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ABSTRACT
THEORETICAL ANALYSIS OF LATERALLY VIBRATING MICROCANTILEVER
SENSORS IN A VISCOUS LIQUID MEDIUM

Russell Cox, B.S., M.S.

Marquette University, 2011

Dynamically driven microcantilevers are normally excited irgsonance in the
out-of-plane flexural mode. The beam’s resonant frequency and dfiaality are used to
characterize the devices. The devices are well suited foatopein air, but are limited
in viscous liquid media due to the increased viscous damping. In oroheprtove these
characteristics, other vibration modes such as the in-planetéaal)aflexural mode are
investigated. In this work, microcantilevers vibrating in the in-@lfexural mode (or
lateral direction) in a viscous liquid medium are investigatede Aydrodynamic forces
on the microcantilever as a function of both Reynolds number and aaspedthickness
over width) are first calculated using a combination of numenezthods and Stokes’
solution. The results allowed for the resonant frequency, qualitprfaehd mass
sensitivity to be investigated as a function of both beam geonastdy medium
properties. The predicted resonant frequency and quality factosefaral different
laterally vibrating beams in water are also found to match tteds given by
experimentally determined values found in the literature.

The results show a significant improvement over those of similaicese
vibrating in the out-of-plane flexural mode. The resonant frequerncgases by a factor
proportional to the inverse of the beam’s aspect ratio. Moreovergsbhaant frequency
of a laterally vibrating beam shows a smaller decrease wn@ersed in water (5-10%
compared to ~50% for transversely vibrating beams) and, as tlusitysimcreases, the
resonant frequency decreases slower compared to beams excitedsensvae quality
factor is found to increase by a factor of 2-4 or higher depermlinthe medium of
operation and the beam geometry. Due to the increased resonamnfrgcand the
decreased effective mass of the beam (compared to beamsdeixamsversely), the
estimated mass sensitivity of a laterally excited m@ntitever is found to be much
larger (up to two orders of magnitude). The improvement in theseatbastics is
expected to yield much lower limits of detection in liquid-phbgechemical sensing
applications.
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1. Introduction

1.1 Microcantilevers as Chemical Sensor Platforms

Microcantilevers are devices that have great potential as micessading
platforms due to their high mass sensitivity and low fabrication cost. Advances in
photolithography and other microfabrication techniques have allowed the fedorich
these small beams from silicon wafers or silicon-on-insulator)(&@fers with
dimensions ranging from millimeters to nanometers [1-8]. The smallvelaass of
these microcantilevers make them ideal platforms as highly sensitigeserasors.
Depositing mass onto a microcantilever operating in a resonance modesctienge
frequency at which it resonates. The magnitude of this change can be used to theantify
amount of added mass, allowing the microcantilever to be used as a masfSsgakor
Using microspheres of various materials attached to the microcarilépe masses in
the range of picograms (16g) have been detected [14], with the predicted minimum
detectable mass in the range of femtograms3gp[15].

Microcantilevers have also been utilized extensively in bio-cta&nsensing
applications [1,2,15-44]. Applications range from detecting gases suchr@asyneapor
[21-22,25,42], volatile organic compounds [1,19,28], to very specific biological detection
applications such as the detection of Bacillus Anthracis spores [34], aaswedny
other applications. As a biochemical sensor, the microcantilever is tgoeeded with

a chemically sensitive polymer layer, self-assembled monolayemstgh fitm, or a layer



of biochemical receptors [31]. This layer selectively sorbs and conesnprartticular
analytes of interest from the operating environment. The result is a changéayet’e
characteristics such as its mass, volume, and viscoelastic properties [27,31 %46
concentration of particular analytes in the operational medium can thennhatedtby
measuring the changes in the static deflection and/or the resonaehfrgaqi the coated
cantilevers. This layer is normally partially selective, so that it sedponds to a
particular group of analytes with similar chemical charactesislihe selectivity of the
biochemical sensor can be further improved using an array of miclevarsdi

Due to their small size, several microcantilevers can be fabricatesihnall area
(usually on the order of 1 nfin[17,47]. This allows for the creation of micro-scale
arrays of microcantilevers [5,17,27,41,48]. Each microcantilever can be catted w
layer of different chemical sensitivity which causes each microeaatito respond
differently when exposed to a particular analyte. Pattern recognitiomsstsich as
linear discriminants analysis (LDA) or principal components analy§i&\ffan then be
used to correctly identify unknown analytes in the medium of operation [18,49].
However, care must be taken when spacing the microcantilevers in an artay. If t
microcantilevers are spaced too far apart, there might not be enough\sgikateeafor
the number of microcantilevers required for successful identificatioheyfdre placed
too close together, the microcantilevers might interactangle in the medium of
operation [11,50] This interaction is dependent both on the medium of operation and the

choice of the mode of operation.



1.2 Static and Dynamic Mode Operation

Microcantilevers can be operated in two fundamental modes: the static mode and
the dynamic mode [27,31,51]. When the microcantilever is operating in the static mode
the static deflection of the microcantilever is used as an indicator mfeban the
sensing layer. When the microcantilever is operating in the dynamic clwaigges in
the sensing layer are indicated by changes in the microcantile\soisarg frequency. A
material commonly used for the sensing layer is a chemically isel@ciymer [52].
Polymers can be deposited or applied on one surface of the microcantilever through
spincoating, spray-coating, vapor deposition, or dip-coating [1,53-55]. Analyteutesiec
interact with the polymer layer through the process of adsorption (adherhey to t
surface) and absorption (penetrating through the surface and diffusing iragehe |
[56]. Analyte sorption (the combination of adsorption and absorption) differentlysaffect
each mode of operation.

In static mode operation, the analyte absorption causes electrostaticreend ste
effects which in turn cause the polymer layer to swell [18,31,39]. The baseslayer i
normally constructed of a chemically inert material, and thus will not expamd.sifess
differential between the coating and the base causes the microcarttleedfliect. The
deflection is similar in nature to the operation of a bimetallic thermogtathwieflects
due to the mismatch in stress caused by two different coefficients ofalhexpansion
[18,31,57-58]. While the surface stress caused by interaction between tlteaswalyte
and the coating is a function of the amount of mass absorbed, the actual mass loading
doesn't directly cause the deflection [18,31,57]. One of the drawbacks in static mode

operation is the sensor’s long response time to analyte exposure. Thetdikes the



deflection to reach its steady state value depends on the charastefistie
microcantilever, the characteristics of the polymer, and the rate opébscand
diffusion of the analyte through the polymer layer [18].

A method of reducing the response time of the system is to operate the
microcantilever in the dynamic mode. Operating in the dynamic mode etttes
microcantilever into resonance. Several types of transduction mechanisizxkea
used to excite microcantilevers into resonance, including electrothg&®él ],
electrostatic [59,62], electromagnetic [59,62], and piezoelectric [59,62-63]. The
microcantilever can even use the thermal noise of the system to undengssetnce
[64-65]. Once the microcantilever is excited, the deflection of the mictiteaar as a
function of excitation frequency can be measured. A common method of measuring the
deflection is by optical readout using a laser. The laser can be shone onto the
microcantilever at a particular angle and the angle of the redflbei@m related to the
magnitude of the deflection [19,27,31]. The microcantilever deflection can also be
measured indirectly by circuitry placed on the microcantilever. A Veterst bridge
made up of piezoresistors can be fabricated either on or next to the microcantileve
[1,61,66-67]. As long as at least one of the piezoresistors in the Wheatstone bridge is on
the microcantilever, the deflection-induced stress will cause théarsesof the
piezoresistors on the microcantilever to change. This change in resisiiimeeise a
change in the bridge voltage which can then be related to the deflection of the
microcantilever.

Once the deflection is measured, the magnitude of the deflection can be

investigated as a function of the frequency of excitation. The shape oatmtuae



spectrum is roughly a Lorentzian around the resonant frequency ofcufaaninode [4].
If the loss is low enough, the system can be modeled as if it w8t€-anircuit [68].

The equivalent capacitance can be determined by the inverse of the micewedstil
stiffness; the equivalent inductance determined by the mass of the midevear(as

well as the displaced mass of the medium); and the equivalent resistancercketdyy

the damping of the system [68]. An RLC-circuit will resonate at acodait frequency.

If a property of the microcantilever or operating medium is altered, suble asass of
the sensing layer, the frequency at which the system resonates evdhalsge.

Operating in the dynamic mode will thus allow instantaneous detection sfuptake by
the coating. Changes in the viscoelastic properties of the sensing lag&] [@&d the
viscosity and density of the medium of operation [70-72] can also be detected in this

manner. This work will primarily deal with dynamic mode operation.

1.3 Gas and Liquid Phase Sensing

There are numerous examples of dynamically driven microcantileverssised a
sensing platforms. Historically, the use of microcantilevers as sepisitigrms arose
out of modifications to standard atomic force microscopes (AFMs), which are
microcantilevers with sharp tips on their free end. The tip is placed into coutfact
surface of unknown height. In a vacuum, the tip is repulsed by chemical, van der Waals,
electrostatic, and magnetic forces when it gets within 100 nm of the surfdc@/peh
operating in a gas or a liquid, the AFM tip is repulsed by meniscus forcesddiyn
adhesion layers on the tip and surface of the sample [73]. The deflection of thes AFM i

then related to the height of the unknown surface. In the 1990s, AFMs were observed to



be sensitive to various ambient effects from the environment [22,71,74]. Since then,
dynamically operating microcantilevers have been applied to a langéyvairgas-phase
detection applications [1,15,20-23,25,27,40,67,75-81]. These include but are not limited
to the detection of simple gasses such as hydrogen [76], helium, nitrogen, and carbon
dioxide [40], environmental contaminants such as mercury vapor [21-22,25] or volatile
organic compounds [1,78], and explosive residues in air [9,27,79]. While a large
number of works have been done related to gas-phase detection, there are fesvey wor
be found on direct detection in liquid-phase.

Liquid-phase detection of agueous analytes can be done either directly or
indirectly. Indirect detection utilizes gas-phase sensors to detentdhge as it
evaporates off the liquid sample. However, this changes the phase of the analyte to a
vapor and limits the analytes that can be detected to volatile or semi-vcihatitecals.
Some liquid sensing applications require the device to be placed directly in ghle.sam
This allows the analyte to be detected without having to undergo a change in phase,
allowing for the detection of non-volatile and biological analytes in liquids.

Many liquid-phase sensing applications have used dynamically driven
microcantilevers to sense analytes [9,16,28,30,31,35-36,46-47,61,64,68,70-72,74,82-83].
However, a dynamically driven microcantilever’s frequency stglalitd mass sensitivity
decrease drastically when exposed to a viscous liquid medium, thus decreasing its
usefulness as an effective sensing platform [24,35,71,84-85]. These decredsesare
the additional fluid resistance (combined effects of fluid-related inanidlviscous
forces) from the medium [35,45,84,86]. As the microcantilever vibrates, it doagsa

portion of the fluid. This fluid mass acts to increase the effective mass of the



microcantilever which, in turn, decreases the microcantilever’s resoegoeficy.

Since the densities of liquids are much higher than those of gases, the resouamcly

of the microcantilever will drastically decrease when placed inguali The increased
viscosity of the medium also decreases the resonant frequency by irgteasirscous
damping from the medium of operation. The increased damping will also broaden the
frequency spectrum, which, in turn, decreases the frequency stabilitysyfstieen.

A useful characteristic used as a measure of the frequency stabilitgsufrating
device is the quality factor. The quality factor, denote®@bis usually defined within the
context of systems with damped oscillatory behavior. Two possible definitions can be
used when dealing with dynamically driven microcantilevers [87].fifbiedefinition is
2n times the ratio of the maximum energy stored in the system to the amountgyf ener
dissipated in one cycle. The Reeps the definition consistent with the second definition,
which is the ratio of the resonant frequency to the half power or 3 dB bandwidth of the
system. When working with systems that undergo resonance, the 3 dB bandwidth
definition is normally used to calculate the quality factor, as the 3 dB bamdwidasily
obtainable from the deflection measurements. Ideally, the energy idefistiiould be
used. However, it is noted that when the fluid damping is low (sucl@thst), the two
definitions are equivalent [85,87].

Common dynamically driven microcantilevers vibrating in the out-of-plane
direction have quality factors upwards of 20,000 in a vacuum and around 500 in air,
depending on the geometry of the microcantilever [24,30,88]. The minimumatbdtect
mass of analyte that a microcantilever chemical sensor can detempastjgmal to the

resonant frequency and inversely proportional to the quality factor of the syggm [



When operating in a viscous liquid environment, the quality factor can drop as logv as t
single digits, raising the minimum detectable mass by severakaytieragnitude
[24,30,84,86]. The resonant frequency also decreases drastically when the
microcantilever is operating in a viscous liquid medium, causing a similegasecin
both mass sensitivity and chemical sensitivity [24].

Dynamically driven microcantilevers would be ideal liquid-phase sensing
platforms if it were not for this decrease in both the resonant frequency amahttig
factor [24,35,71,85]. Many techniques have been utilized to improve both the resonant
frequency and the quality factor of a dynamically driven microcantilévereasing the
resonant frequency while maintaining a constant 3 dB bandwidth increases the quali
factor. The sensitivity would also increase, as it is a linear function oétomant
frequency [89]. One way of obtaining a higher resonant frequency is to opeaate in
higher-order mode. Higher-order modes have flexural mode shapes that have one or
more points along the length of the microcantilever (besides the clampetiamih) not
deflect as a function of time [90]. Both theoretical [90] and experimentaitige¢ions
[10,91] show that when working in air or liquids, the quality factor of a microcaetilev
operating in a higher-order mode is higher than the same microcantifgmmating in the
fundamental mode. There are some drawbacks to operating in higher-order mces, s
as an increase in support loss. The support losses for a particular microaantileve
operating in the second mode are 10 times larger than operating in theotles{92-93].
When working in a vacuum, experiments have shown that the quality factor of the
microcantilever decreases with an increasing mode number [60]. Thidddrel$ess of

a concern when operating in air or liquid, since the viscous losses generally éaimenat



support losses [94]. Higher-order modes also correspond to stiffer behavior and, thus, to
smaller deflections than the fundamental mode [60].

Another way of increasing the microcantilever’s resonant frequardtyaality
factor is by increasing the stiffness of the microcantilever. Usimgtarial with a higher
Young’s modulus can increase the stiffness of the microcantilever. Howswer, t
material chosen for the microcantilever is normally a function of the lmicprocess
and cannot be altered. The microcantilever can also be made stiffer ensipits
length. The resonant frequency of a microcantilever operating in a fluid islyoug
proportional to the inverse of its length squared. Thus, decreasing the length by 10%
would increase the resonant frequency by ~23% [45]. Shorter microcantilesceraae
less surface area when interacting with the surrounding medium, thusstlegtba
amount of fluid damping. There are a few drawbacks to decreasing the démige
microcantilever. The support loss also increases for shorter mictegardgi Again, this
is less of a concern when operating in fluids as the increase in the support loss is
negligible compared to the reduction of the viscous losses. The deposition
reproducibility is a function of the surface area of the microcantilevér [P&creasing
the length will then decrease the deposition reproducibility, which will isertge error
in the estimate of the thickness of a deposited sensing layer. Finally, whilersma
surface areas lead to smaller levels of fluid damping, they also lead terssmabunts of
analyte that can be sorbed into the sensing layer. This will decheasleainge in the
resonant frequency due to the sorbed analyte.

The stiffness of the microcantilever can also be increased by operating in a

different vibration mode. The most common mode of operation is in the transverse
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flexural mode, which vibrates the microcantilever in the out-of-plane direction
[1,2,9,16,17,19,23,27,31,43,45]. Microcantilevers can operate in many other vibration
modes. Both the torsional mode (torsion or twisting) and the lateral fleracke

(bending vibration in-plane) have been investigated in the literature [10,60-61,84,95-97].
The torsional mode can be excited by applying a torque to the microcantiawsing it

to twist. The torsional mode has been investigated both theoretically [95] and
experimentally in air [10,96]. The quality factor of a particular microcarei is found

to be larger when operating in the torsional mode compared to the trantanss f

mode [10,95]. While few investigations have been conducted using the torsional mode in
liquid, the quality factor using the torsional mode is still predicted to be hilghe in the
transverse flexural mode [95].

Excitation of the in-plane flexural mode has also been suggested in thrifiger
as another technique for increasing the resonant frequency and the qualitgffactor
dynamically driven microcantilever biochemical sensors [10,84,97]. Micriteasrs
can be excited in the lateral direction as shown in Fig. 1-1 by the ajplich@a lateral
driving force. It is expected that driving the microcantilever in thedhtkrection will
cause it to encounter less fluidic damping, which will increase its aasnrequency and
guality factor. Due to the change in the direction of vibration, the microcamtdeve
flexural rigidity will increase compared to microcantilevers Miloigtransversely by a
factor of p/h)?, whereb andh are the width and the thickness of the microcantilever,
respectively. This will increase the resonant frequency. Microcansleparating in the
in-plane direction have also been investigated both theoretically [84,97] and

experimentally [60-61].
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Out-of plane Flexurral Mode In-plane Flexmral Mode
{Transverse Excitation) (Lateral Excitation)

Figure 1-1. An illustration of a microcantilever undergoing transverse (left) anchlater
(right) excitation.

As was the case with operating in a higher-order mode or shortening the
microcantilever’s length, the support loss increases when operating inettae flatxural
mode. Experimentally determined quality factors for laterally vibratimgazantilevers
in vacuum have been found to be lower than similar microcantilevers vibrating in the out-
of-plane flexural mode [60]. However, the resonant frequency of each mode isrdiffer
and the primary benefit of operating in the lateral flexural mode camesthe
decreased fluid drag. In air, the quality factors of laterally vibratirggaoantilevers
were experimentally found to be significantly higher than the same micilevard
operating in the transverse flexural mode [10]. When operating in liquid, theyqualit
factor can reach 70 or higher depending on the microcantilever’'s geométry [61

There have been several attempts to model the characteristics ofylateral
vibrating beams, such as its resonant frequency and quality factor. A Yavévedking

beam can be modeled by a method similar to the method used to model the transversel
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vibrating beam [84]. This approach works when the device is operating in air or vacuum
However, when laterally vibrating microcantilevers are operatingsicous liquid media,
only the pressure forces on the thickness dimension would be considered, nedlecting t
effects of fluid shear acting on the width dimension. Other approaches asstthe tha
fluid shear on the width is dominant compared to the pressure [98-99]. The
hydrodynamic damping is approximated using the solution to Stokes’ second problem
which modeled the forces acting on an infinitely vibrating flat plate9@®_8-However,

this approach neglects the effects of the pressure on the thickness dimensemntlyRec
these effects have been found to contribute significantly to the overall hydradynam
force acting on a laterally vibrating microcantilever [100]. Each oktfases and their
effects on the characteristics of the device, such as the resonant frequelityyfagtar,

and mass sensitivity, should be modeled and their significance investigated.

1.4 Modeling Laterally Vibrating Microcantilevers

Transversely vibrating microcantilevers have been successfully nloaksteg
standard Euler-Bernoulli beam theory. The same method can be used to modkl lateral
vibrating microcantilevers operating in a vacuum with the width and thicknétsfied
in the equation of motion. When operating in a viscous liquid medium, the effects of the
hydrodynamic force acting on a laterally vibrating microcantilevey beaimportant;
moreover, the relative importance of the various contributions to this force are
fundamentally different than those corresponding to transverse vibrations and these
differences must therefore be taken into account. This includes modeling both the

pressure and fluid shear, accounting for the edge effects and the efffidit&ness [100-
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102]. This will allow the case of using lateral excitation to be compared witbfthat
transverse excitation.

The total force from the pressure is composed of the hydrostatic and the dynamic
pressures [101]. It will be assumed in this work that there is no net fluid flow, Thus
there is no net force acting on the microcantilever from the hydrostasisupee There is
also no net dynamic pressure acting on a vibrating rectangular microganiti¢he
direction perpendicular to its vibration. However, there is a net dynamiupraesghe
direction applied parallel to the microcantilever’s vibration. This fa@pplied on the
surfaces of the microcantilever which are perpendicular to the motion of vibration
[90,97]. Since these surfaces involve the thickness dimension of the miceacantil
when it is vibrating in the in-plane direction and the width dimension when it isiadprat
in the out-of-plane direction, it is assumed that the hydrodynamic force frometsip
will be smaller when vibrating in the in-plane direction. However, when the
microcantilever is vibrating in the in-plane direction, the pressure foagenat be the
dominant fluid force, as was assumed in Ref. 84.

The pressure forces of microcantilevers vibrating in the out-of-planeidirect
were originally found by Tuck in Ref. 102. From the linearized version of the Navier
Stokes’ equation, Tuck was able to derive an integral equation relating the vatcaity
point in the medium to the fluid shear and pressure along the contour of the criogs-sect
of the microcantilever. In order to find the fluid shear and pressure, the yealbtiie
medium must be known on some contour in the medium. The velocity of the
microcantilever is known. The velocity of the fluid and microcantilever can be

considered equal at the fluid-beam interface if the medium of operation canddered
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a continuum. This boundary condition is called the no-slip condition. The medium can
be considered a continuum if it is a liquid or if it is a gas with a Knudsen number (the
ratio of the mean free path of molecules in the medium to the width of the
microcantilever) less than 0.01 [103]. For air at standard temperature asul@rédse
mean free path of molecules is 65 nm [103], meaning that the microcantileicttisn

air must be greater than Gus. This condition is satisfied since in this investigation all
the microcantilever’s widths in air are greater thanu®b This boundary condition can
be used with Tuck’s integral equation to check if a particular given fluid shear and
pressure distribution along the microcantilever’s cross-section is valdever, the
integral equation has not been analytically solved to find the pressure and farid she
from this boundary condition.

Using a numerical method called the Method of Moments, the integral equation
can be discretized and the average pressure and shear can be estinaeatadokar
segments of the microcantilever’s cross-section. Tuck assumed tloganitiever to be
a ribbon (infinitely thin) and vibrating transversely, so that both the thickififess and
the fluid shear could be neglected. The pressure acting on this transversslggibr
ribbon was found to be very similar to that of a vibrating circular cylinder [102]. A
correction factor was obtained in Ref. 85 that mapped the well-known analytica
expression for the hydrodynamic force acting on a vibrating cylindrical pemdadio4]
to that of an infinitely thin microcantilever vibrating in the out-of-plane dinact
However, this method only accounts for the pressure force.

In order to fully model the hydrodynamic forces, the frictional drag fronfidina

shear must also be taken into consideration [100]. The fluid shear force iseelxoeloe
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larger for microcantilevers vibrating in the in-plane direction as opposéeé taut-of-
plane direction since the shear force will act on the larger surfazeshose parallel to
the direction of motion. The fluid shear force is expected to be the dominant
hydrodynamic force for microcantilevers with small thicknesses wien t
microcantilever is vibrating in the in-plane direction.

As noted before, the hydrodynamic force from the fluid shear can be
approximately modeled using the results for the fluid shear found by Stokes for an
infinite flat plate vibrating in the in-plane direction [105]. This problemoisimonly
referred to as Stokes’ second problem in the literature [106]. As the platiaitely
wide, there are no edge effects (non-uniform hydrodynamic forces nesdgés of a
finite surface) or pressure effects assumed acting on the plate. Agglimgiarized
version of the Navier-Stokes equation was used to model the fluid velocity. A partial
differential equation (PDE) with respect to the stream function can be found orrhe f
of a modified biharmonic equation. The stream function defines the stream lines in the
fluid and the curl of the stream function is equal to the fluid velocity [102]. From this
PDE, Tuck was able to create the integral equation given in Ref. 102. Since Stdkes ma
the assumption that the plate was infinitely wide, the assumption could be made that the
stream function was constant in the direction of the width. From this assumption, a
general form of the solution to the PDE could be written. Using the no-slip condition and
the assumption that the fluid velocity at infinity is zero as boundary conditiorfyjithe
shear on the laterally vibrating plate can be found. The total fluid shear plmgi
for a laterally vibrating microcantilever at a certain point alondeahgth of the beam

can then be approximated by the fluid shear per unit length acting on a laténating
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plate with the same velocity and frequency of excitation. However, this apptoxim
does not take into account the microcantilever thickness or the edge effects.

To account for these additional effects, several studies dtsampted to model the
cross-section of vibrating beams or cylinders in viscousdgas ellipsoids [100,107-
109]. Utilizing an elliptical coordinate system, the PDEswsolved and the exact
analytical solution of the hydrodynamic forces derived faiikaating ellipsoid in Ref.
100. The solution was obtained in terms of an infinite seiddathieu functions. The
resulting formulation is complicated and fails to accounttlier sharp edges of the non-

streamlined rectangular cross-section.

Very recently, an investigation expanded upon the method odedfi 102 to obtain
numerical results that accounted for the edge and thickrfesssedf a rectangular cross-
section [97]. The investigation used the same integral equas Tuck in Ref. 102 but
did not use the assumption of zero thickness. The hydrodyrfamces found were
similar to those found in the present investigation. Howethe results were found for
particular thicknesses and media and no attempt was noadeeate an analytical
expression for the hydrodynamic forces. A comparison betweerydnedynamic forces

found in Ref. 97 and those found in this investigation will be presented.

Other investigations have attempted to use finite elemmalyss (FEA) in order
to account for the edge effects and the effects of thicknes$0[86 Finite element
analysis is a numerical technique which is comparable to téthoch of moments
technique used in Ref. 102, only the techniques used at approxinteifiPE are much
more efficient and are available from many different conelabFEA programs. While it

is easier to define the problem using FEA compared to atiethods, FEA is still a
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numerical technique and a sufficient number of fluid elemenist be used to ensure an
accurate solution. FEA allows for the pressure and slorae to be found on the

microcantilever’s cross-section as well as in the mediumounding the microcantilever

as a function of time. However, as with the method used inRethis technique does

not yield an analytical expression for the hydrodynamic forcea &snction of the

properties of the medium of operation and the microcantilever’s thiskne

The effect of thickness of a microcantilever vibrating indbheof-plane mode has
been investigated using FEA [107]. The numerical resudte it to the form of Oseen’s
approximation of the drag force of an elliptical cylinder [110]. Using theesaethod, the
edge effects and the thickness effects can be accountedadaanaexpression for the
hydrodynamic forces acting on a microcantilever vibratindgpénim-plane direction can be
found. However, Oseen’s approximation only considered transvesibefiting elliptical
cylinders where Re<<1 [111]. Stokes’ technique modeling thewssdrag on an infinite
flat plate is a more appropriate technique to model latebahton and can be used at
higher Reynolds numbers, thus making it a better technique pljooxamating the
physical system. Using FEA, the numerical results camsbd to modify Stokes’ solution

to account for edge effects and thickness effects.

1.5 Problem Statement and Objectives

Dynamically driven microcantilevers have been used as highly sensitive gas
phase chemical sensors for many different applications. The use of theseisensors
liquid-phase sensing applications has been limited due to the device’s decreased

frequency stability and decreased sensitivity caused by the farigs forces when
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operating in a liquid. Several methods have been investigated to improveshese
characteristics including operating the microcantilever in highéer modes and
shortening the microcantilever’s thickness. Another promising method mentioted in t
literature [10,60-61] of increasing both the resonant frequency and quality &attdor i
flexurally vibrate the microcantilever in the in-plane direction.

Dynamically driven microcantilevers are commonly vibrated in the out-ofepla
direction. Experiments have shown that when the microcantilever isckxtitiee in-
plane direction, both the resonant frequency and the quality factor are improveld in bot
air and liquid [10,61]. In order to theoretically compare the benefits of usingl latera
excitation over transverse excitation, one must first define and accounttfoe all
hydrodynamic forces acting on the laterally excited microcantileVbese include both
the pressure force and the fluid shear force taking into account both the effet
thickness of the microcantilever and the edge effects. Several attemmudeding the
hydrodynamic forces of a laterally vibrating microcantilever hawnlyeade. Some
investigations focused on modeling either the pressure or the fluid shear, but not both.
Other investigations attempted to model the microcantilever as eith@asing ribbon
or an ellipsoid. However, in order to accurately account for all the forces, the edg
effects, and the effects of thickness, both the pressure and the fluid shearustirbe m
considered and found for a vibrating microcantilever with a rectangular &ossrs

The primary objective of this work is to theoretically characterize and @@mp
the characteristics of microcantilever-based biochemical sensoasimipin the in-plane
and out-of-plane direction and note the differences in characteristicem@snivhen the

microcantilever is excited in the in-plane direction. Characteristid¢s asithe
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microcantilever’s resonant frequency, quality factor, sensitivity, amitd &f detection
will be investigated. These characteristics may be determineal\bggthe system’s
equation of motion. However, the equation of motion can only be solved if the
hydrodynamic forces acting on a laterally excited microcantileneekrmown.

The hydrodynamic forces will be expressed via the steady state sotution t
Stokes’ second problem modified using a correction factor. The form of thetmrrec
factor will be determined by performing FEA on the fluid domain. This cooreéactor
will account for both the effects of the thickness and the edge effects. Once the
hydrodynamic forces are known, the equation of motion for the microcantilevee can b
solved and characteristics of the device can be extracted and investigatedetgon of
the direction of excitation, as well as functions of the geometry and the medium of
operation. The trends in these characteristics can be used to improve the choicesof devic
geometry for liquid-phase detection, as well as quantify the benefits ambaaies of

using in-plane vibration as opposed to out-of-plane vibration.

1.6 Dissertation Organization

This dissertation is organized into five chapters. In chapter 2, the equation of
motion will be solved for the deflection of a microcantilever vibrating inrt@ane
direction in a viscous liquid fluid. The result will be expressed in terms obéraay
exciting frequency. This can be used to find the characteristics ofacauntilever
vibrating in the in-plane direction if the hydrodynamic forces are known. Gtaptd
define all the hydrodynamic forces and present Stokes’ solution. It solliatlude a

finite element analysis model used to approximate the hydrodynamic fatses) the
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results of this numerical procedure, a correction factor for Stokes’ solution ¢aunrike
and an analytical function for the hydrodynamic forces obtained. Chapter heises t
expression for the sum of the hydrodynamic forces from chapter 3 to extriatt use
characteristics, such as the resonant frequency, quality factor, ant/ggnditends in
these characteristics as functions of microcantilever geometry andmmpuabperties are
found and recommendations made for design considerations. The charagtafristic
microcantilevers of similar geometry excited both laterally antstrarsely are then
compared and contrasted. Finally, chapter 5 gives a summary of the resuttsrdifie $

areas of future research.
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2.Laterally Excited Microcantilevers in a
Viscous Liquid Medium

2.1 Introduction

In order to analyze a laterally vibrating microcantilever in a viscoudliqui
medium, it is first necessary to obtain the solution to the equation of motion governing
the deflection of the microcantilever. This will allow the charactessifdhe vibrating
microcantilevers to be found and investigated as functions of geometry, material
properties, medium properties, and excitation direction. Figure 2-1 shows the
microcantilever’s length.,., width, b, and thicknesd). The origin is placed at the center
of the beam-support interface with thaxis,y-axis, andz-axis in the direction of the
microcantilever’s length, width, and thickness, respectively. The miciteseentis
clamped ak=0 and has a free endxatL.. Also shown in Fig. 2-1 is the lateral deflection
in they direction, denoted by(x,f). Please note tha(x,t) stands for the lateral
displacement of the microcantilever as a function of both time and position along the
length of the microcantilever, and is not the microcantilever’s velocity.

The microcantilever in Fig. 2-1 can be modeled using standard Euler-Bernoulli
beam theory if certain assumptions listed below are satisfied. Theagaohthotion for

a laterally vibrating microcantilever in a vacuum under harmonic loading is

4 2
o"v(xt) +pBbha \(;(t>2<,t) ~F, (e

El lat 4
Ox (Eq. 2-1)

where
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Figure 2-1. Amicrocantilever with lengtH,, width, b, and thicknesd) vibrating
laterally with a deflection o¥(x,t).

|, =b’h/12. (Eq. 2-1a)

In Eq. 2-1,E is the Young’s modulus of the microcantilever in the longitudinal direction,
peis the mass density of the microcantilever, ky@) is theposition-dependent forcing
function per unit length operating at an angular frequeney of

Note that the equation for the moment of inetia,has the width cubed instead
of the thickness (opposite the case of transverse vibration). The Young's meduks i
same for both lateral and transverse vibration. Thus, the flexural rigid)tgf(a
microcantilever undergoing lateral vibration is a factomdf)¢ times larger than that of
the same microcantilever undergoing transverse vibration. This increasgdlflex
rigidity indicates that the beam is stiffer (compared to the same beartingbra
transversely). Since the beam is stiffer when vibrating lateratyhas the same amount
of mass, it will have a higher resonant frequency [84].

Euler-Bernoulli beam theory places several assumptions on the beam geometry

and deflection and, thus, the applicability of Eq. 2-1:
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e The beam’s cross-sectional area is uniform over the length of the beam

e The length of the beam greatly exceeds its width

e The amplitude of the vibration of the beam is far smaller than any length scale

in the beam geometry

It will also be assumed in this work that the density and Young’'s modulus are also
uniform over the length of the beam. These assumptions generally hold true fordstanda
commercially available microcantilevers [85] However, some of doengtries
investigated in this work do not have lengths that greatly exceed their widtheffédte
of violating this assumption will be investigated in chapter 4. For micribeasts made
of several different layers of materials, the weighted average nesisyd=an be used as
the beam density. Likewise, an effective Young’s modulus can be found (either via
composite beam theory [1] or use of experimental data) for a multilayer behen.
microcantilever’s cross-sectional area changes as a functioiswéh as in the case of a
hammerhead or T-shaped microcantilever, the additional mass and rotatéshalof
the head must be taken into account. One method of accounting for this additional mass is
to use Rayleigh’s method, modeling the additional mass as a point mass at the end of the
microcantilever [112]. Other methods utilize finite element analgsisder to model the
additional effects of the head [113]. However, only beams that have a conssznt cr
section are considered in this investigation. If the length of the Iateiathting
microcantilever is on the order of its width, the shear strain and rotaitienad effects
must be taken into account using Timoshenko’s beam theory [57] in place of Euler-
Bernoulli’'s beam theory. Finally, if the amplitude of the vibration is too lahge, t

problem becomes geometrically nonlinear and the stress versus straomséigtican
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possibly become non-linear; in these cases failure criteria sudead-tarsional

buckling might need to be taken into account [59,114].

