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Effects of hypothyroidism on cell proliferation 
and neuroblasts in the hippocampal dentate 
gyrus in a rat model of type 2 diabetes
Sun Shin Yi1,2, In Koo Hwang1, Ji Won Choi1, Moo-Ho Won3, Je Kyung Seong1, Yeo Sung Yoon1

1Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 
Korea, 2Department of Biomedical Sciences, College of Health Sciences, Marquette University, Milwaukee, USA, 3Department of Neurobiology, School of 
Medicine, Kangwon National University, Chuncheon, Korea

Abstract: We observed how the hypothyroid state affects diabetic states and modifies cell proliferation and neuroblast 
differentiation in the hippocampal dentate gyrus (DG). For this, 0.03% methimazole, an anti-thyroid drug, was administered 
to 7-week-old, pre-diabetic Zucker diabetic fatty (ZDF) rats by drinking water for 5 weeks, and the animals were sacrificed at 
12 weeks of age. At this age, corticosterone levels were significantly increased in the ZDF rats compared to those in the control 
(Zucker lean control, ZLC) rats. Methimazole (methi) treatment in the ZDF rats (ZDF-methi rats) significantly decreased 
corticosterone levels and diabetes-induced hypertrophy of adrenal glands. In the DG, Ki67 (a marker for cell proliferation)- 
and doublecortin (DCX, a marker for neuronal progenitors)-immunoreactive cells were much lower in the ZDF rats than those 
in the ZLC rats. However, in ZDF-methi rats, numbers of Ki67- and DCX-immunoreactive cells were similar to those in the 
ZLC rats. These suggest that methi significantly reduces diabetes-induced hypertrophy of the adrenal gland and alleviates the 
diabetes-induced reduction of cell proliferation and neuronal progenitors in the DG.
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a close association exists between thyroid hormones and 
brain cholinergic function (Smith et al., 2002). These effects 
are mainly observed in specific cholinergic nuclei and their 
pathways, such as the basal forebrain and the hippocampus 
(Patel et al., 1987).

Hippocampal neurons are vulnerable to diabetes (Gispen 
& Biessels, 2000; Magariños & McEwen, 2000); memory 
loss and impaired executive function also accompany type 2 
diabetes (Ryan & Geckle, 2000). In addition, diabetes reduces 
neuroblasts in the dentate gyrus of the hippocampus in 
type 1 (Jackson-Guilford et al., 2000; Beauquis et al., 2006) 
and type 2 (Hwang et al., 2008) models; these neuroblasts 
extend their axons and contact CA3 pyramidal neurons 
in the hippocampus proper, becoming integrated into the 
hippocampal circuitry (Stanfield & Trice, 1988; Hastings 
& Gould, 1999). In diabetic rats, hyper-activation of the 

Introduction

Thyroid hormones regulate developmental processes such 
as neurogenesis, myelination, dendrite proliferation and 
synapse formation (Bernal et al., 2003; Williams, 2008). In 
particular, maternally synthesized thyroid hormones at very 
late embryonic stages influence neuronal proliferation and 
migration of neurons in the cerebral cortex, hippocampus 
and medial ganglionic eminence (Narayanan & Narayanan, 
1985; AusÓ et al., 2004; Cuevas et al., 2005). In addition, 
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hypothalamo-pituitary adrenal axis is well described, and 
corticosterone in the adrenal gland mediates diabetes-
induced impairments of hippocampal synaptic plasticity 
and neurogenesis, as well as associated cognitive deficits 
(Landfield et al., 1978; Trudeau et al., 2004; Montaron et al., 
2006; Stranahan et al., 2008). The correlation between thyroid 
hormones and adrenal corticosteroids hormones has been 
reported (Silva & Bianco, 2008).

