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ABSTRACT 
THEORETICAL ANALYSIS OF LATERALLY VIBRATING MICROCANTILEVER 

SENSORS IN A VISCOUS LIQUID MEDIUM 
 
 

Russell Cox, B.S., M.S. 
 

Marquette University, 2011 
 
 

Dynamically driven microcantilevers are normally excited into resonance in the 
out-of-plane flexural mode. The beam’s resonant frequency and quality factor are used to 
characterize the devices. The devices are well suited for operation in air, but are limited 
in viscous liquid media due to the increased viscous damping. In order to improve these 
characteristics, other vibration modes such as the in-plane (or lateral) flexural mode are 
investigated. In this work, microcantilevers vibrating in the in-plane flexural mode (or 
lateral direction) in a viscous liquid medium are investigated.  The hydrodynamic forces 
on the microcantilever as a function of both Reynolds number and aspect ratio (thickness 
over width) are first calculated using a combination of numerical methods and Stokes’ 
solution. The results allowed for the resonant frequency, quality factor, and mass 
sensitivity to be investigated as a function of both beam geometry and medium 
properties. The predicted resonant frequency and quality factor for several different 
laterally vibrating beams in water are also found to match the trends given by 
experimentally determined values found in the literature.  

 The results show a significant improvement over those of similar devices 
vibrating in the out-of-plane flexural mode. The resonant frequency increases by a factor 
proportional to the inverse of the beam’s aspect ratio.  Moreover, the resonant frequency 
of a laterally vibrating beam shows a smaller decrease when immersed in water (5-10% 
compared to ~50% for transversely vibrating beams) and, as the viscosity increases, the 
resonant frequency decreases slower compared to beams excited transversely. The quality 
factor is found to increase by a factor of 2-4 or higher depending on the medium of 
operation and the beam geometry. Due to the increased resonant frequency and the 
decreased effective mass of the beam (compared to beams excited transversely), the 
estimated mass sensitivity of a laterally excited microcantilever is found to be much 
larger (up to two orders of magnitude). The improvement in these characteristics is 
expected to yield much lower limits of detection in liquid-phase bio-chemical sensing 
applications. 

 



 i

ACKNOWLEDGMENTS  
 
 

Russell Cox, B.S., M.S. 
 
 

 

I would like to thank my advisor, Dr. Fabien Josse, for his hard work, 
understanding, and patience over the course of this investigation. His guidance has been 
essential in the preparation of this dissertation and the analysis of its results. I would also 
like to thank him for giving me many opportunities to grow, both as a researcher and as a 
student. I would like to thank Dr. Stephen Heinrich for the many hours of discussion and 
insight into the physical modeling of the system. Thanks are also extended to Dr. Isabelle 
Dufour for helping to initiate research into this problem and for her continued advice. 
Thanks are given to Dr. Oliver Brand and his group at Georgia Institute of Technology, 
especially Luke Beardslee, for providing experimental data used to confirm results in this 
dissertation. Thanks are also due to my entire research committee (Dr. Fabien Josse, Dr. 
Stephen Heinrich, Dr. Isabelle Dufour, Dr. Edwin Yaz, and Dr. Susan Schneider) for 
their corrections and suggestions on how to improve this dissertation.  I would like to 
thank Dr. Edwin Yaz for his useful input into my research. Thanks are also due to Dr. 
Susan Schneider for her advice and guidance. I would also like to thank Dr. Nicholas 
Nigro for the many helpful discussions on the numerical modeling of the problem. 
Thanks are also given to current and former members of the Microsensor Research 
Group, especially Dr. Arnold Mensah-Brown, Dr. Michael Wenzel, Dr. Florian Bender, 
Tao Cai, and Jinjin Zhang.  

Finally I would like to thank my family, friends, and church for offering me 
support throughout the time it took to complete this work.   
 