2.2 Effects of a Viscous Liquid Medium

When the microcantilever operates in a viscous liquid medium, an additional
force from the medium affects the microcantilever and the equation of motion isedodif

to

o*v(x,t)

lat ax4

0%v(X,t)

El pgbh P

= Fy(x)e"‘"t + Frediumia (1) - (Eq. 2-2)
This additional hydrodynamic forcEpedium 1atlS @ force per unit length that is partially
out-of-phase with the displacement, and can be represented as

ov(x,t o%v(x,t
Fmediun,iat (X1t) = _gl,lat g T Y2lat (2 )
ot (Eq. 2-3)

ot

whereg; i;: andg 1oc are time-independent coefficients associated with the fluidic damping
force per unit length and the fluidic inertial force (displacadlit mass) per unit length,
respectively [85-86]. It is common to normalZgegium 1adNto a dimensionless form

called the hydrodynamic functiohy;, where [3,85]

Oyt =77 Rerlau (Reh/b), (Eq. 2-4)
Oata =7, PO Tun(ReN/D). (Eq. 25)

wherep_ andz are the mass density and dynamic viscosity of the fluid, respectivaty

subscriptk andl in Egs. 2-4 and 2-5 represent the real and imaginary portions of the
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hydrodynamic function, respectively, whév is the aspect ratio of the beam cross-

section and Re is the Reynolds number of the system.

The Reynolds number is a measure of the relative size of the fhugdtsal and
viscous forces in the problem. An analytical expression for the Reynoldsengan be
defined from the ratio of the inertial term to the viscous term ied¢joation of motion of
the fluid. The linearized incompressible form of the Navier-Stokes’ mquean be used
to model the fluid if the fluid is assumed incompressible and the telpeidient of the
fluid is small. The fluid can be considered incompressible as the watielef the
microcantilever’s vibration in the cases of interest in this woeltly exceeds the width
of the microcantilever, which is the dominant length scale initwe[B5]. The velocity
gradient of the fluid is related to the velocity gradient of tiheating microcantilever.
Since it is assumed thdae microcantilever's amplitude of vibration is far smaller than an
length scale in the microcantilever’'s geometry, the velocity gradighedieam and fluid
can be considered small. Thus, the equation of motion for the fluid cavebeag [86,

98, 109];
ou 2
pL E =-VP+ 77V u (Eq 2'6)

whereP andu are the pressure and velocity at a particular point in the flEgeotively.

The term on the left hand side of Eq. Zp(@,(;—ltj, is the term related to the fluid’s inertial

forces. The second term of the right hand side of Eq. 2¥8y, is the term related to the

fluid’s viscous forces. The Reynolds number, in this form sometiakesd the non-
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dimensional frequency [102] or one fourth of the Valensi number [115], carfé&®®und

by taking the ratio of these terms and simplifying,

1oc M)

L~ 2

Re=—— Ot _pob” (Eq. 2-7)
4 nVeul| 4n

The viscous term is multiplied by a factor of four to keep the digfimdonsistent with the

one found in Ref. 102.

The hydrodynamic functiom;y;, is the total hydrodynamic force per unit length
applied by the fluid onto the microcantilever normalized to the amouotad per unit
length needed to excite fluid in a vibrating circular cylinder of diantete the same
velocity as the microcantilever. The normalized hydrodynamic force pdength is
dependent on the microcantilever’'s aspect ratio. This dependency wNdstigated in

chapter 3.

The hydrodynamic function is also dependent on the properties of the ma&dium
operation. The properties of the medium of operation, along with the excitegquency
o, will determine the skin depth of the liquid layer surrounding the twlyydeam. The
skin depth or boundary layer thickness, dendied defined as the distance over which
the fluid velocity decays to &bf its maximum value [116]. The larger the skin depth, the
larger the amount of fluid excited by the vibrating beam. Physichiyhoundary layer
thickness can be thought of as the amount of fluid trapped in the coeted by the
vibrating microcantilever [104]. The boundary layer thickness cdourel as

2n

0= .
pLo

(Eq. 2-8)
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Equation 2-8 can be rewritten as

b

Eqg. 2-9
T2Re (E4. 2-9)

The hydrodynamic function for a transversely vibrgtbeam was found to be a function
of d/b, or a function of the inverse of the square-rdahe Reynolds number [86,116]. It
is expected that the hydrodynamic function fortarkly vibrating beam will also
depend on this ratio, and thus on the Reynolds eamb

The hydrodynamic function is a complex number. figwd portion of the
hydrodynamic function is related to the effectivepthced fluid mass per unit length and
the imaginary portion of the hydrodynamic functisnmelated to the amount of viscous
damping per unit length. The effective displadedifmass acts to increase the total
effective mass of the system. This, in turn, deses the resonant frequency and
increases the amount of energy stored in the syst@ioh increases the quality factor.
Increasing the viscous damping will also decreased¢sonant frequency. However,

increasing the viscous damping will decrease traditguactor.

2.3 Mode Shapes

In order to find the characteristics of laterallgrating beams, the frequency
spectrum of the deflection (the deflection as afiam of excitation frequency) must be
found from the equation of motion. First the matiepes of the beam, or the shape of
the beam at maximum deflection as a functior, @hust be found. The frequency

spectrum can then be found using the mode shapethamquation of motion.



28

It can be assumed that the deflection in the Iatkrection is sinusoidal with
respect to time. Using separation of variables diflection can be given as

v(x,1t) =V (x)e! (Eq. 2-10)
whereV(x) is the overall mode shape with respect {and not the velocity of the
microcantilever). To solve for(x), it is recalled that any appropriately smoothchion

can be written as an infinite series of weighteéti@mormal functions [117], or
V(x) =Y C(x) (Eq. 2-11)
i=1

where each mode has an amplitud€oand a particular mode shagéx). Any infinite
set of orthogonal mode shapes could be used@Jjr However, it is convenient to use

the set of mode shapes that the microcantilevesstakturally when freely vibrating in a

vacuum. These mode shapes satisfy the condition

d*¢ (X
dx*

= B4 (X) (Eq. 2-12)

where/; is a constant defining the modes of operatiomefrhicrocantilever and is given

by

B - %:ta’z | (Eq. 2-13)
A general form of the solution §(x) is

¢,(x) = D, (cosp x + coshg x) + D, (Cosf, x— coshp3, x) (Eq. 2-14)

+D,(sinB x+sinhB,X) + D, (sin B x—sinh 5, x)
whereD;, D,, D3z, andD, are constants. Due to the orthogonality of the @sdd 18], the

mode shapes will have the property such that
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¢, (x)p, (x)dx=0 (Vi = j). (Eq. 2-15)

Oty

Because the microcantilever is clamped=l, each individual mode shap€x) must

satisfy the following boundary conditions:

4 (0)=0 (Eq. 2-16)
dg O) _, (Eq. 2-17)
dx

Since the microcantilever is freexatl, there will be no bending moment or shear force

at that point, thus:

2
d d¢| éL) 0 (Eq. 2-18)
X
3
d”¢, éL) 0 (Eq. 2-19)
dx

From these four boundary conditions, the generah fof theith mode shape given by

EqQ. 2-14 can be rewritten as

(x)=D (cosp; x—coshg; x)(cospi L + coshpi L) + (sin 5 x—sinhgix)sin 5 L - sinh 4 L) | |
- (sinBL-sinhgiL)

¢
(Eq. 2-20)
Using the second and third derivatives of Eq. 2vith respect tx atx=L, £ can be
found as the infinite set of solutions to
(cosp;LcoshgiL)=—1. (Eq. 2-21)
The smallest solution fgiL is approximately equal to 1.8751. This value Wwélused
for i=1, with each successively larger solution (4.6948548, 10.9955, 14.1372...)

assigned to successively higher integer valueésTdiese values are well-known [92],

and converge to
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Phi

0 0.2 0.4 0.6 0.8 1
x/L

Figure 2-2.The first 5 mode shapes of a vibrating microcamiiteusing Eq. 2-2@,=1
and thegs values found from Eq. 2-21.

i ;%(2—1) Vi>5. (Eq. 2-22)

The mode shapeag(x) of each individual mode, can then be plotted as a function of

normalized length (see Figure 2-2).

2.4 Mode Shape Amplitudes and Phases of Laterally Vibrating Microcantileers in
Viscous Liquid Media

The variableD,andC; in Egs. 2-11 and 2-14 are still unknown. The cantdia

can be written in terms @;. From Eq. 2-10 it can be shown that

Lo V() 9 22V(X,1) Eq. 2-23
1lat 81: - W atz ( q' )

Using Eq. 2-23, Eq. 2-2 can then be rewritten as

o'v(x,t)
lat aX4

» 0°V(X, )
ot?

. gl,lat

El (Psbh"‘ 92pat =} ja)
w

=F,(x)e'”. (Eq. 2-24)
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Equations 2-24 and 2-11 can be combined to give

icl((Ellat) d’ #(x) (pBbh—i_ Uojat — I ja)2¢| (X)jejwt = Fy(X)ejwt-
a

(Eqg. 2-25)

Canceling out the time dependency and using Eq. 2-12-Eg.can be simplified to

g;';“} j¢ () =F,(%). (Eq. 2-26)

ici((El.aoﬂ:‘ —(psbm Ot ~

i=1
Both sides can be multiplied ig(x) whereC; is the desired mode amplitude to be found.

Eq. 2-26 then becomes

0

Z[Ciﬂ (X)¢j (X)K(Ellat)ﬂi4 - (psbh'F Ot — j g;;at ]a)zJJ = Fy(x)¢j (X) .

i=1
(Eq. 2-27)
Integrating both sides of Eq. 2-27 along the length of theotantilever from zero th,

and using Eq. 2-15,

gllat

C,-[(El.at>ﬂ;‘—(psbh+gz,.at j jj ¢, (9%dx= [ F, ()¢, (x)dx.

(Eqg. 2-28)
Eqg. 2-28 can then be rearranged to obGaams

ij(x)¢j (X)dx
C- — 0

I

(E||atﬁj4 - (pBbh+ 02 )at )mz + jg]_,lata))_l‘;¢j2(x)dx
0

(Eq. 2-29)
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C; is a complex number, which indicates that the microcantiledeflsction is not

always in-phase with the excitation. Eg. 2-29 can be rewatien

[ F, (0 (x)dx
C, = 0 - e’ (Eq. 2-30)
\/(Ellatﬂj4 - (pBbh+ Py )wz )2 + (gllata))z I¢jz(x)dx
where
—1 - gl,lata) 4 2
ool ((El.at)ﬁr‘ e+ G )wZJ (B -t )0

J _
tan_1((E| Y (%'IEEL Ot JO? j —7 . ((B1)B7 = (pgbh+ gy1 Jo?) < 0.
lat / Mi B 2Jat

(Eq. 2-30a)
The deflection amplitude at the tip of the micradawmer as a function of frequency can

then be found by substituting Eq. 2-30 into EqJ12-1

) j F, (X, (x)dx
VL= ° L (L),

= \/(Ellatﬂj4 - (pBbh+ gz,lat )Q)Z )2 + (gl,lata))2 j¢i2(X)dX

(Eq. 2-31)

From Eq. 2-31, the frequency spectrum of the mentiever can be calculated.

It is important to note that the excitation fora pinit lengthFy(x), can be any arbitrary
force as a function of the position along the langitthe microcantilever. If a tip force, is

placed on the beam =atL,
JL. F, (X)¢ (X)dx= JL. Fipo (L) (X)dx (Eq. 2-32)

whereFy, is the amplitude of the harmonic tip force. E@2¢ean be simplified, such that
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j F, ()¢ (X)dx=Fy4 (L) - (Eq. 2-33)

The deflection amplitude of the tip of a laterallprating microcantilever in a viscous
liquid medium,V(L), excited using a tip force can then be found fiégn 2-31 and 2-33

as

o Fé°(L ‘
[\/(L)|= z tlp¢l ( )

- \/(Ellatﬂj4 - (pBbh+ gz,lat )Q)Z )2 + (gl,lata))2 IQZ(X)dX

(Eq. 2-34)
Normally, when operating around the resonant fraquef theith mode, only thé&th
term in Eq. 2-31 is significant. This approximatwwill be investigated in chapter 4.

By investigating the lateral deflection as a fuoitof the excitation frequency,
the resonant frequency and quality factor of therazantilever can be found. Using the
resonant frequency and the quality factor, sendivagacteristics such as the mass
sensitivity can be found. In order to find the romantilever’'s spectrum, all the terms in
Eq. 2-31 must be known. The beam’s dengityand Young’s modulug, are
determined by the material or materials choseth®®microcantilever. For example,
silicon’s density and Young’s modulus are 2330 Kgamd 169 GPa (for the <110>
direction), respectively [119]. The length,width, b, and thicknesd), of the
microcantilever are determined during its fabrigati The excitation frequency, is
determined by the frequency of excitation of tlEsducers. The lateral excitation force
per unit lengttFy is determined by both the location of the transdsion the

microcantilever and the amount of power used tatexc The force per unit length,,
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while difficult to estimate, only acts as a muligplfor the tip deflection. The resonant
frequency and quality factor thus do not depenthervalue of the excitation force.
However, the force per unit length must still beafranough to assume a deflection
smaller than any length scale of the microcantieVae moment of inertiby;, the mode
shape functior, and the constarft, can be found by Eq. 2-1a, Eq. 2-20, and Eq. 2-21,
respectively.

This leaveg) it andgy s @s the only unknown quantities in Eq. 2-31. Thees
of g1,1arandgy jascan be found from Eq. 2-4 and Eq. 2-5, respectivedypuations 2-4 and
2-5 require the frequency of excitation, dynamgcwesity and density of the medium,
and the width of the beam, all of which are knoviaguations 2-4 and 2-5 also require
the real and imaginary parts of the hydrodynamincfion,I',;. The hydrodynamic
function, Ty, is the hydrodynamic force per unit length noredi to the amount of
force per unit length it would take to excite flwdcupying a cylindrical volume with a
diameter equal to the microcantilever’s width te fame velocity as the microcantilever
[85,102]. In order to find the characteristicdaikrally vibrating beams, an expression
for the hydrodynamic function of a laterally vikreg beam must be found. In the next
chapter, the different hydrodynamic forces actindaterally vibrating microcantilevers
will be defined. An approximation of the hydrodynarfunction for a laterally vibrating
plate will be given. A numerical procedure for fing the precise value for the
hydrodynamic function for particular values of fReynolds number, Re, and aspect
ratio, h/b will also be given. The simple expression for llydrodynamic function of a
laterally vibrating plate will then be mapped te tumerical results using a set of

correction factors. The corrected expression ferttydrodynamic function can then be
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used with Eq. 2-31 to find characteristics of adally vibrating microcantilever in a

viscous liquid medium.
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3. Hydrodynamic Forces on Laterally
Vibrating Microcantilevers in a Viscous
Liquid Medium

3.1 Introduction

In order to evaluate the characteristics of a #ieexcited microcantilever, the
hydrodynamic forces acting on the vibrating micrddaver must be known. All
hydrodynamic forces must first be defined. Usimg ¢équation of motion of the fluid, the
hydrodynamic forces can be approximated usingtiealy state solution to Stokes’
second problem [105]. This, in turn, will yieldsemple analytical expression for the
hydrodynamic function. However, this expressiogleets the thickness and edge
effects. The fluid can be modeled more accuraisigg a numerical procedure which
accounts for these effects and the hydrodynamgzfoon the cross-section of the
microcantilever can be estimated. Stokes’ solutemthen be modified using a set of
correction factors found from the numerical restdtaccount for the edge effects and the
effect of thickness. The corrected expressiorstokes’ solution can then be used to
find the viscous damping and effective displacedifmass per unit length as a function
of the microcantilever’'s geometry and the Reynoldsiber. When used with the
solution to the microcantilever’s equation of matioelevant vibration characteristics of

the system can be found.
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3.2 Hydrodynamic Forces

When a microcantilever is vibrating in an infinitscous liquid medium (either in
the in-plane or out-of-plane direction), the flaicts to oppose the movement of the
microcantilever, applying an opposing hydrodynafarce. However, this
hydrodynamic force is not always applied perpendityito the surface of the
microcantilever, as shown in Fig. 3-1.

Conceptually, the total hydrodynamic force is thensof the hydrodynamic force
perpendicular to the surface of the microcantileFgessure (2lSO known as the pressure
force), and a force parallel to the surfd€geq; called the shear force. The shear force is
proportional to the shear drag on the microcarel¢97,100]. The total hydrodynamic
force can then be found as

F = F cenct F

mediumlat = pressure shear" (Eq 3'1)

z Shear Force

Hydrodynamic Force
L | 3:1— ¥
V4 l [} é& = = = u‘/‘

l Beam Velocity -|- \“‘\_
% )
<t 1‘" 20

Kw? — $=/ &= - £7
ressure -

Figure 3-1 Hydrodynamic forces acting on the surfaces abas-section of a laterally
vibrating microcantilever in fluid.
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3.2.1 Pressure

The pressure is the force per unit area applieplgmeticularly to the
microcantilever’s surface by the fluid and is tlerdnant hydrodynamic force
encountered when relatively thin microcantilevaesexcited in the out-of-plane
direction [97,100]. It is noted that the calcuthteydrodynamic force on a transversely
vibrating microcantilever based on Ref. 85 neglédutsshear force and is still found to be
in good agreement with experimental results foumthe literature [85]. However, it
must be noted that the pressure might not alwayeddominant hydrodynamic force.
For thin microcantilevers undergoing in-plane vilma in a viscous liquid medium, the
shear force is expected to be larger than the yre$grce. When a microcantilever is
vibrating in a liquid medium, pressure from the imedis applied on all surfaces of the
microcantilever. When the microcantilever is at sl there is no net flow in the
medium, the pressure applied on the microcantilbyghe medium is the static pressure
of the medium and is essentially uniform over thdagce of the microcantilever. The
forces in they andz directions applied to the microcantilever by ttedis pressure will
therefore cancel each other out.

When the microcantilever vibrates in the in-plaireation, the pressure incident
on the surface of the microcantilever becomes hdtinction of time and position. The
pressure must maintain a value higher than theum@divapor pressure; otherwise the
medium will undergo cavitation and form vapor budsbj101]. The total pressure is the
sum of the static pressure and the dynamic pre$s0i¢. Since the total pressure can be

lower than the static pressure, the dynamic pressam be a negative quantity.
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Due to the symmetry of the problem, the dynamisgues should be symmetric
with respect to thg axis and anti-symmetric with respect to #rexis [97]. All the
forces in thez direction from the pressure cancel each othedoetto its symmetry about
they axis. The hydrodynamic force from the pressutmgon the leading and trailing
edges of the microcantilever will be equal. Thalto¢maining hydrodynamic force per
unit length from the pressure acting on the micntitaver is then twice that of the

pressure acting on its leading edge, or
h/2
Frressuc) =2 [ P(b/2,2)dz (Eq. 3-2)
-h/2
whereP is the pressure.

It is noted [97,102,107] that the pressure is phytout-of-phase with the velocity
of the microcantilever. As indicated in chaptettiz hydrodynamic force from the
pressure will then contribute to both the effectvgplaced fluid mass and the damping
of the system. The phase of the hydrodynamic firora the pressure will depend on the
Reynolds number and the aspect ratil)(of the microcantilever's geometry. When the
Reynolds number increases (or the viscosity deesdai is expected that the viscous
damping will become negligible. The hydrodynamiccefrom the pressure can then be
treated simply as an effective displaced fluid m&mce the hydrodynamic force from
the pressure only comes from the leading andrnpgdges of the microcantilever, it is

also expected that the pressure’s effect on theocaatilever should become negligible

as the aspect ratio of a laterally excited micrtitarer goes to zero.
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3.2.2 Fluid Shear

The shear stress of the fluid acting on the miantlsver is given by

r=n (Eq. 3-3)

whereu is the velocity of the fluid in the vicinity of éhfluid-beam interface andis a
coordinate in the direction normal to the surfa@0]. Note that, unlike the pressure,
when the dynamic viscosityy, of the medium goes to zero the shear stress aEotQ
zero. The total shear force per unit lendithea; is the resultant of all shear stresses

acting over the entire contour of the microcangléy cross-section, or
Fyrear(X) = p7ct (Eq. 3-4)
C

whereC is the contour running around the cross-sectiah®imicrocantilever.

The shear forces in ttedirection will cancel each other out due to thesyetry
of the problem about theaxis. The shear force in tairection is a function of the area
of the microcantilever’s surfaces parallel to tivection of motion. For microcantilevers
undergoing out-of-plane vibration, the shear facts on the surface along the thickness
of the microcantilever, which can safely be negdds long as the width is not of the
same order as the thickness [97]. When the miotdeger is vibrating in the in-plane
direction, the shear force is applied to the tog laottom of the microcantilever. Due to
the symmetry of the problem, the shear force aaimthe top of the microcantilever will
be the same as the shear force acting on the boftdnns, when the microcantilever is

vibrating in the in-plane direction, the shear ®per unit length can be calculated as

b/2
Faeal¥) = 2 [2(y,h/2)dy (Eq. 3-5)

-b/2
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Using Egs. 3-2 and 3-5 in Eqg. 3-1, the total hygir@ic force per unit length on
a rectangular microcantilever can be calculateolyided that the fluid velocity can be
obtained. However, several approximations can b#emdapending on the dimension of
the microcantilever. If the thickness is small egiouthe pressure can be neglected and
only the shear force will contribute to the hydrodsnic force. However, as will be
shown in Section 3.4.3, the pressure force caniresignificant under certain
conditions, even when the microcantilever’s widtlmuch greater than its thickness. It
will initially be assumed that the shear forcehis ltominant hydrodynamic force. This
assumption will be investigated. The shear foradge partially out-of-phase with the
velocity of the microcantilever, meaning that thear force will also contribute to both
the effective displaced fluid mass and the visaamping of the system. Since the shear
force is a function of the dynamic viscosity, btk effective displaced fluid mass and
the damping from the shear force are expectedpgooaph zero as the Reynolds number
approaches infinity.

There have been several attempts to model the tlydamic forces acting on a
microcantilever vibrating in the in-plane directisfthen the microcantilever’s thickness
is small compared to its width, it can be approxedaas a laterally vibrating ribbon.
Stokes investigated the forces acting on an iipivide flat plate brought from rest to
sinusoidal lateral vibration. This is commonlyledlStokes’ second problem [106]. The
problem of a laterally vibrating ribbon can be reeld to the steady state solution of
Stokes’ second problem if the microcantilever undeestigation is also quite wide

relative to the boundary layer thickness of thédflu
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3.3 Stokes’ Solution

The total hydrodynamic force per unit length caridaend from first solving the

fluid’s equation of motion given by Eq. 2-6, whihrepeated here for convenience.

-

pL%:—VPJrnVZG. (EqQ. 3-6)

u is the velocity field of the fluid at all pointB,is the pressure, ang andz are the
density and dynamic viscosity of the fluid, respesy. If the velocity field in the fluid is
known everywhere, both the pressure and shear pancenit length incident on the
microcantilever can be found. Dividing both sitbgshe fluid density, taking the curl of
each side to remove the pressure dependence, sundiag the fluid velocity to be

sinusoidal, the Navier—Stokes equation can be neollid

jw(vxﬁ):plvz(wﬁ). (Eq. 3-7)
L

In order to solve the above equation, the streamtion, ;7/ (x,y,z;9, will be introduced
and is the function that quantifies the amountuitifc flux passing in between two
points [102]. The contour of constant valueszfolis known as a stream line which is

always parallel to the direction of fluidic flonMathematically, the stream function can

be defined in terms of the velocity field as

G=V><J (Eg. 3-8)
and, likewise, the curl of the velocity field as

Vxu=Vy (Eq. 3-9)
Since only the cross-section of the fluid and nuardilever in the/-zplane is under

consideration and the assumption is made that ib@oantilever is long enough so that
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the variations in the fluid velocity in thedirection are small, only thecomponenbf
the stream function will be considered non-zegpwill be written asy for notation

convenience. Eq. 3-7 can then be rewritten as

Vz(Vzlp)—az(sz/):O (Eq. 3-10)

= 128 (Eq. 3-10a)
n

The general solution to Eq. 3-10 is difficult totain. 1f b>>h, only the shear force can

where

be considered significant. If it is also assuntet the stream function is constant in the

y direction, the general solution to Eq. 3-10 isegi\by

P2 14 §)z

w(zt)=A+Az+ Blejgaﬂ)Z +B,e' : (Eq. 3-11)
whereA,, Ay, B; andB, are amplitude terms that may depend on time. Mpthe
assumption that the stream function is not depdamateynmeans that the anticipated
stress singularities on the edge of the microcardil (called edge effects) are neglected,
making the implicit assumption that the microcawvr is infinitely wide. These
singularities have been previously noted in thexditure [97,102] and are significant
when the Reynolds number is low. Thus, this praceds only valid when Re>>1.

From Eq. 3-8, the velocity of the fluid in tyedirection can then be found as

pzl_ru (+j)z - %(14—])2
u, (1+ )| Be' " -Be'” (Eq. 3-12)

While, in practice, the microcantilever is in aifénvolume cell, it is normally assumed
that the microcantilever is operating in an inftytbound medium. Thus, as |z| goes to

infinity, the velocity must approach zero, implyitigtA, =0. Likewise, by only
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considering the half space of the fluid above therosantilever (since the problem is

symmetric about the-y plane), it is found th@, =0. Thus, Eq. 3-11 and Eq. 3-12

become
P2 a4 0)z
w(zt)=A+Be'” (Eq. 3-13)
u,=-— Z(H ])Be : (Eq. 3-14)

It has been assumed that fluid in contact withntinerocantilever will have the same
velocity as the microcantilever. Using the no-&lgundary condition a&=h/2, for small

thicknesses,

Ue = /’%"(ﬂ i)B,. (Eq. 3-15)

whereUpis the amplitude of the excitation velocity. SalyiforB; and applying

symmetry, the velocity in the upper half-spaceheffluid is then found as

- 22 a+j)z

u =Uee'? . (Eq. 3-16)

y
Using Eq. 3-3, the shear stress on the top fatieeamicrocantilever can then be written

as
r=-Ue %m i) (Eq. 3-17)
and the total force per unit length can be foundgikqg. 3-5 as
mediumlat,Stokes

F = -2U,e"b %m i) =-2U,enV2Re+j).  (Eq. 3-18)

Equation 3-18 indicates that, when edge effectspaesisure forces are neglected, the

total hydrodynamic force is 45° out of phase wité velocity, linearly dependent on both
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the width and the amplitude of the excitation vélot),, while dependent on the square-
root of the product of dynamic viscosity, liquidndgy and excitation frequency. The
hydrodynamic function can, in turn, be found frdme total hydrodynamic force per unit

length as

1" ;Re)_ F ’ mediuryat,Stokes _ 2\/5
lat,Stoke! J7Z'77 Rajoe_ja)t - Re

@+j. (Eq. 3-19)

As stated in chapter 2, the hydrodynamic functsthe total hydrodynamic force per
unit length normalized to the amount of force peit length it would take to excite fluid
occupying a circular cylindrical volume with a diatar equal to the microcantilever’'s
width to the same velocity as the microcantilexd®,102]. Equation 3-19 indicates that,
for the fluid resistance predicted by Stokes, #a and imaginary parts of the
hydrodynamic function are equal. Also note, agestan chapter 2, the hydrodynamic
function is a function o#/b. Equation 3-19 can give a good approximatiorttier
hydrodynamic forces from the fluid shear if the e@dfects are negligible, which
happens when Re>>1. However, it does not accouihéoeffects of thickness. In order
to investigate the edge and thickness effects dmthe hydrodynamic forces and on the
device’s characteristics of interest, a method thleds into account all the hydrodynamic

forces must be found.

3.4 Numerical Evaluation of the Hydrodynamic Forces
In order to account for both the edge and thickeéests, a set of correction
factors will be found for Eq. 3-19 using resultsrir finite element analysis (FEA). Finite

element analysis, also called the finite elemerthoae (FEM), is a useful technique used
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to simulate the behavior of complicated systems\ EEbased on discretizing of larger
systems into smaller, less complicated systems|[1B@ially developed to model beams
and trusses [121], FEA has been used to modelgrshin many different fields, such as
electromagnetism, fluidics, and thermodynamics [1ZEEA finds field quantities (e.qg.,
displacements, stresses) by attempting to minithieeequations of equilibrium [122]. In
the case of fluid flows the fluid velocities in theedium are obtained from the
conservation of momentum principle, and the pressiobtained using the conservation
of mass principle.

The commercially available FEA package ANSYS 11a3wtilized to simulate
the hydrodynamic forces acting on the cross-sedfanlaterally vibrating rigid bar of
rectangular cross-section. First, the simulaticotedure is defined and an arrangement
of finite fluid elements, called a mesh, is prodlicdhese meshes are then tested to see if
they produce a convergent solution for the hydradyic forces. Once a converged
solution is obtained, the hydrodynamic force ig@&stied as a function of both the
Reynolds number, Re, and the aspect ratilo, The numerical results can then be
compared to known hydrodynamic forces for spe@aks, such as the laterally vibrating

ribbon at large Re values.

3.4.1 Simulation Procedures

The first step in defining the mesh was to chobseype of fluid elements to be
used. There are many different fluid elementslalsbe in ANSYS. FLUID141, the 2-D

fluid-thermal element, was chosen because it wasobthe elements available that
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incorporated the viscous shear force of the flaitwo-dimensional mesh of triangular
elements was defined using FLUID141 elements viaghnhicrocantilever’s cross-section
represented as a vibrating rectangular boundargtiton. A 2-D mesh was chosen over
a 3-D mesh as the number of elements needed toge@lconvergent solution for the
hydrodynamic forces using a 3-D mesh was founcetodmputationally prohibitive.
Using a two-dimensional model of the fluid surrounggda rigid vibrating

microcantilever’s cross-section (see Fig. 3-1) fraved to be an accurate approximation
in previous attempts at finding the hydrodynamicés [102,105]. Modeling the effects
of the length or the deformation of the microcaw#r’s cross-section on the
hydrodynamic function is also outside of the scopthis investigation.

Two boundary conditions were placed on the meslatéal sinusoidal velocity
was imposed on the cross-section, and a zero deplkent and zero pressure boundary
condition was placed on the outer boundary. Thotated the assumption of an infinitely
large operating medium, causing the hydrodynamice®to become dependent on the
total domain size. If the outer boundary of the Imissplaced very far away from the
vibrating cross-section, this dependence becomgigyitde. However, the number of
elements needed to define the mesh (for a fixed@h¢ size) increases as a function of
the square of the mesh size. Estimating the vgloeéar the edge of the model is not as
important as estimating the velocity near the \ibhgacross-section; thus a tapering of
element sizes was employed. Smaller elements a&cegcloser to the cross-section
and larger elements (coarser mesh) placed neautee boundary. Two regions in the

fluid model were used, as shown in Fig. 3-2.
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Figure 3-2. A finite element mesh used to model the hydrodycdorices acting on the
cross-section of a laterally vibrating beam witheapect ratio of 1/10 in fluid. The mesh
has a higher element density near the vibratingsesection and has a zero displacement
and pressure boundary condition placed on the atendary.

The first region was a square centered on the -@@stson with a width and
thickness of twice the width of the cross-sectidime width of the cross-section can be
set to any arbitrary distance as long as the diantérequency and thickness produce the
desired Reynolds number and aspect ratio. Famtgjerity of the simulations run, the
width of the cross-section was kept afizd. However, the width was set to @& and
40 um for two sample test cases, while the Reynoldshasrand the aspect ratio were
maintained constant. The numerical results ohgrodynamic function were found to

be nearly identical (within 1%). The assumption Wean made that the numerical results
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for the hydrodynamic function did not depend ongize of the cross-section as long as
the Reynolds number and aspect ratio remain canstan

The elements were triangular in shape, as indicatese, and defined via a free-
mesh of the area from the fluid-beam interfacén&ltorder of the first region. The size
of the elements in the first region was graded feonode spacing of 33.33 nm (600
nodes along the width) when the elements were glat®g the cross-section to 1,33

(40 times larger) when the elements were placeiti®outer boundary of region 1.

Figure 3-3. The mesh of the fluid defined near the right sitla beam cross-section
with an aspect ratio of ~1/56.
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This is roughly 44 times larger than the largestriatary layer thickness
considered in this work. The elements in the secegbn were also created via a free
mesh of triangular elements, graded in size framiramum node spacing of 1.38n
along the interface of the two fluid regions toamle spacing of 13.33m along the outer
edge of the total mesh. The velocity gradient tiearfixed outer boundary is very small,
such that the velocity found near (within a fewnedmts) the outer boundary was less
than 1% of the applied velocity. This is expectsdre velocity should be zero on the
outer boundary. It is then assumed that the oviuadl mesh volume is large enough to

serve as an appropriate approximation of an ifimedium.