Although there are reports about the effects of hypothy-
roidism in the type 1 (Hibbe et al., 1991) and type 2 diabetic 
models (Matsushita et al., 2005; Tamura et al., 2005; Hwang et 
al., 2009), no studies have been reported about the effects of 
hypothyroidism in type 2 diabetic model on cell proliferation 
and neuroblast differentiation. In the present study, we 
investigated the consequences of adult-onset hypothyroidism 
in diabetic rats using methimazole, an anti-thyroid drug, 
which has been used in the management of hyperthyroid 
patients (Cooper 2005). We also investigated how the 
hypothyroid state modifies neuroblast differentiation which 
retarded by diabetic state possibly through high corticosterone 
level in the hippocampal dentate gyrus of Zucker diabetic 
fatty (fa/fa, ZDF) rats by measuring expression of Ki67, 
an endogenous marker of proliferation expressed during 
late G1, S, M and G2 phases of cell cycle (Cooper-Kuhn & 
Kuhn, 2002), and doublecortin (DCX), a marker of neuronal 
progenitors differentiating into neurons (Karl et al., 2005).

Materials and Methods
 

Experimental animals
Male and female Zucker diabetic heterozygote rats 

(fa/+) were purchased from Genetic Models (Indianapolis, 
IN, USA) and mated each other. They were housed in a 
conventional state under adequate temperature (23oC) and 
humidity (60%) control with a 12-h light/12-h dark cycle, and 
free access to food and water. Purina 5008 rodent diets (7.5% 
fat) were provided as recommended by Genetic Models. The 
procedures for handling and caring for the animals adhered 
to the guidelines that are in compliance with the current 
international laws and policies (NIH Guide for the Care and 
Use of Laboratory Animals, NIH Publication No. 85-23, 
1985, revised 1996). All of the experiments were conducted 
to minimize the number of animals used and the suffering 
caused by the procedures used in the present study. 

Genotyping of fa gene and experimental design
Genotype of fa gene herein was determined with the 

strategy described previous our study (Hwang et al., 2008, 
2009). ZDF rats were randomly divided into 2 groups (n=7 
per group) with vehicle-ZDF and hypothyroid-ZDF group. 
At 7 weeks of age, hypothyroidism was induced by the 
administration of 0.03% 2-mercapto-1-methyl-imidazole 
(methimazole, Sigma, St. Louis, MO, USA) in drinking water 
for 5 weeks. ZLC rats (n=7) were served as the control. All 
animals were euthanized at 12 weeks of age.

Measurements of levels of blood glucose, serum 
thyroid hormones, and serum corticosterone

To measure blood glucose concentration, blood was 
analyzed by using a blood glucose monitor (Ascensia Elite 
XL Blood Glucose Meter, Bayer, Toronto, ON, Canada). To 
confirm the hypothyroid state and corticosterone levels, the 
animals were anesthetized with 60 mg/kg chloral hydrate 
and blood specimens were drawn from the right ventricle of 
ZLC, ZDF and methimazole-treated ZDF (ZDF-methi) rats 
at 12 weeks of age. After collection, the blood samples were 
centrifuged (5 min, 14,000 r.p.m., 4oC) and serum samples 
were stored in liquid nitrogen until measurement. Serum 
T4 and corticosterone were measured using commercially 
available RIA kits from Monobind Incorporation (CA, USA) 
and IBL (Germany), respectively.

 
H&E staining and immunohistochemistry for Ki67 
and DCX

For histological staining, ZLC, ZDF and ZDF-methi rats 
were perfused by a previous mentioned method (Hwang et 
al., 2008, 2009). In brief, adrenal glands were dehydrated with 
graded concentrations of alcohol for embedding in paraffin. 
Thereafter paraffin-embedded tissues were sectioned on a 
microtome (Leica, Wetzlar, Germany) into 3-μm coronal 
sections, and they were mounted into silane-coated slides. 
The sections were stained with hematoxylin and eosin (H&E) 
according to general protocol. 

