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Abstract
The purpose of this study was to understand how stretch-related sensory feedback from an

antagonist muscle affects agonist muscle output at different contraction levels in healthy

adults. Ten young (25.3 ± 2.4 years), healthy subjects performed constant isometric knee

flexion contractions (agonist) at 6 torque levels: 5%, 10%, 15%, 20%, 30%, and 40% of their

maximal voluntary contraction. For half of the trials, subjects received patellar tendon taps

(antagonist sensory feedback) during the contraction. We compared error in targeted knee

flexion torque and hamstring muscle activity, with and without patellar tendon tapping,

across the 6 torque levels. At lower torque levels (5%, 10%, and 15%), subjects produced

greater knee torque error following tendon tapping compared with the same torque levels

without tendon tapping. In contrast, we did not find any difference in torque output at higher

target levels (20%, 30%, and 40%) between trials with and without tendon tapping. We also

observed a load-dependent increase in the magnitude of agonist muscle activity after ten-

don taps, with no associated load-dependent increase in agonist and antagonist co-activa-

tion, or reflex inhibition from the antagonist tapping. The findings suggest that at relatively

low muscle activity there is a deficiency in the ability to correct motor output after sensory

disturbances, and cortical centers (versus sub-cortical) are likely involved.

Introduction
The integration of sensory feedback with descending motor commands is important for con-
trolling force output during voluntary movements. Muscle afferent pathways and descending
pathways from supraspinal centers regulate the magnitude and timing of motoneuronal activ-
ity [1,2]. While it is generally known how muscle afferent feedback affects force regulation
within the agonist muscle, less is known about sensory integration between agonist and antago-
nist muscle groups in humans. Understanding the effects of sensory integration from muscle
afferent pathways between agonist and antagonist muscles during sub-maximal contractions is
important not only from a basic motor control standpoint, but also because it has clinical
implications. Alterations in the excitability of these pathways have been noted in patient popu-
lations, such as stroke, and can be detrimental to force regulation and movement [3,4].
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In recent years, several research groups have quantified the regulation of sub-maximal leg
forces and demonstrated differences between patient populations and healthy controls [5–8].
Sub-maximal force regulation has been used as a probe to understand volitional control strate-
gies and expose sub-clinical impairments in force regulation. Typical measurements include
the ability to achieve a target force (error) and the ability to maintain a given force (steadiness).
Although force regulation can be task and muscle specific, larger muscle groups of the leg tend
to have worse force regulation at lower relative force levels (< ~20% of maximal voluntary con-
tractions) as compared to higher force levels [8,9]. This manifests as decreased steadiness or
increased error at lower force levels, and correlates with clinical measures of function [7]. The
load-dependent effect on sub-maximal force regulation can be attributed to motoneuron:mus-
cle fiber innervation ratios (lower resolution of control) [8] and, in some cases, poor temporal
regulation of agonist:antagonist pairs [9–11].

In humans, the interaction of sensory feedback and volitional regulation of force has largely
been examined by manipulating sensory feedback within the agonist muscle. During isometric
contractions, vibrating the agonist muscle excites Group Ia pathways and subsequently, creates
force errors in motor output [12]. Specifically, Jones and Hunter [12] demonstrated a load-
dependent effect of agonist sensory feedback during constant isometric contractions of the
elbow flexors. Subjects produced higher errors at force levels<60% of their maximal voluntary
contraction (MVC), while at force levels>60%MVC subjects generated lower errors in force
[12]. Similarly, a history of maximally contracting a muscle has been shown to decrease
responsiveness in golgi tendon organs of the agonist and result in larger errors in subsequent
force output [13]. Less is known about sensory integration and force regulation between ago-
nists:antagonists.