—e— Total Hydrodynamic Force Per Unit Length [N/m]I
——— Beam Velocity [um/s] I
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015 i i i i i i 30
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Figure 3-4.The simulated hydrodynamic force per unit lengttingcon the top and left
hand side of a cross-section of a laterally vilbigatnicrocantilever in wateb€20 um,
h/b=1/10, Re=1000) compared to the velocity of thessreection.
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Figure 3-4 shows a sample result of the simuladtad force per unit length over
the top and right side of the cross-section asation of time. Note the phase offset
between the force per unit length and the velocitge force per unit length of a
microcantilever undergoing only viscous damping lddwave no phase offset with
respect to the velocity. The force per unit lengftla microcantilever only undergoing the
effects of displaced fluid mass would lag the vigloby 90°. For the configuration used
to produce the results in Fig. 34/ig= 1/10, Re=1000), the force per unit length lags th
velocity by ~53.6°, which means that in this cdsedisplaced mass is slightly larger
than the viscous damping.

The pressure and shear force can be investigapedagely. Instead of finding the
shear force, ANSYS calculates the wall shear s{tesstotal shear force distributed over
the contour), as shown in Fig. 3-5. The wall sistgass is always found as a positive
guantity. The wall shear stress can be correcid¢ldet shear force by inverting its sign
every half cycle. Numerical discontinuities affdo¢ shear force near those time values
at which the imposed velocity is zero. These difoaities are artifacts of the mesh

density and decrease when the mesh density isaisede
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Figure 3-5. The wall shear stress and the shear force petamngth acting on a 20m
wide microcantilever in wateb€20 um, h/b=1/10, Re=1000).

Figure 3-6 shows the pressure and shear forcenpelength acting in the lateral
(y) direction compared to the overall hydrodynamicéoper unit length acting in the
lateral direction. The total hydrodynamic force pait length is the sum of the pressure
and shear forces per unit length. Note that tlutly bave different phase offsets, which
means that (in this case) the shear force coné#oumore to the viscous damping than the
pressure force and the pressure force contributes to the displaced mass than the
shear force. It is interesting to note for thiseatpatio [/b=1/10) that the magnitude of
the pressure force per unit length is about theesasrthat of the shear force per unit
length even though the pressure acts on a sutiatéstonly one tenth of the size that the
shear force acts on. The pressure and shear foecemit length were found at 200
different times per cycle over two cycles. Morelegacould be used, but this increases

the amount of computation time needed. Investigatie predicted amplitude and phase
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as a function of time, all transient effects (floe range of aspect ratios and Reynolds
numbers in this investigation) were found to beligdge within the first cycle.

The numerical results had noise. In order to elate this noise, the data is
smoothed by using the average of the current aod fome instant’s result. This
averaging introduces a half time-step phase oiffisttte total force per unit length. When
finding the phase offset between the force perlength and the velocity using the
averaged data, this half a time-step phase offsst be taken into account.

The hydrodynamic function is found next after citing the magnitude and
phase of the total hydrodynamic force per unit tengrhe magnitude of the
hydrodynamic force per unit length is found by doudpthe maximum value of the force

per unit length on the top and right-hand sidehefdross-section over the second cycle.

0.2 T T T T T T

‘ —e— Total Hydrodynamic Force Per Unit Length [N/m]
<& Shear Force Per Unit Length [N/m]
0.15 f}- X Pressure Per Unit Length [N/m] n
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-0.05

Hydrodynamic Force per Unit Length [N/m]

-0.1

015 | | | | | |
0 200 400 600 800 1000 1200 1400

Time [nanoseconds]
Figure 3-6. The simulated hydrodynamic force per unit lengtfingcon the top and
right side of a laterally vibrating microcantilevierwater 6=20 um, h/b=1/10,
Re=1000). Also shown are the pressure force pedemgth from the thickness and the
shear force per unit length from the width.
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The magnitude is doubled due to the symmetry optbblem, as the total force per unit
length is twice that of the force per unit lengthirag on the top and right-hand side. The
maximum value of the force per unit length overfirst cycle still has transient effects
from starting the microcantilever from rest, thone thaximum value from the second
cycle is used.

The phase offset could be found by using the tiifferdnce between the zero
crossings of the force per unit length and velockpwever, the values for the real and
imaginary parts of the hydrodynamic function argnsisceptible to small variations in
the phase offset caused by variations in the nwalediata. For example, if the total
hydrodynamic force per unit length lagged the vigyday 89.8°, a 0.1° variation in the
phase offset would cause a 50% variation in thenastd value of the imaginary part of
the hydrodynamic function. This is an extreme examgowever, the phase will
converge to 90° as the Reynolds number convergedindy. Thus, there is a need for a
more accurate method of finding the phase offksing trigonometric identities, it is
known that [123]

U,,,2x COSEt) F, cos@t + 0) =

mediundat,max

1 F (cosRat + 0) + cosE0)). (Ea. 3-20)

2 max' mediuniat,max
Multiplying the velocity by the force per unit letgproduces a sinusoid with twice the
frequency and an amplitude offsetads(-0) . The average phase offset over the second

cycle can then be found as

i=20 max’ mediuniat,max

L 2u(i)Fegiuna (1)
0 =—cos? mediunat . Eg. 3-21
average ( ZL ZOOJ F ( q )
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Once the magnitude and phase of the hydrodynamge feer unit length are found, the

hydrodynamic function can be determined as

j (Wt_(gaverage_O-OOSH )

I:me iumlal maxe
Lo sioked RSN/ b) = —ecnet m (Eq. 3-22)

jrnReu__e

It is noted again that the hydrodynamic functiothis hydrodynamic force per unit
length normalized to the amount of force per wemigith it would take to excite fluid of a
cylindrical cross-section, with a diameter of thienocantilever’s width, to the velocity

of the microcantilever. The estimated phase igesthiby 0.00& radians (0.9°, or half a
time step) to account for the two-point averagihthe pressure and shear force per unit

length.

3.4.2 Determining the Mesh Density

The mesh density must be tested to ensure ttsahigh enough to produce a
good estimate of the hydrodynamic forces. As themuensity is increased, the
estimated hydrodynamic function should converge particular value. The density of
the elements in the mesh depends on the node gpatdine boundaries. The node
spacing on the interface of the two fluid regiond0 times greater than the node spacing
on the microcantilever’s surface. The node spacmthe outer boundary is 10 times
larger than the node spacing on the interfaceefwlo fluid regions. Finally, the node
spacing along the thickness of the microcantileserbss-section is approximately equal
to the node spacing on the width. Thus, by increpie number of nodes along the
width of the microcantilever’s cross-section, tlemsity of the entire mesh increases. For

example, doubling the number of points along thétvroughly quadruples the number
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of elements used in the simulation. If there aeemough elements used in the
simulation, numerical artifacts such as those shiowig. 3-4 will grow larger and the
error in the estimation of the total hydrodynanaock per unit length will increase,
especially due to inaccuracies near the cornetfsedbeam’s cross-section.

Six different meshes were created by varying thalmer of nodes along the
width of the microcantilever’s cross-section. Thember of nodes used along the width
of the microcantilever’s cross-section in eachhef & meshes was 100, 200, 300, 400,
600, and 800. This varies the number of elemesgsd in the simulation from around
1000 to around 80,000. These 6 meshes were usgutate the nine different
combinations of aspect ratios and Reynolds nundiera/n in Table 3-1. Eight different
aspect ratios were investigated in this work ragdiom ~1/56 (or 10" to 1 with an
increment of 0.25 on a logarithmic scale. This\vaidor smaller aspect ratios to be
investigated more thoroughly. Simulating an aspatobd of 1/100 was attempted, but the
number of elements required to produce a convergeuation (based on the difference
between the numerical results from the two highesth densities) was too high. The 13
different Reynolds numbers investigated in thiskw@ange from 10 to 10,000, also with
an increment of 0.25 on a logarithmic scale. WthkeReynolds numbers normally
considered for transversely vibrated microcantitevange from 1 to 1000, laterally

excited microcantilevers have larger resonant feegies and Reynolds numbers.

Aspect Ratio tf/b) 1 1 1 1/10, 1/10 | /10| 1/56 1/56 1/56
Reynolds Number (Re)| 10 316.28 10000 10  316.23 @000 | 316.23 | 10000
Table 3-1.Aspect ratios and Reynolds numbers used to testi@olconvergence.
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Thus, the practical range for Reynolds numbersateirally vibrating microcantilevers is
an order of magnitude higher than those of trarsghgwibrating microcantilevers. There
are then 108 different combinations of aspect satiod Reynolds numbers investigated
in this work.

Figure 3-7 plots the real and imaginary parts eftiidrodynamic function for an
aspect ratio of 1/10 and a Reynolds number of I0a80a function of the number of
elements used. Also plotted is the estimate oféhkand imaginary hydrodynamic
functions found from Eq. 3-19. Only one line istpdad as Stokes’ solution assumes that
the real and imaginary parts of the hydrodynamncfion to be equal. The discrepancy
between the numerical solution and Stokes’ soluBatue to the edge effects and the

effect of thickness.

—— Hydrodynamic Function (real,h/b=1/10,Re=10000) [
- — Hydrodynamic Function (imag,h/b=1/10,Re=10000)
----- Stokes' Solution (Re=10,000)
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Figure 3-7.The real and imaginary parts of the hydrodynamncfion for a laterally
vibrating microcantilevern/b=1/10, Re=10,000) as a function of the numberwdfl
elements used. Also plotted is Stokes’ solutiorRe=10,000.
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Note that the solution for the hydrodynamic functamnverges when the number
of elements used increases. The same trend wasnsak nine combinations of aspect
ratios and Reynolds numbers. The second highest sies (600 points along the width
of the cross-section) was chosen as a convergesit,rag seen in Fig 3-3. The values for
the hydrodynamic functions using the 600 node naeshthe 800 node mesh can be
compared and given in terms of the percentagerdiifee. This percentage difference
will give a measure of how close the estimatiothef hydrodynamic force per unit
length is to the convergent value. Ideally, thérewd be zero difference in the two
hydrodynamic functions found from both meshes. Ew®v, minimal differences are
acceptable.

The largest percentage difference between thesenwahies for the nine different
aspect ratios and Reynolds numbers investigatecbwa8s for the real part of the
hydrodynamic function and 2.87% for the imaginaayt f the hydrodynamic function.
The largest differences were found for microcawnéte with aspect ratios of ~1/5Bhis
is expected, as thinner microcantilevers requineggber number of elements to accurately
model the forces along the thickness. For exanapteicrocantilever with an aspect ratio
of ~1/56 with 600 nodes along the width of the moantilever’s cross-section only has
10 nodes along its thickness. Increasing the numibaverall elements by ~32,000 only
increases the number of nodes on the thickness Gd highest percentage difference
for the real part of the hydrodynamic function viasnd for the highest Reynolds
number used (Re=10,000), while the highest pergerdédference for the imaginary part
was for the lowest Reynolds number used (Re=10)s i§ also expected because, as the

Reynolds number increases, the hydrodynamic foeceipit length along the thickness
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(the pressure) becomes more out-of-phase withdloeity. Errors in estimating this
force per unit length would then cause a largesrarr estimating the real part of the
hydrodynamic function compared to the imaginaryt pdren the Reynolds number is
large (Re>>1). The other combinations of aspeatsatnd Reynolds numbers have
differences in the real and imaginary parts oftth@rodynamic function ranging from as
high as 2.81% to as low as 0.03%, as shown in TaBleWhile there may be some
issues with convergence for very thin microcanglsy generally the hydrodynamic
function is convergent when using the chosen mesh.

Another way of determining whether the mesh’s dgnsihigh enough is to
simulate the hydrodynamic forces acting on a trarsaly vibrating microcantilever and
compare the results to the known forces found filoeriterature. The hydrodynamic
function of a transversely vibrating microcantilei@well-known and defined in the

literature in the case of a zero thickness ribl®[88]

_ 4K,(-}{TR®) _
1—‘trans(Re)_ Q(Re{l+ \/j ReKO(—j\/J Re)J (Eq 3 23)

Aspect Ratio |1 1 1 1/10 1/10 1/10 1/56| 1/56 1/56
(h/b)

Reynolds 10 316.23 | 10000 10 31628 10000 10 31623 10000
Number (Re)

Percentage

Difference in | -0.43% | 0.85% | 0.15% 1.59% 1.98% 2.02p6 2.46% 2.81%19%.
I'rya (Re,h/b)
Percentage
Difference in | -1.34% | 0.43% | 1.14% 2.00% 0.03% 1.86p6 2.87% 1.70%50%.
| Tiat (Re, h/b)
Table 3-2.The percentage difference in the real and imagiparis of the hydrodynamic
function using the two finest meshes as a funatioespect ratio and Reynolds number.
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whereK, andK; are modified Bessel functions of the third kind aheQ(Re) function is
a correction function that maps the hydrodynamiccfion for a microcantilever of
circular cross-section to that of an infinitelyrtiiransversely vibrating microcantilever,
and is defined in Ref. 85.

Figure 3-8 shows the simulated real and imaginarispof the hydrodynamic
function of a transversely vibrating microcantilewath an aspect ratio of ~1/56 over a
range of Reynolds numbers. The numerical resuiidoeacompared to the results given

by Eq. 3-23 by investigating the absolute percéfergnce, or

| 1—‘trans,real (Re)_ 1—‘trans,FEA,reaI (Re’l/56) |

%| Diff ., |- e Re) *100% (Eq. 3-24)
trans,real €
and
r.. . (Re)-T - (Re1/56
%l Dlﬁ mag |: | trans,lmag( lz trans,;;ﬁ\gag( ;1 )l*loo%) (Eq 3_25)
trans,imag

The real part of the hydrodynamic function caltedausing the mesh has on
average a 2% absolute percent difference with #dheeg found from Eq. 3-23. The
numerical results range from 1.6% lower than tHaasfound from Eq. 3-23 when Re =
10 to 4.3% higher than the values found from EB33vhen Re = 10,000. The imaginary
part of the hydrodynamic function was on avera@&o/lower than the values found
from Eq. 3-23, ranging from 5.4% lower when Re =%d.00.3% lower when Re = 3162.
This difference is most likely due to the assumptib zero thickness made in Ref. 85
when Eq. 3-23 was derived. The work done in Reksi8ws that the viscous damping
actually decreases and the displaced mass incre@gesthe thickness for a transversely

vibrating microcantilever is increased until thped ratio is larger than 1/10.
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Figure 3-8.The real (left) and imaginary (right) parts of gimulated hydrodynamic
function of a transversely vibrating microcantilewath an aspect ratio of ~1/56 as a
function of Reynolds number compared to the hydnadyic function given by Eq. 3-23.
Specifically, the real part of the hydrodynamiadtion should converge to a value of
1.04 forh/b=1/56. There could also still be some differenaaing from the numerical

modeling. However, the trends in the simulated bgignamic function are close enough

to indicate that the chosen mesh is a good appediomof the operational medium.

3.4.3 Results of the Numerical Simulation

Figure 3-9 shows the real and imaginary parts @htydrodynamic function of a
laterally vibrating microcantilever as a functiointike Reynolds number and aspect ratio
using the procedure described in section 3.4.1guki@ mesh chosen (an example of
which is shown in Fig. 3-2) in section 3.4.2. AEwwn in Fig. 3-9 is the thickness-
independent Stokes’ solution which is given in iec8.3. Note that the real part of the
hydrodynamic function converges to Stokes’ solutisrthe thickness goes to zero. The
imaginary part of the hydrodynamic function alsoneerges to Stokes’ solution as the

thickness goes to zero when the Reynolds numbarge (Re>>1). For small Reynolds
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numbers, the edge effects become significant, ogusiditional viscous damping forces
which are not accounted for in Stokes’ solutione Bame effect is present for the real
part of the hydrodynamic function; however the magte of the edge effects is not as
large. It can be seen from Fig. 3-9 that Stokekitsmn diverges from the numerical
results when the microcantilever’s aspect ratingseased or the system’s Reynolds
number is increased. Over the range of Reynoldseus and aspect ratios investigated,
there is a difference of 10% or greater betweekestasolution and both the real and
imaginary numerical results. If the thinnest aspatid (1/56) is not considered, this

difference increases to 17% or more.

Numerical Results
Stokes' Theory

Numerical Results

Stokes' Theory

. |09(rlat,irpag)
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logth) log(Re) logth) - log(Re)

Figure 3-9. The real (left) and imaginary (right) parts of thelrodynamic function for a
laterally vibrating beam calculated using FEA dgrection ofh/b and Re compared to the
results for the hydrodynamic function found usingkss’ theory, which are independent

of h/b.



63

Figure 3-10 shows the results of the real and imagiparts of the hydrodynamic
function forh/b=~1/56 compared with the approximation of the hydraayic function
found using Stokes’ solution. The results from R&f. which uses a numerical technique
similar to that of Ref. 102, for an infinitely thiaterally vibrating microcantilever are
also shown. The difference between Stokes’ soluimd the results from Ref. 97 is due
to Ref. 97 accounting for edge effects.

The real and imaginary parts of the hydrodynamncfion calculated for a
laterally vibrating microcantilever using an aspedio of 1/56 still diverges from
Stokes’ solution by as much as 16.8% and 93.6%etwely. The largest difference in

the hydrodynamic function occurs for the smallesyidlds number.

A Hydrodynamic Function (real, h/b=1/56)
2 - ® Hydrodynamic Function (imag, h/b=1/56) [~ T
=== Ribbon w/ edge effects (real)
=====Ribbon w/ edge effects (imag)

Stokes' solution

25 i i i
1 15 2 25 3
log(Re)

Figure 3-10. The real and imaginary partsiof: as a function of the Reynolds number
found using a finite element modéllf= 1/56) compared to the analytical results found
using Stokes’ theory and the numerical result@&fomnfinitely thin microcantilever which
accounts for edge effects given by Ref. 97.
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While the real part of the hydrodynamic functiomgelly follows the same trend as
Stokes’ solution, a large portion of the viscoumgang from the edge effects is not
accounted for when using Stokes’ solution. Thissea a large difference in the estimate
of the imaginary part of the hydrodynamic functishen using Stokes’ solution. The
edge effects can be taken into account using thétsegiven in Ref. 97. Comparing the
numerical results found using ANSYS to the respitedicted from Ref. 97 for an
infinitely thin microcantilever, the maximum difiamce in the real and imaginary parts of
the hydrodynamic function decreases to 9.5% an@Pa8tespectively. This shows that
the edge effects have a significant effect on iigginary part of the hydrodynamic
function when the Reynolds number is low and shbeldaken into account. However,
there still is a discrepancy between the numergsllts for a microcantilever of small
yet finite thickness compared to the results foirdinitely thin microcantilever.

The majority of the remaining discrepancy comesfthe additional
hydrodynamic forces from the pressure incidenthenléading and trailing edges of the
microcantilever. Stokes’ solution does not consttle effects of the pressure force on
the microcantilever. Figure 3-11 shows the percgagnitude of the hydrodynamic force
coming from the pressure as a function of both espa¢io and Reynolds number. Even
with an aspect ratio of 1/56, roughly 10% of theltfogynamic force comes from the
pressure acting on the leading and trailing edf&seomicrocantilever. For larger aspect
ratios and higher Reynolds numbers, the pressw@nes the dominant force. This was

seen previously in the results presented in Fig. 3-
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Figure 3-11.The percent of the hydrodynamic force from thedflsipressure acting on a

laterally vibrating microcantilever as a functiointiee aspect ratio and the Reynolds
number.
For a microcantilever with an aspect ratio of 14b@ a Reynolds number of 1000, 41.8%
of the hydrodynamic force comes from the pressivien the Reynolds number is
increased to 10,000, this percentage increasek 386/ This is because the
hydrodynamic force from the pressure increasegatesfaster than the shear force as the
Reynolds number is increased.

The pressure also affects the real and imaginatg pathe hydrodynamic
function differently. Figure 3-12 shows the perceithe real and imaginary parts of the
hydrodynamic function coming from the pressuretmléading and trailing edges. The
pressure’s effect on the imaginary part of the bgigtnamic function is mostly
independent of the Reynolds number. This meandtith the shear force per unit
length and the pressure per unit length in-phasie thve velocity have approximately the

same dependency on the Reynolds number.
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Figure 3-12.The percent of the real (left) and imaginary (r)gdrts of the
hydrodynamic function coming from the fluid’s prass acting on a laterally vibrating
microcantilever as a function of aspect ratio aegri®lds number.

log(h/b)

The effect of the pressure on the real part ohgfgrodynamic function as shown
in Fig. 3-12, however, is a function of the aspatib and the Reynolds number.
Analyzing Fig. 3-9 again, it can be seen thatttick microcantilevers, the discrepancy
between the real part of the numerical results@to#les’ solution increases as the
Reynolds number is increased. This trend is oppaditvhat is expected from the
derivation of Stokes’ solution and opposite thadreeen in the numerical results for the
imaginary part of the hydrodynamic function. Tdiscrepancy arises from the fact that
microcantilevers with a non-zero thickness vibmgiisterally in an inviscid medium will
have a non-zero displaced mass. The hydrodynamatiéun for a laterally vibrating
microcantilever of non-zero thickness in an inudsgiedium as a function of the aspect

ratio has been approximated in the literature @§ [9

1—‘Ied,inviscid(lf]/b) = %(E) (14— ZIn(%J], (Ej << 1 .
T

(Eq. 3-26)
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Figure 3-13 plots the real and imaginary partdefttydrodynamic function as a function
of the Reynolds number for an aspect ratio of 1TI& results are also compared to both
Stokes’ solution and the inviscid solution of EeR@ Note that the real part of the
hydrodynamic function converges to the inviscidusioh as the Reynolds number is
increased, while the imaginary part of the hydrayit function converges to Stokes’
solution. For thicker microcantilevers, the inwbksolution is larger and the numerical
results for the real part of the hydrodynamic fuorcdiverge from Stokes’ solution at

lower Reynolds numbers.

0 ‘ : : :
i : —+— Hydrodynamic Function (real,h/b=1/10)
1 —m— Hydrodynamic Function (imag,h/b=1/10)
----- Stokes' Solution
Inviscid Solution (h/b=1/10)

0L T e T R e §

log(Hydrodynamic Function)

\‘ ~ :
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‘\ | §
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s‘ | |

2 - It N
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1 15 2 25 3 35 4

log(Re)

Figure 3-13. The real and imaginary parts of the hydrodynamncfion as a function of
the Reynolds number found using a finite elemendeh/b=1/10) compared to the
analytical results found using Stokes’ theory whacé independent ¢ffb and the
Reynolds number-independent inviscid solution fiRef. 97.
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While it is logical to expect the effects of prasstorce per unit length to change
as a function of the microcantilever’s thicknebg, $hear force per unit length can also
have a dependency on the microcantilever’s thickn@fie hydrodynamic force per unit
length from the shear and pressure, both in-phad@at-of-phase with velocity and with
a Reynolds number of 1000, is plotted as a funatidub in Fig. 3-14. The
hydrodynamic force per unit length, as comparetthéchydrodynamic function, is not
only dependent on the aspect ratio and Reynold$aubut also on the dynamic
viscosity and density of the medium and width @ thicrocantilever.

The microcantilever in Fig. 3-14 has a width ofi20 and is assumed to be
operating in water. The shear force per unit lemgtheases when the microcantilever’s
thickness is increased. However, this increasaéaisforce per unit length is
insignificant when compared to the increase inpitessure, since the pressure is the
dominant force per unit length when the microcangk is thick (or when the aspect ratio
approaches one). The results show that both the effiects and the effect of thickness
are accounted for using this method.

Another method found in the literature that acdsdor these effects is
illustrated by the numerical results for the hydnaaimic function calculated in Ref. 97.
The hydrodynamic function calculated for particidapect ratios and Reynolds numbers
using both methods can be compared. However, bedhe set of aspect ratios and
Reynolds numbers investigated in Ref. 97 is difiefeom the set used in this
investigation, only aspect ratios of 1/10 and leastudied in both investigations. The

results for these two particular aspect ratiossamvn in Table 3-3.
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Figure 3-14. The hydrodynamic force per unit length from theashend pressure both
in-phase and out-of-phase acting on a laterallyafibbg microcantilever in wateb£20
um, Re=1000) as a function bfb.

Aspect
Ratio 1 1 1 1 1 1/10 1/10 1/10 1/10 1/10

(h/b)

Reynolds
Number | 10 31.622 100 316.22 1000 10 31.627 100 316.22 100(

(Re)

Datreal 2.63786 | 2.14498 1.86329 1.6966 1.6077 0.431921 809B1| 0.148863| 0.092239 0.060745

T lat,real

from 2.68270| 2.17551 1.88862 1.7259 1.6334 0.435849 965%1| 0.148772| 0.093131 0.062098
Ref. 97

Dlatmag 1.30009 | 0.691868 0.37874p 0.211151 0.118406 0.61400.300438| 0.151914 0.080176 0.043274

T lat,imag

from 1.31768 | 0.703144 0.38478p 0.213840 0.119870 0.8/53D.283225| 0.145302 0.076988 0.041760
Ref. 97

Table 3-3.Comparison of the numerical results for the hygin@anic function calculated
using FEA and the method given in Ref. 97.
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Using the FEA results in the denominator, the nucaéresults had an average absolute
difference of 1.2% (maximum of 2.2% for Re = 100@ b/b = 1/10) in the real part of
the hydrodynamic function and an average absolfferehce of 3.09% (maximum of
6.2% for Re = 10 ank/b = 1/10) in the imaginary part of the hydrodynaffuoicction.

The differences between the two results could tsvated to the fact that the solution is
not completely convergent. The FEA model alsogak& account the convective terms
of the equation of motion of the fluid, which mighbre accurately reflect the physical
system. If an analytical expression for the hygir@inic function that covered all the
combinations of aspect ratios and Reynolds numimsead in this investigation could be
found, the two techniques could be more accuratetypared. The development of such

an analytical expression is discussed in the restian.

3.5 Analytical Approximation for the Hydrodynamic Function

The hydrodynamic function of a laterally vibratingcrocantilever can be found
numerically using the procedure described in se@id. However, the time required in
finding the hydrodynamic function at a particulagyRolds number and aspect ratio is
prohibitive. Therefore, a simple analytical forar the hydrodynamic function is desired
so that the trends in the hydrodynamic functiorhwéspect to the geometry and medium
of operation can be investigated. A simple anedytexpression for the hydrodynamic
function, Eq. 3-19, was found in section 3.3 favell-known limiting case. Equation 3-

19 can be modified using a correction factor taaot for both edge effects and the
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effect of thickness using the results from sec8a@h A set of correction factor8g and

Ci, can be found so that

22

[ (Reh/b) = /e (Cr+IC)) (Eq. 3-27)

where,
CR ﬂz\/_\/_e lat numerlcalR(Re’h/b) (Eq 3-278.)
CI ”Z\J/je lat,numericall (Re'h/b) (Eq 3'27b)

It can be seen from Fig. 3-15 ti@4 is roughly a linear function of R& This linearity
arises from the fact that the real part of the bglginamic function converges to the
inviscid solution wheiin/b<<1 [97]. The ratio of the inviscid solution ancktreal part of

Stokes’ solution is

Lauinisca/0) _ ﬁ{EjTN 2.,1[4?]) . (Eq. 3-28)

Diat stokesea (R€)
However, due to the additional viscous damping ftbenmedium, the dependency on
the aspect ratio is not the same as in the invsaligtion case and it is expected that this
trend would not hold for microcantilevers operatingnedia with high viscosities. If
eachCg vs. Ré’ curve is projected back to the case of a zero &dgmumber (infinite
viscosity), the correction factor is found to benrmero. This is due to edge effects. The
slope and intercept of ea€lx vs. Ré’ curve can be found. Plotting the slope of each
curve as a function oh(b)?, it can be seen that the trend is again roughbali.
However, there is a slight inflection in the cudiee to the missing second term from the

inviscid solution. It is then found that usirfgl)'® gives a better fit of the curve, as
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shown in Fig. 3-16. Usindb)'® instead of li/b)?, the slope of the curve in Fig. 3-16 is

approximately 1.658.

200 1

——hib=1
~8— h/b=1/1.77
-=0==h/b=1/3.16
=%— h/b=1/5.62
- - += - h/b=1/10 3 3 3
150 [ e S S 8
-—e— h/b=1/31.62 | : ‘
--®— h/b=1/56.23

/T

lat,Real  Stokes

r

(Re)llz
Figure 3-15.The ratio of the real part of the simulated hydmayic function to Stokes
solution as a function of Réfor eight different aspect ratios.

When the Reynolds number goes to zero (or as Huesity goes to infinity), it is
shown in Fig. 3-15 that the ratio of the numerdatia to Stokes’ solution goes to a
particular value. This value (the estimayedtercept of the curves in Fig. 3-15) is found
to be a function of aspect ratio. Since Stokesitsmh was derived for an infinitely thin
microcantilever, this value should be oné&/#t= 0. It is found that the estimated value
of Ckwhen Re = 0, as shown in Fig. 3-17, is roughlgdinwith respect tb/b. The
power by which the aspect ratio is raised can algaiadjusted, correcting for the slight

inflection of the curve. Investigating thé Ralues for different exponent$y/k)°®is
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found to be the best exponent to fit the curve. Jlbpe of the curve in Fig. 3-17 is

approximately 3.08.
2
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Figure 3-16 The average slope of eaChVvs. Ré” curve in Fig. 3-15 as a function of
(h) 2
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A CRwhen Re=0
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Figure 3-17. The estimated value @ when the Reynolds number is zero as a function
of (h/b)°%.

The same procedure can be used to@ndit is found thaC, depends on R¥,
as seen in Fig. 3-18. The slope gnidtercept of each curve can again be found foheac
particular aspect ratio. Figure 3-19 shows thpeslof each curve as a functionhgb.
Figure 3-19 shows that the slopes of the curvésgn3-18 have a linear dependence on
h/b. However, when the microcantilever’s thickneszaaso, the hydrodynamic function
is not equal to Stokes’ solution. This arises fitbim edge effects and can be clearly seen
in Fig. 3-9. Itis found that the best exponenfittthe curve found in Fig. 3-19 is exactly
one. The slope of the line is approximately -1,3&ith ay-intercept of approximately

2.56.
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Figure 3-18. C, as a function of R&? plotted for eight different aspect ratios.
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Figure 3-19.The average slope of eahvs. R&"? curve as a function of the aspect
ratio.
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The value ofC, when the Reynolds number goes to infinity (or wiieamedium
becomes inviscid) converges to a particular vallieese values are a function of the
aspect ratio and are plotted in Fig. 3-Ahere is again a slight inflection, aftdb)®®° is
found to provide the best fit to the curve witH@pg of approximately 3.108. Note that
the power is the same as in the second ter@x0bnly with a different slope.

The correction factor for the real and imaginarkt pathe hydrodynamic

function can then be given as

h 183 h 085
Cy = 1.658(Ej JRe+ 3.08(Bj +1 (Eq. 3-29)
h 1 h 085

4.5

A Clwhen Re is infinity ; :
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C when Re is infinit

(h/b)o.ss
Figu(r)e853-20.The value ofC; when the Reynolds number is infinity as a functodn
(h/b)™*>.
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This shows that if the thickness is zero and ReStdkes’ solution can be used.
However, even with an aspect ratio of 1/56, thé pag of the hydrodynamic function is
at least 10% greater (when Re= 10) than what @utdkd using Stokes’ solution.
Increasing the Reynolds number will increase tigsrépancy. For an aspect ratio of
1/10 and a Reynolds number of 10, the displaced mvdkbe a factor of ~1.5 times
greater than what is calculated using Stokes’ gmiutWhen the Reynolds number is
increased to 10,000, the displaced mass will lzei@if of ~3.77 times greater than the
results obtained using Stokes’ solution. The saemeds are seen f@;. Thus, Stokes’
solution cannot be used to predict the displacessmathout first using Eqs. 3-29 and 3-
30 to correct for the edge effects and the efféttiokness.

These correction factors can be used to find tlikeddynamic function for every
simulated combination of aspect ratio and Reynoldaber. The hydrodynamic function
found from Eq. 3-27 can then be compared to theemigad results. This gives a measure
of the quality of the fit of the numerical dataorfmicrocantilevers with an aspect ratio
h/b> 1/56 and Reynolds numbers between 10 and 10,08@ftained imaginary part of
the hydrodynamic function is within 5.7% of the renal results. For Reynolds
numbers between 10 and 1000 &fto> 1/56, the calculated real part of the
hydrodynamic function is also within 5.7% of thenmerical results. At higher Reynolds
numbers, the calculated real part of the hydrodyoadnmction shows a difference of up
to 20.5% for microcantilevers witi'b < 1/10. A more complicated fitting model could
be used to improve the semi-analytical method; veweat a high Reynolds number, the

microcantilever’s mass is usually much larger ttrendisplaced fluid mass.
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Another test of the accuracy of Eq. 3-27 is to carapt to other values found in
the literature. As mentioned previously, Ref. @@dia similar procedure to that found in
Ref. 102 to find the hydrodynamic function as action of both Reynolds number and
aspect ratio. Using Eq. 3-27 to calculate the dghgnamic function, the real and
imaginary part of the hydrodynamic function carncbenpared to the results given in the
literature using

| 1_‘Iat,real (Re,h/ b) - 1_‘Iat,literature,real (Re'h/ b) |

%| Diff ., |- *100% (Eq. 3-31)
1_‘Iat,real (Re’h/ b)
and
%l Diff |: |Flat,imag (Re!h/b) - 1—‘Iat,Iiterature,imag (Re!h/ b) | *100%, (Eq 3_32)
mag Do imag (R€,/D)

wherela jiterature IS the value given by Ref. 97. Table 3-4 givesahsolute percent
difference of the real part of the hydrodynamicdtion between the two methods for a

range of aspect ratios and Reynolds numbers.