For immunohistochemistry, brains were cryoprotected by 
infiltration with 30% sucrose overnight. Thereafter, frozen 
tissues were serially sectioned on a cryostat (Leica) into 30 
μm coronal sections and then the sections were collected into 
six-well plates containing PBS. Immunohistochemistry was 
performed under the same conditions in each group in order 
to examine whether the degree of immunohistochemical 
staining was accurate. Sections were sequentially treated with 
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Fig. 1. T4 (A) and corticosterone levels (B) in ZLC, vehicle-treated ZDF and methimazole-treated ZDF (ZDF-methi) rats at 12 weeks of age. 
Serum T4 and corticosterone levels are significantly high in ZDF rats compared to that in the ZLC rats. In ZDF-methi rats, serum corticosterone 
levels are lower than that in ZDF rats. The bars indicate means±SE (n=7 per group; *P<0.05, significantly different from ZLC rats, †P<0.05, 
significantly different from ZDF rats).

0.3% hydrogen peroxide (H2O2) in PBS for 30 min and 10% 
normal goat or rabbit serum in 0.05 M PBS for 30 min. They 
were then incubated with diluted rabbit anti-Ki67 (1 : 1,000, 
Abcam, Cambridge, UK) or goat anti-DCX antibody (1 : 50, 
SantaCruz Biotechnology, Santa Cruz, CA, USA) overnight 
at room temperature and subsequently exposed to biotinylated 
goat anti-rabbit IgG or rabbit anti-goat IgG and streptavidin 
peroxidase complex (diluted 1 : 200, Vector, Burlingame, 
CA, USA). They were then visualized by staining with 
3,3’-diaminobenzidine in 0.1 M Tris-HCl buffer (pH 7.2) and 
mounted on gelatin-coated slides. The sections were mounted in 
Canada Balsam (Kanto, Tokyo, Japan) following dehydration. 

 
Data analysis

All measurements were performed in order to ensure 
objectivity in blind conditions, by two observers for each 
experiment, carrying out the measures of control and 
experimental samples under the same conditions.

For quantitative analysis of the number of Ki67 or DCX 
positive cells in the hippocampus, 15 section with 60 μm 
interval were selected from each animals according to 
anatomical landmarks corresponding to Bregma -3.00~ 
-4.08 mm of rat brain atlas (Paxinos & Watson, 2007). The 
corresponding areas of the hippocampus were measured on 
the monitor at a magnification of 100×. Images of Ki67 or 
DCX-immunoreactive cells taken from dentate gyrus were 
obtained through a BX51 light microscope (Olympus, Tokyo, 
Japan) equipped with a digital camera (DP71, Olympus) 
connected to a PC monitor. The number of Ki67 or DCX 
positive cells in dentate gyrus was analyzed by Optimas 

6.5 software (CyberMetrics, Scottsdale, AZ). In addition, 
dendritic complexity of DCX positive cells was analyzed using 
the accompanying software (NeuroExplore, MicroBrightField, 
Inc., VT,), calculating complexity including dendritic length 
and number of branches. Cell counts were obtained by 
averaging the counts from the sections taken from each 
animal: A ratio of the count was calibrated as %.

 
Statistical analysis

The GraphPad Prism (Ver 4.03) statistical analysis software 
was used for all data analysis. The data shown here represent 
the means of experiments performed for each experimental 
area. Differences among the means were statistically analyzed 
by one-way ANOVA test followed by Duncan’s new multiple 
range method.

Results
 

Blood glucose, and serum levels of thyroid hormone 
and corticosterone

At 12 weeks of age, blood glucose levels were reported 
by our previous study (Hwang et al., 2009). Serum T4 levels 
in ZLC rats were 76.3 μg/dL. In ZDF rats, T4 levels were 
significantly increased to 10.31 μg/dL. In ZDF-methi rats, T4 
levels were significantly decreased by 62% compared to that 
in the ZDF group. In this group, T4 levels were 3.95 μg/dL (Fig. 
1A).