There is some evidence that the integration of sensory information from muscle afferents,
particularly Group Ia pathways, and descending inputs exists in reciprocal muscle pairs. Aimo-
netti et al. [14] demonstrated that stimulation of mixed nerves within the antagonist muscle
during an isometric contraction affects the firing probability of different agonist motor unit
types in the human arm. The stimulation increased the probability of activation of faster firing
motor units (Type II), which are typically recruited at higher forces, while simultaneously
decreasing firing probability in slower firing motor units (Type I) [14]. These results suggest a
control strategy that depends on the magnitude of the contraction. In another study, Kudina
[15] examined patellar tendon tapping on motor unit activity during weak contraction of the
biceps femoris muscle. Although the methodology did not include measures of force regula-
tion, the authors showed that new motor units were recruited in the biceps femoris muscle.
The authors conclude that the history of patellar tap reflex response increased the excitability
of the agonist muscle motor units in a subsequent contraction. An important remaining ques-
tion is whether sensory integration of Group Ia inputs and volitional regulation of force may
also exist between agonist-antagonist muscle pairs and what the effect of load (and hence
degree of agonist muscle activation) may be.

For this study, we examined how sensory feedback from Ia pathways in knee extensors
affects knee flexor activity during various isometric contraction levels. Our purpose was to
understand how stretch-related sensory feedback from the antagonist muscle affects agonist
motor output at different contraction levels in healthy adults. To test this, subjects performed
isometric knee flexion contractions (agonist) at different torque levels with and without patel-
lar tendon taps (antagonist sensory feedback). We hypothesized that patellar tendon taps
would exacerbate error and variability at lower load levels (< 20%MVC) because motor output
error and variability is greater at lower contraction levels and sensory feedback affects force
regulation.

Integration of Sensory Input and Force Regulation
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Methods

Participants
Ten healthy men (mean age ± SD: 25.3 ± 2.4 years) were recruited for this study. None of the
subjects reported any current or past neurological pathology. All research was approved by the
Marquette University's Institutional Review Board (IRB, HR-1196). All clinical investigation
were conducted according to the principles expressed in the Declaration of Helsinki. Written,
informed consent was obtained from the participants.

Experimental Setup and Approach
Subjects lay supine on a height-adjustable table with their legs secured into a robotic test appa-
ratus to acquire knee torque measurements (Fig 1A) [16]. The robotic apparatus consisted of
custom-built leg braces attached to two servomotor systems (Kollmorgen, Northhampton,
MA). The participant’s legs were secured within the leg braces using a strap around the thigh, a
strap around the ankle, and a clamp over the dorsum of the foot that secured the foot to a foot-
plate at the end of the brace. The right leg was used as the test leg for all subjects and all subjects
self-reported right-side dominance.

Fig 1. Experimental Setup. (A) Robotic apparatus used to measure knee torque during isometric contractions. Subjects were given visual feedback on a
computer monitor during the initial 5 seconds of the trial to ensure they reached the correct contraction level. (B) A linear motor provided controlled tendon
taps to the right patellar tendon. Ten tendon taps (2 Hz and 25 ms duration) were applied 2 seconds after visual feedback was removed. (C) Experimental
time line for isometric knee flexion contraction with (i) and without (ii) tendon taps. After 5 seconds, visual feedback of knee flexion torque was removed for
the remainder of the trial.

doi:10.1371/journal.pone.0133561.g001
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A custom-designed motorized reflex hammer was attached to the right leg brace and was
used to deliver controlled patellar tendon perturbations (Fig 1B). Tendon taps activate Ia affer-
ents [17] and the tendon tap or jerk response to tendon taps is the gold standard in the clinic
for measuring stretch reflex responses for neurologic physical examinations [18,19]. The
motorized hammer consisted of a LinMot P series linear motor (P01-23x160/70x70) powered
by a LinMot E1010 amplifier (LinMot Inc., Delavan, WI). A small rubber tip (12 mm diameter)
was screwed into the end of the motor shaft. After palpating the knee to locate the patellar ten-
don, the rubber tip was placed 5 cm from the tendon and aligned perpendicular (~90°) with
respect to the tibia. A rubber pad (2.8 x 3.1 cm) was taped to the subject’s patellar tendon to
distribute the force of the tendon perturbation. A linear variable differential transformer
(LVDT; Accusens Series 2000 DC-EC, Measurement Specialists Inc., Hampton, VA), attached
to the linear motor shaft, was used to measure the motor’s displacement during trials with ten-
don tapping. Custom-written LabVIEW programs controlled the linear motor’s velocity.