Log(Re)=1 15 2 2.5 3

h/b=1 1.07% | 1.39% | 1.55% | 1.58% | 1.56%
0.5 1.11% | 0.63% | 0.02% | 0.44% | 0.73%
0.2 1.02% | 1.81% | 1.65% | 1.06% | 0.42%
0.1 1.09% | 0.87% | 1.66% | 1.69% | 1.33%
0.05 3.49% | 0.87% | 0.66% | 1.35% | 1.53%
0.02 5.88% | 2.79% | 0.89% | 0.22% | 0.82%

Table 3-4. The absolute percent difference in the real giattte hydrodynamic function
calculated using Eq. 3-27 compared to the valuesngn Ref. 97 as a function of aspect
ratio and Reynolds number.
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There is an average absolute percent differen&e3@P6 over the range of values
considered in both methods. The maximum percerd#fgence between the two
techniques when calculating the real parts of gfteddynamic function is 5.88% when
using an aspect ratio of 1/50 and a Reynolds nuimiEd.

Table 3-5 gives the absolute percent differendb®imaginary part of the
hydrodynamic function between the two methods farge of aspect ratios and
Reynolds numbers. There is an average absolutzelite of 3.8% over the range of
aspect ratios and Reynolds numbers simulated lhyrhethods. The maximum
percentage difference between the two techniqueswhalculating the imaginary part of

the hydrodynamic function is 9.85%.

Log(Re)=1 15 2 2.5 3

h/b=1 2.86% | 1.47% | 1.00% | 1.11% | 1.53%
0.5 3.25% | 3.30% | 3.22% | 2.95% | 2.52%
0.2 7.06% | 537% | 4.61% | 4.19% | 3.85%
0.1 8.42% | 544% | 4.03% | 3.48% | 3.23%
0.05 9.20% | 521% | 3.16% | 2.36% | 2.15%
0.02 9.85% | 4.93% | 2.26% | 1.12% | 0.83%

Table 3-5. The absolute percent difference in the imagimany of the hydrodynamic
function calculated using Eq. 3-27 compared tovtilaes given in Ref. 97 as a function
of aspect ratio and Reynolds number.
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This again occurs when using an aspect ratio df /sl a Reynolds number of 10. Due
to the lower viscous damping predicted from Ref.tB& quality factors calculated using
Eq. 3-27 will be slightly lower than those calceldtusing the method found in Ref. 97.

The effects of using this method as opposed totieefound in Ref. 97 to find sensor

characteristics (such as the quality factor) wallibvestigated in chapter 4.
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4.Characteristics of Laterally Vibrating
Microcantilevers

4.1 Introduction

The characteristics of laterally vibrating microtigavers in viscous liquid media
are theoretically evaluated in this chapter. Tinaracteristics investigated in this work
include the beam’s resonant frequency, qualityoiaetnd mass sensitivity, which can be
calculated from the frequency response of the beaeflection. The deflection of the
microcantilever’s tip was found in chapter 2 asiaction of the properties of the beam,
the total hydrodynamic force applied by the mediang the frequency of excitation. An
approximation of the hydrodynamic force was foumadhapter 3 as a function of the
Reynolds number and the beam’s aspect ratio. UBiagxpression with the expression
for the deflection of the microcantilever’s tipetfrequency spectrum of the beam can be
found. From the frequency spectrum, relevant cliaristics of the system can be
modeled and investigated as a function of botlptbeerties of the medium and the
beam’s geometry. The characteristics of trans\iexslerating beams can also be
modeled using Eq. 3-23. This will allow the chaeaistics of both laterally and

transversely vibrating beams of similar geometrggacompared and contrasted.
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4.2 Resonant Frequency

The resonant frequency (of a given mode) of a dycalhy driven
microcantilever is defined as the applied excitafrequency that maximizes the
amplitude of deflection of a particular mode ofration [124]. In sensing applications,
changes in the resonant frequency of the micrdearti can be used to monitor changes
in the microcantilever’s operational environmekbr example, if a sensing layer is
applied to the top surface of the microcantiletiee, resonant frequency will change as a
function of the amount of analyte sorbed into thesing layer due to added mass and
changes in the viscoelastic properties of the laljee resonant frequency can then be
used to track the concentration of particular aiealyn the medium of operation. It is also
important to know the resonant frequency when atalg other characteristics of the

microcantilever, such as the quality factor, ma&sssgivity, and chemical sensitivity.

Eg. 2-31 can be used to find the tip displacemsrat fanction of the frequency of

excitation, and is repeated below for convenience:

3 [ F, (04, (x)dx
VLI=X : : L #(L)-
. (Ellatﬂj“_(loBbh‘F Qo jat )0)2) +(gl,lata))2J.¢i2(X)dX

(Eq. 4-1)

Any point along the length of the beam may be chasenvestigate the response as a
function of frequency of excitation as long as plo@nt is not a vibrational node for the
particular in-plane flexural mode under investigati The tip is chosen for convenience.

It was noted in chapter 2 that all parameters ind=t) could be estimated except Fgt
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O1at@ndgz . The excitation force per unit lengty, is not frequency-dependent and
thus only acts to scale the magnitude of the tffedgon. Howeverg; 1o andgs i;are
related to the viscous damping per unit lengthd@isdlaced mass per unit length of the
medium of operation, respectively. They can beutated using Egs. 2-4 and 2-5,

repeated here for convenience:

Ot = 4 p 0T, (Reh/bo, (EQ. 4-2)

J2jat :%/)Lbzrlat,R(Re'h/b)’ (Eq. 4-3)

where the subscrip® andl stand for the real and imaginary part of the hglginamic

functionI'\y , respectively. The hydrodynamic function was fimchapter 3 as

I, (Reh/b)= 2\/\/;(C +C)) (Eg. 4-4)

whereCgr andC, are correction factors to account for the edgect$fand the effects of

beam thickness and are given as

h 183 h 085
CR:1.65{BJ JRe+ 3.06{& +1, (Eq. 4-4a)
h 1 h 085
C, =| 256-1.32 +3.108 +1. Eq. 4-4b
( {5 Dre &) (g 4-4D)

Equation 4-1 also requires the microcantilevermaehsions, density, and
Young’'s modulus to be specified in order to caltaitae frequency spectrum. In this

investigation, the theoretical results predictenrfrEq. 4-1 will be compared to
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experimentally determined results given in theditere. When experimental data cannot
be found in the literature, the theoretical residtdaterally vibrating beams with an
assumed density of 2330 kg/and an assumed Young’s modulus of 169 GPa (silicon
cut along the <110> direction [119]) will be givanless otherwise specified. The length
of the beam is chosen as 40@, which is assumed large enough to neglect simehr a
rotational inertia, while still short enough tausirate the high resonant frequencies and
guality factors associated with laterally vibratimgams. Figure 4-1 shows the frequency
spectrum of a 400x45x12m laterally vibrating silicon beam in ajs (= 1.205 kg/m and

n =0.01827 cP for 20° C) [125-126]. The forcingdtion,F(X), is assumed to be

uniform along the length of the beam.

Figure 4-1 is normalized to the maximum deflectidmhe tip when vibrating
laterally. The higher-order modes have highermasbfrequencies yet smaller tip
deflections compared with the fundamental modeteNlwat the tip deflection calculated
from Eq. 4-1 is the infinite sum of the contributsofrom each mode. It is noted from Fig.
4-1 that each mode is dominant around (within tl »andwidth) its resonant
frequency. Thus, only théh term of Eq. 4-1 is significant in air when cdating theith

in-plane flexural mode’s resonant frequency.



85

0 T | — I | I

Normalized Amplitude Deflection

= =— Normalized Amplitude Deflection (i=1)
----- Normalized Amplitude Deflection (i=2)
= = Normalized Amplitude Deflection (i=3)

a1
o
L

-100 A

aso |

Normalized Amplitude Deflection [dB]

00 A S N IR TR N |
0 1 2 3 4 5 6 7 8
Excitation Frequency [MHz]

Figure 4-1.The simulated frequency spectrum of a 400x45xh2silicon
microcantilever in air found from Eq. 4-1 normalizi® its maximum deflection. The
contributions of the first three in-plane flexunabdes are plotted separately. The
resonant frequencies of the first 5 out-of-plae&diral modes in air are indicated as
vertical lines.

This trend also generally holds true for beams atpay in liquid as long as the mode
number is low and viscous damping is not significadihe resonant frequencies of the
first five transverse modes calculated for a 40822um silicon beam are also indicated
using vertical lines in Fig. 4-1. Note that thi€lateral mode’s resonant frequency is
roughly 3.75 times higher than th& ttansverse mode’s resonant frequency. This is due

to the beam’s greater stiffness when vibratindghalateral direction.
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Figure 4-2. The simulated frequency spectrum of a 400x45xh2silicon
microcantilever operating in the in-plane flexuradde in both air and water. The

resonant frequencies of the first 5 transversaufi@xmodes in air and water are also
given as dotted and solid vertical lines, respetyiv

Figure 4-2 gives the frequency spectrum of a 408%2%mm microcantilever
laterally vibrating in waters = 1000 kg/m andy = 1 cP for 20° C) [125], compared to
the same beam'’s frequency spectrum in air. Thed#h in Fig. 4-2 is normalized to
the maximum deflection of the tip in the first ifepe mode in air. Using the same value
for Fy, the maximum deflection is 167 times larger inc@mpared to water. It is noted
that in order to cause the same maximum deflectienamount of force needed to drive
the microcantilever for this geometry must be ntbea two orders of magnitude larger
in water compared to air. It is also noted thahlibe lateral and transverse resonant

frequencies shift downward and the spectrum isdepdue to the higher viscous
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damping and displaced mass from the medium of éiparaFor this particular geometry,
while the fundamental resonant frequency for taagverse mode drops by 37.7% due to
the increased displaced fluid mass and viscous ognihe lateral mode’s fundamental
resonant frequency drops by only 10.14%. The daenel is seen in the higher-order
modes. This substantially smaller drop in resofr@gfuency for laterally vibrating beams
compared to transversely vibrating beams of singigametry indicates that the amount
of fluid damping is smaller for laterally exciteddms and thus the characteristics of the
device will be less affected by operating in visstiguid media. This indicates that
lateral excitation is a more suitable method ofitaxion for dynamically driven
microcantilevers compared to transverse excitatiben operating in viscous liquid

media.

If an expression for the resonant frequency is dotime trends in the resonant
frequency as a function of the microcantilever'smetry and as a function of medium
properties (dynamic viscosity and fluid densityh &g given. An expression for the
resonant frequency of a laterally vibrating beam loa derived using the procedures
outlined in Ref. 124, as the form of the equatibmotion is the same for both laterally
and transversely vibrating beams. However, theesafor the moment of inerti()
and the hydrodynamic functioif;) will be different from those given in Ref. 124ce
the beam is vibrating laterally. It is noted thatyothe first part of Eq. 4-1 is frequency-
dependent. This means, neglecting the effectsharahodes, that the maximum
deflection of the tip of the microcantilever fos ith mode can be found as the excitation

frequency,m, that satisfies
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di ! = =0 (EqQ. 4-5)
@ \/(Ellatﬂi4 _(pBbh+ 92 at )wz) + (guata))z

and

d? 1

<0. (Eq. 4-6)
da)z \/(EI Ia\tﬂi4 _(pBbh+ gZ,Iat )a)Z )2 +(gllata))2

The excitation frequency that satisfies both oséheonditions is the resonant frequency

of theith lateral flexural mode and can be expressedaridim

_BLY ke i
fres,lat,i - 271_ M|at ’ (Eq 4 7)

whereg is given by Eq. 2-22; and the effective springstant ks, and the effective mass,

M,s: are defined as

k=l (Eq. 4-7a)

lat 3 !
L

M. = pgbhL+Lg,

(gﬁj{a)zm(g%j(gﬁj (B9 4-75)

Wy | d
(psbh"‘ Oojat T (Ithda)(g 2at )j

Equation 4-7a indicates that shorter beams and $eai higher flexural rigidities

lat

+L

(Eliat) have higher resonant frequencies due to theieased stiffness. However,
changing the resonant frequency will also changeeffective mass. As the Reynolds

number is a function of the frequency of excitatibg. 4-7 is a transcendental equation
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and any attempt at finding the system’s resonaujuiency must be done through

iteration. The resonant frequency can be foundutjinaan iterative process by
fres,lat = l[m Fln(fguess) (Eq 4_8)

whereF;"(fgues) is the functior; appliedn times tofguess F1(fauesd is the right hand side
of Eq. 4-7, andyuesdS @ guess value of the resonant frequency. Sircessonant
frequency of a laterally vibrating beam does natrdase significantly when operating in
water compared to the same beam operating in &irvacuum, a good initial guess for
the resonant frequency of a laterally vibratingnmeantilever in a viscous liquid medium

is the resonant frequency of the microcantilevea \racuumf,, which is given by

(BL)Db | E _ (Eq. 4-9)

It was noted in chapter 3 that, as Re approactiestyn both the hydrodynamic
function and its derivative with respect to Re aggh zero. Taking the derivative of the
real and imaginary parts of the hydrodynamic fuorcas a function of the excitation

frequency and using Egs. 4-2 and 4-3,

(a;t j dda) [gu% j _ ‘*fé);bz[ 256 1.321(2}} \EJPRL*ZZ (3.108(2)085 +1j

(Eq. 4-10)

and

(aa) g, ) —JiprZ[ao{E]“:l]_ (EqQ. 4-11)

2 Jdw Re
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When the Reynolds number is large, Eg. 4-10 andl 4gproach zero (meaning that the
hydrodynamic function is roughly frequency-indepemt) and Eq. 4-7 can be simplified

to

_(pL)y El, (psbh+ 9,1, ) , (Eq. 4-12)

reslat,i — 2 2
27
(pebh+ g, f + (g@

Iteration must still be used, gs.: andgy 1 Still depend on the resonant frequency. This
approximation can be compared with the exact espegiven by Eq. 4-7 with the same
set of nine aspect ratios and Reynolds numbersuwia used to test for solution
convergence in chapter 3. As the geometry of daarbis determined by three
parameters, a constant length of 4@0 will be assumed for all nine test geometries.
Assuming operation in water, the width can be \chaeer a range of values until the
resonant frequency of the particular geometry wi¢he desired Reynolds number. The
minimum and maximum Reynolds number used in ch&pwat! be investigated. A
Reynolds number in-between these two values (og adale), 18° or 316.23, is also
investigated. The thickness is also varied to ta@rthe desired aspect ratio. The nine
test geometries are given in Table 4-1 along wWitghfirst mode’s resonant frequency as
calculated by Eq. 4-7. It should be noted thase¢hgeometries are selected only for
illustrating the accuracy of the approximationsrawe range of aspect ratios and
Reynolds numbers investigated. Some of the miatdesers with geometries given in
Table 4-1 would make poor sensing platforms, wbikeers would be too stiff to excite

laterally.
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Aspect Ratiolg) | 1 1 1 U0 | U0 | U0 | 1756 1/56 1756
(RReg’)”o'ds Number | 14 316.23 | 10000 | 10 31623 10009 10 31628 10000
h (um) 10.1367| 30.883§ 97.037% 1.3381 3.01424 9.22685630% | 0.598508 1.66654B
b (um) 10.1367| 30.8834 97.037# 113381 30.1424 92.06858348. | 33.6566 | 93.7166
L (um) 400 400 400 400 400 400 400 400 400

fresUsing Eq. 4-7

(KH2) 62.170 | 211.710 678.12D 49.86¢ 222.31 750.p37 29.226178.625 | 727.157

fres Using Eq. 4-12

(kHz2) 61.759 211.652 678.114 46.09¢ 221.13 749.882 25.932173.395 724.898

fres Using Eq. 4-12,
Numerical Results | 61.822 | 211.706 678.32p 47.63( 221.805 752.584 27.08 172.179 | 734.92
(kHz)

fres Using Eq. 4-7,

83.830 263.554 833.24p 69.96 238.783 781.p68 48.3G 192.796 739.716
CR=C|=1 (kHZ)

fo (kHz) 87.161 | 265.554 834.380 97.491 259.1|81 793.376 ©37.5 289.398 | 805.828

Table 4-1. The resonant frequency calculated using Eg. 4-tlamdesonant frequency
calculated using several different approximatiarsiine different laterally vibrating
beams assuming operation in water, a beam derfs283® kg/ni, and a Young’s
modulus of 169 GPa.

Table 4-1 also gives the approximation of the rasbifrequency for high
Reynolds numbers calculated from Eq. 4-12. Ihswn that Eq. 4-12 is a good
approximation of the resonant frequency over tingezof aspect ratios investigated if the
Reynolds number is large. As the thickness deesgdise difference between the
resonant frequencies calculated using Eq. 4-7 and-H2 increases due to the
decreasing beam mass. The approximation onlytaftee displaced mass and viscous
damping. If the beam mass is much larger thadi$@aced mass and viscous damping,
the approximation of the resonant frequency giveid. 4-12 should be equal to the

value given by Eq. 4-7.

The approximation of the resonant frequency fohtRgynolds numbers

calculated from Eqg. 4-12 in the seventh row of €abll uses the approximation for the
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hydrodynamic function given in chapter 3. Sinca¢he some discrepancy between the
approximation of the hydrodynamic forces and thenewcal results, a more accurate
method of finding the resonant frequency is totheenumerical results directly. The
eighth row of Table 4-1 uses Eq. 4-12 using theerical results found in chapter 3. The
resonant frequency calculated using the numergsallts for the hydrodynamic function
are found to be within 4.4% of the values givethi& seventh row. The largest
difference was again seen for thin beams, as \@mgtn the hydrodynamic function
affects the resonant frequency more when the beass i small. The resonant
frequency can also be calculated using Stokestisol(Cr=C,=1) for the hydrodynamic
function. These values are given in the ninth odWable 4-1. As expected, when the
beam is not thin and the Reynolds number is sitiate is a significant discrepancy in
the resonant frequency (up to 65%). The last rbable 4-1 gives the resonant

frequency in a vacuum of the particular beam gepmfgt for comparison.

Reference 97 also gives the hydrodynamic functidaterally vibrating beams
for several different aspect ratios and Reynoldslmers using the boundary integral
technique given by Ref. 102. The resonant frequeatculated using the method in Ref.
97 and the method given in chapter 3 can be cordpake Ref. 97 does not specify the
derivative ofg; jar andgy,jat With respect to the frequency of excitation, Eq. dannot be
used with the results given in Ref. 97 to find tbgonant frequency. As Eq. 4-12 was
found to be a good approximation for the resonaatuency in Table 4-1 and does not
depend on the derivatives @f ;s andgy,jat, it can be used to compare the resonant
frequency calculated from using the hydrodynamicfion given by Eq. 4-4 and the

values for the hydrodynamic function given by R&f. A set of nine geometries are
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again determined having lengths of 408, aspect ratios ranging from 1/50 to 1, and
Reynolds numbers ranging from 10 to 1000. Thesgascover the intersection of the
range of aspect ratios and Reynolds numbers udaatlininvestigations. It is assumed

that the beam is operating in water.

There is good agreement (<1% difference) betweemgbonant frequencies
calculated using both methods for Reynolds huméleose 100. For the lowest
Reynolds number tested, the resonant frequendieglai®d using the values for the
hydrodynamic function in Ref. 97 were slightly hegt{7.6% for the thinnest beam) due
to the lower viscous damping predicted. Howeuss,ieams with Reynolds numbers of
10 are the beams with lower resonant frequencigdshars the lower quality factors and
mass sensitivities. Beams with higher Reynoldshemnare desired and these beams

show good agreement for the two methods.

Aspect Ratio | 4 1 1 0.1 0.1 0.1 002 | 002 0.02

(h/b)

Reynolds 10 100 1000 10 100 1000 10 100 1000

Number (Re)

h () 10.156 | 21.176 | 45.177] 11534 212720 43501 0207 970.4| 0.924

b (um) 10.156 | 21.176 | 45.177| 11534 21270 43501  14.864.8504 | 46.188

L (um) 400 | 400 200 200 | 400 200 200 | 400 200

fres Using Eq.

j‘iszfpd BA-| 61.004| 142308 312868 48 141113 337421 28.8983.320| 299.316

= lat

(kHz)

fres Using Eq.

g;lfzo'r?_”d Refl 61677| 141.069 312.011 49705 142.009 337.055 31/1004.101| 299.944
lat

(kHz)

Table 4-2.The resonant frequencies calculated from the ajpite expression given

by Eq. 4-12 of nine laterally vibrating beams assgnoperation in water, a beam density
of 2330 kg/m, and a Young’s modulus of 169 GPa using Eq. 4r4te values of the
hydrodynamic function compared to using the valyigen in Ref. 97 for the values of

the hydrodynamic function.
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4.2.1 Effects of the Medium’s Density and Viscosity on the Resonant Frequmn

From Tables 4-1 and 4-2, it is noted that incregagive Reynolds number
drastically increases the resonant frequency. hewaét is noted that in this case, the
changes in the Reynolds number come from changée ibeam geometry. To
investigate the effect the medium of operationdrathe resonant frequency, the
Reynolds number can be changed by using differgmrdic viscosity and density values

for the medium of operation. Using Eq. 4-7 and £&8§, it is shown that

S pegbhL

Eqg. 4-13
res M ( q )

lat

Using Eqs. 4-2, 4-3, 4-4, and 4-7, the ratio ofdffective mass to the beam mass

is given by
-1
M., pob 1 (42 ) hpg
g L= C 122 +C % 2JRe-£B +4/2C . Eq. 4-14
pgbhL th\/R_e 2 ° \/_pr 12 i (54 )

Note that as the Reynolds number goes to infithiy,ratio does not approach one,

as one of the terms {Dr depends on/Re. This is due to the fact that the beam will still
displace mass even in an inviscid medium, thusgngpthe resonant frequency from
that found for the same beam operating in vacuAiao note that the ratio is a function
of the excitation frequency, both through the Régamumber an€r andC; which

depend on the Reynolds number.

The effects of the dynamic viscosity or densityief medium of operation could

be investigated by fixing one quantity and varyihg other. However, these values
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would not correspond to realistic examples of openal media. One way of
investigating the effects of the medium of operatm the resonant frequency is to
simulate the resonant frequency of a beam in varamueous mixtures of glycerol.
Simulating a 400x45x1gm laterally vibrating silicon microcantilever and yarg the
dynamic viscosity and density properties for aqseanixtures of glycerol ranging from
0% (pure water) to 72 w/w%%p( = 1183 kg/m andy = 27.57 cP) [125], the resonant
frequency can be plotted as a function of the Rieggoumber using Eq. 4-7. The results
are shown in Fig. 4-3. Also plotted in Fig. 4-3he beam’s resonant frequency in
vacuum, the high Reynolds number approximatiomefresonant frequency calculated
from Eq. 4-12, and the resonant frequency calcdlftiethe case of an inviscid medium

(Eq. 4-7 where the hydrodynamic function is giverHy. 3-26).

400

S i

360

340

320

Resonant Frequency [kHz]

300 | —+=— Resonant Frequency (Exact, Eq. 4-7)

=o = Resonant Frequency (Re>>1, Eq. 4-12)
- —— Resonant Frequency (Assuming Inviscid Medium)
Resonant Frequency (In Vacuum)

280

0 200 400 600 800 1000 1200
Reynolds Number

Figure 4-3. The resonant frequency of a 400x45xd2 laterally vibrating silicon
microcantilever calculated using the exact expogs@tq. 4-7), the approximate
expression, (Eg. 4-12), valid for high Reynolds twens, and assuming the medium is
inviscid (Eq. 4-7 using Eq. 3-27 fdi,) as a function of Reynolds number. The Reynolds
number is varied assuming different mixtures ofeamys glycerol. The resonant
frequency in a vacuum is also given.
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It is shown in Fig. 4-3 that as the Reynolds numbereases, the error in using
Eqg. 4-12 to approximate the resonant frequencyedsess. The resonant frequency
calculated from Eq. 4-7 approaches the resonaquérmcy calculated assuming an
inviscid medium as the Reynolds number increadkxe that the resonant frequency
calculated for the case of an inviscid medium cleardye to the fact that the medium’s
density changes, which will change the amount gppldiced mass.

The main change in the Reynolds number in Figcé+ies from the change in
the medium’s dynamic viscosity. This changes yarddynamic function, which will
shift the resonant frequency. Changing the medutehsity will also shift the resonant
frequency. However, sin@g o andgz i: are multiplied byp,, the shift in the resonant
frequency will not solely come from the changehia hydrodynamic function. Due to
this dependency, beams with higher Reynolds numiiireccasionally have lower
resonant frequencies. For example, for a 400x4pxd 2aterally vibrating silicon
microcantilever, the resonant frequency of the amental mode is 10.14% lower when
the beam is operating in water as opposed toHomever, the Reynolds number of this
beam in air is 81.1 and is 1102.44 in water. ThgrRelds number is higher in water
because the Reynolds number is inversely depemnaetie kinematic viscosity (the ratio
of the dynamic viscosityy, to the medium’s density). Since air has a higdrematic
viscosity than water, the Reynolds number will d&dr. Yet, the resonant frequency will
be higher due to the lower density of the mediurapsration. In general, beams laterally
vibrating in media with lower densities or dynamiscosities will have higher resonant

frequencies.
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4.2.2 Trends in the Resonant Frequency as a Function of Beam Geometry

The resonant frequency can also be investigatadasction of the geometry of
the beam. In a vacuum, Eq. 4-9 shows that the agsdrequency is dependent .2
with no dependency on the microcantilever’s thidsje. The resonant frequency was
reported in Ref. 61 for laterally vibrating microd#evers of various geometries in both
air and water. The lengths of the beams used 2@9¢400, 600, 800, and 100t and
the widths of the beams used were 45, 60, 75, Gnah® An average beam thickness of
14.48um was reported. The beam was primarily made afailiwith an average
thickness of 12.6lum. However, there was a 0.6 thick layer of thermal oxide on
the top of the beam. In addition, several layésilawon nitride (0.48.m total) and
silicon oxide (0.72um total) were also deposited onto the beam in daleritigate the
effects of pinholes on the circuitry used to exthie microcantilever [61]. The density of
the beam can be assumed to be approximately tipatrefsilicon, or 2330 kg/fn
However, the Young’'s modulus of the composite systea function of the Young'’s
modulus of the individual layers. An effective Yays modulus for each beam can be
found by varying the Young’s modulus and attemptmgiatch the reported resonant
frequency in air using Eq. 4-7. The average effiecioung’s modulus of the
microcantilevers used in air is found to be appraately 127.5 GPa. The resonant

frequencies in air can then be calculated usingdEgiand are given in Fig. 4-4.
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Figure 4-4.The simulated resonant frequencies of laterallyatibg microcantilevers in
air compared to experimental data as a functidwidffor widths of 45, 60, 75, and 90
um, lengths of 200, 400, 600, 800 and 106 and a thickness of 14.481. The
experimental data is from Ref. 61.

Note that the resonant frequencies only followkiié dependency for beams
whereb/L?<0.001um™. The discrepancy between the theoretically aneéexntally
determined resonant frequencieshifi’>0.001um™ is likely due to not taking into
account the support compliance and due to thehatthe shear deformation and
rotational inertia effects were neglected in theagmpn of motion. These effects
significantly decrease the resonant frequency @bgam when the beam’s length is on
the order of its width. This particular limt/(><0.001pm™) arises from the particular
thickness and materials chosen for the beam, aydomaigher or lower for devices
made from different materials and with differentkmesses.

Using the effective Young's modulus of 127.5 GPanid previously, the resonant

frequencies of each beam in water can also belasdclfrom Eq. 4-7 and are plotted in

Fig. 4-5. Again, the experimentally determinecbresnt frequencies are lower compared
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to the theoretically determined resonant frequenitiebeams wherg/L’<0.001. There
is a slight dependency on the beam’s aspect tatizever, for long beams, thdL?
linear dependency still holds.

When the microcantilever is laterally vibratingwater, the resonant frequency
also has a slight dependency on the microcantikt@ckness. Figure 4-6 shows the
simulated resonant frequency of a 4004 beam with a Young’s modulus of 127.5
GPa as a function of beam thickness. A thin beaffiective mass will mostly come
from the fluid’'s displaced mass. While the displdluid mass ranges from 11%-35%
of the total effective mass for the geometries giveFig. 4-5, the displaced fluid mass
will be much larger than the beam mass as thernkgk goes to zero. Increasing the
thickness will then increase the stiffness morekjyithan it increases the effective mass.
However, as seen in the chosen geometries of Babltor thick beams, increasing the
thickness increases the effective mass of the wacrtdever including the liquid
contribution quicker than it increases its stiffaéahich is proportional to the thickness
and not the fluid properties), which reduces tlsnant frequency. For this particular
length and width in water, the highest resonamuescy is found when the thickness is

6.548um.
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Figure 4-5.The simulated resonant frequencies of laterallyatibg microcantilevers in
water compared to experimental data as a funcfitniL for widths of 45, 60, 75, and 90
um, lengths of 200, 400, 600, 800 and 106® and a thickness of 14.481. The
experimental data is from Ref. 61.
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Figure 4-6.The simulated resonant frequency of a laterallyatibg microcantilever 400
um long and 4um wide in water as a function of beam thickness.
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In general, shorter and wider beams have highenesd frequencies following a
roughly linearb/L? dependency. In air, the resonant frequency hies tit no dependence
on the beam’s thickness. However, in water, tfecie mass is not a perfectly linear
function of the thickness, which causes the resbinaguency to become dependent on

the thickness.

4.2.3 Comparison of the Resonant Frequency of Laterally and Transversely
Vibrating Beams

One of the main benefits of using lateral excitabwer transverse excitation is
that the stiffness and, thus, the resonant frequmdeams vibrating laterally are higher.
The other advantage is the increase in the gualttyr, which will be investigated in
section 4.3. The amount that the resonant frequierecgases is a function of the aspect
ratio. Since Eq. 4-7 is the same for both latgraiid transversely vibrating

microcantilevers, the ratio of the two resonangjfiencies can be given as

f
res,lat =E Mtrans (Eq4-15)

hy M

f

restrans lat

where

M _pBth+ ng,trans

trans —

(gltra% }4. (a)transjd(gnra% } . (Eq 4_15a)
L trans 2 do trans (gl.tra% }

w, rans d
(psbh * Ooprans T (12) @ (gz,trans)j

In vacuum or a low density medium, the effectivessjiel, is the mass of the

beam, and the ratio of the resonant frequenci&sgji-15 idb/h. When the viscous
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damping is significant, the ratio of the resonaatiiencies becomes a function of the
Reynolds number and fluid density. The predictgtbrof the in-plane and out-of-plane
flexural mode’s fundamental resonant frequencies 490x45x12im silicon
microcantilever is plotted as a function of percamqueous glycerol of the operational
medium in Fig. 4-7. The ratio cannot be plotte@ &snction of the Reynolds number as
the Reynolds number will be different for the caskkateral and transverse excitation.
However, the Reynolds numbers using both excitatgiiti decrease as the percent

agueous glycerol increases.

6.4

If
reslat,l res,trans,1

f

5.4 | i i i i i i

0 10 20 30 40 50 60 70 80
Percent Aqueous Glycerol

Figure 4-7.The simulated ratio of the fundamental resonamfiegacy of a 400x45x12
um silicon microcantilever vibrating laterally toetihesonant frequency of the same
microcantilever vibrating transversely as a funtid percent aqueous glycerol found in
the operational medium.
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As shown in Fig. 4-7, the increase in the resofraquency using lateral
excitation compared to transverse excitation igdafor lower Reynolds numbers (or
higher percent glycerol). However, the overall resd frequency will also decrease as
the Reynolds number is increased. The main inergathe ratio is due to the transverse
resonant frequency dropping drastically in meditnwigh viscosities. In general, the
resonant frequency of a laterally vibrating micratdaver will be a factor ob/h or
higher than the resonant frequency of a transwyexsletating microcantilever. Larger
ratios are seen in media of higher density and mhyni&iscosity due to the smaller

effective mass encountered when exciting the beandlly.

4.3 Quality Factor

A fundamental problem encountered by microcanti®wperating in the liquid-
phase is the dramatic decrease in the microcaatsgéyguality factors compared to the
guality factors of microcantilevers operating ie tjas-phase. This decrease in the
quality factor increases the frequency noise (wisgbroportional tdies ja{ Qiat When
operating in an oscillator configuration [89]),uthincreasing the limit of detection
(LOD) in biochemical sensing applications. The gydhctor is defined asm2times the
ratio of the maximum energy stored in a resonatiygjem to the amount of energy
dissipated in one cycle [87]. The Reeps the definition consistent with a second
definition, which is the ratio of the resonant fueqcy to the 3 dB bandwidth of the

system,
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f
QIat,SdB = res'%fsdB . (Eq. 4-16)

When the loss is low, the two definitions are eglent.

While the viscous damping from the medium may lgepimary source of loss
when a microcantilever is vibrating in a viscoupild medium, it is not the only source
of loss. Other common loss sources arise out o$tipport losses, squeeze film effects,
and the viscoelastic damping of the sensing ldyibei sensing layer is a viscoelastic
material. If the sensing layer is thin enough,iseoelastic losses can be assumed
negligible. The squeeze film effect comes fromlibam’s interaction with the
boundaries of the fluidic cell in which it operateSince the operational medium in this
work is considered infinite, this source of losH wot be considered. The support loss
depends on the length of the beam [93]. Howevkennoperating in a viscous liquid
medium, the support loss is negligible when compéoehe losses from the medium

[92].

The frequency spectrum of a 400x45x48 silicon microcantilever both laterally
and transversely vibrating in water are found ugingg4-1 and plotted in Fig. 4-8. Only
the resonant frequency of the first in-plane flekumode is shown, while the resonant
frequencies of both the first and second out-ofvpllexural modes are shown. It is
noted that in Fig. 4-8 the 3 dB bandwidth of tharbdaterally vibrating is about three
times larger than that of the same beam vibrataugswversely. However, since the
resonant frequency is ~5.4 times larger, the quidittor is about two times larger for the

laterally vibrating beam compared to the transvgngérating beam.
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Figure 4-8. Thesimulatedrequency spectrum of a 400x45xid@ silicon
microcantilever in water vibrating both laterallycatransversely. Each spectrum is
normalized to the maximum tip deflection of thengaerse beam, and is excited using
the same magnitude force.