Serum corticosterone level in ZLC rats was 218.9 ng/mL. 
In ZDF rats, corticosterone level was significantly higher 
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Fig. 2. Hematoxylin and eosin staining of the adrenal gland in ZLC (A and D), vehicle-treated ZDF (B and E) and methimazole-treated ZDF 
(ZDF-methi) rats (C and F) at 12 weeks of age. The size of adrenal gland in zona fasciculata (zf ) of cortex and adrenal medulla is significantly 
decreased in the ZDF-methi rats compared to that in the ZDF rats and slightly smaller than that in ZLC rats. zg, zona glomerulosa; zr, zona 
reticulata. Bar = 400 μm (A~C), 100 μm (D~F). 

(461.7 ng/mL) than that in ZLC rats. In ZDF-methi rats, 
corticosterone level was significantly decreased (289.3 ng/mL) 
compared to that in ZDF rats (Fig. 1B).

 
Morphology of adrenal gland

In ZLC, ZDF and ZDF-methi rats, morphologies of adrenal 
glands were differently found. First of all, the size of the 
adrenal medulla was markedly different among these groups. 
In ZDF rats, the adrenal medulla and the zona fasciculata 
of the adrenal cortex were significantly enlarged, but they 
were significantly decreased in ZDF-methi rats. Indeed, in 

the ZDF-methi rats, the size of adrenal gland was somewhat 
smaller than that in ZLC rats (Fig. 2A~F). 

 
Changes in Ki67-immunoreactive cells in the dentate 
gyrus

In ZLC rats, some Ki67-immunoreactive nuclei were 
detected in the subgranular zone of the dentate gyrus (Fig. 
3A). However, in ZDF rats, Ki67-immunoreactive nuclei 
were significantly decreased by 33.4% compared to those 
in ZLC rats (Fig. 3B and D). In ZDF-methi rats, Ki67-
immunoreactive nuclei were significantly increased compared 
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Fig. 3. Ki67 immunohistochemistry in the dentate gyrus in ZLC (A) and vehicle-treated ZDF (B) and methimazole-treated ZDF (ZDF-methi) 
(C) rats. Ki67 immunoreaction is detected in the subgranular zone of the polymorphic layer (PoL). Ki67-immunoreactive cells are significantly 
increased in ZDF-methi rats compared to those in the ZDF rats. GCL, Granule cell layer; ML, Molecular layer. Bar=100 μm. (D) Mean number of 
Ki67-immunoreactive cells per section in the dentate gyrus of the ZLC, ZDF and ZDF-methi rats (n=7 per group; *P<0.05, significantly different 
from the ZLC rats, †P<0.05, significantly different from the ZDF rats). The bars indicate means±SEM.

to those in ZDF rats (Fig. 3C). In this group, the number of 
Ki67-immunoreactive nuclei was slightly lower than that in 
ZLC rats (88.2% vs. ZLC rats) (Fig. 3D).

 
Changes in DCX-immunoreactive cells in the dentate 
gyrus

In ZLC rats, DCX-immunoreactive cells were detected in 
the subgranular zone of the dentate gyrus (Fig. 4A) and DCX 
had well-developed (tertiary) dendrites, which were extended 
into two-thirds of molecular layer of the dentate gyrus (Fig. 
4B). In the ZDF rats, DCX-immunoreactive neuroblasts were 
significantly decreased in the dentate gyrus and fewer DCX-
immunoreactive neuroblasts with tertiary dendrites were 
detected (Fig. 4C, D and G). In ZDF-methi rats, the number 
of DCX-immunoreactive neuroblasts with tertiary dendrites 
was increased compared to that in the ZDF rats and were 
similar to that in ZLC rats (Fig. 4E, F and G). 

Discussion
 
The ZDF rat is a well-characterized genetic model of non-

insulin-dependent (type 2) diabetes and obesity. ZDF rats 
have a defective leptin receptor (Zucker & Zucker, 1961) and 
diabetes typically appears between 7 and 10 weeks of age and 
is maintained for at least 6 months (Etgen & Oldham, 2000). 