Torque measurements. Knee torque was measured from a torque transducer (S. Himmel-
stein and Company, Hoffman Estates, IL) integrated within the leg brace. The torque trans-
ducer axis was aligned with the approximate anatomical center of knee rotation. Torque
signals were sampled at 2 kHz using a data acquisition card (National Instruments Corp., Aus-
tin, TX) and low-pass filtered (500 Hz analog filter) prior to acquisition.

EMGmeasurements. Surface electromyograms (EMGs) were recorded from five muscles
of the right leg: vastus medialis (VM), vastus lateralis (VL), rectus femoris (RF), medial ham-
strings (MH), and lateral hamstrings (LH). Disposable, pre-gelled electrodes (Vermed Medical
Inc., Bellows Falls, VT) were placed over the muscle belly in a bipolar arrangement. The skin
was cleaned with alcohol prior to electrode placement. EMG signals were pre-amplified (x
1000) and filtered (band-pass 10–1000 Hz) (Bortec Medical AMT-16; Calgary, Alberta, Can-
ada) before digitization. EMG signals were sampled at 2 kHz using a data acquisition card
(National Instruments Corp., Austin, TX) and a PC.

Maximal voluntary contractions. Before beginning the experimental testing, subjects per-
formed isometric maximal voluntary contractions (MVCs) of the right knee flexors. Visual
feedback displayed on the computer monitor cued subjects when to contract and relax for each
MVC trial. Subjects held the contraction for 5 seconds and were verbally encouraged through-
out each MVC trial. Trials were repeated (up to 5 trials) until the maximal knee flexion torque
from 2 of the 3 most recent trials was less than 5% of each other. The MVC was quantified as
the average torque maintained for 2 seconds of the trial with the highest torque. During the
MVC trials, the right leg (test leg) was positioned at 20° hip flexion and the left leg was posi-
tioned at 0° hip flexion.

Constant isometric task. Subjects performed submaximal isometric knee flexion contrac-
tions with the right leg. They were asked to match 6 constant target torque levels (5, 10, 15, 20,
30 and 40%MVC) and maintain the contraction for 20 s. The target was displayed on a com-
puter monitor as a horizontal line and subjects were given visual feedback of their torque to
ensure they reached the correct level. Once subjects reached and maintained the contraction
level for 2 seconds, visual feedback was given for 5 additional seconds and then removed for
the duration of the trial (15 s; Fig 1C). For each target level, subjects performed 3 trials with
patellar tendon tapping (TAP) and 3 trials without patellar tendon tapping (NTAP) while
maintaining the contraction. During the TAP trials, 10 tendon taps (2 Hz and 25 ms duration)
were applied 2 seconds after visual feedback was removed (Fig 1C). An additional trial with
tendon tapping was performed while subjects were at rest (0%MVC). Each target level was pre-
sented in random, block order (13 trials per block x 3 blocks) for a total of 39 trials. Subjects
were given 30–60 seconds rest between trials to limit the effects of fatigue.

Integration of Sensory Input and Force Regulation
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Data Analysis
Data were analyzed using custom-written Matlab programs (Math Works Inc., Natick, MA,
USA). Prior to further analyses, the torque recordings were low-pass filtered (20 Hz) and the
EMG recordings were band-stop filtered (60 Hz) and band-pass filtered (10–300 Hz) using 2nd

order Butterworth filters (bi-directional). Torque and EMG signals were then divided into two
5-second segments—the first 5 seconds (PRE) and the last 5 seconds (POST) of the constant
portion of the contraction.

