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Abstract 
 

This paper reports the results from an exploratory study of K-8 pre-service teachers’ inductive 
reasoning. The analysis of  130 written solutions to seven tasks and 77 reflective journals 
completed by 20 pre-service teachers lead to descriptions of inductive reasoning processes, i.e. 
specializing, conjecturing, generalizing, and justifying, in the problem-solving contexts. The 
uncovered characterizations of the four inductive reasoning processes were further used to 
describe pathways of successful generalizations. The results highlight the importance of 
specializing and justifying in constructing powerful generalizations. Implications for teacher 
education are discussed.  
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Introduction 

 The phrase mathematical reasoning is typically associated with formal proof, that is, a 

process in which one logically deduces, from a set of principles or definitions, conclusions about 

all classes of particular instances. In their recent publication, the National Council of Teachers of 

Mathematics, NCTM (2009) defined mathematical reasoning much more broadly, as a process of  

making inferences on the basis of evidence or stated principles highlighting that "mathematical 

reasoning can take many forms, ranging from informal explanation and justification to formal 

deduction, as well as inductive observations," (p.4). Although, without a formal proof, the 

validity of inductive reasoning, that is generalizing from finite incomplete classes of particular 

instances cannot be certain, inductive observations assist students in making mathematical 

discoveries and support their learning of mathematics with understanding.  As such, inductive 

reasoning plays an important role in the K-8 mathematics. Curriculum standards for school 

mathematics (NCTM, 2000; National Governor's Association (NGA) & Council of Chief State 

School Officers: Common Core State Mathematics Standards, [CCSSM], 2011) have set 

expectations that elementary and middle school students develop an understanding of algebraic 

concepts in a way that supports generalizing and extending the ideas of arithmetic to the 

concepts of algebra. The standard documents emphasize that K-8 students should learn algebraic 

concepts as a “set of . . . competencies tied to the representation of quantitative relationships and 

as a style of thinking for formalizing patterns, functions, and generalizations,” (NCTM, 2000; p. 

223). Kaput (1999) argued that the process of generalizing supports students' development of 

more abstract ways of thinking; in the process of generalizing initial objects of one’s reasoning 

(i.e., specific cases and situations) might be replaced with new objects such as patterns, 

procedures, structures and relationships. In that sense inductive reasoning has the potential to 
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support students’ ability to solve problems using abstractions and ultimately operate on 

mathematical entities logically and independently from the specific context.  

 Expectations that students reason inductively and make sense of mathematics need to be 

supported by strong preparation of K-8 pre-service teachers. Little attention, however, has been 

paid to pre-service teachers’ inductive reasoning in contextually-based situations nonetheless that 

inductive reasoning plays a significant role in the K-8 mathematics; facilitates problem solving, 

learning and the development of expertise (Haverty, Koedinger, Klahr, & Alibali, 2000). Past 

studies (e.g., Rivera & Becker, 2007; Hallagan, Rule, & Carlson, 2009; Richardson, Berenson, & 

Staley, 2009) predominantly focused on pre-service teachers’ inductive reasoning in the context 

of analyzing numerical or geometric (figural) patterns. Given the importance of inductive 

reasoning in problem solving and the lack of literature that explores pre-service teachers’ 

inductive reasoning in contextually-based situations the goal of this research was to:  

 (1) Characterize pre-service teachers' inductive reasoning processes in problem-solving 

 contexts, and 

 (2) Characterize pathways of successful generalizations.  

Inductive Reasoning 

 Inductive reasoning processes that are central to this work represent what Polya (1981) 

described as the acquisition of new knowledge, namely, discovering properties from specific 

phenomena and analyzing regularities in a logical way. When describing inductive processes 

Harverty et al.  (2000) specified that when reasoning inductively one engages in (1) data 

gathering, (2) pattern finding, and (3) hypothesis generation. Cañadas and Castro (2007, 2009) 

conceptualized inductive reasoning in terms of (1) initial experiences with particular cases, (2) 

strategies for organizing information about cases, (3) search and prediction of patterns, (4) 
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conjecture formulation, (5) conjecture validation, (6) conjecture generalization, and (7) 

generalization justification. Burton (1984) identified that inductive reasoning rests on one's 

ability to: (1) specialize; i.e., engage in activities through which one explores particular cases, (2) 

conjecture; i.e., engage in activities through which one explores, expresses and substantiates 

underlying relationships among particular cases, (3) generalize; i.e., follow recognition of 

patterns with statements of generality, and (4) justify ; i.e., that is convince oneself and others 

about the robustness of pattern generalization.  