In this study, we observed that treatment with methimazole 
in ZDF rats decreased the serum blood glucose levels. In 
addition, methimazole treatment in ZDF rats significantly 
reduced the hypertrophy of adrenal medulla and zona 
fasciculata of adrenal cortex and serum corticosterone 
levels. These results are supported by previous studies that 
hypothyroidism in rats resulted in decreased adrenal weights 
and plasma concentrations of corticosterone (Tohei et al., 
1997 and 1998; Tohei 2004).

We observed, in the present study, effects of methimazole 
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Fig. 4. DCX immunohistochemistry in the dentate gyrus in ZLC (A and 
B), vehicle-treated ZDF (C and D) and methimazole-treated ZDF (ZDF-
methi) (E and F) rats. DCX immunoreaction is detected in the subgranular 
zone (arrows) of the polymorphic layer (PoL). DCX-immunoreactive 
cells are significantly increased in ZDF-methi rats compared to those in 
the ZDF rats. GCL,Granule cell layer; ML, Molecular layer. Bar=100 
μm (A, C, and E), 50 μm (B, D, and F). (G) Mean number of DCX-
immunoreactive neuroblasts with/without tertiary dendrites per section 
in the dentate gyrus of ZLC, ZDF and ZDF-methi rats (n=7 per group; 
*P<0.05, significantly different from the ZLC rats, †P<0.05, significantly 
different from ZDF the rats). The bars indicate the means±SEM.
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on cell proliferation and neuronal differentiation in the 
subgranular zone of the hippocampal dentate gyrus in adult 
type 2 diabetic rats, because neurogenesis in the hippocampal 
dentate gyrus is associated with cognitive performance (Song 
et al., 2002; Siwak-Tapp et al., 2007; Aizawa et al., 2009). Ki67- 
and DCX-immunoreactive cells were markedly low in the 
dentate gyrus in ZDF rats, however, in methimazole treatment 
in ZDF rats, numbers of Ki67- and DCX-immunoreactive 
cells were similar to those ZLC rats.

Indeed, hippocampal neurogenesis is significantly 
decreased in diabetic animals (Jackson-Guilford et al., 
2000; Beauquis et al., 2006; Hwang et al., 2008) and diabetic 
patients (Trudeau et al., 2004). Methimazole has dual 
actions on memory functions in healthy and diabetic rats. 
Hypothyroidism is also reported to impair cognition and 
memory in adult patients and animal models (Mennemeier 
et al., 1993; Wilcoxon et al., 2007) and to impair long-term 
potentiation in the rat hippocampus (Lee et al., 2003). In 
addition, thyroid dysfunction has been shown to influence 
acetylcholinesterase activity in both developing and adult rats 
(Carageorgiou et al., 2007). Furthermore, hypothyroidism 
reduces 5-bromo-deoxyuridine-positive cells (Ambrogini 
et al., 2005) and DCX-immunoreactive neuroblasts, 
which exhibit severely hypoplastic dendritic arborization 
(Montero-Pedrazuela et al., 2006). However, in ZDF rats, 
hypothyroidism alleviated the diabetic phenotypes and 
diabetes-induced reduction of DCX-immunoreactive cells. 
This effect may be associated with hypothyroidism-induced 
reduction of serum corticosterone levels. Treatment with 
antisense oligonucleotides directed against glucocorticoid 
receptor has been reported to restore normal fasting 
glucose levels in Zucker diabetic rats (Watts et al., 2005). 
In addition, lowering corticosterone prevented diabetes-
induced impairment of learning and memory in insulin-
deficient rats and insulin-resistant (db/db) mice (Stranahan 
et al., 2008). It has also been reported that corticosterone 
levels began to increase as a consequence of aging (Landfield 
et al., 1978), and lowering corticosterone from mid-age 
protected from the age-related decline in hippocampal 
neurogenesis and cognitive functions (Montaron et al., 
2006). In addition, hypothyroidism induced by methimazole 
resulted in a significant decrease in the plasma concentrations 
of corticosterone (Weng et al., 2007), which has negative 
correlation with neurogenesis (Joëls 2007). 