If the transversely vibrating beam’s length wasrsded to 17wm, the beam’s
resonant frequency (347.6 kHz) would be the santbaaof the 40@um long laterally
vibrating beam in water. The spectra of a 400x25xth beam vibrating laterally and a
175x45x12um beam vibrating transversely in water are giveRigh 4-9. The two
beams’ quality factors are roughly the same (17ot5he laterally vibrating beam and
19.41 for the transversely vibrating beam). Howetree laterally vibrating beam has
more than double the surface area and, thus, caortamore than two times the mass of
a particular analyte into its sensing layer. Whethe frequency shift due to this
sorption is larger for laterally vibrating beamsmmared to transversely vibrating beams
is a function of the mass sensitivity and the clvahsensitivity, which will be

investigated in section 4.4.
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Figure 4-9. Thesimulatedrequency spectrum of a 400x45xi@ silicon
microcantilever in water vibrating laterally and 2856x45x12um silicon microcantilever
in water vibrating transversely. Both beams amgted by the same force and
normalized to the maximum transverse deflection.

An analytical expression for the quality factogigen by Eq. 4-16 when the loss
of the medium of operation is low. When determirting quality factor experimentally,
the 3 dB bandwidth definition of the quality factemormally used. In this work, the
quality factor will be found using the 3 dB bandtidiefinition as opposed to the quality
factor found from the energy definition. The resurfeequency was already found in
section 4.2. Since the deflection is proportidnahe square root of the power stored in
the systemthe half power bandwidth of the system is the etiah frequency which
causes the beam to deflect a factor of ~0.7070othiéd maximum value. Two excitation
frequenciesmsgp, satisfy this condition. These two frequencies loafiound by solving

for angg in
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1

1
\/E \/((Ellat )(IBlL)4 - rna)res2 L3 - gz,lat a)resz L4 )2 + (gl,lat a)resL4 )2
1

= )
\/((EI lat )(ﬂ1|-)4 - ma)3dB2 L® - gZ,Iat,3dBa)3de L4) + (gl,lat 3dBPadB L* )2

(Eq. 4-17)

The procedures to find these two frequencies aamdhe same for both
transverse and lateral excitation. Using the netthdlined in Ref. 124, if the
hydrodynamic function is assumed to be frequendgendent in the considered

frequency range, the quality factor can be given as

-1
gLIat /a)lat
=21- 1-—— = Eq. 4-18
Qu {[ \/ pPebh+ gy D (Ea )

When the resonant frequency is solved iteratiiblg g 1o andgs s Values are also found.

Thus, no further iteration is needed to evaluateZ=t8. Using a binomial expansion of

the denominator of Eq. 4-18,

d1- o Gua /P | Gl @ or (Eq. 4-19)
pebh+9, ., pebh+ 0,

When the loss is low, the quality factor calculafeasin the 3 dB bandwidth can be
approximated as

pgbh+ O2jat

Qlat ,approx = 2721: reslat
g:LIat

(Eq. 4-20)

Equation 4-20 shows that the quality factor isteglao the ratio of the amount of beam
mass plus displaced mass over the amount of visdaoping. As expected, increasing

the beam mass or the displaced mass while mainggihe damping constant will increase
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the quality factor, while increasing the dampind) decrease the quality factor. However,
the resonant frequency will also change when tted thsplaced mass or viscous damping

changes.

The nine geometries used in Table 4-1 can be mseshnparing and contrasting
the different approximations for the quality factoiTable 4-3. From Table 4-3, it is noted
that the quality factor is higher for thicker antler beams with higher Reynolds
numbers. Comparing the quality factor found frdma $pectrum (Eq. 4-16) and from Eqg.
4-18, the approximation that the hydrodynamic fuorcts frequency-independent is
found to be a good approximation unless the quidityor is very low. The quality

factors approximated using Eq. 4-20 are slightghkr than the quality factors calculated

from Eq. 4-18.

1 1 1 1/10 1/10 1/10 1/56 1/56 1/56
Aspect Ratio
(h/b)
Reynolds 10 316.23 | 10000 | 10 31623 10000 10 316.28 1000
Number (Re)
h (um) 10.1367| 30.883§ 097.037¢ 1.13381 3.01424 9.226856309 | 0.598504 1.666543
b (um) 10.1367| 30.883§ 97.037W 11.3381 30.1424 92.76858348. | 33.6566 | 93.7166
L (um) 400 400 400 400 400 400 400 400 400
Quvacs (EQ. 4-16) | 4.125 21.770 | 121.17f 0863| 4652 24990 0545 1.438 6.013

Qat (Eq. 4-18) 4.129 21.850 121.190 0.794 4.654 24990  0.635 1.437 6.025

QumodEQ. 420) | 4395 | 22103 | 121.44| 1159| 4018] 25243 0677 1.740 6.286
Qu (Eq. 4-18,

Using Numerical | 4.051 | 21.874 | 118.486 0.83 4597|  25.083  0.641 1.319 5.751
Results)

Qa(Eq.4-18, | 15884 | 66.325| 367.111 1.954| 6.833 34.488 0893  71.79| 6.669
UsingCr=C;= 1)

Table 4-3. The quality factors calculated using several ddférapproximations for nine
different laterally vibrating beams assuming operain water, a beam density of 2330
kg/m®, and a Young’s modulus of 169 GPa.
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The effects of using the analytical approximationthe hydrodynamic function
as opposed to directly using the numerical resutisalso given in row 9 of Table 4-3.
Using Eq. 4-18 to calculate the quality factor réhis a difference of 0.1% to 4.5% in the
guality factor in all cases except one. For areesmtio of 1/56 and a Reynolds number
of 316.23, using the analytical approximation fog hydrodynamic function instead of
using the numerical results directly causes a tranan the quality factor by 8.21%
(1.437 vs. 1.319) due to the higher viscous dampredicted by the numerical results.
Since the viscous damping does not directly depentthe beam mass, variations in the
hydrodynamic function affect the denominator of B¢ much more than the numerator.
Because of this, the quality factor, compared eordsonant frequency, is much more
sensitive to variations in the estimate of the bygnamic function. Table 4-3 also
indicates that using Stokes’ solution without cotireg for the edge effects and the
effects of thickness (row 10) produces drasticaliger quality factors due to the

neglected additional viscous damping.

The quality factor can also be calculated usingviilaes given for the
hydrodynamic function found in Ref. 97. Using tlaene set of nine geometries found in
Table 4-2, the quality factor can be found from &d.8 using the hydrodynamic function
calculated from both methods. Since the derivativ@ ;o andgp o With respect to
excitation frequency is not given in Ref. 97, E4L2will be used to calculate the

resonant frequency. These quality factors aregind able 4-4.
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AspectRatio | 4 1 1 0.1 0.1 0.1 002 | 002 0.02
(h/b)

Reynolds 10 100 1000 | 10 100 1000 10 100 1000
Number (Re)

h (um) 10.156| 21.176 45.17f 1.1534 2.12f2 4.3501 0.297 970.4| 0.924
b (um) 10.156| 21.176 45177 11534 21.2f2 43501 14/364.8594| 46.188
L (um) 400 400 400 400 400 400 400 400 400
(E?g‘ ({_'Z)fmm 4128 | 12.436| 38576 0794 2.688 8095 0.689 097 4412,
g';(g';l)fmm 4027 | 12.386| 38.199 0932 2797 83594 0667 1.013 .4562

Table 4-4.The quality factorsQy;, of nine laterally vibrating beams assuming openat
in water and a Young's modulus of 169 GPa and antgensity of 2330 kg/fh
calculated using Eq. 4-4 fdi,; compared to using the values given in Ref. 91 fgr

Again, there is good agreement (<4.1%) for theigutgctors calculated using
both methods for Reynolds numbers above 100. WieReynolds number is 10, the
imaginary hydrodynamic function given by Ref. 9%imsaller than what is found using
Eq. 4-4. This caused a discrepancy between theéhues found for the quality factor of
up to 17.4% (0.932 vs. 0.794). However, the geaetethat have the largest
discrepancies are the ones with quality factortherorder of 1, which is too low a

quality factor to use in liquid-phase chemical segspplications.

4.3.1 Effects of the Medium’s Density and Viscosity on the Quality Factor

It is noted in Fig. 4-2 that the sharpness of tbaks of the frequency spectrum is
drastically reduced when operating in a viscousgitignedium such as water. Table 4-3
also indicates that microcantilevers with lower Ralgs numbers have lower quality

factors. Using Egs. 4-2, 4-3 and 4-4, Eq. 4-20kmnewritten as
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male N V2 Cr
=JvRe—=——+— . Eqg. 4-21
Qlat,approx ,0|_ b C| C| ( q )

The first term in Eq. 4-21 is proportional to tlggiare root of the Reynolds number
multiplied by the aspect ratio and the ratio of bleam’s density to the medium’s density.
The correction factors are functions of the aspattd and Reynolds number, and are
found in both terms of Eq. 4-21. However, for theams, the correction factors are
small and the quality factor is roughly proportibtwathe square root of the Reynolds
number. The Reynolds numbers in Table 4-3 varytdwhanges in the beam’s geometry.
The effects of the medium of operation can agaimbestigated by changing the density
and dynamic viscosity of the medium of operatidine trend as a function of the
Reynolds number can again be investigated by ubmgensity and dynamic viscosity of
various percent aqueous glycerol mixtures (0% &)/ Figure 4-10 plots the quality
factor of a 400x45x1@m laterally vibrating silicon microcantilever agumction of the
Reynolds number. Also shown is the approximatibtne quality factor calculated from
Eq. 4-21. It is noted in Fig. 4-10 that as the Régs number increases, the quality factor

increases with a trend approximately equal to thege root of the Reynolds number.
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—+&=— Qlat
=o = Qlat,approx
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Quality Factor

(Re)ll2
Figure 4-10.The quality factorQa;, and its approximation for high Reynolds numbers,
Qiat,approx Calculated for a 400x45x4an laterally vibrating silicon microcantilever as a
function of (ReY?. The Reynolds number is varied by using differeities for density
and dynamic viscosity corresponding to various agsesolutions (0% to 72%) of
glycerol.

The density of the medium also affects the quédityor independently of the
Reynolds number. When the beam mass is much lrgerthe displaced mass

(pghbL>> Lg,,, ), the quality factor can be approximated as

hy/
— PN (5 hbL>> Lg,, )- (Eq. 4-22)
2np, C,

Qlat,approx

The quality factors calculated from Eq. 4-22 wi lower than those calculated from Eq.
4-18, as the effects of the displaced fluid areawobunted for. Equation 4-22 shows,
contrary to intuition, that the drop in the systemuality factor when operating in water

as opposed to air mostly arises from the increasieel medium’s density (1.205 to
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998.23 kg/m at 20° C, an increase of a factor of 828.4) inkt&ahe increase in the
medium’s dynamic viscosity (0.01827 to 1 cP at 0an increase of a factor of 54.7)
[125]. As shown in section 4.2, the increase inrtteglium’s dynamic viscosity and
density will also decrease the resonant frequeicther decreasing the quality factor.
Equations 4-21 and 4-22 also explain why the quéittor in air is higher, even though
the Reynolds number is lower. In general, theitutctor of laterally vibrating

microcantilevers decreases as the medium’s demsdynamic viscosity increases.

4.3.2 Trends in the Quality Factor as a Function of Beam Geometry

The quality factor can also be investigated asatfan of the beam’s geometry.
Since the resonant frequency in vacuum is linedefyendent ob/L? using Eq. 4-22
indicates that a good approximation for the depeagef the quality factor on the
beam’s geometry isb*%L. (This dependency might not hold when operatinkidly
viscous liquid media). The quality factors for wars geometries are calculated using Eq.
4-18 as a function df*’?/L in air and compared in Fig. 4-11 to the experirakiyt
measured quality factors reported in Ref. 61. Tydrddynamic function is assumed
given by Eq. 4-4. The trend in the thickness idewtgd since the data in Ref. 61 only
used one thickness of 14.481. The Young's modulus is again assumed to be 12P&.
There is a large discrepancy in Fig. 4-11 for thaligy factor in air whent’%L)>0.03
um ™2, This difference could be attributed to neglegtine shear and rotational inertia,

neglecting the support loss, and neglecting theattis deformation.
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Figure 4-11.Simulated and experimentally determined qualitgdes of laterally

vibrating microcantilevers in air. The width isrieal between 45 and 90n, the length
from 200 to 100Qum, and the thickness is fixed at 1448. Discontinuities in the
theoretical data arise from variations in the langthe experimental data is from Ref. 61.

The support loss is larger for shorter beams, arairj may be the dominant source of
loss for particular geometries [92]. For longerrbsathe quality factors are roughly

proportional tab/L>.

The quality factors for the same geometries shaowkig. 4-11 are calculated
using Eq. 4-18 and plotted in Fig. 4-12 as a famctifb*%/L in water and compared to
the experimentally determined quality factors régain Ref. 61. The experimentally
determined quality factors of beams laterally vilorguin water are found to follow the
theoretically predictettend. Shorter and wider beams were found to have highality
factors. Quality factors as high as 66.8 were ntegyoon Ref. 61 for laterally vibrating
microcantilevers, whereas normal quality factorstfansversely vibrating beams in

water are on the order of 10 [24,45,71].



115

70 T T T

®  Quality Factor (water,experiment) o
+  Quality Factor (water,theory) +
60 - Quality Factor (water,theory,fit) ° ,

50 -

40

30 -

Quiality Factor

10

0 0.01 0.02 0.03 0.04 0.05

bl/Z/L [U m-l/Z]

Figure 4-12.Simulated and experimentally determined qualitydescof laterally

vibrating microcantilevers in water. The widthvaried between 45 and 9n, the length
from 200 to 100Qum, and the thickness is fixed at 14148. Discontinuities in the
theoretical data arise from the variations in #gregth. The Young’'s modulus of the beam
is assumed to be 127.5 GPa. The experimental sl&tam Ref. 61.

The beam’s thickness will also change the quaditgdr. Equation 4-22 appears
to show that the quality factor has a linear depeng with respect to the thickness.
However, changing the thickness will also changeatbpect ratio, which in turn will
change the value @;. For small thicknesses and high Reynolds numhieesjuality
factor will be roughly linearly dependent on theckimess. However, as the thickness
increases, this trend will not continue due toatditional fluid damping encountered on
the leading edge of the beam. The quality facter microcantilever 40am long and
45 um wide as a function of beam thickness in watgiven in Fig. 4-13. It is assumed
that the beam’s Young’'s modulus is 127.5 GPa. iregd, when exciting a
microcantilever laterally, shorter, thicker, andles beams will have higher quality

factors.
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Figure 4-13. Simulated quality factors for a beam 40 long and 4um wide laterally
vibrating in water as a function of beam thicknédso plotted is the quality factor
calculated assuminQg =C; =1 (Stokes’ solution).

4.3.3 Comparison of the Quality Factor of Laterally and Transversely Vibrating
Beams

The quality factor, like the resonant frequencgpahcreases when exciting the
beam in the in-plane direction. The improvemeragain a function of both the
microcantilever’s aspect ratio and the propertieth® medium of operation. Using the
low-loss approximation for the quality factor cdkted from Eq. 4-20, the ratio of the
guality factor calculated for a particular geomatindergoing lateral excitation to that of

the same beam undergoing transverse excitatiobeanitten as

Qlat,approx — pBbh+ gZ,Iat 1—‘I trans (Eq 4_23)
Qtrans,approx P Bbh + gz,trans 1_‘I Jlat
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The improvement in the quality factor is found ®the product of the ratio of the total
mass (the beam mass plus the displaced mass)anatithof the imaginary parts of the
hydrodynamic functions. Note that the first tesrihe laterally vibrating beam’s total
mass over the transversely vibrating beam’s totdan This factor is less than one (for
h/b<1), as the transversely vibrating beam will displanore fluid than a laterally

vibrating beam.

Wheng, jarandgz ransare small (for low density and viscosity media) tago of
the quality factors is approximately the ratio lné imaginary part of the hydrodynamic
function of the transversely vibrating beam toldterally vibrating beam. This ratio of
the two imaginary parts of the hydrodynamic funesias usually much greater than one.
The ratio can be investigated as a function oftleeium by again varying the density
and dynamic viscosity of the medium using variooisoentrations of aqueous glycerol.
The ratio of the quality factors of a 200x45x4/2 laterally vibrating silicon
microcantilever is plotted as a function of percamiieous glycerol in Fig. 4-14. It is
noted in Fig. 4-14 that the improvement in the gydhctor when using lateral excitation
is a function of the operational medium. The imgiment is larger for higher Reynolds
numbers or lower viscosity media.

The improvement is also a function of the beamtngetry. Over the range of
geometries investigated in Ref. 61, the prediat@grovement in the quality factor in
water ranged from 1.55 for the beam with the lohtggyth and smallest width
(1000x45x14.48um) to 2.53 for the shortest and widest beam (200%k8@8um). This
indicates that when comparing the quality factdrarally and transversely vibrating

beams, the improvement is larger for shorter artkmbbeams.
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Figure 4-14.The ratio of the quality factors of a laterallydaamtransversely vibrating
beam for a 200x45x12m silicon microcantilever as a function of percaqtieous
glycerol in the operational medium.

In air, the improvement is much higher, with a pecestl increase ranging from 3
to 4.5 for the beams studied in Ref. 61. Howetras, again neglects the effects of
support loss. In general, the quality factor ghier for laterally vibrating beams
compared to transversely vibrating beams. Theowgment is larger for media with
lower densities and dynamic viscosities. The inaproent is also larger for shorter and

wider beams.

4.4 Mass Sensitivity

In sensor applications, changes in the operatiemalonment or changes in the
mass of the microcantilever can be detected thrabghges in the resonant frequency.
The resonant frequency’s sensitivity to changesass, or the mass sensitivity, can be

defined as [12]
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Af
== . Eq. 4-24
S ‘Am (Eq )

Using Eq. 4-1, the shift in the fundamental resom@guency of a 400x45x12
um laterally vibrating silicon microcantilever in tea due to an increase in beam mass of
~5 nanograms (a 1% increase in beam density) isrsiroFig. 4-15. This added mass
increase shifts the resonant frequency by ~1.4Q kHd also increases the deflection and
stored energy (and thus quality factor) of theeaystNote that by changing the density,

the added mass is assumed to be uniformly dis&tbaver the entire length of the beam.

1 I I

I
— — 400x45x12 um, pB=2353.3 kg/m"3
——— 400x45x12 um, pB=2330 kg/m"3

Normalized Amplitude Deflection [dB]
N

335 340 345 350 355 360

Excitation Frequency [kHz]

Figure 4-15.The simulated frequency spectrum of a 400x45xt2silicon
microcantilever laterally vibrating in water. Thpectrum is also plotted when the mass
of the beam is uniformly increased over the lerythi%.
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Adding the same amount of mass to just the tifnefmhicrocantilever will cause a larger
shift in the resonant frequency. However, it Wil assumed in this work that the added

mass is always uniformly distributed over the Iéngftthe beam.

Figure 4-16 shows the predicted frequency shiffdar different geometries in
water as a function of the change in the beam’snmaair. Note that the magnitude of
the slope of the lines in Fig. 4-16 representatiss sensitivity. The Young’s modulus
of the beam is assumed to be 169 GPa and the ylehslite beam is assumed to be 2330
kg/m®. Note that the shift in the resonant frequenayisghly linear as a function of the
change in beam mass, and the slope varies forefifé&eam geometries. The frequency
shift can be non-linear for large changes in midssvever, it will be assumed, in this
work, that the mass absorbed by the sensing lay@miays small enough as to have a

linear frequency response.

The frequency shift of the four beams given in Bid.6 as a function of the
change in beam mass can also be investigated er aadl is shown in Fig. 4-17. Note
that there is now a slight dependence on the widkh. analytical expression for the
mass sensitivity can be found using the same puresdiescribed in Ref. 124, using
different values for the moment of inertia, 91 1., andgz .= The change in the

resonant frequency as a function of change in msagsen by

Af = Arn(freslat xﬂ’m,lat) (Eq 4-25)
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Figure 4-16.Predicted decrease in the resonant frequencyuoiniécrocantilevers in air
as a function of the change in beam mass. Noteskimater and thicker beams are more
sensitive to changes in beam mass (e.g., for a¥®B@2um silicon beam, $=0.369
Hz/pg while a 200x45x1gm silicon beam will have a,$2.9 Hz/pg).
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Figure 4-17.Predicted decrease in the resonant frequencyuoinficcrocantilevers in
water as a function of the change in beam mas® that shorter and thicker beams are
more sensitive to changes in beam mass. (e.cp,400x45x12um silicon beam,
Sn=0.277 Hz/pg while a 200x45x4in silicon beam will have a,$2.33 Hz/pg).
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where the normalized mass sensitivity is given by

a)la g ,Ia/
(gllat /a)lat{gllat /a)lat ( 2tj a)( ' ta)ijllat
2 - .
d 2M,,
j(gz,lat )j 8

do

A

m,Iat -

2kLM,at( pebhL+Lg, . + L(

(Eq. 4-26)

The second term in Eq. 4-26 is the effect of thesnacrease oNl;;, while the first term
arises out of the fact that in Eq. 4-7b, the eftédc¢he viscous damping is normalized to
the total mass. When the beam’s mass is incretsedatio of the viscous damping to

the total mass will be smaller, causing the resbfiaquency to increase. This effect is
modeled by the first term in Eq. 4-26. Howeverewhhe beam’s mass is increased the
effective mass will also increase which will resala decrease in the resonant frequency.
This effect is modeled by the second term in EQ64-When the beam mass is much
larger than the displaced mass and viscous damihiegecond term in Eq. 4-26
dominates the first term. The mass sensitivitytb@m be approximated as

gLy Eb3hL3|

m ,approx )3/2
‘ M lat ‘

(Eq. 4-27)

The approximation for the mass sensitivity giverBay 4-27 can be compared in Table

4-5 to the exact value given by Eq. 4-25 for theergeometries given in Table 4-1.
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ﬁf/g)ed Ratio | 4 1 1 1/10 1/10 1/10 1/56 1/56 1/56

Reynolds 10 316.23 | 10000 | 10 31623 10009 10 316.28 10000
Number (Re)

h (um) 10.1367| 30.883 07.0374 1.13381 3.01424 9.226856309 | 0598508 1.666548
b (um) 10.1367| 30.883§ 97.0374 11.3381 30.1424 92.068583a8. | 33.6566 | 93.7166
L (um) 200 200 200 200 200 200 200 200 200

SH;;/(ES' 424) | 0156 | 0.0755| 00255 0.138| 0925 0424 0243 1.206 .9811

Sm,approx

(Eq. 4-27) 0.165 | 0.0757 | 00255 0538| 0965 0424  0.206 1.801 .0332

Hz/ pg

S (EQ. 4-27)

Using

Numerical 0162 | 0075 | 0025 | 0474| 0959 0426  0.167 1623 9920

Results forl 4

Hz/ pg

S (Eq. 4-24)

Cr=C=1 0403 | 0.146 | 00473| 1.204| 1.173| 0479 0333 175 0962.

Hz/ pg

Table 4-5.The mass sensitivities of nine laterally vibratbeams calculated using
several different approximations assuming operatiomater and a Young’s modulus of
169 GPa and a beam density of 2330 Kg/iigher mass sensitivities could be obtained
if the length of the beam was assumed to be sh@re200um).

It is noted in Table 4-5 that the approximationegi\oy Eq. 4-27 for the mass
sensitivity works well when the beam thicknessher Reynolds number is large. This is
because the second term in Eq. 4-26 dominatesrgihéerm when the viscous damping
is small or the beam mass is much larger thanigpadted mass. However, it is
inappropriate to use the approximation when visaamping contributes significantly to
the effective mass as given by Eq. 4-7b. Usingitimaerical results instead of the
analytical approximation for the hydrodynamic fuant(row 8 in Table 4-5) also causes
up to a 19% variation in the value of the massitieitg. However, this variation is
again smaller for thicker beams and beams withdrigteynolds numbers. Using
Stokes’ solution (row 9 in Table 4-5) causes adargerestimate of the mass sensitivity

due to the unaccounted displaced mass and viseoapidg.
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The mass sensitivities are also calculated usitig velues for the hydrodynamic
function given by Eq. 4-27 and the values giveR@i. 97. Equation 4-27 is used for the
comparison as the derivative @fja:andgy,i: again are not given in Ref. 97. The
hydrodynamic function is also considered frequeincgpendent when calculating the
effective mass. These mass sensitivities are caedpa Table 4-6 for the nine
geometries given in Table 4-2. For thick beahib<1, or when lateral excitation and
transverse excitation are the same) and the higtestolds number (1000), there is
good agreement (<1.9%) for the mass sensitivityutaled using the two hydrodynamic
functions. However, for thin beams and low Reynaildsbers there is a large
discrepancy (up to 67.2%) due to the variationthéneffective mass. These beams are
again the geometries that have quality factorderotder of 1, and are the geometries

that are not appropriate for sensing applications.

Aspect Ratio

(h/b) 1 1 1 0.1 0.1 0.1 0.02 0.02 0.02
Reynolds

Number (Re) | 10 100 1000 | 10 100 1000 10 100 1000
h (um) 10.156 | 21.176 45.17f 1.1534 21272 4.35p1 0.297 970.4| 0.924
b (um) 10.156 | 21.176) 45.17f 11534 21.27f2 43.5p1 14/364.8594 | 46.188
L (um) 400 400 400 400 400 400 400 400 400
a;/(pqu"“”) 0161 | 0104 | 0053| 0453 0995 0778 0179 1.047 3721
S (EQ. 4-27

UsingTa 0.160 | 0.103 | 0.052| 0503 1.014 0.783 0223 1.071 512.1
from Ref. 97)

Hz/pg

Table 4-6.The approximate mass sensitiviti&s §ppro) Of Nine laterally vibrating beams
assuming operation in water, a Young’s modulus6® GPa , and a beam density of
2330 kg/m calculated using Eq. 4-4 for the values of therbglginamic function
compared to using the values given in Ref. 97Hentalues of the hydrodynamic
function.
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4.4.1 Effects of the Medium’s Density and Viscosity on the Mass Sensitivity

In air, whenM,, = p,Lbh, the mass sensitivity can be approximated as

lat

(BLY “JE 1
o0 4\/§sz/2 h

S

m,air

1

(Eq. 4-28)

The mass sensitivity decreases in viscous operatimgonments. Assuming that Eq. 4-
27 can be used to approximate the mass sensitigilyg Eqgs. 4-27, 4-28 and Eq. 4-14,

the decrease in the mass sensitivity can be gisen a

-3/2
Stnapp pb 1 V2 2 hp N
mapprox _ {91 ALZ— | X2 1+C% 2JRe-LE +4/2C . (Eq. 4-29
S’n,air PB h\/R_e 2 " | pr " ( q )

It is noted from Eq. 4-29 that, @z andC, are one, increasing the Reynolds
number should increase the mass sensitivity innwakhis trend does not hold for thick
beams in Tables 4-5 and 4-6 due to the fact@GrandC, are large and dependent on the

Reynolds number.

The changes in mass sensitivity as a function®Raynolds number in Tables 4-
5 and 4-6 are again due to changes in the beameggomo investigate the changes in
the mass sensitivity as a function of the mediupnégperties, the medium’s density and
dynamic viscosity can again be varied by assumarging concentrations of percent
glycerol. The mass sensitivity of a 200x45xdf laterally vibrating silicon
microcantilever as a function of Reynolds numbsma aqueous concentrations of

glycerol (0% to 72%) is given in Fig 4-18.
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Figure 4-18.The mass sensitivity of a 200x45xi& laterally vibrating silicon
microcantilever =169 GPa) calculated using the exact expression4d24) and the
approximate expression valid for high Reynolds nersl§Eq. 4-27) as a function of
Reynolds number. The Reynolds number is varieddnyg different values for density
and dynamic viscosity corresponding to various agsesolutions (0-72%) of glycerol.

It is noted in Fig. 4-18 that, as the Reynolds nendecreases, the mass
sensitivity decreases. It can also be seen tkatdhation in the predicted values3f
caused by neglecting the first term in Eq. 4-26 laal larger when the Reynolds number
is decreased. This is because the viscous danspeongtribution to the effective mass

increases as the Reynolds number decreases, Whilleam mass remains constant.

Again, it is noted from Eq. 4-29 that the mediumméssity affects the mass
sensitivity in a way that is independent of the Ragls number. For example, increasing
the medium’s density from that of air to that ofterathe mass sensitivity of a

400x45x12um laterally vibrating microcantilever decreasesalfgctor of 1.38, while the
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Reynolds number increases from 81.1 to 1102.44efreral, the mass and chemical
sensitivities of laterally vibrating microcantilegewill be lower for media with higher

dynamic viscosities or densities.

4.4.2 Trends in the Chemical Sensitivity as a Function of Beam Geometry

From Eq. 4-28, in air the mass sensitivity is jprtijpnal to the inverse ¢fL>. As
shown in Fig. 4-16, shorter and thinner beamstivéh have higher mass sensitivities.
When dealing with dynamically driven microcantileedemical sensors, the sensitivity
to chemicals in the operational environment, ordhemical sensitivity, is also of interest.
The chemical sensitivity is defined as the changhe resonant frequency of the
microcantilever as a function of the ambient com@gion, Ca, of a particular analyte in
the medium of operation [89], or

Af

S = .
Ca

c

(Eq. 4-30)

The chemical sensitivity can be found as a funotibtihe mass sensitivity [9] as

S, = KLbh,S, (Eq. 4-31)

whereK is the partition coefficient of the sensing layethe operational medium aihd
is the sensing layer’s thickness. Finding the cleahgensitivity requires knowing the
properties of the sensing layer, which is outsidedcope of this investigation. However,
since the chemical sensitivity is proportionallie tnass sensitivity, the trends in both the

mass sensitivity and chemical sensitivity as ationcof the medium of operation will be
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the same (assumingremains constant) and the trends in the chemardaisvity as a
function of the beam’s geometry will be the tremdghe mass sensitivity multiplied by a

factor ofKLbh,. It will be assumed th&>>h,. A normalized chemical sensitivity that

does not depend on the properties of the sensyeg, &, can be found

S, =S, /(Kh,). (Eq. 4-32)

AssumingSn is roughly linearly dependent with respechtth., the chemical sensitivity
will be proportional tolg,/h) multiplied by p/L?). Sinceb/L?is the same geometric
dependency as the resonant frequency, the chesaisitivity will always be roughly
proportional to the resonant frequency. The chahsensitivity will also be proportional

to the ratio of the beam’s thickness to the senlsipgr’s thickness.

Unfortunately, no experimental data for the massisgity or chemical
sensitivity was published in Ref. 61. HowevEr,in water can still be predicted and

plotted as a function df/L? for the geometries given in Ref. 61. Figure 4-i8ves that
shorter and wider beams, assuming that the sansengdayer type and thickness are
used, will be more sensitive to changes in analgtecentration compared to longer and

narrower beams.

Note that decreasing the length and increasingvitilh improve both the mass
sensitivity and the quality factor. There is a pretih™ linear dependency on the mass
sensitivity and chemical sensitivity if the sensiager thickness is held constant.
Thinner beams will have a smaller mass and theegloabalyte mass by the sensing layer

will thus change the average beam density by laageyunts.
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Figure 4-19.Predicted normalized chemical sensitivities ofriatg vibrating
microcantilevers in water. The width is variedvbeen 45 and 90m, the length from
200 to 100Qum, and the thickness is fixed at 1448. The beam’s Young’s modulus is
assumed to be 127.5 GPa. If the normalized cherserditivity is multiplied byh,, a
chemical sensitivity in Hz per concentration carfdaend.

However, thinner beams will have lower quality tast As a result, there is a predicted

tradeoff between the chemical sensitivity and thality factor when choosing the

beam’s thickness.

The limit of detection (LOD) for a given analyteaien defined as three times
the ratio of the device/system frequency noisé¢ochemical sensitivity, and represents
a measure of performance for a chemical sensornWperating in an oscillator
configuration, the system’s frequency noise is praopnal tofes jafQiat [89]. In terms of
the normalized chemical sensitivity, the limit atection satisfies the following

relationship:
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3f
LOD oc — 82 (Eq. 4-33)

lat ~¢c

This parameter is plotted as a function of beawcktiess for a 40Qm long and 4um

wide beam in Fig. 4-20. The Young’'s modulus ofbeam is assumed to be 127.5 GPa.
It is noted from Fig. 4-20 that the best thickn@ks lowest detection limit) using the
parameter given in Eq. 4-33 is 2u61. The quality factor’s relationship with respemt t

the beam’s thickness is not linear when the thiskne large, whereas the mass
sensitivity and normalized chemical sensitivity lmear with respect to the beam’s
thickness. When trying to minimize the limit oftéetion by varying the beam’s
thickness, the optimal thickness will be a functadrthe beam’s length, the beam’s width,

and the viscosity and density of the medium of apen.
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Figure 4-20.Theparameter s/ (QatS,) plotted as a function of beam thickness for
a laterally vibrating beam 4Q0m long and 4um wide laterally vibrating in water. The
parameter s 1at/ (Qiat S, ) is proportional to the limit of detection (LOD) a laterally
vibrating microcantilever in an oscillator configtion.
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In chemical sensor applications, the beam’s gegnséiuld be designed with

both the chemical sensitivity and the quality fadaken into account, as the system'’s
frequency noise varies proportionalftQ a/Qua [89]. However, as f3sat/ (Qar S.)

doesn’t increase quickly with respect to thicknesghicknesses larger than 2161 in
Fig. 4-19, the limit of detection does not varyrhych if the thickness is increased in

order to reach a particular quality factor needwdafparticular sensing application.