Torque measurements. We quantified the following for the POST segment of torque
data: variability, error, and magnitude. Variability was quantified as the coefficient of variation
(CV, standard deviation / mean) of the torque signal. Prior to calculating the CV, the torque
signal was first linearly detrended to minimize any drift of the signal. Detrending the data is
the accepted protocol for determining the CV of force because any drift occurring in the torque
recording, especially during the no visual feedback condition, could influence the relative mag-
nitude of the variability [8, 20–22]. Errors in tracking accuracy were quantified using the root
mean square error (RMSE) with respect to the target torque level. Magnitude of torque was
quantified to determine the amount of torque subjects produced relative to the target. We
quantified the magnitude of the torque by calculating the area of the torque signal above and
below the target, and then taking the difference between the area greater than and the area less
than the target level (Fig 2). For the PRE segment of the torque data, we quantified the RMSE
with respect to the target level.

Neural activation of muscles. We examined muscle activation using three measures from
the EMGs: 1) EMGmagnitude of the hamstrings during contraction, 2) peak-to-peak ampli-
tude of the quadriceps EMG in response to patellar tendon taps, and 3) co-activation ratio for
the MH and quadriceps EMG. The magnitude of activation of the MH EMG was based on the
root mean square (RMS) values, normalized to the respective EMGMVC. We then calculated
the percent change (Δ%) of the MH and LH EMGmagnitude from POST to PRE (100�

[POST-PRE]/PRE). Next, we identified the peak-to-peak (P-P) reflex amplitude from the RF,
VL, and VM EMG during trials with tendon tapping. The peak to peak amplitude (the differ-
ence in volts between the positive and negative peak of the EMG signal) was used to measure
the reflex response because the recorded reflex EMG signal is tri-phasic and the peak to peak
response accounts for the maximum of both the positive and negative phases [18, 23–24]. The
tendon tap EMG response was differentiated from background EMG based on the latency
from the tap (~20 ms) and its standard tri-phasic shape. The P-P reflex amplitude at each tar-
get level was normalized to its respective P-P EMG reflex response during the 0%MVC trial.

Fig 2. Torquemagnitude example calculation. Torque magnitude was calculated as the difference between the positive area and negative areas of the
knee flexion torque relative to the target.

doi:10.1371/journal.pone.0133561.g002
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We averaged the P-P RF, VL and VM reflex responses within each target level. We did this to
minimize the variability in the quadriceps EMG [25, 26]. Last, we calculated a co-activation
ratio of quadriceps and hamstring activity. This was computed as the sum of the average quad-
riceps EMG (RF, VM and VL) RMS amplitude divided by the MH EMG [27, 28]. We did not
use the LH EMG in our analyses because LH was not consistently recruited between subjects
and within subjects. We used the MH EMG for analysis because it was consistently activated.
The co-activation ratio was calculated only during the POST segment for each target level.

Frequency analysis. A spectral analysis was performed on the torque, and on the MH
EMG PRE and POST segments to examine oscillations in motor output. Comparisons were
made between TAP and NTAP conditions. The spectral data were obtained using Welch’s
average periodogram method with a non-overlapping Hanning window (Matlab). The length
of each segment was 5 seconds and the window size was 10,000 points, which resulted in a fre-
quency resolution of 0.2 Hz. The torque segments were linearly detrended prior to the spectral
analysis. For statistical comparisons, the frequency of the torque signal was divided into 0.1–1,
1–3, 3–7 and 7–10 Hz frequency bands [29]. We quantified the percent peak power within
each of the bands. The percent peak power was calculated as the peak power within each fre-
quency band relative to the sum of peak powers within all bands (0.1–10 Hz). The EMG seg-
ments were analyzed similarly. The EMG segments were first detrended prior to spectral
analysis. Then the spectrum was divided in to 3 frequency bands (13–30, 30–60 and 60–100
Hz) because these muscle discharge frequencies have been previously associated with specific
cortical drives [30]. The EMG power in each band was normalized by the total peak power
across all frequency bands (13–100 Hz). The percent change (Δ%) from POST to PRE (100�

((POST-PRE)/PRE) was calculated for the torque and MH data.