Exposure to elevated corticosterone reduces insulin 
receptor signaling in the brain (Piroli et al., 2007), and finally, 

the negative effect of diabetes on hippocampal plasticity 
may be attributable to an interaction between elevated 
glucocorticoids and insulin receptor signaling. In the present 
study, lowering corticosterone levels significantly increased 
Ki67- and DCX-immunoreactive cells in the dentate gyrus. 
This result is supported by a previous study that lowering 
corticosterone levels in diabetes could restore behavioral 
functions (Stranahan et al., 2008). 

In conclusion, treatment with methimazole in ZDF rats, 
type 2 diabetic rats, significantly alleviated increases of 
serum corticosterone levels and enlargement of the adrenal 
gland. In addition, methimazole rescued the diabetes-
induced reduction of Ki67- and DCX-immunoreactive cells. 
The reduction of diabetic phenotypes and rescue of cell 
proliferation and neuronal differentiation may be associated 
with hypothyroidism-related reduction of corticosterone.

 

Acknowledgements
 
The authors would like to thank Mr. Seung Uk Lee and 

Mrs. Hyun Sook Kim for their technical help in this study. 
This study was supported by the Regional Core Research 
Program funded by the Korea Ministry of Education, Science 
and Technology (Medical & Bio-material Research Center).

References

Aizawa K, Ageyama N, Yokoyama C, Hisatsune T. (2009). 
Age-dependent alteration in hippocampal neurogenesis 
correlates with learning performance of macaque 
monkeys. Exp Anim 58: 403-407 

Ambrogini P, Cuppini R, Ferri P, et al. (2005). Thyroid 
hormones affect neurogenesis in the dentate gyrus of adult 
rat. Neuroendocrinology 81: 244-253.

Ausó E, Lavado-Autric R, Cuevas E, Del Rey FE, Morreale 
De Escobar G, Berbel P. (2004). A moderate and transient 
deficiency of maternal thyroid function at the beginning 
of fetal neocorticogenesis alters neuronal migration. 
Endocrinology 145: 4037-4047 

Beauquis J, Roig P, Homo-Delarche F, De Nicola A, Saravia F. 
(2006). Reduced hippocampal neurogenesis and number 
of hilar neurones in streptozotocin-induced diabetic mice: 
reversion by antidepressant treatment. Eur J Neurosci 23: 
1539-1546 



Anat Cell Biol 43:185~193, 2010 Sun Shin Yi, et al192

doi: 10.5115/acb.2010.43.3.185
www.acbjournal.com
www.acbjournal.org

Bernal J, Guadaño-Ferraz A, Morte B. (2003). Perspectives 
in the study of thyroid hormone action on brain 
development and function. Thyroid 13: 1005-1012 

Carageorgiou H, Pantos C, Zarros A, et al. (2007). Changes in 
acetylcholinesterase, Na+,K+-ATPase, and Mg2+-ATPase 
activities in the frontal cortex and the hippocampus of 
hyper- and hypothyroid adult rats. Metabolism 56: 1104-
1110 

Cooper DS. (2005). Antithyroid drugs. N Engl J Med 352: 
905-917

Cooper-Kuhn CM, Kuhn HG. (2002). Is it all DNA repair? 
Methodological considerations for detecting neurogenesis 
in the adult brain. Brain Res Dev Brain Res 134: 13-21

Cuevas E, Ausó E, Telefont M, Morreale de Escobar G, Sotelo 
C, Berbel P. (2005). Transient maternal hypothyroxinemia 
at onset of corticogenesis alters tangential migration 
of medial ganglionic eminence-derived neurons. Eur J 
Neurosci 22: 541-551 

Etgen GJ, Oldham BA. (2000). Profiling of Zucker diabetic 
fatty rats in their progression to the overt diabetic state. 
Metabolism 49: 684-688 

Gispen WH, Biessels GJ. (2000). Cognition and synaptic 
plasticity in diabetes mellitus. Trends Neurosci 23: 542-
549

Hastings NB, Gould E. (1999). Rapid extension of axons into 
the CA3 region by adult-generated granule cells. J Comp 
Neurol 413: 146-154