In general, the mass sensitivity is roughly preipoal to the inverse dfL® and
the chemical sensitivity is roughly proportionahi¢h multiplied byb/L%. Shorter and
wider beams have higher chemical sensitivities@loith higher quality factors. Thinner
beams with the same sensing layer thickness wik Inggher chemical sensitivities but
lower quality factors. The thickness must therchesen taking into account its effect on

both the chemical sensitivity and quality factor.

4.4.3 Improved Mass Sensitivity using Lateral Excitation Compared to Transverse
Excitation

The mass sensitivity is also higher for microcawelrs laterally vibrating
compared to microcantilevers transversely vibratiige ratio of the mass sensitivity for

a laterally vibrating beam compared to that olaaswersely vibrating beam is

Sm,Ialt ~ /Im,lat E Mtrans (Eq 4-34)
Sm,tran's /Im,trans h Mlat '
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Equation 4-34 shows that the increase in the messts/ity (and chemical sensitivity) is
approximately the increase in relative mass settgitnultiplied by the increase in the
stiffness and by the increase in the square rotteototal effective mass. If the second
term in Eq. 4-26 dominates the first term for bibté lateral and transverse normalized
mass sensitivity, the ratio of the two normalizeglsssensitivities can be approximated

as

~ _ trans (Eq 4_35)

The increase in the mass sensitivity when operatinige in-plane flexural mode

compared to the out-of-plane flexural mode is tApproximately

S h{ M

m,trans lat

Sm,lat b Mtrans e
~ P (Eq. 4-36)

The effective mass of transversely vibrating beantarger than that of laterally
vibrating beams. Thus, the increase in the masstsaty when using lateral excitation

compared with transverse excitation will be eqoairt greater thah/h.

For media with low dynamic viscosities and densijtieq. 4-36 is equal tw'h. As
the operational medium becomes more viscous, tieeatthe effective masses should
become larger. The ratio of the mass sensitivifess 200x45x12um beam and a
400x45x12um beam with Young’s moduli of 127.5 GPa as a fuorcbf percent
aqueous glycerol is given in Fig. 4-21. It is mbteom Fig. 4-21 that, for higher
viscosities (lower Reynolds numbers), microcanghswibrating laterally will have

higher mass sensitivities compared to beams vilgatansversely. The mass sensitivity
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will still decrease as the viscosity of the medimereases. However, Fig. 4-21 indicates
that the rate at which the mass sensitivity deeeassmaller for laterally vibrating
beams compared to transversely vibrating beamsexXample, a 400x45xL2n silicon
beam transversely vibrating with a Young’'s modwti427.5 GPa will have a mass
sensitivity of 88.69 Hz/ng in air and a mass sengjtof 20.84 Hz/ng in water (a 76.5%
drop). The same beam laterally vibrating will hawmass sensitivity of 333.6 Hz/ng in

air and a mass sensitivity of 239.6 Hz/ng in wébaty decreasing by 28.2%).

The ratio of the mass sensitivities is also a fimcdf the beam’s geometry. For
the beams given in Ref. 61, the increase in thdigied mass sensitivity ranged from 7.3
to 35.8 using lateral as opposed to transverseatiari. The increase in mass sensitivity

was higher for wider and longer beams.

24 I I I I I
Sm_lat/Sm_trans (200x45x12 um)
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Figure 4-21.The ratio of the mass sensitivities of a lateraltg transversely vibrating
200x45x12um beam and a 400x45x1in beam with Young’s moduli of 127.5 GPa as a
function of percent aqueous glycerol in the opereati medium.
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In air, the increase in mass sensitivity is smalkethe ratio of the two effective masses is
closer to one. In air, the predicted mass seiityiiivcreases for the beams given in Ref.

61 ranged from 3.11 to 6.25, and roughly followee beam’s/h values.

In general, exciting beams laterally as opposddattsversely increased both the
mass sensitivity and chemical sensitivity by adact b/h or greater. The increase was
larger for media with higher viscosity and densiti€hus, lateral excitation is a better
method of excitation compared to transverse exaitdor sensing applications when

operating in media of high viscosities and densitie
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5. Summary, Conclusions, and Future
Work

5.1 Summary

The primary objective of this work was to theoralig characterize and compare
the characteristics of microcantilever-based (hiejoical sensors vibrating in the in-
plane and out-of-plane direction and note the imgnoent when the microcantilever is
excited in the in-plane direction. Dynamicallyaénn microcantilevers are commonly
vibrated in the transverse or out-of-plane dirattioboth gas- and liquid-phase sensing
applications. However, microcantilever (bio)cheahigensors vibrating in the transverse
direction have a dramatic increase in their dededimit in liquid-phase sensing
applications compared to gas-phase sensing apphsaiue to the decrease in the
device’s resonant frequency, quality factor, aneincical sensitivity. It was expected that
these characteristics would improve for beams tiitgan the in-plane or lateral
direction due to the decreased viscous drag detming edge of the beam.
Experimental results given in the literature hale® ahown that microcantilevers have
higher resonant frequencies and quality factorssmdperating in the in-plane flexural
mode as opposed to the out-of-plane flexural m&6¢6[L]. Modeling the characteristics
of a laterally vibrating beam allowed for the trend these characteristics to be
investigated as functions of the properties ofrtteglium and the beam’s geometry.
Using these trends, geometries that improve theactexistics of laterally vibrating

microcantilever (bio)chemical sensors in the ligpithse could be identified.
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In order to successfully characterize laterallyrating microcantilevers, standard
Euler-Bernoulli beam theory was used to model #féedtion of the beam as a function
of the frequency of excitation. The deflection i@snd to also depend on the properties
of the microcantilever and the hydrodynamic foritem the operational medium acting
on the beam. The hydrodynamic forces were fourtdleasum of the pressure and shear
forces. An analytical expression for the hydrodyitaforces acting on a laterally
vibrating ribbon was previously derived by G. Gol&s [105]. However, this solution
neglected the effects of the pressure from thd fui the thickness. The assumption was
also made that the fluid shear was constant aloegvtdth of the beam, which neglected
the significant variation in the fluid shear neae £dge of the beam.

To account for the edge effects and the effechickhess, a numerical model of
the fluid surrounding a laterally vibrating beamswefined in the finite element analysis
software ANSYS and used to evaluate the hydrodynéonces acting on the beam. The
hydrodynamic forces from the fluid shear and pressm a laterally vibrating cross-
section in water were found for various aspecbsatihe ratio of the beam’s thickness to
the beam’s width) and Reynolds numbers (a meaduhe watio of the fluid’s inertial
and viscous forces). The number of elements us#teimodel was varied to confirm
that the solution for the hydrodynamic forces wasvergent. The numerical results for
the hydrodynamic function (a normalized versionha hydrodynamic force) were then
compared to the results given by another modelighdyd in the literature [97]. The
hydrodynamic function was then found for aspedbsatanging from 1/56 to 1 and
Reynolds numbers ranging from 10 to 10,000. A §ebaection factors were obtained

so that the hydrodynamic function found from Stolkse¢ution could be mapped to the
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numerical results. These two correction factorsavfeund as functions of the aspect
ratio and the Reynolds number.

Using the same procedures found in Ref. 124, eges for the resonant
frequency, quality factor, and mass sensitivityapérally vibrating beams were obtained.
The trends in these characteristics were then figpaged as functions of both the medium
of operation (fluid density and dynamic viscosiyld the geometry of the
microcantilever. These characteristics were al$mutaed using the values of the
hydrodynamic function given by Ref. 97 and compdcetihe characteristics found using
the hydrodynamic function obtained in this work.

The improvement obtained for each characteristisgnant frequency, quality
factor, and mass sensitivity) when using in-pldaerural modes compared to out-of-
plane flexural modes was demonstrated. This was 8y finding an expression for the
ratio of the characteristics of a laterally vibngtibeam to a transversely vibrating beam
of the same geometry. This ratio was investigated function of the beam’s geometry
and the medium of operation. This then demonstridie benefits of using lateral
excitation over the more common transverse excitatihen operating in a viscous liquid

medium.

5.2 Conclusions

The approach taken to find the semi-analytical esgion for the hydrodynamic
function involved the use of correction factorsriap Stokes’ solution to exact numerical
results. This technique is more appropriate ftarkdly vibrating beams compared to

other methods given in the literature, which wenenprily used to find the
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hydrodynamic forces of transversely vibrating beafie number of terms used in the
correction factors was small, thus yielding simpt@ressions while still providing a
good approximation to the numerical results. Therantroduced by the mapping also
did not significantly change the predicted chanasties (resonant frequency, quality
factor, and mass sensitivity) over the range ofrle&s numbers and aspect ratios
investigated.

This semi-analytical expression is a significamedfé of this work, as it allowed
for the rapid calculation of the hydrodynamic fuaotover various ranges of aspect
ratios and Reynolds numbers. Using the semi-aalyixpression, it was found that the
effects of the shear force acting on the widthheftbeam is significant and should be
taken into account when modeling laterally vibrgtireams operating in a viscous liquid
medium. It was also found that the pressure foltces the viscous liquid medium
acting on laterally vibrating beams for particulanges of geometric parameters and
Reynolds numbers contribute significantly to thatbdydrodynamic force. For example,
over the range of aspect ratios and Reynolds nusmbeestigated, the pressure force
acting on the thickness contributed 10% or mortheftotal hydrodynamic force. It was
noted that the significance of the shear forcespmadsure forces on the total
hydrodynamic force was also investigated by Bruneegl. [97] and similar results and
conclusions were obtained. However, a larger raidggeynolds numbers was
investigated in the present work. This may be irtgod, as the Reynolds numbers of
beams vibrating laterally compared to beams vibggtiansversely are larger due to their

increased resonant frequency.
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Using the semi-analytical expression given in tgk, the amount of displaced
fluid mass is predicted, which compares well weghent results published in the
literature [97]. Observed differences ranged f&B88% (Re= 10h/b=1/50) to -1.8%
(Re= 31.62h/b=1/5) and had an average absolute difference @PA.#However, the
present method predicts a higher amount of visdaagping from the fluid. The
difference ranged from 9.85% (Re= bdh=1/50) more viscous damping to 2.8% (Re=
10, h/b=1) less viscous damping and had an average abstftérence of 3.8%. This
difference could arise from errors in the hydrodyraforces determined from the finite
element analysis due to the selected mesh densitidg the convergence criteria of the
computation. It is also possible that the resutisnfthe finite element analysis in this
work more accurately represent the behavior oflthé, as it accounts for the nonlinear
convective effects of the fluid [127]. It was obssd that the difference between the two
methods is insignificant regarding the calculatsbnant characteristics (frequencies,
guality factors, and mass sensitivities) for piadtcantilever geometries used in sensor
applications over the range of aspect ratios angh®ds numbers investigated. For
example, the difference in the predicted charasties from the two methods was found
to be small (<4.1%) for beams that have qualitydiechigh enough to be considered
practical for sensor applications.

Analyzing these characteristics, it was found thatresonant frequency, quality
factor, and mass sensitivity of dynamically drivaicrocantilevers were all predicted to
increase for beams undergoing lateral excitationpared to those undergoing transverse
excitation when operating in viscous liquid medihis indicated that operating

dynamically driven microcantilevers in the in-pldtexural mode is better for liquid-
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phase (bio)chemical sensing applications, assuthetgsuch devices may be effectively
excited.

It was found that the ratio of the resonant freqieshof beams vibrating laterally
compared to beams vibrating transversely increlageasfactor proportional to the inverse
of the beam’s aspect ratio. This was due to theeased stiffness of the beam when
operating in the in-plane flexural mode. This remat frequency increase was predicted
to be larger for media with higher densities andaiyic viscosities, which affect the
effective mass more when operating in the out-afiplflexural mode compared to when
operating in the in-plane flexural mode. Incregdime density or dynamic viscosity of
the medium still decreases the laterally vibrabegm’s resonant frequency. However,
this drop in resonant frequency for laterally vibrg beams (~10% when placed in
water) was substantially smaller than the drop ipted for transversely vibrating beams
(on the order of a ~50% drop when placed in waliéris indicates that the resonant
frequencies of beams operating in the in-planeufl@ikmode were both higher and less
affected by the viscous damping from the mediurops#ration when compared to the
resonant frequencies of similar beams operatirigarout-of-plane flexural mode.

The resonant frequencies of laterally vibratingrbgavere also investigated as a
function of the beam’s geometry. The resonant feeqy of a laterally vibrating
microcantilever in air was found to be proportioteathe width of the beam over the
square of the length of the beam. This trend waad to also hold approximately for
beams laterally vibrating in water. These trends ahatched experimentally obtained

trends published in the literature when a micraotardr was laterally vibrated both in air
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and in water. If beams with high resonant freqieshare desired for particular sensing
applications, shorter and wider beams should beerho

The resonant frequency is expected to be approzlynetdependent of the
beam’s thickness when operating in air. In watevas predicted that the resonant
frequency of a laterally vibrating beam has a sldgpendence on the beam’s thickness.
For small beam thicknesses, the total effectivesn(lee sum of the beam mass and
displaced fluid mass) was found to be approximatelgpendent of the thickness, while
the stiffness had a linear dependence on the tegskrinitially, when the beam’s
thickness was increased the resonant frequencyouasd to increase. This trend occurs
when the beam’s mass is less than the displaces oh#ise fluid. Using the practical
geometries in water studied in Ref. 61, the predictisplaced fluid mass only accounts
for 11% to 35% of the total effective mass. Whemllkam’s mass is greater than the
displaced mass of the fluid, increasing the thisknacreases the total effective mass
more than the stiffness due to the additional wisaamping. This caused the resonant
frequency to decrease as the thickness of the ieBmtreased. An optimal value for the
beam thickness with respect to the resonant fregueould then be found if the
operational medium and the beam’s length and wigite known.

The quality factor was also found to increase wibesims were operating in the
in-plane flexural mode compared to the out-of-ple@eural mode, with quality factors
of laterally vibrating beams reaching values a$ lag 64 when operating in water.
Unlike the trend found for the resonant frequentieg,improvement when using the in-
plane flexural mode was smaller when beams wereatipg in media with higher

densities and dynamic viscosities. The predictgaravement for the practical



142

geometries studied in Ref. 61 ranged from 3 tadldr and 1.55 to 2.53 in water. This
improvement was also a function of the beam’s gégmé&he improvement in the
quality factors of laterally vibrating beams congxhto transversely vibrating beams was
found to be larger for shorter and wider beamsis Was due to the shorter and wider
beams having higher resonant frequencies and R&ynmoimbers. As the Reynolds
number increases, the ratio of the viscous damgmen by the transversely vibrating
beam to the laterally vibrating beam increases.

Shorter and wider beams operating in the in-pléaifal mode also had higher
guality factors compared to longer and narrowenimaince the quality factor of a
laterally vibrating beam was found to be proporiaio the square-root of the beam’s
resonant frequency. This trend was predicted bo#iriand in water and was observed in
experimental data published for laterally vibratbeams in water. (In air, additional
effects, such as the support loss, need to be tak@account when comparing the
theoretical results to those observed in the erpartal data). The quality factor of a
laterally vibrating beam in a viscous liquid mediwras also found to be dependent on
the beam’s thickness. For small beam thicknesisissgdependence was approximately
linear. However, the quality factor’s linear dependy on the beam’s thickness does not
hold for larger beam thicknesses (when the beam'ssiis greater than the displaced
mass of the fluid) due to the additional viscousideng and effective fluid mass coming
from the pressure acting on the thickness.

The quality factor was also found to be a functbthe medium’s density. As the
density of the medium increases, the quality fademreases. The quality factor was

found to have approximately the same dependentieeomedium’s density as on the
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medium’s dynamic viscosity. Since the medium’s dgriecreases more than its
dynamic viscosity when a beam is placed in watanfair, it can be noted that the
quality factor drops more due to the increase enntfedium’s density compared to the
drop from the increase in the medium’s dynamicassy.

The ratio of the mass sensitivity of a laterallgraiting beam to that of a
transversely vibrating beam of the same geomeksy the resonant frequency, was found
to be proportional to the inverse of the aspeab.rafor small aspect ratios, operating in
the in-plane flexural mode compared to operatingpeout-of-plane flexural mode then
increases the mass sensitivity more than it ineet®e quality factor. For the practical
geometries studied in Ref. 61, the predicted im@noent ranged from 7.3 to 35.8. For
thinner beams, this improvement could be much farge with the resonant frequency,
increasing the density and dynamic viscosity ofrttezlium of operation will decrease
the mass sensitivity. The mass sensitivity of beaperating in the in-plane flexural
mode will decrease less than the mass sensitivitg@ams operating in the out-of-plane
flexural mode when the density and dynamic visgasitthe operational medium is
increased. The ratio of these mass sensitivitiesthan higher for media with higher
densities and dynamic viscosities. Assuming timessensing layer is used, the ratio of
the chemical sensitivity of a laterally vibratinggm to the chemical sensitivity of a
transversely vibrating beam will be the same asdlie of the mass sensitivities.

The mass sensitivity was found to be approximgtetyportional to the inverse of
the beam’s thickness multiplied by the inverseé®fength cubed. This means that the
chemical sensitivity will be proportional to thesomant frequency of the beam when it is

excited laterally. Shorter and wider beams vilttddgerally will thus have higher
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chemical sensitivities as well as higher qualitstéas and resonant frequencies. The
chemical sensitivity was also found to be a functbthe ratio of the sensing layer’s
thickness to the beam’s thickness. There is theade-off between decreasing the
chemical sensitivity of the device and increasimgdquality factor of the device when
increasing the thickness of the beam. Since thi &if detection is proportional to the
inverse of the product of the quality factor ane themical sensitivity, a thickness exists
that optimizes the limit of detection for a partaaubeam length and width in a particular
medium of operation. Regardless of the beam’kiigss, the limit of detection of
laterally vibrating beams in viscous liquid medigredicted to be much smaller than that
of transversely vibrating beams of similar geonestrihus indicating in-plane excitation
is a better excitation method compared to out-afiplexcitation when operating in

viscous liquid media.

5.3 Future Work

The work done in this investigation can easily kpamded upon and improved.
The sensing layer effects were not discussed sitlhiestigation. The effects of different
thicknesses of particular viscoelastic sensingriage the characteristics of laterally
vibrating beams can be incorporated into the modiglg the same method given in Ref.
124. The optimum thicknesses in terms of the lwhidetection of particular sensing
layers in viscous liquid media could then be caltad. The sensing layer’s viscoelastic
properties can change as a function of the amduartalyte sorbed. This will cause a

change in the resonant frequency and change tmeicdlesensitivity of the device.
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These effects can also be easily incorporatecdtiranodel if the properties of the
sensing layer and its reaction to the analyte tefr@st are known.

It was shown that the beams with the highest regdnequencies and quality
factors were also the shortest beams. These skamdbalso have the largest rotational
and shear inertia effects. These effects werecumtuanted for in this investigation.
Modeling the beam using Timoshenko beam theorgawsbf Euler-Bernoulli beam
theory would account for these effects. This walgb allow optimal beam lengths and
widths with respect to the limit of detection tofoend.

The in-plane flexural mode is not the only othiéeraative mode of operation for
dynamically driven microcantilevers. The torsiomadde has also been investigated as a
potential mode that would improve the charactesstf dynamically driven
microcantilever (bio)chemical sensors over thatefout-of-plane flexural mode in
liquid environments. While there have been magnapts at modeling this mode of
operation [10,95-96], these models have not indute effects of the thickness. A
numerical method similar to the one done in thisknamuld be used to simulate the
effects of thickness on the hydrodynamic loadingedms operating in the torsional
mode. From the hydrodynamic loading and the bean@perties, the resonant
frequency, quality factor, and mass sensitivitylddae found as functions of the medium
of operation and the beam’s geometry. These ctaistics could then be compared to
those found for beams of similar geometries opegah both the in-plane and out-of-
plane modes. One of the aspects of operatingeitattsional mode that has been
investigated previously is the dependence of tlirddynamic function on the length of

the beam [95]. Modeling this effect is not onlypiantant for short beams, but can also
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aid in the modeling of the hammerhead or T-shageas whose widths are not constant
as a function of length.

Another parameter of interest when working witimawyically excited
microcantilever (bio)chemical sensors is the optmapacing of microcantilevers in
arrays. The interaction of transversely vibratinggs of infinitely thin microcantilevers
in water has previously been modeled [50]. Howgeweither the interaction’s
dependence on the beam thickness or the interaaftiamays of laterally excited beams
has been investigated in the literature. A numénuadel of two cross-sections laterally
vibrating could be defined and the change in therdgyynamic loading as a function of
the microcantilever’s spacing, the Reynolds numéed, the aspect ratio of both beams
could be found.

Finally, the effects of thermal noise on the meanatilever should be modeled.
Thermal noise causes random variations in the eegdrequency of dynamically driven
microcantilever (bio)chemical sensors limiting thenimum detectable analyte
concentration. The thermal noise itself might deppen the geometry of the beam and
the medium of operation. Particular geometrieshaterials could then be chosen that
limit the thermal noise. The thermal noise can alsgositively utilized. One of the
limits to the minimum size of dynamically drivencerocantilevers is the minimum size
of the transducer used to excite the beam intoagsme. The thermal noise can cause the
beam to undergo self-excitation. If the thermakaas appropriately modeled, the
random thermal fluctuations in the deflection carubed to track the resonant frequency
of the beam without needing to drive the beam iesmnance. While this method of

excitation has been investigated in the literatardoeams vibrating transversely [64, 65],
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no investigations have been published for latexaitation, which, from the conclusions

of this work, would be better suited for liquid-ieasensing applications.



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

148

REFERENCES

Lange, D., Hagleitner, C., Hierlemann, A., Bfa®., and Baltes, H.,
“Complementary Metal Oxide Semiconductor Cantile&eays on a Single
Chip: Mass-Sensitive Detection of Volatile Orga@iempounds’Analytical
Chemistry vol. 74, pp. 3084-3095, 2002

Paci, D., Kirstein, K. U., Vancura, C., Lichtamy, J., and Baltes, H., “A
Behavioural Model of Resonant Cantilever for Cheahi&ensing’Analog
Integrated Circuits and Signal Processjngl. 44, pp. 119-128, 2005

Vancura, C., Dufour, 1., Heinrich, S. M., Jossg,and Hierlemann, A.,
“Analysis of Resonating Microcantilevers Operatin@g Viscous Liquid
Environment”Sensors and Actuators ¥ol. 141, pp. 43-51, 2008

Bargatin, I., Myers, E. B., Arlett, J., GudlewdR., and Roukes, M. L.,
“Sensitive Detection of Nanomechanical Motion udiigzoresistive Signal
Downmixing” Applied Physics Lettersol. 86, no. 133109, pp. 1-3, 2005

Fletcher, P. C., Xu, Y., Gopinath, P., Witlig, J., Alphenaar, B. W.,
Bradshaw R. D., and Keynton, R. S., “PiezoresisBe®metry for Maximizing
Microcantilever Array SensitivityProceedings of IEEE Sensors 2008.
1580-1583, 2008

Fadel, L., Lochon, F., Dufour, I., and Franc@s,“Chemical Sensing:
Millimeter Size Resonant Microcantilever Performaihdournal of
Micromechanics and Microengeneeringl. 14, pp. S23-S30, 2004

Chatzandroulis, S., Tserepi, A., Goustouridis,Nmrmand, P., and Tsoukalas,
D., “Fabrication of Single Crystal Si Cantileversing a Dry Release Process
and Application in a Capacitive-Type Humidity Seriddicroelectronic
Engineeringyvol. 61-62, pp. 995-961, 2002

Gupta, A., Denton, J. P., McNally, H., and BgdR., “Novel Fabrication
Method for Surface Micromachined Thin Single-CryS#icon Cantilever
Beams”Journal of Microelectromechanical Systemsl. 12, no. 2, pp.1-7,
2003

Hagleitner, C., Lange, D., Hierlemann, A., Bra@d, and Baltes, H., “CMOS
Single-Chip Gas Detection System Comprising CapagiCalorimetric and



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

149

Mass-Sensitive Microsensor2EE Journal of Solid-State Circuijtsol. 37,
no. 12, pp. 1867-1878, 2002

Sharos, L. B., Raman, A., Crittenden, S., and Rb#eger, R., “Enhanced
Mass Sensing using Torsional and Lateral Resonanddgrocantilevers”
Applied Physics Lettersol. 84, no. 23, pp. 4638-4640, 2004

Spletzer, M., Raman, A., Sumali, H., and SullivarR., “Highly Sensitive
Mass Detection and Identification Using Vibrationdalization in Coupled
Microcantilever Arrays’Applied Physics Lettersol. 92, no. 114102, pp. 1-3,
2008

Narducci, M., Figueras, E., Lopez, M. J., Gratigonseca, L., and
Santander, J., “A High Sensitivity Silicon Microd¢éever Based Mass Sensor”
Proceedings of IEEE Sensors 2008. 1127-1130, 2008

Yi, J. W., Shih, W. Y., and Shih, W. H., “Effect béngth, Width, and Mode
on the Mass Detection Sensitivity of Piezoeledthgemorph Cantilevers”
Journal of Applied Physi¢sol. 91, no. 3, pp. 1680-1686, 2002

Davis, Zachary J., Abadal, G., Kuhn, O., HansenGQ®ey, F., and Boisen, A.,
“Fabrication and Characterization of Nanoresonailegices for Mass
Detection”Journal of Vacuum Science & Technologwa8l. 18, no. 2, pp. 612-
616, 2000

Pinnaduwage, L. A., Boiadjiev, V., Hawk, J. Bnd Thundat, T., “Sensitive
Detection of Plastic Explosives with Self-Assemblddnolayer-coated
Microcantilevers,”Applied Physics Lettersol. 83, no. 7, p. 1471, 2003

Pei, J., Tian, F. and Thundat, T., “Glucose Biosemased on the
Microcantilever”Analytical Chemistryvol. 76, no. 2, pp. 292-297, 2004

Calleja, M., Tamayo, J., Johansson, A., Rasmus$sehgechuga, L., and
Boisena, A., “Polymeric Cantilever Arrays for Bioseng Applications,”
Sensor Lettersvol. 1, no. 1-5, 2003

Wenzel, M.,Polymer-Coated and Polymer-Based Microcantilevee@ital
Sensors: Analysis and Sensor Signal Proces§thd). Dissertation, August
2009, Marquette University, WI, USA

Vancura, C., Li, Y., Lichtenberg, J., Kirstein, K,-Hierlemann, A., and Josse,
F., “Liquid-Phase Chemical and Biochemical Deteclitsing Fully Integrated
Magnetically Actuated Complementary Metal Oxide &smductor Resonant
Cantilever Sensor System&halytical Chemistryvol. 79, no. 4, pp. 1646-
1654, January 2007



[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

150

Boisen, A., Thaysen, J., Jensenius, H. and HaiehEnvironmental Sensors
Based on Micromachined Cantilevers with Integr&kedd-Out”
Ultramicroscopy vol. 82, pp. 11-16, 2000

Rogers, B., Manning, L., Jones, M., Sulchek, T.ridy, K., Beneschott, B.,
Adams, J.D., Hu, Z., Thundat, T., Cavazos, H., iimthe, S.C., “Mercury
Vapor Detection with a Self-Sensing, Resonatingéa&ectric Cantilever”
Review of Scientific Instrumentsl. 74, no. 11, pp. 4899-4901, 2003

Thundat, T., Wachter, E. A., Sharp, S. L. and Wakn§&. J., “Detection of
Mercury Vapor using Resonating Microcantilevefgiplied Physics Letters
vol. 66, iss. 13, pp. 1695-1697, 1995

Sepaniak, M., Datskos, P., Lavrik, N., and Tip@e, “Microcantilever
Transducers: A new Approach in Sensor Technoldgylytical Chemistry
vol. 74, no. 21, pp. 568-575, 2002

Chon, J., Mulvaney, P., and Sader, J., “Experimérdafdation of Theoretical
Models for the Frequency Response of Atomic Foregddcope Cantilever
Beams Immersed in FluidsJournal of Applied Physigsvol. 87, no. 8, pp.
3978-3988, April 2000

Kadam, A. R., Nordin, G. P., and George, M. A.s&bf Thermally Induced
Higher Order Modes of a Microcantilever for Mercigpor Detection”
Journal of Applied Physi¢sol. 99, no. 094905, pp. 1-4, 2006

Lochon, F., Fadel, L., Dufour, I., Rebiere, D., &hdtre, J., “Silicon Made
Resonant Microcantilever: Dependence of the ChdrSieasing Performances
on the Sensitive Coating Thickn&dgaterials Science and Engineering €ol.
26, pp. 348-353, 2006

Pinnaduwage, L. A., Ji, H.-F., and Thundat, T., ‘Ovigs Law in Homeland
Defense: An Integrated Sensor Platform Based oco&iMicrocantilevers”
IEEE Sensors Journgbol. 5, no. 4, pp. 774-785, August 2005

Porter, T. L., Delinger, W., Gunter, R. L., “EmbeddPiezoresistive
Microcantilever Sensors: Materials for Sensing Cicairand Biological
Analytes”Material Research Society Symposium Proceedivs872, pp.
265-270, 2005

Keskar, G., Elliott, B., Skove, M. J., Gaillard,, Serkiz, S. M., and Rao, A.
M., “Active Sensing in Ambient Conditions Using Btectrostatically Driven
Silicon Microcantilever"Sensors & Transducers Journabl. 91, iss. 4, pp. 1-
13, April 2008



[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

151

Li, S., Orona, L., Li, Z., and Chenga, Z.-Y., “Bessor Based on
Magnetostrictive MicrocantileverApplied Physics Lettersol. 88, no. 073507,
pp 1-3, 2006

Lavrik, N. V., Sepaniak, M. J., and Datskos, P.“Gantilever Transducers as a
Platform for Chemical and Biological SensoR8view of Scientific
Instrumentsvol. 75, no. 7, pp. 2229-2253, July 2004

Ocakli, H. I., Ozturk, A., Ozber, N., Kavakli, HAJaca, E., and Urey, H.,
“Resonant Cantilever Bio Sensor with Integratedti@ggReadout2008
IEEE/LEOS International Conference on Optical MEM&I Nanophotonigs
pp. 46-47, 2008

Karhade, O. G., Chiluveru, S. S., and Apte, P IRovel Cantilever for
Biosensing ApplicationslEEE/SEMI Advanced Semiconductor Manufacturing
Conferencepp 409-412, 2004

Fu, L., Li, S., Zhang, K., Cheng, Z-Y., and BadmrJ. M., “Detection of
Bacillus Anthracis Spores in Water Using Biosen®&ased on
Magnetostrictive Microcantilever Coated with Phagedceedings of the SPIE
- The International Society for Optical Engineeringl. 6556, no. 1, pp.
655619-1-9, 2007

Boisen, A., and Thundat, T., “Design & Fabricat@frCantilever Array
Biosensors’Materials Todayvol. 12, no. 9, pp. 32-38, 2009

Ji, Hai-Feng, and Thundat, Thomas, “In Situ Detecdf Calcium lons with
Chemically Modified MicrocantileversBiosensors & Bioelectroni¢sol. 17,
pp. 337-343, 2002

llic, B., Czaplewski, D., Craighead, H. G., Neu#l, Campagnolo, C. and Batt,
C., “Mechanical Resonant Immunospecific BiologiDatector’Applied
Physics Lettersvol. 77, no. 3, pp. 450-452, 2000

Rudnitsky, R. G., Chow, E. M., and Kenny, T. WRapid Biochemical
Detection and Differentiation with Magnetic Forceckbscope Cantilever
Arrays” Sensors and Actuators »ol. 83, pp. 256—-262, 2000

Loui, A., Goericke, F. T., Ratto, T. V., Lee, Hart, B. R., and King, W. P.,
“The Effect of Piezoresistive Microcantilever Gedrgeon Cantilever
Sensitivity During Surface Stress Chemical SensBeyisors and Actuators A
vol. 147, no. 2, pp. 516-521, 2008

Tetin, S., Caillard, B., Menil, F., Debeda, H.,dat, C., Pellet, C., and Dufour,
l., “Chemical Sensing using Microcantilever with@&ensitive CoatingJoint



[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

152

Meeting of the European Frequency and Time ForuRT{E09) and the IEEE
International Frequency Control Symposium (FCS'@9) 818-821, 2009

Lang, H. P., Berger, R., Battiston, F., RamseyeP., Meyer, E., Andreoli,
C., Brugger, J., Vettiger, P., Despont, M., Measag T., Scandella, L.
Guntherodt, H.-J., Gerber, Ch., and Gimzewski,.JA Chemical Sensor
Based on a Micromechanical Cantilever Array for lthentification of Gases
and Vapors’Applied Physics Avol. 66, pp. S61-S64, 1998

Wachter, E. A., and Thundat T., “Micromechanicah&#s for Chemical and
Physical Measurement&eview of Scientific Instrumentsol. 66, no. 6, pp.
3662-3668, 1995

Dufour, I., and Fadel, L., “Resonant Microcantilefgpe Chemical Sensors :
Analytical Modeling in View of OptimizationSensors and Actuators 2ol.
91, pp. 353-361, 2003

Ji, H.-F., Thundat, T., Dabestani, R., Brown, G, Btitt, P. F., and Bonnesen,
P. V., “Ultrasensitive Detection of CrO4 2- Usin@/lécrocantilever Sensor”
Analytical Chemistryvol. 73, pp. 1572-1576, 2001

Cox, R., Josse, F., Wenzel, M. J., Heinrich, S.avid Dufour, I., “Generalized
Model of Resonant Polymer-Coated Microcantilevar¥iscous Liquid
Media” Analytical Chemistryyol. 80, no. 15, pp. 5760-5767, 2008

