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Energy deposition in the breast during CT scanning: quantification 
and implications for dose reduction 

Franeo Rupcicha, Iacovos Kyprianoub, Andreu Badalb, Taly Gilat Schmide 
aDept. ofBME Marquette University, 1515 W. Wisconsin Ave., Milwaukee, WI, USA 53201-1881; 
bOivision of Imaging and Applied Mathematics (OSEL/CDRH), US Food and Drug Administration, 

10903 New Hampshire Ave, Silver Spring, MD, 20993-0002 

ABSTRACT 

Studies suggest that dose to the breast leads to a higher lifetime attributable cancer incidence risk from a chest CT scan 
for women compared to men. Numerous methods have been proposed for reducing dose to the breast during CT 
scanning, including bismuth shielding, tube current modulation, partial-angular scanning, and reduced kVp. These 
methods differ in how they alter the spectrum and fluence across projection angle. This study used Monte Carlo CT 
simulations of a voxelized female phantom to investigate the energy (dose) deposition in the breast as a function of both 
photon energy and projection angle. The resulting dose deposition matrix was then used to investigate several questions 
regarding dose reduction to the breast: (1) Which photon energies deposit the most dose in the breast, (2) How does 
increased filtration compare to tube current reduction in reducing breast dose, and (3) 00 reduced kVp scans reduce dose 
to breast, and if so, by what mechanism? The resuIts demonstrate that while high-energy photons deposit more dose per 
emitted photon, the low-energy photons deposit more dose to the breast for a 120 kVp acquisition. The results also 
demonstrate that decreasing the tube current for the AP views to match the fluence exiting a shield deposits nearly the 
same dose to the breast as when using a shield (within ~ 1 %). Finally, results suggest that the dose reduction observed 
during lower kVp scans is caused by reduced photon fluence rather than the elimination ofhigh-energy photons from the 
beam. Overall, understanding the mechanisms of dose deposition in the breast as a function of photon energy and 
projection angle enables comparisons of dose reduction methods and facilitates further development of optimized dose 
reduction schemes. 

Keywords: Dose, Monte Carlo simulation, dose reduction, CT, dose deposition matrix 

1. INTRODUCTION 

It has been estimated that over 46 million CT scans are perforrned each year in the United States1
• While these scans can 

be crucial in diagnosing disease, they impart higher levels of radiation dose compared to other conventional x-ray 
imaging procedures2

• Although no large-scale epidemiological study has reported specific levels of cancer risk 
associated with CT scans, the risk of cancer incidence from these scans has been estimated from atomic bomb survivors. 
The Biological Effects of Ionizing Radiation (BEIR) VII Phase 2 report on Health Risks from Exposure 10 Low Levels 0/ 

loni=ing Radiation reports that women exposed to radiation at any age suffer a higher Iifetime attributable risk (LAR) of 
cancer induction and mortality than men exposed at the same age3

• This phenomenon is observed even when breast, 
ovarian, and uterine cancers are excluded. 

Many groups have evaluated methods of reducing dose to radio sensitive organs such as the breast, including bismuth 
shielding, reduced kVp, and tube-current modulated scans.4

,5,6,7,8 These methods differ in how they alter the spectrum 
and fluence across projection angle. For example, bismuth shielding removes a higher fraction of low-energy photons 
from the beam, while reduced kVp eliminates high-energy photons from the beam. While low-energy photons are more 
Iikely to be absorbed where the beam enters the patient, such as in the breast during AP views, high-energy photons 
deposit more dose per interaction. 

This study aims to quantifY the underlying causes of dose reduction in previously proposed methods in order to facilitate 
effective application and development of optimized dose reduction schemes. Monte Carlo simulations of a voxelized 
female phantom were used to create a norrnalized dose deposition matrix, quantifYing the dose to the breast per photon 
emitted from the source as a function of both x-ray energy and view angle. This matrix was then used to investigate 
several questions regarding dose reduction to the breast: I) which photon energies deposit the most dose to the breast in 
a conventional CT scan; 2) how does the reduction in dose due to preferential filtering of low energy photons (bismuth 
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shields) compare 10 reduced fluence across al1 energies (angularly-dependenllube current reduclion); and J) do reduced 
kVp scans reduce dose to breasl, and ifso, by what mechanism? 