Hibbe T, Kiesel U, Kolb-Bachofen V, Kolb H. (1991). 
Methimazole treatment aggravates low-dose strepto-
zotocin-induced diabetes. Diabetes Res Clin Pract 11: 53-
58

Hwang IK, Kim IY, Kim YN, et al. (2009). Effects of 
methimazole on the onset of type 2 diabetes in leptin 
receptor-deficient rats. J Vet Med Sci 71: 275-280 

Hwang IK, Yi SS,  Kim YN, et al.  (2008).  Reduced 
hippocampal cell differentiation in the subgranular zone 
of the dentate gyrus in a rat model of type II diabetes. 
Neurochem Res 33: 394-400

Jackson-Guilford J, Leander JD, Nisenbaum LK. (2000). 
The effect of streptozotocin-induced diabetes on cell 
proliferation in the rat dentate gyrus. Neurosci Lett 293: 
91-94 

Joëls M. (2007). Role of corticosteroid hormones in the 
dentate gyrus. Prog Brain Res 163: 355-370

Karl C, Couillard-Despres S, Prang P, et al. (2005). Neuronal 
precursor-specific activity of a human doublecortin 

regulatory sequence. J Neurochem 92: 264-282 
Landfield PW, Waymire JC, Lynch G. (1978). Hippocampal 

aging and adrenocorticoids: quantitative correlations. 
Science 202: 1098-1102

Lee PR, Brady D, Koenig JI. (2003). Thyroid hormone 
regulation of N-methyl-D-aspartic acid receptor subunit 
mRNA expression in adult brain. J Neuroendocrinol 15: 
87-92 

Magariños AM, McEwen BS. (2000). Experimental diabetes 
in rats causes hippocampal dendritic and synaptic 
reorganization and increased glucocorticoid reactivity to 
stress. Proc Natl Acad Sci USA 97: 11056-11061 

Matsushita M, Tamura K, Osada S, Kogo H. (2005). Effect of 
troglitazone on the excess testosterone and LH secretion 
in thyroidectomized, insulin-resistant, type 2 diabetic 
Goto-Kakizaki rats. Endocrine 27: 301-305 

Mennemeier M, Garner RD, Heilman KM. (1993). Memory, 
mood and measurement in hypothyroidism. J Clin Exp 
Neuropsychol 15: 822-831

Montaron MF, Drapeau E, Dupret D, et al. (2006). Lifelong 
corticosterone level determines age-related decline in 
neurogenesis and memory. Neurobiol Aging 27: 645-654 

Montero-Pedrazuela A, Venero C, Lavado-Autric R, et al. 
(2006). Modulation of adult hippocampal neurogenesis 
by thyroid hormones: implications in depressive-like 
behavior. Mol Psychiatry 11: 361-671 

Narayanan CH, Narayanan Y. (1985). Cell formation 
in the motor nucleus and mesencephalic nucleus of 
the trigeminal nerve of rats made hypothyroid by 
propylthiouracil. Exp Brain Res 59: 257-266 

Patel AJ, Hayashi M, Hunt A. (1987). Selective persistent 
reduction in choline acetyltransferase activity in basal 
forebrain of the rat after thyroid deficiency during early 
life. Brain Res 422: 182-185 

Paxinos G, Watson C. (2007). The rat brain in stereotaxic 
coordinates. Amsterdam, Elsevier Academic Press.

Piroli GG, Grillo CA, Reznikov LR, et al. (2007). Cortico-
sterone impairs insulin-stimulated translocation of GLUT4 
in the rat hippocampus. Neuroendocrinology 85: 71-80 

Ryan CM, Geckle MO. (2000). Circumscribed cognitive 
dysfunction in middle-aged adults with type 2 diabetes. 
Diabetes Care 23: 1486-1493

Silva JE, Bianco SD. (2008). Thyroid-adrenergic interactions: 
physiological and clinical implications. Thyroid 18: 157-
165 