Sampath, U., Heinrich, S. M., Josse, F., LochonDEfour, I. and Rebiere, D.,
“Study of Viscoelastic Effect on the Frequency SaffMicrocantilever
Chemical SensordEEE Transactions on Ultrasonics, Ferroelectricagda
Frequency Contrglvol. 53, no. 11, 2006

Ghatkesar, M., Barwich, V., Braun, T. Bredekamp,@rechsler, U., Despont,
M., Lang, H., Hegner, M. and Gerber Ch., “Real-Tikhass Sensing by
Nanomechanical Resonators in FluiBtpceedings of IEEE Sensors

2004 October, 2004

Datskos, P. G., Thundat, T., Lavrik, and Nickolay Wlicro and
Nanocantilever Sensorg&ncyclopedia of Nanoscience and Nanotechnglogy
vol. 10, pp. 1-10, 2004

Duda, R. O., Hart, P. E. and Stork, D. @attern ClassificationWiley, New
York, 2001

Basak, S. and Raman, A., “Hydrodynamic Coupling\&etn Micromechanical
Beams Oscillating in Viscous Fluid®hysics of Fluidsvol. 19, no. 017105,
pp. 1-13, 2007



[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

153

Chaudhary, M., and Gupta, A., “Microcantilever-BaSensorsDefence
Science Journalol.59, no.6, pp. 634-641, 2009

Eggins, B.Chemical Sensors and Biosensdid, USA: John Wiley & Sons,
LTD, pp.98-111, 2002

Zhonghui, L.,Guided Shear-Horizontal Surface Acoustic Wave (B8M/5
Chemical Sensors for Detection of Organic Contamisan Aqueous
EnvironmentsPh.D. Dissertation, December 2004, Marquette &hsity, W],
USA

Zhao, Y.-P., Fortin, J. B., Bonvallet, G., Wang;@&, and Lu, T.-M., “Kinetic
Roughening in Polymer Film Growth by Vapor Depasiti Physical Review
Letters vol. 85, no. 15, pp. 3229-3233, October 2000

Oliviero, G., Bergese, P., Canavese, G., Chiarj,®blombi, P., Cretich, M.,
Damin, F., Fiorilli, S., Marasso, S. L., Ricciardl,, Rivolo, P., and Depero, L.
E., “A Biofunctional Polymeric Coating for Microctilever Molecular
Recognition”,Analytica Chimica Actayol. 630, pp. 161-167, 2008

Nielsen, T. B., and Hansen, C. M., “Significamfe&Surface Resistance in
Absorption by Polymers'industrial and Engineering Chemical Researebl.
44 no. 11, p. 3959, 2005

Timoshenko, S. P., “Analysis of Bi-Metal Thermostatournal of the Optical
Society of Americajol. 11, iss. 3, pp. 233-255, 1925

Heinrich, S. M., Wenzel, M. J., Josse, F., and Dufa, “An Analytical Model
for Transient Deformation of Viscoelastically Cahtéeams: Applications to
Static-Mode Microcantilever Chemical Sensodgurnal of Applied Physi¢s
vol. 105, no. 124903, pp. 1-36, 2009

Lobontiu, N., and Garcia, BVJechanics of Microelectromechanical Systems
Kluwer Academic Publishers: New York, pp. 16-17;186!, and 182-262,
2005

Bargatin, I., Kozinsky, I., and Roukes, M. L., “Efent Electrothermal
Actuation of Multiple Modes of High-Frequency Naresromechanical
ResonatorsApplied Physics Lettersol. 90, no. 093116, pp. 1-3, 2007

Beardslee, L., Addous, A. M., Heinrich, S. M.,sSe, F., Dufour, 1., and
Brand, O., “Thermal Excitation and Piezoresisibatection of Cantilever In-
Plane Resonance Modes for Sensing Applicatiodstirnal of
Microelectromechanical Systepwol. 19, no. 4, pp. 1015-1017, 2010



[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

154

Dufour, 1., and Sarraute, E., “Analytical ModelingBeam Behaviour Under
Different Actuations: Profiles and Stress Expressidournal of Modeling and
Simulating of Microsystemsol. 1, no. 1, pp. 57-64, 1999

Bianco, S., Cocuzza, M., Ferrante, |., Giuri, BrtiPC. F., Scaltrito, L., Bich,
D., Merialdo, A., Schina, P., and Correale, R.}it8n Microcantilevers with
Different Actuation-Readout Schemes for AbsolutesBure Measurement”
Journal of Physics: Conference Seriesl. 100, no. 092008, pp. 1-4, 2008

Ramos, D., Mertens, J., Calleja, M., and TamaydPhototermal Self-
Excitation of Nanomechanical Resonators in Liquidlpplied Physics Letters
vol. 92, no. 173108, pp. 1-3, 2008

Passian, A., Lereu, A. L., Yi, D., Barhen, S., didindat, T., “Stochastic
Excitation and Delayed Oscillation of a Micro-otatibr” Physical Review B
vol. 75, no. 233403, pp. 1-4, 2007

Calleja, M., Rasmussen, P., Johansson, A., aneeBofs, “Polymeric
Mechanical Sensors with Integrated Readout in adfliadic System”Smart
Sensors, Actuators, and MEMS. Conferenoé 5116, no. 1, pp. 314-321,
2003

Jensenius, H., Thaysen, J., Rasmussen, A. A., /ef¢., Hansen, O., and
Boisen, A., “A Microcantilever-based Alcohol VapBensor-Application and
Response ModelApplied Physics Lettersol. 76, no. 18, pp. 2615-2617, 2000

Vancura, C., Kirstein, K.-U., Li, Y., Josse, F.dadierlemann, A., “Equivalent-
Circuit Model for CMOS-Based Resonant CantilevesdgnsorsTransducers
'07, Digest of Technical Papengp.1733-1736, 2007

Cox, R., Wenzel, M. J., Josse, F., Heinrich, S.avd Dufour, I., “Generalized
Characteristics of Resonant Polymer-Coated Micrillesers in Viscous
Liquid Media” Proceeding of the 2007 IEEE International Freque@ontrol
Symposiumpp.420-425, 2007

Boskovic, S., Chon, J. W. M., Mulvaney, P., ande&ad. E., “Rheological
Measurements using Microcantilevedsiurnal of Rheologyvol. 46, no. 4, pp.
891-899, 2002

Oden, P. 1., Chen, G. Y., Steele, R. A., Warm&k]., and Thundat, T.,
“Viscous Drag Measurements Utilizing Microfabricat€antilevers’Applied
Physics Lettersvol. 68, no. 26, pp. 3814-3816, 1996

Shih, W. Y., Li, X., Gu, H., Shih, W.-H., and Aksd. A., “Simultaneous
Liquid Viscosity and Density Determination with Paelectric Unimorph
Cantilevers”Journal of Applied Physi¢sol. 89, no. 2, 2001



[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

155

Giessibl, F. J., “Advances in Atomic Force MicroggbReviews of Modern
Physics vol. 75, pp. 949-983, 2003

Thundat, T., Warmack, R. J., Chen, G. Y., and AHisD. P., “Thermal and
Ambient Induced Deflections of Scanning Force Msoape Cantilevers”
Applied Physics Lettersyol. 64, pp. 2894-2896, 1994

Kapa, P., Liu, P., Bandhanadham, A., Ji, F., Vamalyan, K., Davis W., and
Ji, H.-F., “Moisture Measurement Using Porous Alnom Oxide Coated
Microcantilevers”Sensors and Actuators Bol. 134, no. 2, pp. 390-395, 2008

Baselt, D. R., Fruhberger, B., Klaasen, E., CemeaJ&., Britton Jr., C. L.,
Patel, S. V., MIsna, T. E., McCorkle, D. and Waria8., “Design and
Performance of a Microcantilever Based Hydrogers8ersensors and
Actuators Bvol. 88, no. 2, pp. 120-131, 2003

Goeders, K., Colton, J., and, Bottomley, L., “Micantilevers: Sensing
Chemical Interactions via Mechanical MotioBhemical Reviewwol. 108, no.
2, pp. 522-542, 2008

Vancura, C., Ruegg, M., Li, Y., Lange, D., HagletnC., Brand, O.,
Hierlemann, A., and Baltes, H., “Magnetically Acteda CMOS Resonant
Cantilever Gas Sensor for Volatile Organic Compa&ifiadansducers '03, 12th
International Conference on Solid-State Sensorgjakors and Microsystems,
vol. 2, pp. 1355-1358, 2003

Neste, C. W. Van, Senesac, L. R., Yi, D., and Tlagng., “Standoff Detection
of Explosive Residues Using Photothermal Microdawméirs” Applied Physics
Letters vol. 92, no. 134102, pp. 1-3, 2008

Plata, M. R., Hernando, J., Zougagh, M., Contefttd\., Villasenor, M. J.,
Sanchez-Rojas, J. L., and Rios, A., “Charactepnragind Analytical Validation
of a Microcantilever-Based Sensor for the Detertbmeof Total Carbonate in
Soil Samples'Sensors and Actuators Bol. 134, no. 1, pp. 245-51, 2008

Pinnaduwage, L. A., Zhao, W., Gehl, A. C., Allm&,L., Shepp, A., Mahmud,
K. K., and Leis, J. W., “Quantitative Analysis oérhary Vapor Mixtures Using
a Microcantilever-based Electronic Nog&iplied Physics Lettersol. 91, no.
044105, pp. 1-3, 2007

Tamayo, J., Humphris, A. D. L., Malloy, A. M. andlbs, M. J., “Chemical
Sensors and Biosensors in Liquid Environment Baselllicrocantilevers with
Amplified Quality Factor’Ultramicroscopy vol. 86, pp. 167-173, 2001



[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

156

Ghatkesar, M. K., Rakhmatullina, E., Lang, H-Begrber, C., Hegner, M.,
and Braun, T., “Multi-parameter Microcantilever Senfor Comprehensive
Characterization of Newtonian FluidSensors and Actuators Bol. 135, no.
1, pp. 133-138, 2008

Dufour, I., Heinrich, S., and Josse, F., “Theoadti&nalysis of Strong-Axis
Bending Mode Vibrations for Resonant Microcantile(i&o)Chemical Sensors
in Gas or Liquid PhaseJournal of Microelectromechanical Systemsl.16,
iss.1, pp. 44-49, Feb. 2007

Sader, J., “Frequency Response of Cantilever Béamersed in Viscous
Fluids with Applications to the Atomic Force Micpe”Journal of Applied
Physicsvol. 84, no. 1, pp. 64-76, July 1998

Basak, S., and Raman, A., “Hydrodynamic Loadinyla@frocantilevers
Vibrating in Viscous FluidsJournal of Applied Physi¢sol. 99, no. 114906,
pp. 1-10, 2006

Razavi, B., “A Study of Phase Noise in CMOS Ostuita” IEEE Journal of
Solid-State Circuitsvol. 31, no. 3, pp. 331-343, 1996

Sekaric, L., Zalalutdinov, M., Bhiladvala, R. Beahder, A. T., Parpia, J. M.,
and Craighead, H. G., “Operation of NanomechariRasonant Structures in
Air” Applied Physics Lettersol. 81, iss. 14, pp. 2641-2643, September 2002

Lochon, F., Dufour, I., Rebiére, D., Sampath, Wejriich, S.M., and Josse, F.,
“Effect of Viscoelasticity on Quality Factor of Mizcantilever Chemical
Sensors: Optimal Coating Thickness for Minimum Ltiofi Detection”
Proceedings of IEEE Sensors 200p. 265-268, 2005

Eysden, C. A. Van, and Sader, J. E., “Frequency&ese of Cantilever Beams
Immersed in Viscous Fluids with Applications to #®mic Force

Microscope: Arbitrary Mode Ordedournal of Applied Physi¢sol. 101, no.
044908, 2007

Xia, X., Zhou, P., and Li, X., “Effect of Resonant®de Order on Mass-
sensing Resolution of Microcantilever Sensd?siceedings of IEEE Sensors
2008 pp. 577-580, 2008

Lochon, F., Dufour, 1., and Rebiere, D., “An Altative Solution to Improve
Sensitivity of Resonant Microcantilever Chemicah§&as: Comparison
Between Using High-Order Modes and Reducing DinmrssiSensors and
Actuators Bvol. 108, no. 1-2, p. 979-985, July 2005



157

[93] Hao, Z., Erbil, A., and Ayazi, F., “An Analytical ddlel for Support Loss in
Micromachined Beam Resonators with In-plane Flebitarations” Sensors
and Actuators Avol. 109, pp. 156-164, 2003

[94] Naeli, K. and Brand, O., “Dimensional Considerasi@am Achieving Large
Quiality Factors for Resonant Silicon Cantilever&in” Journal of Applied
Physicsvol. 105, no. 014908, pp. 1-10, 2009

[95] Green, C. P., and Sader, J. E., “Torsional FrequBesponse of Cantilever
Beams Immersed in Viscous Fluids with Applicatiemshe Atomic Force
Microscope”Journal of Applied Physi¢sol. 92, no. 10, 2002

[96] Xie, H., Vitard, J., Haliyo, S., and Régnier, Enhanced Sensitivity of Mass
Detection Using the First Torsional Mode of Microtievers”Proceedings of
the 2007 IEEE International Conference on Mechatemand Automatiornp.
39-44, 2007

[97] Brumley, D., Willcox, M., and Sader, J., “Oscillai of Cylinders of
Rectangular Cross section Immersed in FlitdYsics of Fluidsvol. 22, no.
052001, 2010

[98] Heinrich, S. M., Maharjan, R., Beardslee, L. Bra@d, Dufour, 1., and Josse, F.
“An analytical model for in-plane flexural vibratie of thin cantilever-based
sensors in viscous fluids: applications to chenseglsing in liquids,”
Proceedings, International Workshop on Nanomecla@antilever Sensors
Banff, Canada, pp. 2, 2010

[99] Heinrich, S. M., Maharjan, R., Dufour, I. Josse,Beardslee, L. and Brand, O.
“An analytical model of a thermally excited microtidever vibrating laterally
in a viscous fluid,Proceedings IEEE Sensors 2010 Confereli¢aikoloa,
Hawaii, pp. 1399-1404., 2010

[100] Kanwal, R. P., “Vibration of an Elliptic Cylindend Flat Plate in a Viscous
Fluid” Journal of Applied Mathematics and Mechanisl. 35, iss. 1-2, pp.
17-22, 1955

[101] Crabtree, L. F., Gadd, G. E., Gregory, N., lllingtho C. R., Jones, C. W.,
Kuchemann, D., Lighthill, M. J., Pankhurst, R. BRgsenhead, L., Sowerby, L.,
Stuart, J. T., Watson, E. J., Whitham, G.lBaminar Boundary Layers
Clarendon Press: Oxford, p. 27, 1963

[102] Tuck, E., “Calculation of Unsteady Flows due to 8rivbotions of Cylinders in
a Viscous Fluid"Journal of Engineering Mathematicgol. 3, no. 1, pp. 29-44,
1969



158

[103] Bhiladvala, R. B. and Wang, Z. J., “Effect of Flsidn the Q Factor and
Resonance Frequency of Oscillating Micrometer aaddxneter Scale Beams”
Physical Review Evol. 69, no. 036307, pp. 1-5, 2004

[104] Rosenhead, L., elaminar Boundary Layergxford: Clarendon press, 1963

[105] Stokes, G., “On the Effects of the Internal Faotof Fluids on the Motion of
PendulumsTransactions of the Cambridge Philosophical Society. 9, pp 8-
106, 1851

[106] Hu, S. P., “Method of Fundamental Solutions fork&® First and Second
Problems” Journal of Mechanigsvol. 21, no. 1, pp. 25-31, 2005

[107] Zhang, W., Requa, M., and Turner, K., “Determinatid Frequency
Dependent Fluid Damping of Micro and Nano Resosafar Different Cross-
Sections"Sensors and Actuators ®ol. 134, iss. 2, pp. 594-599, 2007

[108] Tomotika, S., and Aoi, T., “The Steady Flow of a&bus Fluid past an Elliptic
Cylinder and a Flat Plate at Small Reynolds Nunib&he Quarterly Journal
Of Mechanics and Applied Mathematigsl. 6, iss. 3, pp. 290-312, 1953

[109] lyengar, T., Srinivasacharyulu, N., and Raman&thg on an Elliptic
Cylinder in a Fluid Particle Suspensiaigurnal of Applied Mathematics and
Physics vol. 39, pp. 649-667, 1988

[110] Lamb, H.,Hydrodynamic®over Publications: New York, 6th edition, p. 609,
1945

[111] Westervelt, P. J., “Hydrodynamic Flow and OseemprAximation”The
Journal of the Acoustical Society of Amerigal. 25, no. 5, pp. 951-953, 1953

[112] Dufour, I. and Fadel, L., “Resonant Microcantile¥gpe Chemical Sensors:
Analytical Modeling in View of OptimizationSensors and Actuators ol.
91, pp. 353-361, 2003

[113] Chuang, W.-H., Luger, T., Fettig, R., and GhodRsi‘Mechanical Property
Characterization of LPCVD Silicon Nitride Thin Figmat Cryogenic
TemperaturesJournal of Microelectromechanical Systemwsl. 13, no. 5, pp.
870-879, October 2004

[114] Lopez, A, Yong, D. J., Serna, M. A., “Lateral-Tansal Buckling of Steel
Beams: A General Expression for the Moment Gradtawctor”, Stability and
Ductility of Steel Structured.isbon, Portugal, September 6-8, 2006



159

[115] Hosaka, H., Itao, K., and Kuroda, S., “Damping Glegeristics of Beam-
shaped Micro-oscillators3ensors and Actuators »ol. 49, pp. 87-95, 1995

[116] Maali, A., Hurth, C., Boisgard, R., Jai, C., Coloudhacina, T., and Aime, J.
“Hydrodynamics of Oscillating Atomic Force MicrogopCantilevers in
Viscous Fluids”Journal of Applied Physi¢sol. 97, no. 074907, pp. 1-6, 2005

[117] Wylie, C. Ray, Barrett, Louis C Advanced Engineering Mathemati€&'
edition, New York: McGraw-Hill, Inc, pp. 783-913995

[118] Jones, D. I. GHandbook of Viscoelastic Vibration Dampjr@hichester: John
Wiley & Sons Ltd., p. 266, 2001.

[119] Hopcroft, M. A., Nix, W. D., and Kenny, T. W., “Whé& the Young’'s Modulus
of Silicon?”Journal of Microelectromechanical Systemsl.19, no. 2, pp. 229-
238, 2010

[120] Matthews, G.|nvestigation of Flexural Plate Wave Devices fonSeg
Applications in Liquid MedigPh.D. Dissertation, August 2007, Royal
Melbourne Institute of Technology University, Melboe, Australia

[121] Turner, M. J., Clough, R.W., Martin, H. C. and ToppJ., “Stiffness and
Deflection Analysis of Complex Structuredg@urnal of the Aeronautical
Sciencesvol. 23, no. 9, Sept. 1956.

[122] Rao, S. S.The Finite Element Method In Engineerjdgh ed. Burlington, MA:
Elsevier Inc, 2005.

[123] Weast, C. R., edStandard Mathematical Table®hio, 17th edition, p. 213,
1969

[124] Cox, R.,Theoretical Analysis of Dynamically Operating PogyprCoated
Microcantilever Chemical Sensors in a Viscous Ldgdiedium Masters
Thesis, August 2007, Marquette University, WI, USA

[125] Weast, C. R., edHandbook of Chemistry and Physi€hio, 54" edition, 1973

[126] Weast, C. R., edHandbook of Chemistry and Physi€io, 65" edition, 1984

[127] ANSYS Inc.,Theory Reference for the Mechanical APDL and Meiahn
Applications Version12.0, section 7.1.2, 2009



APPENDIX A: NUMERICAL RESULTS FROM ANSYS

160

log(h/b)=0 | 0.25 05 0.75 1 1.25 15 1.75
log(Re)=1| _ 4.62e-4 259e4 | 1.77e4 | 1.39e4 1.18e4 1le4 | 1.05e4 | 1.0le4
1.25 1.261e-3 66led | 424ed | 32led 267ed4 | 246ed | 232ed | 224e4d
15 354e3 | 1.734e3 | 1.041e3 | 7.53e4 6.12e4 | 557/ed | 522ed| 502e4d
1.75 0.010179 | 4.683e3 | 2.621e3 | 1.799e3 | 1421e3 | 1274e3 | 1.184e3 | 1.134e3
2 0.029867 | 0.013004 | 0.006775 | 0.004379 | 0.003341 | 0.002939 | 0.002709 | 0.002582
2.25 0.089009 | 0.037028 | 0.018001 | 0.010876 | 0.007956 | 0.006838 | 0.00624 | 0.005918
25 0.268561 | 0.107789 | 0.049147 | 0.027616 | 0.019197 | 0.016046 | 0.014457 | 0.013638
2.75 0.821627 | 0.318097 | 0.13771 | 0.071825 | 0.047039 | 0.03794 | 0.033662 | 0.031554
3 2.532252 | 0.955205 | 0.393836 | 0.191633 | 0.117155 | 0.090508 | 0.078787 | 0.073227
3.25 7.864478 | 2.907386 | 1.139516 | 0.524508 | 0.297407 | 0.217925 | 0.18516 | 0.170301
35 2453087 | 8.953956 | 3.398823 | 1.453204 | 0.771819 | 0.530605 | 0.436847 | 0.396544
3.75 76.73886 | 27.75059 | 10.3261 | 4.143764 | 2.042715 | 1.308498 | 1.034591 | 0.923467
4 239.8214 | 86.20338 | 31.60972 | 12.15687 5.51711 | 3.269185 | 2.458668 | 2.147008

Table A-1. Magnitude of hydrodynamic force in Newtons on &oyl right hand side of
laterally vibrating cross-section in waté&=@0 um, h=2 um) as a function of Reynolds
number and aspect ratio/l)

log(h/b)=0 | 0.25 05 0.75 1 1.25 15 1.75
log(Re)=1 | -63.76330 | -53.50664 | -44.26542 | -38.38273 | -35.12395 | -33.20753 | -32.22597 | -31.11153
1.25 68.15430 | -57.90142 | -48.16814 | -41.36597 | -37.53344 | -34.82186 | -33.69106 | -33.11546
15 72.12286 | -62.43517 | -52.20018 | -44.46925 | -39.54898 | -36.89584 | -35.65673 | -35.02011
1.75 75.54705 | -66.75285 | -56.31586 | -47.38066 | -41.97502 | -38.88040 | -37.42441 | -36.74974
2 78.51016 | -70.67383 | -60.35054 | -50.74748 | -44.41889 | -40.72260 | -39.02426 | -38.23815
2.25 -80.92598 | -74.25600 | -64.41381 | -54.08272 | -46.62607 | -42.10859 | -40.05742 | -39.11227
2.5 -82.90587 | -77.36046 | -68.41135 | -57.65227 | -49.00218 | -43.55865 | -40.97702 | -39.84097
2.75 8451849 | -79.94275 | -72.10805 | -61.39611 | -51.63494 | -45.02736 | -41.79886 | -40.40481
3 -85.78797 | -82.11191 | -75.37234 | -65.22664 | -54.53457 | -46.65440 | -42.62046 | -40.83073
3.25 -86.78245 | -83.87635 | -78.15498 | -69.00095 | -57.73629 | -48.48177 | -43.42677 | -41.12138
35 -87.55144 | -85.29849 | -80.67153 | -72.30376 | -61.15305 | -50.51009 | -44.14355 | -41.14128
3.75 -88.14273 | -86.41880 | -82.81018 | -75.52771 | -64.71762 | -53.01765 | -45.13836 | -41.25305
4 -88.57708 | -87.27893 | -84.51174 | -78.50240 | -68.22110 | -55.78456 | -46.21060 | -41.13328

Table A-2. Phase offset in degrees between hydrodynamic &rdevelocity on top and
right hand side of laterally vibrating cross-seatio water as a function of Reynolds
number and aspect ratio/l)

log(h/b)=0[ 0.25 0.5 0.75 1 1.25 15 1.75
log(Re)=1| 2.637865 | 1.327356 | 0.786240 | 0.549178 | 0.431921 | 0.384095 | 0.354825 | 0.332673
1.25 2.357109 | 1.126900 | 0.636330 | 0.426597 | 0.327220 | 0.283353 | 0.259489 | 0.246473
15 2.144983 | 0.978523 | 0.523850 | 0.335850 | 0.248093 | 0.213075 | 0.193835 | 0.183339
1.75 1.984367 | 0.866288 | 0.439110 | 0.266567 | 0.191286 | 0.161019 | 0.144911 | 0.136588
2 1.863290 | 0.781189 | 0.374859 | 0.215897 | 0.148863 | 0.122084 | 0.108596 | 0.101731
2.25 1.769470 | 0.717477 | 0.326858 | 0.177325 | 0.116424 | 0.092301 | 0.080849 | 0.075163
25 1.696626 | 0.669580 | 0.290929 | 0.148524 | 0.092239 | 0.070395 | 0.060354 | 0.055625
2.75 1.646512 | 0.630543 | 0.263827 | 0.126948 | 0.074250 | 0.054035 | 0.045168 | 0.041175
3 1.607729 | 0.602349 | 0.242597 | 0.110771 | 0.060745 | 0.041902 | 0.033964 | 0.030480
3.25 1.580757 | 0.581966 | 0.224519 | 0.098580 | 0.050629 | 0.032849 | 0.025624 | 0.022547
35 1.560259 | 0.568109 | 0.213514 | 0.088136 | 0.043038 | 0.026069 | 0.019369 | 0.016609
3.75 1.544072 | 0.557576 | 0.206247 | 0.080774 | 0.037184 | 0.021043 | 0.014763 | 0.012259
4 1.526281 | 0.548169 | 0.200311 | 0.075840 | 0.032616 | 0.017210 | 0.011299 | 0.008991

Table A-3. The real part of the hydrodynamic function of tefally vibrating beam
found as a function of Reynolds number and aspgict /b)
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log(h/b)=0] 0.25 05 0.75 1 1.25 15 1.75
log(Re)=1 | 1.300093 | 0.9819549 | 0.806664 | 0.693320 | 0.614016 | 0.586791 | 0.562887 | 0.551228
1.25 0.944961 | 0.7068655 | 0.569582 | 0.484459 | 0.425927 | 0.407360 | 0.389220 | 0.377866
15 0.691868 | 0.5107961 | 0.406338 | 0.342131 | 0.300438 | 0.283833 | 0.270180 | 0.261640
1.75 0.511456 | 0.3721369 | 0.292675 | 0.245287 | 0.212631 | 0.199693 | 0.189368 | 0.182915
2 0.378749 | 0.2739701 | 0.213378 | 0.176412 | 0.151914 | 0.141823 | 0.133988 | 0.129100
2.25 0.282602 | 0.2022693 | 0.156508 | 0.128444 | 0.109996 | 0.102121 | 0.096157 | 0.092448
25 0.211151 | 0.1501549 | 0.115121 | 0.094067 | 0.080176 | 0.074029 | 0.069486 | 0.066666
2.75 0.158007 | 0.1118321 | 0.085173 | 0.069226 | 0.058776 | 0.053983 | 0.050519 | 0.048372
3 0.118406 | 0.0834559 | 0.063317 | 0.051121 | 0.043274 | 0.039550 | 0.036909 | 0.035273
3.25 0.088866 | 0.0624380 | 0.047089 | 0.037839 | 0.031961 | 0.029081 | 0.027072 | 0.025827
35 0.066721 | 0.0467229 | 0.035074 | 0.028122 | 0.023707 | 0.021482 | 0.019957 | 0.019012
3.75 0.050071 | 0.0348967 | 0.026018 | 0.020848 | 0.017563 | 0.015847 | 0.014692 | 0.013977
4 0.037914 | 0.0260538 | 0.019247 | 0.015427 | 0.013032 | 0.011703 | 0.010832 | 0.010295

Table A-4. The imagery part of the hydrodynamic function d¢dtarally vibrating beam
found as a function of Reynolds number and aspict /b)
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APPENDIX B: MACRO USED IN ANSYS TO COMPUTE HYDRODYNAMIC FORCES

INode spacing on width
varycon=3.33333333333333e-8

ITitle (do not run program twice with same title)
/FILNAME, rbbtest1, 1

/ICONFIG, NRES, 6002

IWidth
h =20.0e-6

IReynolds number

Re=1

IRe =1.7782794100389228012254211951927
IRe = 3.1622776601683793319988935444327
IRe =5.6234132519034908039495103977648
IRe =10

IRe =17.782794100389228012254211951927
IRe = 31.622776601683793319988935444327
IRe =56.234132519034908039495103977648
IRe =100

IRe = 177.82794100389228012254211951927
IRe = 316.22776601683793319988935444327
IRe = 562.34132519034908039495103977648
IRe = 1000

IRe =1778.2794100389228012254211951927
IRe = 3162.2776601683793319988935444327
IRe =5623.4132519034908039495103977648
IRe = 10000

IFrequency in water
frg=Re*4e-3/(4e-10*1000*6.283185307)
numcycles=2

numtimedivpercylce=200

numtimdiv= numcycles*numtimedivpercylce

1ISet middle of mesh
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mdI|=10*h/2.0

IRatios of node spacings on boundaries
inner=varycon

out=40*inner

outter=out*10

IPREP7

ISet displacement and velocity of beam
*DEL,_FNCNAME

*DEL, _FNCMTID

*SET, FNCNAME,'DIS'
*DIM,%_FNCNAME%,TABLE,6,8,1

|

I Begin of equation: 1e-7*sin(6.28318*frq*{TIME})
%_ FNCNAME%(0,0,1)= 0.0, -999
%_FNCNAME%(2,0,1)= 0.0
%_FNCNAME%(3,0,1)=0.0
%_FNCNAME%(4,0,1)=0.0
%_FNCNAME%(5,0,1)= 0.0
%_FNCNAME%(6,0,1)= 0.0
% FNCNAME%(0,1,1)= 1.0, -1, 0,
%_FNCNAME%(0,2,1)= 0. O -2,0
% FNCNAME%(0,3,1)= 0, -3,
%_FNCNAME%(0,4,1)= 0. O, -1,0
% FNCNAME%(0,5,1)=10.0, -1, 9,
%_FNCNAME%(0,6,1)= 0.0, -2, 0,
%_FNCNAME%(0,7,1)= 0.0, -3, 0,
%_FNCNAME%(0,8,1)= 0.0, 99,0
I End of equation: 1le-7*sin(6.2831
I-->
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-

*
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*DEL,_FNCNAME2
*DEL,_FNCMTID
*SET,_FNCNAMEZ2,'VEL'

*DIM,%_FNCNAME2%,TABLE,6,12,1

|

I Begin of equation: 6.283185*frq*1e-7*cos(6.2831&*{TIME})
%_FNCNAME2%(0,0,1)= 0.0, -999
%_FNCNAME2%(2,0,1)= 0.0

%_ FNCNAME2%(3,0,1)=0.0

%_FNCNAME2%(4,0,1)= 0.0

%_FNCNAME2%(5,0,1)= 0.0

%_FNCNAME2%(6,0,1)= 0.0
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% FNCNAME2%(0,1,1)= 1.0, -1, 0, 6.283185, 0, 0, 0
%_FNCNAME2%(0,2,1)= 0.0, -2, 0, frg, 0, 0, -1
% _FNCNAME2%(0,3,1)= 0,-3,0, 1, -1, 3, -2

%_FNCNAME2%(0,4,1)= 0.0, -1, 0, .0, -3

le-7,0
%_FNCNAME2%(0,5,1)= 0.0, -2, 0, 1, -3, 3, -
6.2831

f

0 :
0 -1
% FNCNAME2%(0,6,1)= 0.0, -1, 0, 6.28318, 0, 0, 0
%_FNCNAME2%(0,7,1)= 0.0, -3, 0, frg, 0, 0, -1
0
0,

%_FNCNAME2%(0,8,1)= 0.0, -4, 0, 1, -1, 3, -3
% FNCNAME2%(0,9,1)= 0.0, -1, 0, 1, -4, 3, 1
%_FNCNAME2%(0,10,1)= 0.0, -1, 10, 1, -1, 0, 0
%_ FNCNAME2%(0,11,1)= 0.0, -3, 0, 1, -2, 3, -1
%_FNCNAME2%(0,12,1)= 0.0, 99, 0, 1, -3, 0, 0
283

I End of equation: 6.283185*frq*1e-7*cos(6.
I-->

18M{TIME))

ITotal domain
RECTNG,0,10*n,0,10*h,

ICreate fluid inner layer

Isquare
RECTNG, mdI-h, mdl+h, mdl-h, mdl+h,

ASBA, 1,2, DELETE,KEEP
Icreate beam

IRECTNG,mdI-0.0316227766e-6,md|+0.0316227766e-6,h0ai-6, ndl+10e-6,
IRECTNG,mdI-0.0562341325e-6,md|+0.0562341325e-6,h0a&i-6, mdl+10e-6,
IRECTNG,mdI-.1e-6,md|+.1e-6,mdI-10e-6,md|+10e-6,
IRECTNG,mdI-0.17782794100e-6,md|+0.17782794100edb XHe-6,mdl+10e-6,
IRECTNG,mdI-0.31622776601e-6,mdl+0.31622776601ed6 1Ae-6,mdl+10e-6,
IRECTNG,mdI-0.56234132519e-6,mdl+0.56234132519ed6 1He-6,mdl+10e-6,
IRECTNG, mdI-1e-6,mdl+1e-6,mdl-10e-6,mdI+10e-6,
IRECTNG,mdI-1.7782794100e-6,md|+1.7782794100e-6,h0d-6,mdl+10e-6,
IRECTNG,mdI-3.1622776601e-6,md|+3.1622776601e-6,h0ai-6, ndl+10e-6,
IRECTNG,mdI-5.6234132519e-6,md|+5.6234132519e-6,h0adi-6,mdl+10e-6,
RECTNG,mdI-10e-6,mdl+10e-6,mdl-10e-6,mdI+10e-6,