2. MATERIALS AND METHODS 

2.1 Monte Carlo Simulations 

All x.-ray projections and er simulations were perfonned using the penEasy software package,9.IO which relies on Ihe 
PENELQPE Monte Carlo radiation transport routincs ll

• 

2.2 Patient Pbantom 

This study used the vox.elized anlhropomorphic 26--year--old female phantom, EIIa, from the Virtual Familyll. The 
phantom was cropped to the thorax, measuring 31 cm by 22 cm in the lateral and anteroposterior direclions, respeclively, 
and 30 cm in the axial direction. Vox.els reprcsenling breasl material werc modeled as 100% glandular tissue and were 
surrounded by a thick layer ofadipose vox.els. Vox.els represenling musele, soft tissue, bone, cartilage, fat , blood, skin, 
and red bone marrow were all comprised oftheir respective lissue-equivalenl malerials.ll,'4.u 

2.3 Generating X-ny Spectn 

Thc 80 and 120 kVp polyenergetic x-ray speclra used in this study were generated using SPEC7816 assuming a lungsten 
target, 120 anode angle, OOA. voltage ripple, and 6-mm aJuminum filtration. The resulling spectra were convolved with a 
J-point box.car kernei, down-sampled from dE =- 0.5 keV 10 I keV. and nonnalized 10 have a sum of one. The down
sampling was perfonned to reduce the computation time during simulations. 

2.4 Energy Deposition Simulations 

The Iransport of monoenergetic photons through the voxelized female phanloms were simulated at 5 - 150 keV in 1 keV 
incremenls al 360 projections in I degree increments. We chose 10 perfonn monoenergelic simulations so that we could 
investigale Ihe efTects of speci fic energy levels on dose. The source-Io-detector distance for each simulation was 100 cm, 
wilh a source-to-isocenter distance of 50 cm. Thc lateral and axial extenlS of the detector wen: 100 cm and 16 cm 
respectively, while the detector pixel resolution was 0.25 mm. For each photon energy al each projeclion angle, ten 
million photons were tracked, and the energy deposiled in the breast tissue was tallied. Bowtie filtration was not 
simulated. The system geometry is diagrammed in Figure I. 

Figure I: Scan gcomell'y. The thorax was eropped 10 31 em by 22 em in the lateml and anteroposterior directions. 
respcctively, and 30 cm in the axial direClion. lbe first view angle ofthe sean is AP (wrow). 1be detector measures 100 cm 
latCnlllly 16 cm axially (rectangle). 

2.S Dose Calculat ioDs 

The energy deposi tion to lhe breast, reported in eV per pholon emitted ITom lhe source, was converted to dose to breasl 
by firsl converting eV to Joules and then dividing by lhe total mass of breast lissue, result ing in Ihe normafi=ed dose 
deposition matrix. Q(O.E), quantifying lhe dose in the breast per photon emitted from the source (mGylpholon) for each 
energy level, E, and projcclion angle, 0, for a sean wilh the abovementioned geomelry consisling of360 views. 
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A dose deposition matrix, D(B,E), quantifying the dose to the breast (mGy as opposed to mGy/photon) at each energy 
level and projection angle for a specified spectrum and number ofphotons, can be calculated using the normalized dose 
deposition matrix as described in Equation 1, 

D(B,E) = N(B)- <l>(B,E). Q(B,E) (1) 

where N(B) is the number of photons emitted from the source at view angle, B; cfJ(B,E) is the probability of a photon 
emitted at angle, B, and energy, E (i.e. a normaIized input spectrum for view angle B); and Q(B,E) is the normalized dose 
deposition matrix (i.e., dose to breast per photon at angle, B, and energy, E). The total dose to breast for a scan, DTo/al, 

can be calculated by summing the dose deposition matrix over angle and energy, as described in Equation 2. 

DIo,a' = LN(B)L<l>(B, E)Q(B, E) = LLD(B,E) (2) 
8 8 E 

Note that the normalized dose deposition matrix, Q. is the output of a Monte Carlo simulation for a specific CT 
geometry, while N and cfJ are user-modifiable parameters. Together, N and cfJ represent an input x-ray spectrum. 
Modifying these two parameters allows for calculating total dose for various acquisition methods and scan parameters. 
For example, increasing or decreasing N is equivalent to an increase or decrease in the tube-current (since tube-current 
dictates the number of photons emitted from the source). Thus N can be used to control the tube current and to model 
acquisitions in which tube-current varies across view angle. Note that setting N to zero at desired angles represents 
partial-angle scanning. Similarly, spectra filtration and kVp levels can be changed by properly modifying both N and cfJ. 