Siwak-Tapp CT, Head E, Muggenburg BA, Milgram NW, 



Effect of hypothyroidism on diabetic neurogenesis

doi: 10.5115/acb.2010.43.3.185

Anat Cell Biol 43:185~193, 2010 193

www.acbjournal.com
www.acbjournal.org

Cotman CW. (2007). Neurogenesis decreases with age 
in the canine hippocampus and correlates with cognitive 
function. Neurobiol Learn Mem 88: 249-259 

Smith JW, Evans AT, Costall B, Smythe JW. (2002). Thyroid 
hormones, brain function and cognition: a brief review. 
Neurosci Biobehav Rev 26: 45-60. 

Song HJ, Stevens CF, Gage FH. (2002). Neural stem cells 
from adult hippocampus develop essential properties of 
functional CNS neurons. Nat Neurosci 5: 438-445

Stanfield BB, Trice JE. (1988). Evidence that granule cells 
generated in the dentate gyrus of adult rats extend axonal 
projections. Exp Brain Res 72: 399-406

Stranahan AM, Arumugam TV, Cutler RG, Lee K, Egan 
JM, Mattson MP. (2008). Diabetes impairs hippocampal 
function through glucocorticoid-mediated effects on new 
and mature neurons. Nat Neurosci 11: 309-317

Tamura K, Osada S, Matsushita M, Abe K, Kogo H. (2005). 
Changes in ovarian steroidogenesis in insulin-resistant, 
type 2 diabetic Goto-Kakizaki rats after thyroidectomy 
and gonadotropin treatment. Eur J Pharmacol 513: 151-
157

Tohei A. (2004). Studies on the functional relationship 
between thyroid, adrenal and gonadal hormones. J Reprod 
Dev 50: 9-20

Tohei A, Akai M, Tomabechi T, Mamada M, Taya K. (1997). 
Adrenal and gonadal function in hypothyroid adult male 
rats. J Endocrinol 152: 147-154

Tohei A, Imai A, Watanabe G, Taya K. (1998). Influence 
of thiouracil-induced hypothyroidism on adrenal and 
gonadal functions in adult female rats. J Vet Med Sci 60: 
439-446

Trudeau F, Gagnon S, Massicotte G. (2004). Hippocampal 
synaptic plasticity and glutamate receptor regulation: 
influences of diabetes mellitus. Eur J Pharmacol 490: 177-
186

Watts LM, Manchem VP, Leedom TA, et al. (2005). Reduction 
of hepatic and adipose tissue glucocorticoid receptor 
expression with antisense oligonucleotides improves 
hyperglycemia and hyperlipidemia in diabetic rodents 
without causing systemic glucocorticoid antagonism. 
Diabetes 54: 1846-1853 

Weng Q, Saita E, Watanabe G, et al. (2007). Effect of methi-
mazole-induced hypothyroidism on adrenal and gonadal 
functions in male Japanese quail (Coturnix japonica). J 
Reprod Dev 53: 1335-1341

Wilcoxon JS, Nadolski GJ, Samarut J, Chassande O, Redei 
EE. (2007). Behavioral inhibition and impaired spatial 
learning and memory in hypothyroid mice lacking thyroid 
hormone receptor alpha. Behav Brain Res 177: 109-116 

Wi l l i ams  G R .  ( 2 0 0 8 ) .  Ne u ro d e ve l opm e nt a l  an d 
neurophysiological actions of thyroid hormone. J Neuro-
en docrinol 20: 784-794

Zucker LM, Zucker TF. (1961). Fatty, a new mutation in the 
rat. J Hered 52: 275-278


	Marquette University
	e-Publications@Marquette
	9-1-2010

	Effects of Hypothyroidism on Cell Proliferation and Neuroblasts in the Hippocampal Dentate Gyrus in a Rat Model of Type 2 Diabetes
	Sun Shin Yi
	In Koo Hwang
	Ji Won Choi
	Moo-Ho Won
	Je Kyung Seong
	See next page for additional authors
	Authors


	tmp.1430409744.pdf.OoUpA