 The work described in this paper builds on the above interpretations of inductive 

reasoning, using Burton’s classification of the four inductive reasoning processes as a starting 

point.  For this research, the four inductive reasoning processes were operationalized building on 

Burton (1984), Haverty et al., (2000), and Cañadas and Castro’s (2007, 2009) descriptions and 

the operational definition is presented in Table 1.  

Table 1.  
Inductive Reasoning1 Processes 
Inductive 
Reasoning 
Process 

Operational Description 

1.Specializing Recognizable by activities focused on collecting, observing, 
organizing and representing information about specific cases 
 

2. Conjecturing Recognizable by one’s ability to observe and express information 
about regularities that characterize explored cases and to identify 
unknown case 
 

3.Generalizing   Recognizable by statement of generality (a description or a rule) that 
follows a pattern recognition allowing to make meaning and 
extrapolate information about cases beyond those directly studied  
 

4. Justifying  
     

Recognizable by the arguments used to validate the truth of the 
general statement about regularities observed in the analyzed 
information 

1 based on Burton (1984), Haverty et al., (2000), and Cañadas and Castro (2007, 2009)  
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The goal of this research was to further capture how these processes demonstrate in solutions to 

contextually-based tasks. 

 
Method 

Participants 

 Participants for this study were 20 undergraduate students, nineteen females and one 

male, all grades 1-8 teaching certification candidates, at a large private Midwestern university. 

All were sophomores or juniors, enrolled in the Problem Solving and Reasoning course, the first 

in a 3-course mathematics sequence for 1-8 pre-service teachers. The objective of the course was 

to deepen pre-service teachers’ problem-solving ability, and to strengthen their appreciation and 

understanding of mathematics. The course capitalized on pre-service teachers' authentic 

experiences with problem-solving and aimed to provide them with an understanding of the 

environment that supports students’ growth as discoverers and users of mathematics. Throughout 

the semester, the pre-service teachers solved numerous problems and explicitly discussed a 

variety of problem-solving strategies. They were encouraged to reflect on their own thinking and 

progress in developing productive problem-solving dispositions (e.g., persistence, flexibility, 

ability to build on one another's ideas, and ability to communicate and justify findings). The 

inquiry-based design of the course supported community building encouraging students’ 

discussions that fostered collective examinations of the merits of proposed ideas, strategies and 

arguments.  

Data Sources  

 The data consisted of (a) 130 solutions to four investigative tasks (one composed of four 

parts), and (b) 77 reflective journals. The pre-service teachers had two weeks to complete each 



6 

 

Paper Presented at the AERA Annual Meeting. SIG: Research in Mathematics Education, 
Vancouver, British Columbia, Canada. April 14, 2012 

investigative task and were explicitly asked to explain and justify mathematical claims they 

made. They were asked to carefully record their thought processes, questions they asked 

themselves, conjectures they made and the results of testing them. They were also asked to 

journal and include reflections on their problem solving processes during each investigation. The 

goal for the pre-service teachers was to document the progress of their thinking rather than just 

provide a final, clean, solution to each task. Each of the selected tasks facilitated inductive 

reasoning and fostered exploration of mathematical ideas that were accessible to the participants. 

Each task provided an opportunity to generalize from a finite number of specific instances, and 

none involved rote algebraic manipulations.  For example, the Cutting Through the Layers 

Investigation (Figure 1) encouraged analyzing and generalizing  about classes of string-folding 

situations, as defined by the number of layers, e.g., class of 3-layer strings, class of 4-layer 

strings, with respect to the number of cuts, and, at the same time, facilitated generalizing across 

these classes.  

Imagine a single piece of string, which can be bent back and forth. In the 
picture the string is bent so it has 3 “layers.” But it is still one piece of string. 

 

Imagine now that you take a scissors and cut across the bent string, as 
indicated by the dotted line. The result will be four separate pieces of string, 
as shown. 

 

You could have made more than one cut across the bent string, creating more 
pieces, or, you could start with more layers in the bent string. 

 

 

In the picture at the right, there are four layers and three cuts. That creates a 
total of 13 pieces. 

 
 

 

Investigate different numbers of layers and different numbers of cuts.  Describe how to calculate 
the number of pieces (P) if somebody gives you the number of layers (L) and the number of cuts 
(C). 
 
Figure 1. Cutting through the Layers Investigative Task (adapted from Driscoll, 1999).  

The remaining investigative tasks are included in Appendix A.  
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Data Analysis 

The analysis of the data was conducted in three phases: (1) In phase one, the data were 

examined to identify the four processes of interest i.e. specializing, conjecturing, generalizing 

and justifying. The goal was to identify the four inductive reasoning processes and to sort out the 

solutions that were based on inductive reasoning from those that were not. (2) In phase two, 

inductive reasoning-based solutions were examined to identify and uncover their characteristics. 