ASBA, 2,1,,DELETE, DELETE

et,3,141
KEYOPT,2,4,1
type,2

mat,1



Isel,s,,,5
Isel,a,,,6
Isel,a,,,7
Isel,a,,,8
Lesize, ALL,out

Isel,s,,,9
Isel,a,,,10
Isel,a,,,11
Isel,a,,,12
Lesize,ALL,inner

IMESH

asel,s,, 4
mshape,1,2d
mshkey,0
amesh,all

allsel

et,4,141
KEYOPT,3,4,1
type,3

mat,1
asel,s,,,3
esize, outter
mshape,1,2d
mshkey,0
amesh,all

ISet DOF

nsel,s,loc,x,0

D,ALL,pres,0.0
D,ALL,UX,0.0,
D,ALL,UY, 0.0

nsel,s,loc,x,10*h
D,ALL,pres,0.0
D,ALL,UX,0.0,
D,ALL,UY, 0.0

nsel,s,loc,y,0
D,ALL,pres,0.0
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D,ALL,UX,0.0,
D,ALL,UY, 0.0

nsel,s,loc,y,10*h
D,ALL,pres,0.0
D,ALL,UX,0.0,
D,ALL,UY,0.0,

Isel,s,,,9
Isel,a,,,10
Isel,a,,,11
Isel,a,,,12
nsll,s,1

ILateral displacement (switch x and y for transeatsplacement)

d,all,uXx, 0.0

d,all,uY, %DIS%

d,all,vX, 0.0

d,all,vY, %VEL%
D,ALL,ENKE,-1

allsel

Icdwrite,db,fluid,cdb,

fini

I Flotran Setup

/solu
FLDATA30,QUAD,MOMD,2,
FLDATA30,QUAD,MOMS,?2,
FLDATA30,QUAD,PRSD,2,
FLDATA30,QUAD,PRSS,?2,
FLDATA30,QUAD,THRD,O0,
FLDATA30,QUAD,THRS,0,
FLDATA30,QUAD,TRBD,0,
FLDATA30,QUAD,TRBS,?2,
/solu
FLDATA4,TIME,NUMB,100000,

ISet number of cycles
frg2=numcycles/frq 12/frq for ongcle
FLDATA4,TIME,TEND,frg2, !should be 2e-2 for 2ycles

FLDA,SOLU,ALE, T I ALE solution
FLDATA1,SOLU,FLOW,1
FLDATA1,SOLU,TRAN,1
IFLDATA1,SOLU,TURB,1 INo turbulence
FLDATA2,TIME,GLOB,2400
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FLDATA7,PROT,DENS,Constant
FLDATAS8,NOMI,DENS,1000
FLDATA7,PROT,VISC,Constant
FLDATA8,NOMIVISC, 1e-3
IFLDA,BULK,BETA,1.0e5

INumber of total time instances
frg3=frg2/numtimdiv

FLDA, TIME,STEP, frq3
FLDATA4A, STEP, APPE, 1

|

I Newmark method

|

FLDATA,OUTP, TAUW,T

FLDATA, TIME,METH,NEWM

FLDATA, TIME,DELT,0.5

|

Il Set ANSYS-STRUCTURE commands

SAVE

/COM

/COM Re-meshing Commands

/COM

FLDATA,REMESH,ELEM,ALL I all defined elememé-meshing
FLDATA,REMESH,ARMA,10.0 I maximum aspect i@ti
FLDATA,REMESH,VOCH,5.0 I maximum volume chgpgn
FLDATA,REMESH,ARCH,5.0 I maximum aspect cathange

SOLVE
/postl

ISet path (this should be changed depending on)mesh
PATH,TOP,2,,
PPATH,1,121,
PPATH,2,122,

Icode for extracting shear and velocity (PAV)

*DEL,_FNCNAME4

*DEL,_FNCMTID

*SET,_FNCNAME4,'SHE'
*DIM,%_FNCNAME4%,TABLE, numtimdiv,1,1
*DEL,_FNCNAMES

*DEL,_FNCMTID

*SET,_FNCNAMES,'PAV
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*DIM,%_FNCNAMES5%, TABLE, numtimdiv,1,1

count=1
count2= numtimdiv-2

*DOWHILE, count2

count=count+1

SET, 1, count

PDEF,PRV, TAUW
PCALC,INTG,IPV,PRV,YG
*GET,PRDV, Path, 0, LAST, IPV
%_FNCNAME4%(count,0,1)= count
%_FNCNAME4%(count,1,1)= PRDV
count2=count2-1

*Enddo

count=1
count2= numtimdiv-2

*DOWHILE, count2

count=count+1

SET, 1, count

PDEF,PRV,VY
PCALC,INTG,IPV,PRV,YG
*GET,PRDV,Path,0,LAST,IPV

% _ FNCNAME5%(count,0,1)= count
%_FNCNAMES5%(count,1,1)= PRDV
count2=count2-1

*Enddo

IThis writes data to a file, only works if run asnaac macro
*CFOPEN,IgOb1SHEIgO,,

*VYWRITE,SHE(1)

(F20.14)

*CFOPEN,Ig0Ob1PAVIgO,,
*VYWRITE,PAV(1)
(F20.14)

lIGet the pressure force

ISet path (this should be changed depending on)mesh
PATH,TOP2,2,,
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PPATH,1,1322,
PPATH,2,122,

*DEL,_FNCNAMEG6

*DEL,_FNCMTID

*SET,_FNCNAMESG,'PRE'
*DIM,%_FNCNAMEG6%,TABLE, numtimdiv,1,1

count=1
count2= numtimdiv-2

*DOWHILE, count2

count=count+1

SET, 1, count

PDEF,PRV,PRES
PCALC,INTG,IPV,PRV,XG
*GET,PRDV,Path,0,LAST,IPV

% _FNCNAMEG6%(count,0,1)= count
% FNCNAME6%(count,1,1)= PRDV
count2=count2-1

*Enddo

IThis writes data to a file, only works if run asmaac macro
*CFOPEN,IgOb1PREIgO,,

*VWRITE,PRE(1)

(F20.14)

/quit
[clear

169



170

APPENDIX C: MATLAB PROGRAM USED TO CALCULATE FREQUENCY
SPECTRUM OF LATERALLY VIBRATING MICROCANTILEVERS IN VISCO US

LIQUID MEDIA

%Lateral Microcantilever Spectrum Plotter

clear;
clc;
%close all;

%index of the frequency
counter0=0;
%modeN=1,;

%Frequency range to search

Yoair
plotl=[1:10:380,380:1:386,386:.1:386.7,386.7:.01:38
00,400:10:2410,2410:1:2424,2424:.1:2424.3,2424.3:.0
425,2425:1:2440,2450:10:5000,5000:25:6786,6786:.1:6
pi*10”3;

%base layer Young's modulus
Ep1=169*10"9;

countdown=size(plotl);
for w=plotl

%Displays the clock
counterO=counterO+1;
countdown-counterO

b=45*10"-6; %width
h1=12*10"-6; %base
L=400*10"-6; %length

%choose medium of operation

%52% Glycerol
%pl=998.23*1.1308;
%n=1*10"-3*6.6530;

%air
pl=1.205;
n=1.827*10"-5;

%CCl4
%pl=1590;
%n=8.79*10"-4,

%acetone
%pl=785;
%n=3.08*10"-4;

7,387:.1:388,388:1:4
1:2424.7,2424.7:.1:2
791,6791:25:8000]*2*



%water
%pl=997;
%n=10*10"-4;

mB=2330%(1.00)*b*h1; % 2330 kg/m"3 (Si) * 20 *10"-6
kg/m”3 (PIB)* same = kg/m

11=(1/12).*b.A3.*h1;

%flextural rigidity
Elp=Ep1.*11;

%Reynolds number
Re=(pl.*w.*b."2)/(4.*n);

%Hydrodynamic function
h=h1,

gamma=2*sqrt(2)/(pi*sqrt(Re))*(((1.657624692.*(h/b)
807413409.*%(h/b)*.85+1) +.*( (-
1.321274*(h/b).~1+2.5602901549).*1./sqrt(Re)+3.1077
);

%Mass per unit length
mBp=mB+(pi/4).*pl.*b."2.*real(gamma);
mBpp=(pi/4).*pl.*b.~2.*imag(gamma);

%mode numbers

Bg=[1.87510406871196 4.69409113297418 7.85475743823
14.1371683910465 17.2787595320882 20.4203522510413

26.7035375555183 29.8451302091028];

%length index
counter=0;

%change to look at different points along the lengt
%currently only looking at beginning, middle and en
overlength=0:(L/2):L/1;

for x=overlength

counter=counter+1;
wxtotal=0;
for i=1:10

Bi=Bg(i)./L;

%mode shape
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phi=((cos(Bi.*x)-
cosh(Bi.*x)).*(cos(Bi.*L)+cosh(Bi.*L))+(sin(Bi.*x)-
sinh(Bi.*x)).*(sin(Bi.*L)-sinh(Bi.*L)))./(sin(Bi.*L

F1= @(x) (((cos(Bi.*x)-
cosh(Bi.*x)).*(cos(Bi.*L)+cosh(Bi.*L)))./(sin(Bi.*L
sinh(Bi.*L))+(sin(Bi.*x)-sinh(Bi.*x)));

%Modal excitation assumption %uncomment to
of mode

%if i==modeN
%integral top part
itp=quad(F1,0,L);
%else
% itp=0;
%end

F2= @(x) (((cos(Bi.*x)-
cosh(Bi.*x)).*(cos(Bi.*L)+cosh(Bi.*L)))./(sin(Bi.*L
sinh(Bi.*L))+(sin(Bi.*x)-sinh(Bi.*x)))."2;

%second integral part
sip=quad(F2,0,L);

%frequency dependent part
fdp=(Elp.*(Bi.*L). " 4-mBp.*w."2.*L."4)+j*(mB

Fx=(175/400)*10"-6;%constant force along be

%amplitude of delection @ x
C=L"*(Fx*itp./(fdp.*sip));

%deflection from this mode
wx=C.*phi;

9%total defelction
wxtotal=wx+wxtotal;

%store deflection for this mode
wxi(i)=wx;

end
%store deflections as a function of x
Whig(counter)=(wxtotal);

Whpart(counter)=(wxi(1));

Whpart2(counter)=(wxi(2));
Whpart3(counter)=(wxi(3));
Whpart4(counter)=(wxi(4));
Whpart5(counter)=(wxi(5));
Whpart6(counter)=(wxi(6));
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Whpart7(counter)=(wxi(7));
Whpart8(counter)=(wxi(8));

end

%store tip deflection as a function of frequency
%(You can look at different points on the beam
%by changing ENDL to the correct index)
[nothing ENDL]=size(overlength);

%ENDL=2;

sweepl(counter0)=Wpart(ENDL);
sweep2(counter0)=Wpart2(ENDL);
sweep3(counter0)=Wpart3(ENDL);
sweep4(counter0)=Wpart4(ENDL);
sweep5(counter0)=Wpart5(ENDL);
sweep6(counter0)=Wpart6(ENDL);
sweep7(counter0)=Wpart7(ENDL);
sweep8(counter0)=Wpart8(ENDL);
sweep(counter0)=Whbig(ENDL);

end
%PIlot graphs
rad=2*pi*10"3

%Change this to normalize sweep to a particular val
maxabssweep=max(abs(sweep));

figure (14)

grid(‘'on");

hold on;
plot(plotl./(rad),20*log10(abs(sweep)./maxabssweep)
plot(plotl./(rad),20*log10(abs(sweepl)./maxabssweep
plot(plotl./(rad),20*log10(abs(sweep2)./maxabssweep
plot(plotl./(rad),20*log10(abs(sweep3)./maxabssweep

%air (transverse resonant frequencies)
plot([103.046173231076,103.046173231076],[min(20*lo
bssweep)) 0],'k")
plot([645.964652687217,645.964652687217],[min(20*lo
bssweep)) 0],'k")
plot([1808.86734001235,1808.86734001235],[min(20*lo
bssweep)) 0],'k")
plot([3544.78700981296,3544.78700981296],[min(20*lo
bssweep)) 0],'k")
plot([5859.9095844272,5859.9095844272],[min(20*log1
sweep)) 0],'k")
%plot([8753.80997837765,8753.80997837765],[min(20*I
(abs(sweep)))) 0],'k)
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%water

%
plot([64.1961148174447,64.1961148174447],[min(log10
weep)) 0],'k)
%plot([417.699903858705,417.699903858705],[min(logl
sweep)) 0],'k")
%plot([1182.20035206476,1182.20035206476],[min(logl
sweep)) 0],'k")
%plot([2327.68289764804,2327.68289764804],[min(logl
sweep)) 0],'k")
%plot([3858.31415669093,3858.31415669093],[min(logl
sweep)) 0],'k")
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APPENDIX D: MATLAB PROGRAM USED TO CALCULATE
CHARATERISTICS OF LATERALLY VIBRATING MICROCANTILEVERS 1 N

VISCOUS LIQUID MEDIA

%This is the matlab algorithm for investigation of
%microcantilevers

%Technical (remove close all to allow for multiple
clc;

clear all;

%close all;

%switches (mode active [on = 1, off = Q])
%Choose which parameter to sweep
watergly=0;

watereth=0;

varyhl=1;

varyb=0;

varyL=0;

%Choose min, max, and step size of parameter sweep
%For water-gly and water-eth, use integer values
%representing the first and last data points desire
bottom=45*10"-6; %Note: Do not set to zero
every=15*10"-6;

top=90.001*10"-6; %.001 added so that bottom!=top

%Choose default beam geometry
h1=12*10"-6; %Thickness [in meters]
b=45*10"-6; %Width [in meters]
L=200*10"-6; %Length [in meters]

%Mode numbers

Bg=[1.87510406871196 4.69409113297418 7.85475743823
14.1371683910465 17.2787595320882 20.4203522510413
26.7035375555183 29.8451302091028];

%Choose mode number
bl=Bg(1);
rad=2*pi;

%Operational Medium Properties:
%glycerol data: 37 points

%Viscosity

gnarray=[1 1.009 1.020 1.046 1.072 1.098 1.125 1.15
1.288 1.362 1.442 1.530 1.627 1.734 1.984 2.274 2.6
5.402 6.653 8.332 10.66 13.63 18.42 27.57 40.49 59.
778.9 1759.6];

laterally excited

run plots)
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%Density

gplarray=[1 .9994 1.0005 1.0028 1.0051 1.0074 1.009
1.0167 1.0191 1.0215 1.0262 1.0311 1.036 1.0409 1.0
1.0770 1.0876 1.0984 1.1092 1.1200 1.1308 1.1419 1.
1.1866 1.1976 1.2085 1.2192 1.2299 1.2404 1.2508 1.
%Percent (w/w) aqueous glycerol
gperarray=[0.512345678910121416 18 20

48 52 56 60 64 68 72 76 80 84 88 92 96 100] ;

%ethanol data: 71 points

%Viscosity

eplarray=[1 .9973 .9963 .9954 .9945 .9936 .9927 .99
.9885 .9878 .9870 .9862 .9855 .9847 .9840 .9833 .98
.9778 .9765 .9752 .9739 .9726 .9713 .9700 .9687 .96
.9539 .9504 .9468 .9431 .9392 .9352 .9311 .9269 .92
.9049 .9004 .8958 .8911 .8865 .8818 .8771 .8724 .86
.8485 .8436 .8387 .8335 .8284 .8232 .8180 .8125 .80
.7893];

%Density

enarray=[1 1.021 1.044 1.068 1.093 1.116 1.138 1.15
1.250 1.276 1.301 1.328 1.3551.382 1.411 1.439 1.4
1.691 1.757 1.822 1.886 1.951 2.015 2.077 2.138 2.2
2.662 2.721 2.762 2.797 2.823 2.840 2.846 2.844 2.8
2.749 2.696 2.627 2.542 2.474 2.410 2.342 2.276 2.2
1.9441.877 1.804 1.738 1.671 1.603 1.5391.472 1.4
1.201];

%Percent (w/w) aqueous ethanol
eperarray=[0.511522533544555566.5
10111213 14151617 18 19 20 22 24 26 28 30 32
48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80
96 98 100];

%Water

nwa=1*10"-3; %Viscosity of water in Pa * s, or kg
T=25'C=.89*107-3) (1 cP= 10"-3 Pa*s)

plwa=997; %Density of water in kg/m”"3

Y%Air

nair=1.827*10"-5 ; %viscosity of air in Pa * s from
44, a different CRC than the one in the lab)
plair=1.205; %density of air in kg/m"3 from C

%Uncomment to Run in Air
%nwa=nair;
%plwa=plair;

%Uncomment here and in algorithm to force a particu
%saderin=1.696626383+j.*0.211151462;

%Indexing variable
c=0;

for param=bottom:every:top
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7 1.0120 1.0144
459 1.0561 1.0664
1530 1.1643 1.1755
2611];

24 28 32 36 40 44

18 .9910 .9902 .9893
26 .9819 .9805 .9792
60 .9632 .9602 .9571
27 .9183 .9139 .9095
76 .8629 .8581 .8533
70 .8013 .7954

91.1811.203 1.226
68 1.498 1.560 1.624
54 2.365 2.471 2.576
37 2.826 2.807 2.783
10 2.144 2.078 2.011
04 1.339 1.270

775885995
34 36 38 40 42 44 46
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c=c+1; %Main counter
n=nwa;
pl=plwa;

%%%If statements to put param into the righ
if watergly==1;
n=gnarray(c)*nwa,;
pl=gplarray(c)*plwa;
per=gperarray(c);
end
if watereth==1;
n=enarray(c)*nwa,;
pl=eplarray(c)*plwa;
per=eperarray(c);

end

if varyb==1;
b=param;

end

if varyh1==1;
hl=param;

end

if varyL==1;
L=param,;

end

%%%Define everything%%%

%beam density
pB=2330;

%mass per unit length
mB=pB*b*h1,;

%Young's modulus of beam
Ep1=(127.5*10"9); %Pa= kg/(m s"2) Si:169e9

%Vacuum Resonant Frequency
11=(1/12).*b"3.*h1;

Elp=Ep1.*I11,;
Pwvac(c)=((bl.*2)./L."2).*sqrt(Elp./mB);

%initial frequency
w=Pwvac(c);

wh = Pwvac(c);

%%Find an approximation for the resonant fr
for iteration=1:20

%Centroidal moment of inertia
11=(1/12).*b"3.*h1,

Elp=Epl1.*I1;
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%Reynolds number
Re=(pl.*wh.*b.72)/(4.*n);

%Hydrodynamic function (Stokes' approxi
gamma=sqrt(2)*2./(pi*sqrt(Re))*(1+j);

mBp=mB+(pi/4).*pl.*b."2.*real(gamma);
mBpp=(pi/4).*pl.*b.~2.*imag(gamma);

%resonant frequency
wh=((bl.*2)./L.~2).*sqrt((mBp.*Elp)./(mBp.*mBp+mBpp
end

%Lateral ribbon quality factor
IQIr=(mBpp)./(mBp);
QIr=1./(2.*(1-sqrt(1-abs(IQIr))));

%Collect plot variable data from Stokes' so
PQIr(c)=Qlr;

Pwlr(c)=wh;
Pg2s(c)=(pi/4).*pl.*b."2.*2.*sqrt(2)./(pi*s
Pgls(c)=Pg2s(c).*Pwilr(c);

PRes(c)=Re;

%%%Calc exact res freq%%%

%initial approximation
wh2d=wh;

for iteration=1:20

%centroidal moment of inertia
11=(1/12).*b"3.*h1;
Elp=Epl.*11;

%Reynolds number
Re=(pl.*wh2d.*b."2)/(4.*n);
h=h1;

%Hydrodynamic function found from ANSYS

gamma2d=2*sqrt(2)/(pi*sqrt(Re))*(((1.657624692.*(h/
.0807413409.*(h/b)*.85+1) +.*( (-
1.321274*(h/b).~1+2.5602901549).*1./sqrt(Re)+3.1077
);

mBp2d=mB+(pi/4).*pl.*b.*2.*real(gamma2d
mBpp2d=(pi/4).*pl.*b.”~2.*imag(gamma2d);

%Effective spring constant (off by fact
normal
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%notation)
klat= (Elp./L."3);

%Effective mass (with the dgamma/dw acc ounted for)
Mlat = mBp2d.*L+L.*((mBpp2d-
((sqrt(2).*pl.*b."2./4./Re).*(2.5602901549-

1.321274.*(h./b))+(sqrt(2).*pl.*b.”2./8./sqrt(Re)). *(3.1077195556.%(h./
b).~0.85+1)))./(mBp2d-

((sqrt(2).*pl.*b.~2./18./sqrt(Re)).*(3.0807413409.%( h./b).~.85+1)))).*mB
pp2d;

%Resonant frequency
wh2d=(bl.*2).*sqrt(klat./Mlat);
end

Pw2d(c)=wh2d;

%%%Quality factor with Thickness Effects%%%
1Q2d=(mBpp2d)./(mBp2d);
Qapprox=1./1Q2d,;
if 1Q2d>1
Q2d=1./(sgrt(1+abs(1Q2d)));
else
Q2d=1./(2.*(1-sqrt(1-abs(1Q2d))));
end

%%%Sensitivity%%%

A=mBpp2d;

Apdiv=(mBpp2d-((sqrt(2).*pl.*b."2./4./Re).* (2.5602901549-
1.321274.*(h./b))+(sqrt(2).*pl.*b.”2./8./sqrt(Re)). *(3.1077195556.*(h./
b).~0.85+1)));

Bpdiv=(mBp2d-

((sqrt(2).*pl.*b.~2./8./sqrt(Re)).*(3.0807413409.%( h./b).~.85+1)));

B=mBp2d;

k=(Elp)/L."3;

%If forcing a particular gamma, use these | ines

%M=L.*B+L.*(A."2./B);

%lamM(c)=((A."2.*Elp)./(2.*k.*L.*M.*(L.*B). n2)-1./(2.*M));%

%Normalized mass sensitivity
M = mBp2d.*L+L.*((mBpp2d-
((sqrt(2).*pl.*b.~2./4./Re).*(2.5602901549-

1.321274.*(h./b))+(sqrt(2).*pl.*b.~2./8./sqrt(Re)). *(3.1077195556.*(h./
b).~0.85+1)))./(mBp2d-
((sqrt(2).*pl.*b.~2./8./sqrt(Re)).*(3.0807413409.*( h./b).~.85+1)))).*mB
pp2d;

lamM(c)=((A.*Apdiv.*Elp)./(2.*k.*L.*M.*(L.* Bpdiv).2)-

1./(2.*M));%

%Mass sensitivity in Hz/kg
PSmass(c)=lamM(c).*(Pw2d(c)/(2*pi));



%Mass sensitivity approx
lamMap(c)=(1./(2.*M));
PSmap(c)=(1./(2.*M)).*(Pw2d(c)/(2*pi));

%Normalized Chemical sensitivity in Hz/pg *
PScbar(c)= (PSmass(c)./1000./10.212).*b.*L.

%Collect plot variable data
Phb(c)=h1/b;

PRe(c)=Re;
Pgamma2d(c)=gamma2d,;
PmBp2d(c)=mBp2d;
PmBpp2d(c)=mBpp2d;
Pklat(c)=klat;
PMlat(c)=Mlat;
Pw2d(c)=wh2d;
Pf2d(c)=wh2d./(2*pi);
PQ2d(c)=Q2d,;
PQapprox(c)=Qapprox;

Pgl1(c)=mBpp2d.*wh2d;
Pg2(c)=(pi/4).*pl.*b.”2.*real(gamma2d);
Pnwa(c)=nwa,;

PL(c)=L;

Pb(c)=b;

Ph(c)=h1;

%%%Calculate other approximations%%%
%Re>>1 approximation res freq (no-div [nd])
wh2dnd=wh;
for iteration=1:20
%Centroidal moment of inertia
11=(1/12).*b"3.*h1,;
Elp=Ep1.*I1;

%Reynolds number
Re=(pl.*wh2dnd.*b.~2)/(4.*n);

%Hydrodynamic function found from ANSYS

h=h1;

gamma2dnd=2*sqrt(2)/(pi*sqrt(Re))*(((1.657624692.*(
+3.0807413409.*(h/b)*.85+1) +j.*( (-
1.321274*(h/b).~1+2.5602901549).*1./sqrt(Re)+3.1077

%Uncomment here and above to force a pa
%gamma2d=saderin;

umn2
*10M12;

h/b)*1.83).*sqrt(Re)
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mBp=mB+(pi/4).*pl.*b."2.*real(gamma2dnd );
mBpp=(pi/4).*pl.*b.~2.*imag(gamma2dnd);

%resonant frequency

wh2dnd=((bl.*2)./L.~2).*sqrt((mBp.*Elp)./(mBp.*mBp+ mBpp.*mBpp));
end

Pw2dnd(c)=wh2dnd;

%%%Quality factor with Thickness Effects%%%
1Q2dnd=(mBpp)./(mBp);
Qapproxnd=1./1Q2dnd;
if IQ2dnd>1
Q2dnd=1./(sgrt(1+abs(1Q2dnd)));
else
Q2dnd=1./(2.*(1-sqrt(1-abs(1Q2dnd))));
end

A=mBpp;

B=mBp;

k=(Elp)/L."3;

M=L.*B+L.*(A."2./B);

lamMnd(c)=((A."2.*Elp)./(2.*k.*L.*M.*(L.*B) N2)-1.1(2.*M));%

%Mass sensitivity in Hz/kg
PSmassnd(c)=lamM(c).*(Pw2dnd(c)/(2*pi));

%Mass sensitivity approx
lamMapnd(c)=(1./(2.*M));
PSmapnd(c)=(1./(2.*M)).*(Pw2dnd(c)/(2*pi));

%Collect plot variable data
Pgamma2dnd(c)=gammaZ2dnd;
PmBp2dnd(c)=mBp;
PmBpp2dnd(c)=mBpp;
Pw2dnd(c)=wh2dnd;
PQ2dnd(c)=Q2dnd;
PQapproxnd(c)=Qapproxnd;

%lInviscid approximation [in]

wh2din=wh;

for iteration=1:20
%centroidal moment of inertia
11=(1/12).*b"3.*h1;
Elp=Epl.*11;

%Reynolds number
Re:(pL*Wthin.*b,/\2)/(4_*n);



h=h1,;
%Inviscid approximation [works for 0<h/
gammaz2din=(2./(pi.*2)).*(h1./b).~2.*(1+2.*log(4.*pi

mBp2d=mB+(pi/4).*pl.*b.*2.*real(gamma2d
mBpp2d=(pi/4).*pl.*b.*2.*imag(gamma2din

%Effective spring constant (off by fact
normal

%notation)

klat= (Elp./L."3);

%Effective mass (with the dgamma/dw acc

Mlat = mBp2d.*L+L.*((mBpp2d-
((sqrt(2).*pl.*b.~2./4./Re).*(2.5602901549-
1.321274.*(h./b))+(sqrt(2).*pl.*b.~2./8./sqrt(Re)).
b).~0.85+1)))./(mBp2d-
((sqrt(2).*pl.*b.~2./8./sqrt(Re)).*(3.0807413409.%(
pp2d;

%Resonant frequency
wh2din=(bl.*2).*sqrt(klat./Mlat);
end

Pw2din(c)=wh2din;

%Countdown clock: if numbers to high, chang
"every"
top/every-c-bottom

end

%A2 will output a resonant frequency [kHz], quali
[Hz/pg]

A2(:,1)=Pw2d./2./pi/10"3;
A2(:,2)=PQ2d;
A2(:,3)=(abs(PSmass)/1000/10"12);

%if statements separating different plot types
if varyb==1
%b/L"2 vs. Resonant frequency (kHz)
figure (1)

hold on;
plot((bottom:every:top)./(PL.~2),Pw2d./(rad*10
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grid(‘on";
xlabel('b/L"2 [m”-1]Y);
ylabel(‘resonant frequency [kHz]);

%sqrt(b)/L vs. Quality Factor

figure (2)

hold on;
plot(sqgrt(bottom:every:top)./(PL),PQ2d,'b")
grid(‘on";

xlabel('b~1/2/L [m™-1/2]");

ylabel('Quality Factor");

%Db/L"2 vs. Scbar

figure (3)

hold on;

plot((bottom:every:top)./(PL.~2),abs(PScbar),' b")
grid(‘'on”);

xlabel('b/L"2 [m"-1]Y);

ylabel(‘Normalized Chemical Sensitivity [Hz/pg *um”2]);

end
if varyL==1

%b/L"2 vs. Resonant frequency (kHz)

figure (1)

hold on;

plot(Pb./(bottom:every:top).”2,Pw2d./(rad*10"3 ),'b")
grid(‘on";

xlabel('b/L"2 [m~-1]");

ylabel(‘resonant frequency [kHz]);

%sqrt(b)/L vs. Quality Factor

figure (2)

hold on;
plot(sqrt(Pb)./(bottom:every:top),PQ2d,'b")
grid(‘on";

xlabel('b”"1/2/L [m”-1/2]);

ylabel('Quality Factor");

%b/L"2 vs. Scbar

figure (3)

hold on;

plot(Pb./(bottom:every:top).~2,abs(PScbar),'b’ )
grid(‘on";

xlabel('b/L"2 [m~-1]");

ylabel(‘Normalized Chemical Sensitivity [Hz/pg *um”2]);

end

if varyhl==1
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%h1 (um) vs. Resonant frequency (kHz)

figure (1)

hold on;

plot((bottom:every:top).*1076,Pw2d./(rad*10"3) ,'b")
grid(‘on";

xlabel(‘h [um];

ylabel('resonant frequency [kHz]);

%h1 (um) vs. Quality Factor

figure (2)

hold on;
plot((bottom:every:top).*1076,PQ2d,'b")
grid(‘on";

xlabel(‘h [um];

ylabel('Quality Factor");

%h1 (um) vs. Schar

figure (3)

hold on;

plot((bottom:every:top).*1076,abs(PScbar),'b")

grid(‘on";

xlabel('h [um]’);

ylabel(‘Normalized Chemical Sensitivity [Hz/pg *um”2]);

end
if watergly==1

%Re vs. Resonant frequency (kHz)
figure (1)

hold on;
plot(PRe,Pw2d./(rad*10"3),'b")
plot(PRe,Pw2dnd./(rad*10"3),'r--")
plot(PRe,Pw2din./(rad*10"3),'k")
grid(‘on";

xlabel('Reynolds Number");
ylabel(‘resonant frequency [kHz]);

%sqrt(Re) vs. Quality Factor
figure (2)

hold on;
plot(sqrt(PRe),PQ2d,'k")
plot(sqrt(PRe),PQapprox,'r--")
grid(‘on";

xlabel('Reynolds Number");
ylabel('Quality Factor");

%Re vs. Smass

figure (3)

hold on;
plot(PRe,abs(PSmass)/1000/10"12,'b")
plot(PRe,abs(PSmap)/1000/10"12,'r--"
grid(‘on";

xlabel('Reynolds Number");
ylabel(‘Mass Sensitivity [Hz/pg]);
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% %gly vs. Resonant frequency (kHz)

figure (4)

hold on;

plot(gperarray(bottom:every:top),Pw2d./(rad*10 73),'b")
grid(‘on";

xlabel('"Percent Aqueous Glycerol’);

ylabel('resonant frequency [kHz]);

% %gly vs. Quality Factor

figure (5)

hold on;
plot(gperarray(bottom:every:top),PQ2d,'b")
grid(‘on";

xlabel('Percent Aqueous Glycerol’);
ylabel('Quality Factor");

% %gly vs. Smass

figure (6)

hold on;

plot(gperarray(bottom:every:top),abs(PSmass)/1 000/10"12,'b")
grid(‘on";

xlabel('Percent Aqueous Glycerol’);

ylabel(‘Mass Sensitivity [Hz/pg]');

end
if watereth==1

%Re vs. Resonant frequency (kHz)
figure (1)

hold on;
plot(PRe,Pw2d./(rad*10"3),'b")
plot(PRe,Pw2dnd./(rad*10"3),'r--")
plot(PRe,Pw2din./(rad*10"3),'k")
grid(‘on";

xlabel('Reynolds Number");
ylabel(‘resonant frequency [kHz]);

%sqrt(Re) vs. Quality Factor
figure (2)

hold on;
plot(sqrt(PRe),PQ2d,'k")
plot(sqrt(PRe),PQapprox,'r--")
grid(‘'on”);

xlabel('Reynolds Number");
ylabel('Quality Factor");

%Re vs. Smass [Hz/pg]

figure (3)

hold on;
plot(PRe,abs(PSmass)/1000/10"12,'b")
plot(PRe,abs(PSmap)/1000/10"12,'r--")
grid(‘'on”);

xlabel('Reynolds Number");
ylabel(‘Mass Sensitivity [Hz/pg]");
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% %gly vs. Resonant frequency (kHz)

figure (4)

hold on;

plot(eperarray(bottom:every:top),Pw2d./(rad*10 "3),'b")
grid(‘'on");

xlabel('Percent Aqueous Ethanol’);

ylabel('resonant frequency [kHz]);

% %gly vs. Quality Factor

figure (5)

hold on;
plot(eperarray(bottom:every:top),PQ2d,'b")
grid(‘'on”);

xlabel('Percent Aqueous Ethanol’);
ylabel('Quality Factor");

% %gly vs. Smass [Hz/pg]
figure (6)
hold on;
plot(eperarray(bottom:every:top),abs(PSmass)/1 000/10"12,'b")
grid(‘'on”);
xlabel('Percent Aqueous Ethanol’);
ylabel(‘Mass Sensitivity [Hz/pg]);

end
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