The normalized dose deposition matrix, Q(B,E), was used along with parameters N(B) and cfJ(fJ,E) to calculate a dose 
deposition matrix, D(B,E), for each ofthe studied scan methods described in Section 2.7. 

2.6 Validation 

To validate the method of calculating total dose to the breast described in Section 2.5, we performed a Monte Carlo 
simulation consisting of 360 views, one billion photons per view, and a 120 kVp polyenergetic spectrum generated via 
SPEC78. The scan geometry was identical to that used to generate the normaIized dose deposition matrix, Q, described 
in Section 2.4. The total dose to breast tissue output from this simulation was compared to that calculated using Equation 
2 assuming the 120 kVp spectrum and one billion photons per view. We performed a similar validation using the 80 kVp 
spectrum. 

2.7 Investigation of Dose Reduction Methods 

We investigated several dose reduction techniques to better und erstand the underlying mechanisms behind their 
respective dose savings. A 120 kVp scan was used both as a reference and to determine the photon energies that deposit 
the most dose to the breast. We also performed calculations to quantify the dose reduction effects of shielding compared 
to an equivalent reduction in emitted photon fluence for the AP views. Finally, to investigate the effects of lower kVp on 
dose reduction, we compared 80 kVp scans at the same nu mb er of emitted photons as the reference 120 kVp scan and 
with the number of emitted photons adjusted to deposit the same dose to the detector as the reference scan. 

2.7.1 Reference ScaD 

To quantify which photon energies deposit the most dose to the breast in a conventional CT scan, the dose deposition 
matrix, D(B,E), was calculated using Equation 1, with ifJ(B,E) equal to the normalized 120 kVp spectrum, cfJ12o(E), 
(Figure 2) for all B. Since we are interested only in relative dose reduction, the absolute number of photons used in 
Equation 1 is irrelevant. Therefore, we set the number of photons per view, N(B), equal to one for all angles. The total 
dose for the reference scan was calculated using Equation 2. 

2.7.2 Breast Shielding and Tube Current Reduction 

Using the normalized dose deposition matrix, we estimate the dose reduction effects of a shield by modeling the 
spectrum that exits a typical bismuth breast shield (0.06 mm lead equivalent) for the 130 degrees ofview angles centered 
on the AP view. The shield-filtered spectrum, cfJshield(E), was determined by calculating the transmission of the 
normalized 120 kVp spectrum, cfJ /2O(E), through the 0.06 mm lead4 (Figure 2). The shield-filtered spectrum, cfJshield(E), 
was not re-normalized, and so it accounted for the spectral shape due to both the preferential filtering of low energies 
and the overall reduction in photons exiting the shield. The dose deposition matrix, D(B, E), was then calculated using 
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Equation 1, with N(8) equal to one. For the 130 AP angles centered about the AP view, ifJ(8,E) was equal to rp'hield(E). 
For the remaining 230 angles, rp(8,E) was equal to the conventional 120 kVp spectrum, rpf2(lE). The total dose for the 
shield scan was calculated using Equation 2. 

120 kVp, 80 kVp, and filtered 120 kVp X-ray Spectra 
0.06 --- -

1

120 kVp 
---80 kVp 

0.05 n •·• .. 120 kVp Filtered 
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[I 
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Figure 2 120kVp (solid), 80 kVp (dashed) and 120 kVp filtered through 0.06 mm lead (thick dot-dash) spectra 

As seen in Figure 2, breast shields reduce the number ofphotons at all energies, with the greatest reduction ofphotons at 
low energies. To understand the dose reduction effects ofthe filtration of low energies compared to the overall reduction 
in photons, the dose deposition matrix, D(B,E), was calculated using Equation I with ifJ((),E) equal to the typical 120 
kVp spectrum, rp12o(E), for all angles, but with the tube-current reduced for the 130 degrees of AP views to match the 
number of photons exiting the shield. The sum of the shield-filtered spectrum, rp,hield(E) , over energy, was equal to 
0.6065. Therefore, N(8) was set equal to 0.6065 for the 130 degrees ofviews centered at the AP view and to one for the 
remaining 230 angles .. The total dose was calculated using Equation 2. 

2.7.3 Reduced kVp Scans 

The purpose ofthe following two protocols was to investigate the effects oflower kVp scans on dose reduction, and to 
determine if any observed reduction in dose to the breast is caused by the elimination of high-energy photons from the 
spectrum. In this study, we do not consider the increased contrast at lower kVp for certain materials. 