In this stage of data analysis, each of the four processes was further delineated. (3) The third 

phase of data analysis served to examine pathways of successful generalizations.   

Two trained research assistants assisted in the first phase of analysis, in which, guided by 

the operational definition of inductive reasoning (Table 1), all solutions and accompanying 

reflective journals were analyzed to identify and code the four inductive reasoning processes 

(i.e., specializing, conjecturing, generalizing, and justifying). Validity and reliability was 

established in the process of discussing independently coded results. Specific examples were 

cited to clarify the coding schemes and negotiate coding agreement among the three coders to 

100%.  The author alone carried out the remaining part of data analysis. Using the technique 

outlined by Miles and Huberman (1994) the data were carefully reexamined to further analyze 

solutions classified as inductive with a goal of characterizing each of the four processes. Iterative 

cycles of comparing and contrasting characterizations across all solutions were carried to identify 

their similarities and differences leading to further refinement of these descriptions. In that 

process, descriptions of characterizations were collapsed into codes and definitions of codes 

established. Emergent codes were further examined for overlaps, applied and revised until the 

coding system stabilized. Furthermore all solutions were analyzed qualitatively according to their 

correctness and generalization strategy. In addition, successful solutions were further compared 
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with respect to the frequencies of identified characterizations of each of the four processes. More 

detailed discussion of data analysis accompanied by the examples from the data set is presented 

in the results section that follows.  

Results 

Inductive and non-inductive reasoning solutions  

 As noted earlier, inductive reasoning is conceptualized as a process in which one draws 

on a collection of observations whose combined strength helps one arrive at a solution. Cañadas 

and Castro (2005) argued that one's experiences with particular cases provide the starting point 

of inductive reasoning. Thus, to distinguish inductive reasoning solutions from non-inductive 

reasoning solutions, the data were examined to identify the overall nature of specializing 

activities with a specific focus on the observing aspect of data collection. Solutions which 

documented that the pre-service teachers engaged in data gathering activities to generate a final 

numerical answer, rather than to establish an understanding of the nature of cases they examined 

for the purpose of analyzing underlying patterns and generalizing about them, were classified as 

non-inductive and excluded from further analyses. For example, consider excerpts from pre-

service teachers’ #3 and #5’s reflective journals that illustrate the overall nature of data gathering 

activities in the context of the Eric the Sheep Investigation and the Lots of Squares investigation 

(Appendix A).  

I started by using blocks to represent the sheep. I tried with 25 right away but I kind of got 
confused and just ended up picking out 50 blocks and counting out the whole set, 2 at a time, 
in order to do the problem. I acted out and saw that Eric jumped 17 sheep before he was at 
the front of the line. Solving the problem with cubes I was able to see right away that 17 
sheep will be shorn before Eric. (PST #3, Eric the Sheep Investigation). 
 
When I tried solving this problem I tried drawing everything out. Drawing diagram always 
helps me but when the answer could be infinity I could draw only for so long. The second 
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part of the question, the largest 'impossible' number, this is where the true difficulty came in. 
(PST #5, Lots of Squares Investigation).  
 

Both pre-service teachers generated additional data for the problem situation they studied. Their 

examples illustrate data gathering activities carried for the purpose of finding the specific 

answer, rather than understanding and uncovering the embedded relationships. Thus, these types 

of data gathering experiences were coded reenacting and labeled as non-inductive. In contrast, an 

excerpt from  pre-service teacher  #1's solution clearly illustrates the sense-seeking purpose of 

data gathering experiences essential to inductive reasoning: 

I began by drawing a picture of the information given, starting with one sheep in line ahead 
of Eric. I wanted to see if there was a pattern in the number of sheep shorn and jumped and 
how many were shorn before Eric. (PST#1, Eric the Sheep Investigation). 

 

Included in Table 2 is a summary of inductive versus non-inductive solutions the pre-service 

teachers generated for each task.   