Statistical Analysis
A two-way ANOVA (6 target levels x 2 tendon tap conditions) with repeated measures on both
factors was used to compare the torque variability, error, and magnitude measures of the ham-
strings EMG, and co-activation ratio. A three-way ANOVA (4 frequency bands x 2 tendon tap
conditions x 6 target levels) with repeated measures on all factors was used to compare the rela-
tive peak power in the torque power spectrum. Similarly, a linear mixed-model ANOVA (3 fre-
quency bands x 2 tendon tap conditions x 6 target levels x subject (random factor)) with
repeated measures on frequency bands, tendon tap condition and target levels was used to
compare the normalized EMG power in the MH EMG signals. The P-P reflex EMG resulted in
non-normal distributions. Thus, we used Friedman’s ANOVA to determine whether the nor-
malized EMG P-P reflex amplitude was statistically different among the 6 target levels.

Statistical analyses were performed using IBM SPSS Statistics 21.0 statistical package (IBM
Corp., Armonk, NY, USA). Appropriate post-hoc tests were performed on significant interac-
tions from the ANOVA models. Multiple pairwise comparisons were corrected using Bonfer-
roni corrections. The alpha level for all statistical tests was 0.05. Only significant main effects
and interactions are presented, unless otherwise stated.

Results

Effects of antagonist Ia sensory feedback on motor output
To determine the effect of patellar tendon tapping on knee flexor motor output, we examined
measures of torque magnitude, error and variability during the last 5 seconds of the knee flex-
ion contraction (POST). Knee flexion torque magnitude was greater during the TAP condition
compared with the NTAP condition (tendon tap condition main effect, p = 0.001; refer to Fig
3). We also observed an interaction between tendon tapping and target level (%MVC) on
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torque magnitude (Fig 4). Torque magnitude, relative to the target, was greater at lower target
levels (5%, 10%, 15%) following tendon taps, while there was no difference in torque magni-
tude at higher target levels between TAP and NTAP conditions (20%, 30%, 40%; magnitude:
tendon tap condition × effort interaction, p = 0.045; Fig 4A). Similarly, torque error was greater
during the TAP condition compared with NTAP (RMSE: tendon tap condition main effect,
p = 0.002). Errors were exacerbated after tendon taps at the lower target torque levels (RMSE:
tendon tap condition × effort interaction, p< 0.001; Fig 4B). We found no statistical differ-
ences in torque variability between TAP and NTAP conditions (CV: mean ± stdev: 2.94% ±
0.35 vs. 2.75 ± 0.21; p = 0.291) or target level (5%: 3.14 ± 0.27%; 10%: 2.58 ± 0.25%; 15%:
2.51 ± 0.22%; 20%: 2.62 ± 0.33%; 30%: 2.99 ± 0.48%; 40%: 3.24 ± 0.37%; p = 0.169).

To determine the influence of Ia afferent feedback from the antagonist muscles (quadriceps)
on the amplitude of agonist muscle (hamstrings) activity, we compared the RMS amplitude of
the MH EMG between TAP and NTAP conditions. We observed a trend of greater percent
change in MH EMG amplitudes during the TAP (%ΔMH: 3.57 ± 1.94%) compared with the
NTAP condition (%ΔMH: -0.37 ± 1.81%), but these findings were not significantly different
(tendon tap condition main effect: MH, p = 0.14). As expected, subjects exhibited greater
changes in MH EMG amplitude with effort (target level main effect: %ΔMH, p< 0.001). Simi-
lar to the torque findings, subjects exhibited a larger percent change in MH EMG amplitude
during the lower target levels compared with higher target levels (Post-hoc: %ΔMH, 10%>

30%, 40%, p< 0.05).
We quantified the P-P reflex amplitude to determine whether the reflex amplitude differed

among the target levels. There was a significant main effect of target level (p = 0.003). We
observed a decrease in the P-P reflex responses from the 5% (1.2 ± 0.84%) target level to the 40%
(0.7 ± 0.19%) target level, but the post-hoc comparisons did not reveal any significant differences.