The dose deposition matrix, D((),E), was calculated for an 80 kVp scan using Equation I, with rp((),E) equal to rp8o(E) 
(Figure 2) for all (), and with N(8) equal to one. In this case, the number ofphotons exiting the source in the 80 kVp scan 
is equal to that in the 120 kVp scan. The total dose for this scan was calculated using Equation 2. 

We performed a second calculation with the number ofphotons in the 80 kVp scan increased to provide equivalent dose 
to the detector as the 120 kVp scan. This case is expected to provide similar noise variance between 120 kVp and 80 
kVp scans. The factor, a, by wh ich to increase the number ofphotons in the 80 kVp scan, was calculated using Equation 
3, 

S120 
a=--

Sso 
(3) 

where 5120 and 580 were the signals at the detector (estimated by Monte Carlo simulation) for an AP projection of the 
voxelized phantom for a 120 kVp and an 80 kVp spectrum, respectively. We calculated a to be 1.3. The dose deposition 
matrix, D((),E), was calculated for an 80 kVp scan using Equation 1, with N(8) equal to 1.3, and rp(8,E) equal to a 
normalized 80 kVp spectrum, rp80(E), (Figure 2), for all 8. The total dose for the reduced kVp scan was calculated using 
Equation 2. 
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3. RESULTS 

3.1 Validation Resulls 

The percenl difference between total dose 10 breast from the 120 kVp polyenergelic Monie Carlo simulat ion and thai 
calculated usinß Equation 2 was 0.06%. Similarly, the percent d ifference for lhe 80 kVp scan was 0. 11%. 

3.2 Dose Resulu 

Figure 3a shows the nonnalized dose--deposition matrix, Q(O. f.) , while Figuu 3b shows the dosc deposition matrix. 
lJ(0,t./ , ror a reference sean of 120 kVp. Q(O,E) quanlifies the dose per ineident phocon. while 0(0,[.) acCOUnlS ror the 
different "umber ofphotons at each ineidern ~ ora 120 kVp scan. Note that the relatively high dose peaks in (b) 81 
approximately 60, 67, and 69 keV are due 10 the characterist ic peaks in the 120 kVp spectrum. 

(.) (b) 

Figure 3. (a) The normalilCd dose deposi tion matrilt, Q(O,Ej . qUlIfltifies dose in breast tissuc (mGylphotoo) rOt cach eoergy 
le\'d lind projection angle or 5ingle CT rotation. Energy Ic\'cI5 range from 5·\ 50 keV in I keV incrernents, and projection 
angles range from 1-360 degJ«s in I-degm:: increments. Other scan panuncters 8fe SO\IIl:e.(o-de!.ector di$lancc or 100 cm, 
SOU/'Ce-to-isocenter dislanCC of 50 cm, and detector z-extent of 16 cm. (b) llJe oon-normalized dose-dcposition matrix, 
D(O.E.), qUBIltif.es dose in breast tissuc (mGy) fOl' each encrgy levd and projection angle of a specific scan protoool. llJe 
figure sh<rM'll is thc dose deposition matriJ,; for a referencc: 120 kVp scan. 

The dose deposition matrix for the shie ld simulat ion shows re latively lower dose deposited by energies in the range of 
30-40 keV than in lhe reduced tube-current scan. (Figure 4). Nonetheless, these two prolocols showed very simi lar dose 
reduction 10 the breast (shield: 23.42"/0., reduced tube curren!: 22.98%). 
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(.) (b) 

Figure 4 Dose depositioo matrices ror a 120 kVp sean wilh (a) modeled shield and (b) reduced tube curren! fO!' 130 Ap· 
centered view'S. The malriccs are rtearly identical. indicating very similar dose deposi tion 10 breast across energy and 
projeaion angle ror protocols utili:l.:ing a shield and reduced tubc<urrcnt. 

Reduc ing the input spectrum 10 80 kVp and maintaining N(O) equal 10 1 as in Ihe reference scan resulted in 2.37% dose 
reduction o f dose 10 Ihe breast. Reducing the input spectrum 10 80 kVp while increasing N(O) 10 match the dose allhe 
detector ofthe 120 kVp scan resulted in 26.9 1% dose increase. Dose results are summarized in Table 1 ror each of the 
simulated scans. 

Table I Change in (\()se ror different scan techniques, reported as a pcrccnl change relative 10 the refcrence sean. Negative 
values iooicate dose decrease. 