Table 2.  
Distribution of Inductive and non-Inductive Solutions across the Tasks 

Task  Number and (%)** of Pre-service Teachers who 
n* Reasoned Inductively Reasoned Non-inductively 

Lots of  Squares 20 16 (80%)  4 (20%) 
Black and White Tiles 19 19 (100%) 0 (0%) 
Cutting through the Layers 20 20 (100%) 0 (0%) 
Eric the Sheep 1 18 11 (61%) 7 (39%) 
Eric the Sheep 2 18 12 (67%) 6 (33%) 
Eric the Sheep 3 18 12 (67%) 6 (33%) 
Eric the Sheep 4 17 7 (41%) 10 (52%) 
*the number reflects missing solutions 
** rounded to the nearest whole percent 
 
Only 6 pre-service teachers (29%) consistently engaged in inductive reasoning while solving all 

tasks and three pre-service teachers (20%) solved all tasks but Eric the Sheep, part 4, inductively.  
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Characterizations of inductive reasoning processes 

 Specializing. Specializing denoted sense-seeking activities that focused on collecting, 

representing and organizing information about specific cases. These activities were further 

described with respect to (a) the use of representations, and (b) organization. The use of 

representations characterized instances of using different representational systems in the process 

of examining particular cases and was further characterized as synonymous or syntactic.  

Organization of data collecting activities was classified with respect to systematicity. 

   Synonymous versus Syntactic use of Representations. When the pre-service teachers 

explored and organized information about examined cases using different representational 

systems in a way that information about examined cases was preserved from one representation 

to the next, such use of different representations was characterized as synonymous. When the 

pre-service teachers explored information about examined cases using different representations 

providing an evidence of augmenting information collected about cases from one representation 

to the next such use of different representations was characterized as syntactic.  

 Consider two excerpts from pre-service teachers #9 and #2’s solutions to the "Cutting 

through the Layers" Investigation, respectively illustrated in Figures 2a and 2b. Both examples 

illustrate how these pre-service teachers constructed a series of diagrams as a mean of exploring 

the problem situation and further examined and represented information about each examined 

case numerically.  
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Figure 2a. An example of synonymous 
                 use of representations, PST #9 
 

Figure 2b. An example of syntactic  
                  use of representations,  PST #2  

Pre-service teacher  #9's graphical and numerical explorations are consistent with the verbal 

description of the problem. Each representation used (numerical and graphical) appear to directly 

summarize the information about the total number of pieces, as discussed in the verbal statement 

of the problem, (thus synonymous use of representations). While pre-service teacher #2 also 

represented information about each analyzed case graphically and numerically, her numerical 

representation reveals a shift from thinking about the total number of pieces to thinking about the 

layer-cut structure. Pre-service teacher #2s’ work, included in Figure 2b, illustrates how, in the 

process of specializing, she explored and augmented information about cases she examined 

extending the initial information as she moved from one representation to the next (syntactic use 

of representations).In many ways, syntactic use of representations revealed the pre-service 

teachers' thinking about the complexity of the cases they explored, rather than the exclusive 

focus on one specific feature of interest indicated by the statement of the problem. The identified 

two types of uses of different representations, which characterize the overall nature of data 

exploration activities, are summarized in Table 3.  
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Table 3.  
Summary of Synonymous and Syntactic use of Representations  

Task Use of representations (%)*  
Synonymous  Syntactic  Both None 

Lots of  Squares  75%   0% 25%   0% 
Black and White Tiles    5% 42% 53%   0% 
Cutting through the Layers   95%   0%   5%   0% 
Eric the Sheep 1   89%   0% 11%   0% 
Eric the Sheep 2 100%   0%   0%   0% 
Eric the Sheep 3      90%   0%   0%     10%** 
Eric the Sheep 4   83%   0% 17% 0% 
* based on the number of participants who reasoned inductively about the task; rounded to the nearest % 
** no explicit evidence of specializing activities 
 
 Systematicity versus Non-systematicity. Systematic organization of data gathering 

activities, which is also illustrated with the discussed earlier excerpts from pre-service teachers 

#9 and #2's solutions (Figures 2a and b) supported discovery of classes of problem situations. 

Non-systematic approach characterized data gathering activity in which a variety of cases from 

across different classes of situations were explored, appearing to be randomly selected. For 

example, consider the solution excerpt from the Cutting through the Layers Investigation of the 

pre-service teacher #15, included in Figure 3.  

 
 
 
 
 
 
 
 
 
 
 
 

I drew diagrams of the strings of 
varying the layers and cuts. I then wrote 
the information I found in a table. I 
started to look for patterns and make 
connections. It was hard to find a 
pattern between the diagrams. I paid 
attention to all details and tried to find 
similarities between diagrams.  

Figure 3. Non-systematic data gathering process, PST #15. 
                

PST #15 appeared to select cases randomly without evident focus on folds or cuts. Her table and 

the accompanying explanation do not suggest that in the process she discovered a possible class 
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of problem situations (as defined by the number of layers or cuts). This is in contrast to pre-

service teachers #9 and #2 whose solution excerpts were presented in Figures 2a and 2b. Table 4 

gives a summary of data gathering activities analyzed with respect to the systematicity, by task.   