We also quantified a co-activation ratio between the RMS of the MH and averaged RMS of
the quadriceps muscles during the POST contraction. The co-activation ratio was significantly
(p = 0.042) lower for the TAP (3.1 ± 0.23%) compared with the NTAP (3.4 ± 0.29%) condition.
We also observed significant differences in the co-activation ratios among the target levels

Fig 3. Average knee flexion torque. TAP trials (light, dotted lines) and NTAP trials (dark, solid lines) are
illustrated for each target torque level as a percent of the MVC. Shaded area represents the time visual
feedback was given to the subjects.

doi:10.1371/journal.pone.0133561.g003
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(p = 0.001). Post-hoc comparisons showed the co-activation ratio for the 10%MVC trial was
greater than the ratio from 15%, 20%, 30% and 40% (p< 0.05 for all comparisons).

Effect of antagonist Ia sensory feedback on low frequency oscillations
We also examined how Ia feedback through tendon tapping of the antagonist muscles affected
the power of low frequency oscillations (< 10 Hz) of knee flexion torque. Overall, the change
in peak power within the torque output was lower (tap condition main effect, p = 0.001) during
TAP trials (Δ% peak power, 6.19 ± 3.22%) compared with NTAP trials (Δ% peak power,
20.97 ± 3.31%). This difference was significantly lower (tap condition x effort x frequency band
interaction, p = 0.01) at 10% and 15%MVC target torque levels (Fig 5).

Hamstrings EMG power changes
We observed that tendon tapping affected the power within the MH EMG. We found a greater
increase in peak power across all frequency bands (13–30, 30–60 and 60–100 Hz) following
tendon tapping (TAP) compared to trials without tendon taps (NTAP) (Δ%MH peak power—
tap condition main effect, p = 0.01).

Discussion
The results from this study indicate that tendon taps of the antagonist muscle affect voluntary
control of the agonist muscle differently at different levels of contraction. Tendon tap input
(presumably Group Ia input) from the antagonist caused subjects to produce greater errors in

Fig 4. Torque output measures. Area (A) and RMSE (B) for each target torque level. Asterisks indicate significant differences between TAP and NTAP
values (p < 0.05). Values are means ± SE.

doi:10.1371/journal.pone.0133561.g004
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torque output during lower contraction levels (5%, 10%, and 15%MVC). In contrast, during
higher contraction levels (20%, 30%, and 40%), the error in torque output was not significantly
different with and without patellar tendon taps. These findings suggest that during relatively
low muscle activity there is a kinesthetic deficiency in the ability to correct motor output after
sensory disturbances.

Effects of antagonist tendon tapping on agonist motor output
One explanation for the increase in knee flexion torque error observed during lower contrac-
tion levels is that subjects perceived a change in quadriceps muscle length following the patellar
tendon taps. Striking the patellar tendon elicits a stretch reflex of the quadriceps muscles, caus-
ing first a stretch and subsequently a muscle contraction. Because the task required subjects to
maintain a constant knee flexion torque, the brief reflex-induced contraction of the knee exten-
sor muscles may have been perceived as a change in net torque output. A mismatch between
sensory feedback and the descending motor commands to the agonist muscle may cause sub-
jects to perceive the sensory signal as an error and overcompensate for the disturbance to meet
the demands of the task. Other studies have demonstrated similar behaviors in motor output
when sensory feedback is altered. For example, during force matching tasks, altering stretch-
related sensory feedback via tendon vibration causes an overestimation in force of the unper-
turbed arm [12].

In contrast, we did not observe differences in error at the higher contraction levels (20%,
30%, and 40%MVC) between trials with and without tendon tapping. Because there was no
increase in agonist-antagonist co-activation with increasing torque levels it is unlikely that the
reduced error is simply due to increased antagonist co-activation. Other studies have shown
that co-contraction can influence torque output [31] and future studies will examine the

Fig 5. Torque Spectral Analysis. At lower torque target levels (10%MVC (A) and 15%MVC (B)), subjects exhibited smaller changes in peak power within
3–10 Hz following tendon tap perturbations. The data presented here are during the POST segments. Values are means ± SE.

doi:10.1371/journal.pone.0133561.g005
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interaction of co-contraction and Ia input. Alternatively, it is possible that at higher contraction
levels, the sensory inputs received from patellar tendon tapping may be too small in compari-
son to the hamstrings activation. This may have reduced the effectiveness of the patellar tendon
tap inputs to alter hamstrings activity.