"';--1 ",'):.." " .~'!t.~ f!!1;i\F' . 
~ -

. . '\ ~.+'.~' ,. ' 

*., .... 'A~ . 
~ ... : .... , ... 

.' _""".I.\...' }O)' 

Reference 120 ( 00 . 
120 [filIered] (130 AP views) 

Shield 120 rnon-filteredl (230 remainin~ views) 1.00 -23.42% 

Redu~~ Tube l~tTent 0.6065 (130 AP views) 
No Shield 120 1.00'(230 remaining views) -22.98% 

Reduced kVp 80 1.00 -2.370/0 
Reduced kVp 80 1.30 26.91% 

4. DlSCUSSION 

. 
• 

Differcnces of 0.06% and 0. 11 % between the total dose values to breasl reported from the 120 kVp and 80 kVp Monle 
Carlo simulations, respectively, and those calculated using Equation 2 with the same respective spectra suggest that our 
method of calculatini total dose usini a nonnalized dose deposit ion matrix is valid. This method is beneficial in that it 
allows investigation of numerous dose reduction teehniques with various sean parameters (e.g. x-ray spectrum and mA) 
for a particular scan geometry without requiring additional eomputationa lly expens ive Monte Carlo simulations for each 
protocol. As part of our future work, we plan to publish a database of dose deposition matrices for a variety of 
radiosensitive o rgans to enable researchers 10 study dose reduetion methods and optimized Icchniques without requi ring 
Monte Carl0 simulations. Further, we plan to publish a CTDl ..... dose deposition matrix, wh ich will enable dose estimates 
for specific scanners and bowtie filtrati on. 

Figure 3a demonstrates that high-energy photons deposit more dose per photon, despite being less likely to be absorbed. 
However, Figure 3b indicates thai for a typical 120 kVp spectrum, low-energy photons contribute more dose than the 
high-energy photons, primarily because the speclrum conlains more low-energy photons. This is especially apparent 
during AP-centered views, where the breast tissue is localed eloser to the souree than in PA-centered views, and thus 
absorbs more low-energy photons. 
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Our results suggest that the dose deposited to the breast when using bismuth shielding is similar to that obtained by 
decreasing the photon fluence during AP views. Practically speaking, reducing the tube-current during the AP views to 
match the fluence exiting the shields has the same effect on dose deposition as using a spectrum that was filtered by a 
shield. Noise, contrast, and artifacts of the images resulting from these two protocols, however, will not necessarily be 
equal. Previous studies have demonstrated decreased image quality (increased noise and streak artifacts) due to shields 
and have suggested reduced mAs as an alternative. 17

,18 One known issue with shields is that they incur an additional 
noise penalty during PA views by filtering out information-carrying photons that have exited the patient. Also, in 
practice, the shields are placed direct1y on the patient, and may deposit additional dose due to scattering photons. 

When using the same number of emitted photons in the 80 kVp scan as the reference scan (N(8) equal to 1), only a ~2% 
dose savings to the breast was observed. Moreover, when N(8) for the 80 kVp scan was increased to 1.3 to match the 
dose at the detector ofthe reference scan (and thus expected noise variance ofthe images), there was an increase in dose 
of approximately 27%. These results suggest that eliminating high-energy photons from the spectrum without reducing 
the number of incident photons does not provide substantial dose savings to the breast. F or this patient, reduction of dose 
to the breast with an 80 kVp spectrum would only be possible if the acquisition resulted in an improvement in image 
contrast such that the incident photon fluence could be reduced by at least 27%. The reduction in photon fluence 
required to reduce the dose is expected to depend on patient size. 

Future work will expand upon these results by quantif)dng image quality of the dose reduction techniques described in 
this paper. The purpose of this study was to highlight the mechanisms by which dose is reduced in a few common dose 
reduction techniques in hope that a better understanding of these mechanisms will facilitate effective application and 
development of optimized dose reduction schemes. 

5. CONCLUSION 

Our results show that while both low- and high-energy photons deposit high levels of energy per emitted photon to the 
breast, low-energy photons deposit more dose to breast during a typical 120 kVp acquisition. Our resuIts also 
demonstrate that dose deposited to the breast when using shields is similar to that obtained by decreasing the photon 
fluence during AP views. Dose reduction to the breast commonly observed in scans utilizing reduced kVp is caused by 
reduction in photon fluence rather than elimination of high- energy photons. Overall, results demonstrate that the factors 
affecting dose to the breast are complex, and a quantitative image quality assessment is required for complete analysis. 
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