Table 4.  
Summary of Data Organization  

Task Organization (%)*  
Systematic  Non-systematic None 

Lots of  Squares      94%   6%    0% 
Black and White Tiles     100%   0%    0% 
Cutting through the Layers      80% 20%    0% 
Eric the Sheep 1     100%   0%    0% 
Eric the Sheep 2     100%   0%    0% 
Eric the Sheep 3       90%   0%      10%** 
Eric the Sheep 4     100%   0%    0% 
* based on the number of participants who reasoned inductively about the task; rounded to the nearest % 
** no explicit evidence of specializing activities 
 
 Conjecturing. Consistently with the framework for this study (Table 1) conjecturing was 

recognizable by one’s ability to discover and express information about observed regularities. 

The expressions of regularity identified in the pre-service teachers’ solutions were further 

classified as (a) local, or (b) global; both formulated in reference to recognition of changing or 

invariant attributes of examined cases. Local conjectures were defined as statements of 

recognition of invariant or changing attributes among cases within a specific class of problem 

situations. Global conjectures were defined as statements of recognition of regularities (changing 

or invariant attributes) across classes of problem situations.  

 Local versus Global Conjectures. Consider two excerpts from the Eric the Sheep 

Investigation part 2 (Appendix A) of pre-service teachers #19 and #18. The first, included in 

Figure 4, illustrates how the pre-service teacher #19 examined regularity among cases within a 

specific class of problem situations, as defined by the skip pattern, thus local conjecture.  
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“. . . the number of sheep shorn before Eric 
goes up in groups of three. For every new 
group of 3's [sheep in front of Eric] there 
will be one more sheep shorn before Eric.”  

Figure 4.  An Example of Local Conjecture (PST #19) 
 

The second, included in Figure 5, is an example of a global conjecture. In particular, the example 

shows how the pre-service teacher #18 uncovered and expressed her recognition of regularities 

across classes of problem situations (as defined by the skip) stating: "I noticed a pattern between 

Eric skipping 2 sheep every time a sheep is shorn and Eric skipping 3 sheep every time a sheep is 

shorn."  Her work documents that she engaged in broader thinking about analyzed problem 

situations seeking connections among regularities she identified within specific skip-classes.   
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I noticed a pattern between Eric skipping 2 
sheep every time a sheep is shorn and Eric 
skipping 3 sheep every time a sheep is 
shorn. You +1 to the number of sheep 
skipped, and divide the number of sheep in 
front of Eric by that number (round up to 
the nearest whole number.) This is similar 
to the first problem but the number of 
sheep in front of Eric changed from 3 to 4 
to 10 etc. You still +1 to the number of 
sheep skipped, and divide by 4, 5, 11 etc.  

Figure 5.  An Example of Global Conjecture (PST #18) 

Table 5 provides a summary of conjecturing activities, by task.  

Table 5.  
Summary of Conjecturing Activities  

Task Conjectures by Type (%)* 
Local Global Both None 

Lots of  Squares 81% 19% 0% 0% 
Black and White Tiles 37% 37% 21% 5% 
Cutting through the Layers 40% 5% 25% 30% 
Eric the Sheep 1 67% 33% 0% 0% 
Eric the Sheep 2 91% 0% 9% 0% 
Eric the Sheep 3 100% 0% 0% 0% 
Eric the Sheep 4 100% 0% 0% 0% 
* based on the number of participants who reasoned inductively about the task; rounded to the nearest % 
 
Generalizing  

 Generalizing was recognizable as a statement of generality (a description or a rule) that 

followed the recognition of a pattern. Similar to conjectures, general statements were further 

classified as (a) local or (b) global. Local generalizations were defined as expressions of 
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generality about cases within a given class of problem situations. Global generalizations were 

defined as expressions of generality about classes of problem situations.  

 Local versus Global Generalizations. Consider the two excerpts from the pre-service 

teacher #16's solution to the Cutting Through the Layers Investigation, included in Figures 6a 

and 6b, as an illustration of  local and global generalizations.  

  
 
 
 
 
 
 
 
 

Figure 6a.  An Example of  Local 
                   Generalization, PST #16. 