These data likely suggest that a greater amount of descending input onto the motoneuron
pool in combination with ascending input from the agonist muscles may have outweighed the
sensory input from the antagonist. This would lessen conflicting sensory feedback errors per-
ceived during the task. Changes in the gain of the Ia system can influence force regulation, in
which decreased Ia input is associated with increased steadiness [32]. In the current study, the
absolute magnitude of our Ia input was constant in each condition, and the descending input
increased (as evidenced by increased MH activation), which likely resulted in a relative
decrease in the contribution of quadriceps Ia input to the torque output of the hamstrings.
Although it is possible that at higher loads there was decreased gamma drive [33] or increased
Ia presynaptic inhibition [34], which would have decreased the relative efficacy of the antago-
nist input, or there is less sensory weighting given to the antagonist muscle at higher contrac-
tions levels compared to the lower contraction levels.

Possible mechanisms
The increased error during lower contraction levels may be related to a cortical strategy to
compensate for sensory disturbances. Although we do not have direct evidence for cortically-
related changes in motor output following patellar tendon tapping, it has been suggested that
changes in oscillations in motor output are related to changes in cortical drive to the motoneu-
rons [35–37]. In the current study, we observed differences in the power spectrum of torque
output within 3–10 Hz between TAP and NTAP conditions at low target levels (power spec-
trum is only for the POST segments of the contraction; Fig 5). During the NTAP condition, the
change from visual feedback to no visual feedback may have caused subjects to rely less on cor-
tical strategies to maintain the correct knee flexion output. In contrast, during the TAP condi-
tion there was little to no change in power within the 3–10 Hz band, which may suggest greater
cortical involvement. Tracy et al. [8] observed similar oscillatory changes during a visuomotor
isometric task. During the task, removal of visual feedback increased the power of knee exten-
sor output within the 8–12 Hz frequency band, which suggests a change in control strategy
involving greater involuntary processes [8]. Similarly, others have attributed common drive to
differences in motor output between antagonist-agonist muscle activity [38,39]. Although, we
did not see any large contribution from the antagonist muscle post tendon tapping, and this
may depend on the joint position which our methods did not allow [38].

While spinal mechanisms may play a role in the responses, we do not think our findings are
strongly related to spinal mechanisms. If the observed increase in error was due to simple sum-
mation of inputs at the level of the spinal cord, we would expect subjects to undershoot the tar-
get (produce less knee flexion) because the stretch reflex of the quadriceps muscle would
theoretically inhibit the MN pool of the hamstrings.

Functional implications
In healthy controls we showed that torque error is larger at lower versus higher loads in response
to stimulation of antagonist Ia pathways. The overcompensation in knee flexion torque and
error may ultimately be a stabilization strategy to prevent loss of balance or injury. In the current
study, the motor goal is to produce a certain degree of knee flexion torque and the quadriceps
reflex response is counterproductive to the goal of the motor command. The kinesthetic defi-
ciency and error at lower loads may be accounted for through visual input in healthy controls.
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However, the deficiency at low loads may contribute to unbalanced activity in the hamstrings
and quadriceps muscles, which is purported to contribute to knee ligament tears [40].

With respect to patient populations, patients with stroke have increased excitability of Ia
pathways [3,4] and impairments in low-level force regulation [41–43] during isometric con-
tractions. Although the mechanisms of impaired force regulation post stroke have not been
fully explained, there is indirect evidence of altered coordination of agonist-antagonist activity
and increased involvement of spinal pathways with and without visual feedback. We predict
that the effects seen in the present study might be exaggerated in the stroke population and
could potentially contribute to low-level force regulation deficits. Our findings may also have
implications for recovery from sports related injuries that require exercises be performed with
reduced weight bearing status, but in a functionally relevant task. Specifically, unloading the
legs too much could be detrimental to control and there may be threshold levels of force
needed for improving active range of motion without compromising balance responses. This is
supported by other studies which have shown load-related effects on walking kinematics and
kinetics in patient populations [44].
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