspondence should be addressed.

FastMEDUSA allows to model gene sets about 40 times faster than
the original implementation of MEDUSA, utilizing 100 processors.

2 METHODS

2.1 Algorithm
In MEDUSA, a training set consists of a matrix of discretized expression
pairs (g,e) of a gene g in experiment e. MEDUSA applies boosting on the
training set to iteratively build an alternating decision tree (ADT), which
consists of weighted weak classifiers. A weak classifier, which consists of a
motif m, regulator r and expression state s of r, classifies a set of examples
(g,e) where motif m is present in the promoter of gene g and the expression
state of regulator r is s in experiment e. A weak classifier with maximum
classifier score is added to the ADT iteratively. Each element in the training
set is reweighted for the next iteration where misclassified elements get a
higher weight than accurately classified elements. In a final ADT, the total
weight (i.e. prediction score) of the weak classifiers that satisfy an element
in the test set represents the overall prediction for this element.

Initially, MEDUSA computes all motifs (i.e. k-mers and optionally
dimers) from promoter sequences of genes (Fig. 1a). At each iteration,
first, optimum weak classifier and its optimum position in the ADT are
computed based on a classifier score. Subsequently, the algorithm generates
probabilistic motifs by clustering the top n motifs that optimize classifier
score, where n is a user-defined parameter. After computing pairwise
distances, motifs are clustered iteratively. In each clustering step, classifier
score of the clustered motif is computed by scanning the motif against the
promoter sequences. If a clustered motif has a higher score than the motif
in the weak classifier has, the motif is replaced by this clustered motif. The
final weak classifier is added to the ADT, and each element in the training
set is reweighted for the next iteration. For algorithmic details of MEDUSA,
see Kundaje et al. (2007) and Middendorf et al. (2005).

FastMEDUSA, a parallelized implementation of the MEDUSA algorithm,
designates one of the processors as the root processor to manage inter-
processor communication and compute global results. The root processor
assigns a unique subtree of the ADT to each remaining processor, which
computes optimum weak classifier and its position for the assigned sub-
ADT and sends results back to the root processor. In addition, the root
processor partitions genes among remaining processors equally to parallelize
gene-wise operations. For instance, each processor scans the clustered motif
against promoter sequences of the assigned genes in each clustering step
in parallel. Parallelizing reweighting elements, each processor reweights
only the assigned genes. Summarizing all parallelized steps, we present a
flowchart of FastMEDUSA in Figure 1a.

2.2 Implementation
FastMEDUSA was implemented in C++, utilizing the message passing
interface (MPI) implementation MPICH2 for inter-process communication
(http://www.mcs.anl.gov/research/projects/mpich2/) and GotoBLAS2
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FastMEDUSA

Fig. 1. In (a), we show the flowchart of FastMEDUSA, highlighting
parallelized steps. (b) Testing the performance, we ran FastMEDUSA
and MEDUSA on yeast and human data sets for 200 and 400 iterations.
We observed that FastMEDUSA consistently outperforms MEDUSA. The
graphs and raw data of output ADTs are reported in Supplementary
Figures S1–S8 and Supplementary Tables S1–S8.

library (http://www.tacc.utexas.edu/tacc-projects/#blas) for performing
matrix multiplication. FastMEDUSA runs on Mac OS X and Linux.

2.3 Benchmarking
We tested the performance of FastMEDUSA and MEDUSA utilizing
discretized expression and promoter sequences of 6291 genes, 501
regulators in 18 samples of yeast (Kundaje et al., 2008) and 14 819
genes, 1268 regulators in 159 samples of human brain tumor (glioma)
data set (Li et al., 2009). Human regulators and promoter sequences
were obtained from MatBase (Cartharius et al., 2005) and Gene2Promoter
(http://www.genomatix.de), respectively.

We ran both tools on the Biowulf Linux cluster (1 Gb/s Ethernet network,
4-core 2.8 GHz AMD Opteron(tm) Processor 290 and 8 GB memory) at the
National Institutes of Health. To obtain comparable ADTs, we used the same
default parameters, disabled all random choices and reduced the precision of
some double variables in both tools (see Supplementary Material for modified
M files of MEDUSA).

3 RESULTS
We tested the performance of FastMEDUSA and MEDUSA
by controlling for the number of iterations and the number

of processors used. Specifically, we defined the performance
increase of FastMEDUSA utilizing i iterations and n processors
as PIi,n = tMEDUSA

i

/
tFastMEDUSA
i,n , where t is the execution time.

The results on the yeast and human data sets show that
FastMEDUSA consistently outperforms MEDUSA (Fig. 1b). For
instance, MEDUSA takes about 12 days to analyze the human
glioma data set utilizing 400 iterations, whereas FastMEDUSA
analyzes the same data set and obtains the same ADTs in about
6 h utilizing 100 processors. FastMEDUSA is also about 30% faster
than MEDUSAin serial mode. The slope of the performance increase
reduces for increasing computing resources because of the increase
in the cost of inter-process communications.

4 CONCLUSIONS
Through the implementation of FastMEDUSA, a parallelized
version of the gene regulatory-network modeling tool MEDUSA,
we solve two problems inherent in the original implementation.
First, we provide an open source implementation in C++ that
uses freely available libraries. More importantly, we show that
FastMEDUSA allows a dramatically more efficient utilization
of computational resources. We expect that FastMEDUSA will
be used on single multi-core machines, distributed systems or
cloud computing facilities to model large data sets of complex
organisms that would have been highly cumbersome using the serial
implementation of the original algorithm.
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