Figure 6b.  An Example of Global 
                   Generalization, PST #16 

 

The series of rules: 1+3k; 1+4k; 1+5k provide  evidence that the pre-service teacher #16 

generalized about regularities within each class of problem situations, as defined by the number 

of layers. Her description: "Output = #Layers *#Cuts+1," which follows her conjecture "Rule 

must have a +1 because no matter how many layers there are there is always 1 piece with 0 cuts" 

documents how she globally generalizes across classes of problem situations as defined by the 

number of  layers and cuts, thus global generalization. Table 6 provides a summary of 

generalization activities across the tasks.  
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Table 6.  
Summary of Generalization Activities 

Task Generalizations (%)* 
Local Global Both Unable to 

generalize  
Lots of  Squares   37.5%   0%    12.5%  50% 
Black and White Tiles 11% 47% 37%   5% 
Cutting through the Layers   5% 70% 20%   5% 
Eric the Sheep 1 67% 33%   0%   0% 
Eric the Sheep 2 18% 36% 45%   0% 
Eric the Sheep 3 70% 30% 0%   0% 
Eric the Sheep 4 17% 66% 0% 17% 
* based on the number of participants who reasoned inductively about the task; rounded to the nearest % 
 

 Justifying. The analysis revealed two types of arguments pre-service teachers 

constructed to validate the truth of formulated generalizations (a) relation-based or (b) empirical. 

When the pre-service teachers argued the truth of the general statements by providing clear links 

to the specific relationships uncovered in the context of the problem their justifications were 

categorized as relation-based. When the pre-service teachers attempted to established the truth of 

their general statements by testing their validity with selected cases their justifications were 

categorized as empirical. Frequently, the pre-service teachers considered their general statements 

obvious and did not engage in validating their truth.  

Relation-based versus Empirical Justifications. Consider two explanations of the pre-

service teachers #20, and #10, included in Figure 7. Both explanations include arguments pre-

service teachers' #20 and #10 formulated to validate generalizations they developed in the 

context of the Cutting Through the Layers Investigation.  
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For the same number of layers the number of 
pieces went up by the number of layers each 
time a cut was made. There was always one 
piece to start with because there was one piece 
even when no cuts were made. This is why the 
formula is P=CL+1 where P=the number of 
pieces, C=the number of cuts, and L=the 
number of layers.   
 
 
 

 
 
 
 
 

Figure 7a.  An Example of  Relation-based 
                   Justification, PST #20. 

Figure 7b.  An Example of Empirical  
                   Justification, PST #10 

 

 While the pre-service teacher #20 clearly linked her argument to the context of the 

problem and the relationships she uncovered the pre-service teacher #10 checked validity of her 

rule empirically, focusing only on numerical information she collected without attention to any 

general relationships that fit her examined data. Table 7 includes a summary of identified 

justification activities, organized by task.  

Table 7.  
Summary of Justifications 

Task Justifications (%)* 
Relation-based Empirical  None 

Lots of  Squares 19% 19%  62% 
Black and White Tiles 16% 79%  5% 
Cutting through the Layers 15% 70%  15% 
Eric the Sheep 1 0% 89%  11% 
Eric the Sheep 2 0% 55%  45% 
Eric the Sheep 3 10% 40%  50% 
Eric the Sheep 4 83% 0%  17% 
* based on the number of participants who reasoned inductively about the task; rounded to the nearest % 
 

Successful Generalizations.  

 Comparison of generalization strategies across two tasks. The Black and White Tiles 

Investigation and Cutting through the Layers Investigation were selected to compare and further 
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explore successful generalization strategies identified in the pre-service teachers’ solutions. 

These tasks were selected because 100% of solutions to both of these tasks were identified as 

inductive. Moreover, all 19 solutions for the Black and White Tiles Investigation were successful 

and only one of 20 pre-service teachers was not able to develop a correct generalization for the 

Cutting Thorough the Layers Investigation. For both problems, generalization strategies were 

further examined and the solutions compared with respect to identified characteristics of 

specializing, conjecturing and justifying activities. Task-specific global generalization strategies 

were catalogued and further classified as relation-based or numerical.  

 Relation-based versus Numerical Generalization Strategies. A task specific 

generalization was classified as relation-based when the general rule was developed from 

considering the various relationships uncovered within or among analyzed cases. Generalization 

strategy was classified as numerical when the general rule was developed by guessing and 

checking the rule using numerical data collected about analyzed cases.  Included in Figure 8 is a 

summary of global generalization strategies identified in the pre-service teachers' solutions for 

the two tasks.  

Black and White Tiles Cutting Through the Layers 
• Identifying and generalizing about structure 

(focus on black and white classes): 
(4n+1)+8(n+1); 4n+1+8n +8;  
5+ 4(n-1) +8(n+1); [3n+ (n-1)4]+[(n-1)4]+5; 
(4n+1)+8(n-1)+16  

• Identifying and generalizing about structure 
(focus on invariant center and groups of tiles 
in 4 sides): 9+4(3n);  

• Identifying and generalizing about structure 
(focus on chunks of three tiles): 3(7+4(n-1)) 

• Focus on the overall change in the number of 
tiles; 21+12(n-1); 9+12n 

• Identifying and generalizing about structure 
(invariant fold or cut); lc+1  

• Guessing and checking based on the analysis 
of the numerical relationships between the 
total number of pieces and the corresponding 
number of folds and cuts 

Figure 8.  Task Specific Generalization Strategies 
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Overall, about half of the pre-service teachers (53 %) generalized about the situation described in 

the Cutting Through the Layers problem numerically, guessing and checking the relationship 

between the total number of pieces and the corresponding number of folds and cuts. In contrast, 

all pre-service teachers generalized by considering the various relationships they uncovered 

within the structure of the figures while solving the Black and White Tiles investigation. The 

frequency of relation-based generalizations for the Black and White Tiles Investigation was 

significantly higher than the frequency of relation-based generalizations for the Cutting Through 

the Layers Investigation, z=4.10, p<0.00.  

 A comparison of different characterizations of specializing activities identified in the 

solutions to these two tasks revealed that pre-service teachers demonstrated significantly more 

often syntactic use of representations in their solutions to the Black and White Tiles Investigation 

than they did in their solutions to the Cutting Through the Layers Investigation, z=2.92, p<0.00. 

The same was true for synonymous and syntactic use of representations; z=3.72, p<0.00.  

The pre-service teachers also demonstrated synonymous use of representations significantly less 

frequently exploring and collecting information for the Black and White Tiles Investigation than 

they did for Cutting through the Layers Investigation; z=12.55, p<0.00. Conjecturing activity 

(both local or global) was also more frequently observed in solutions to the former than to the 

latter, z=2.14, p<0.02. There was no significant difference in frequencies of relation-based and 

empirical justifications across the solutions to these two investigative tasks.  

 Qualitative analysis of successful generalizations across the tasks. Further insight into 

pathways of successful generalizations came from qualitative analysis of solutions that included 

relation-based generalizations. This sub-group of solutions was characterized by: (1) presence of 

systematic and syntactic use of representations, (2) presence of local and global conjectures, and 
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(3) presence of justifications.   

 Consider an excerpt from a successful solution of pre-service teacher #1 to the Eric the 

Sheep Investigation part 4, and the accompanying explanation, included in Figure 8. Initially, the 

pre-service teacher #1 developed her general rule using analogy to the problem situation 

described in part 3 of this investigation: “change to 2 because now shearers, so shear two sheep 

each time.”  

 

 

I started thinking why change to 2 and that I 
could not just assume that two sheep are 
shorn for every 2 that Eric jumps. 
Sometimes Eric jumps enough ahead so that 
he is the 2nd sheep shorn by the 2nd sheerer.  
 

Figure 8.  Initial generalization and accompanying reflection, PST # 1.  

 
Her reflection “ I started thinking why change to 2 and that I could not just assume that two 

sheep are shorn for every 2 that Eric jumps,” illustrates how, her attempt to justify, fostered her 

engagement in collecting an additional information and further conjecturing about new patterns 

she discovered, as illustrated in Figure 9.  

 

 

 

 

 

I noticed that each time, as long as there  
were 2 sheep shorn, the number of sheep 
shorn before Eric is even. However, if only 
one sheep is shorn than the number is odd. 
The number of sheep jumped did not  
make a  difference because this pattern 
occurred if there were 0j, 1j or 2j.  

Figure 9. Data gathering activity stimulated by engagement in justifying, PST# 1.  
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Consequently, she used the newly discovered patterns to reexamine her initial generalization and 

develop more powerful one. 

Summary and Implication 

 Despite the agreement about the role of inductive reasoning in mathematics learning and 

problem solving (e.g., Haverty, et al., 2000, NCTM, 2000), the mathematics education literature 

lacks a framework for analyzing inductive reasoning processes in contextually-based tasks. 

Hence the goal of this study was to (1) characterize inductive reasoning processes in problem-

solving contexts and (2), to identify and describe pathways of successful generalizations.  

Growing out of the analysis of solutions to specific tasks, the results show broad 

categorizations of the four inductive reasoning processes in contextually-based situations. A 

general character of identified characterizations makes the presented framework useful for other 

problems. Each of the inductive reasoning processes (specializing, conjecturing generalizing and 

justifying) was further characterized in terms of general strategies, rather than task specific ones, 

making the identified taxonomy applicable to a broader collection of tasks.  

The analysis of successful generalizations revealed that specializing activities 

characterized by syntactic use of representations and systematicity of data collection might 

support one's ability to develop successful generalizations. While comparing solutions to the 

Black and White Tiles Investigation and the Cutting Through the Layers Investigation with focus 

on specializing activities, syntactic use of representations and systematicity of data collection 

was observed significantly more often in solutions to the former. This result might suggests 

qualities of specializing activities that might support successful generalizations. This result also 

indicates that that the role of specializing in successful inductive reasoning might be more 

important than previously thought. For example, Haverty et al. (2000), based on their study of 
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pre-service teachers inductive reasoning,  reported that data gathering activities (specializing) did 

not differ when comparing successful and unsuccessful generalizations. Haverty et al. examined 

specializing activities in terms of the amount of data collected (number of cases explored) and 

the specific types of representations used (tables, graphs, lists, etc.). In contrast, this study 

focused on qualitative differences in the use of different representations and systematicity of data 

collection. More research is needed to further explore the role of specializing in successful 

generalizations.  

A finding from this study that deserves special attention of teacher educators is the 

relative low frequency of justifications, particularly relation-based justifications, the pre-service 

teachers formulated overall. Frequently, the pre-service teachers in this study considered their 

general statements obvious and did not engage in validating their truth. At the same time the 

evidence suggests that justifications support one's ability to construct successful, and more 

powerful, generalizations. Helping pre-service teachers develop the ability to construct valid 

arguments and building their awareness of the role justification might play in constructing 

successful generalizations should be an important goal for teacher education programs. 

Stylianides (2008), referring to Bills and Rowland (1999), argued that the development of 

students’ abilities to generalize in a way that draws on mathematical structure, rather than by 

experimenting with limited number of examples, is one of major challenges in mathematics 

education. Thus a special attention of mathematics teacher educators needs to be placed on 

helping pre-service teachers to understand the role justifications play in successful 

generalizations and help them develop the ability to create arguments rooted in relationships that 

fit the data. 
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The exploratory study reported in this article has no doubt some limitations. The small 

sample size, homogeneous group of participants, the selection of problems, and the exclusive use 

of only written solution protocols might limit the extent to which the results could be 

generalized. Further studies need to validate, and perhaps further delineate the proposed 

taxonomy to better inform instruction and assessment in teacher preparation programs. For 

example, further research can delineate the identified characterizations of inductive processes in 

problem solving contexts with a focus on mathematical thinking such as thinking about 

similarity or dissimilarity of problem situations. Another important question to ask is what role 

sequencing of different inductive reasoning processes plays in the solution to a task. Such 

research could have the potential to produce more pervasive descriptions of the four activities 

that underlie inductive reasoning in the problem solving contexts and could provide further 

insights into an understanding of paths  that support successful generalizations.   
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Appendix A 
 

The Investigative Tasks used in the Study 
(*adapted from Driscoll, 1999) 

 
"Lots of Squares*" Investigation  

                      The first diagram shows that any square can be divided into 4 smaller squares. The 
                       second diagram shows that any square can be divided into 7 smaller squares.  
                       Smaller squares don’t have to be the same size as each other.  
The task of this activity is to investigate what numbers of smaller squares are possible. For 
example, you can probably see that there is no way to divide a square into 2 smaller squares.  
 
What is the largest “impossible” case? Justify that all cases beyond one that you named are 
possible. 
 

"Black and White Tiles" Investigation 
Mary uses black and white tiles to make figures such as presented below.  
 

 
 
 
Use the patterns from the shapes to determine the number of tiles needed for Figure 4. 
Mary wants to know how many tiles she will need for Figure 10 and for Figure 25 but she does 
not want to draw all the figures and count the tiles. Write a rule that Mary can use to figure out 
the number of tiles in any figure. Clearly explain why your rule works. 
 

"Eric the Sheep*" Investigation 
1. It's a hot summer day, and Eric the Sheep is at the end of a line of sheep waiting to be shorn. 

There are 50 sheep in front of him. Being an impatient sort of sheep, though, every time the 
shearer takes a sheep from the front of the line to be shorn, Eric sneaks up two places in line. 
How many sheep will be shorn before Eric? Find some way of predicting how many sheep 
will be shorn before Eric if there are 50 sheep in front of him.  

2. Eric gets more and more impatient. Explore how many sheep will be shorn before Eric if Eric 
sneaks past 3 sheep at a time. How about 4 sheep at a time? 10 sheep at a time? When 
someone tells you how many sheep there are in front of Eric and how many sheep at a time he 
can sneak past, describe how you could predict the answer.  

3. What if Eric sneaks past 2 sheep first, and then the shearer takes a sheep from the front of the 
line? Does this change your rule? If so, how? Why?  

4. The farmer hires another sheep shearer. There is still one line, but the 1st and 2nd sheep in 
line get shorn at the same time, then Eric sneaks ahead. Explore what this does to your rule.  
Explain your answer. 

 

   Fig 1    Fig 2    Fig 3 
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