  ii 

TABLE OF CONTENTS 
 
 
ACKNOWLEDGMENTS…………………………………………………………………i 
 
LIST OF TABLES………………………………………………………………………...v  
 
LIST OF FIGURES…………………………………………………………………….. vii 
 
CHAPTER  
 

1. INTRODUCITON…………………………………………………………...…1 
 

1.1 Microcantilevers as Chemical Sensor Platforms……………………...1 
 
1.2 Static and Dynamic Mode Operation…………………………………3 
 
1.3 Gas and Liquid Phase Sensing ………………………………………..5 
 
1.4 Modeling Laterally Vibrating Microcantilevers …………….………12 
 
1.5 Problem Statement and Objectives…………………………………..17 
 
1.6 Dissertation Organization……………………………………………19 

 
2. LATERALLY EXCITED MICROCANTILEVERS IN A VISCOUS LIQUID 
MEDIUM………………………………………………………………………...21   

 
2.1 Introduction…………………………………………………………..21 
 
2.2 Effects of a Viscous Liquid Medium………………………………...24 
 
2.3 Mode Shapes…………………………………………………………27 
 
2.4 Mode Shape Amplitudes and Phases of Laterally Vibrating 
Microcantilevers in Viscous Liquid Media………………………………30 

 
3. HYDRODYNAMIC FORCES ON LATERALLY VIBRATING 
MICROCANTILEVERS IN A VISCOUS LIQUID MEDIUM………………...36  
 

3.1 Introduction…………………………………………………………..36 
 
3.2 Hydrodynamic Forces………………………………………………..37 
 

3.2.1 Pressure ……………………………………………………38 
 



  iii 

3.2.2 Fluid Shear ………………………………………………...40 
 
3.3 Stokes’ Solution ……………………………………………………..42 
 
3.4 Numerical Evaluation of the Hydrodynamic Forces………………...45 

 
3.4.1 Simulation Procedures…………………………………......46 
 
3.4.2 Determining the Mesh Density…………………………….55 
 
3.4.3 Results of the Numerical Simulation………………………61 

 
3.5 Analytical Approximation for the Hydrodynamic Function ………..70 

 
4. CHARACTERISTICS OF LATERALLY VIBRATING 
MICROCANTILEVERS…………………………………...................................81 

 
4.1 Introduction…………………………………………………………..81 

 
4.2 Resonant Frequency ………………….…………………………...…82 

 
4.2.1 Effects of the Medium’s Density and Viscosity on the 
Resonant Frequency……………………………………………...94 

 
4.2.2 Trends in the Resonant Frequency as a Function of Beam 
Geometry…………………………………………………………97 
 
4.2.3 Comparison of the Resonant Frequency of Laterally and 
Transversely Vibrating Beams …………………………………101 

 
4.3 Quality Factor………………………………………………………103 

 
4.3.1 Effects of the Medium’s Density and Viscosity on the 
Quality Factor…………………………………………………..110 

 
4.3.2 Trends in the Quality Factor as a Function of Beam 
Geometry………………………………………………………..113 

 
4.3.3 Comparison of the Quality Factor of Laterally and 
Transversely Vibrating Beams …………………………………116 

 
4.4 Mass Sensitivity…………………………………………………….118 

 
4.4.1 Effects of the Medium’s Density and Viscosity on the Mass 
Sensitivity………………………………………………………125 

 



  iv 

4.4.2 Trends in the Chemical Sensitivity as a Function of Beam 
Geometry ………………………………………………………127 

 
4.4.3 Improved Mass Sensitivity using Lateral Excitation 
Compared to Transverse Excitation…………………………….131 
 

5. SUMMARY, CONCLUSIONS, AND FUTURE WORK ………………………….135 
 

5.1 Summary……………………………………………………………135 
 

5.2 Conclusions…………………………………………………………137 
 

5.3 Future Work………………………………………………………...144 
 
REFERENCES…………………………………………………………………………148 

APPENDIX A: NUMERICAL RESULTS FROM ANSYS …………………………..160 

APPENDIX B: MACRO USED IN ANSYS TO COMPUTE HYDRODYNAMIC 
FORCES ……………………………………………………………………………….162 

APPENDIX C: MATLAB PROGRAM USED TO CALCULATE FREQUENCY 
SPECTRUM OF LATERALLY VIBRATING MICROCANTILEVERS IN VISCOUS 
LIQUID MEDIA……………………………………………………………………….170 

APPENDIX D: MATLAB PROGRAM USED TO CALCULATE CHARATERISTICS 
OF LATERALLY VIBRATING MICROCANTILEVERS IN VISCOUS LIQUID 
MEDIA…………………………………………………………………………………175 

 



  v 

LIST OF TABLES 

 
 

Table 3-1. Aspect ratios and Reynolds numbers used to test solution convergence.      -56- 
 
Table 3-2. The percentage difference in the real and imaginary parts of the hydrodynamic 
function using the two finest meshes as a function of aspect ratio and Reynolds number. 

     -59- 
 
Table 3-3. Comparison of the numerical results for the hydrodynamic function calculated 
using FEA and the method given in Ref. 97.            -69- 
 
Table 3-4. The absolute percent difference in the real part of the hydrodynamic function 
calculated using Eq. 3-27 compared to the values given in Ref. 97 as a function of aspect 
ratio and Reynolds number.                         -78- 
 
Table 3-5. The absolute percent difference in the imaginary part of the hydrodynamic 
function calculated using Eq. 3-27 compared to the values given in Ref. 97 as a function 
of aspect ratio and Reynolds number.            -79- 
 
Table 4-1. The resonant frequency calculated using Eq. 4-7 and the resonant frequency 
calculated using several different approximations for nine different laterally vibrating 
beams assuming operation in water, a beam density of 2330 kg/m3, and a Young’s 
modulus of 169 GPa.               -91- 

 
Table 4-2. The resonant frequencies calculated from the approximate expression given 
by Eq. 4-12 of nine laterally vibrating beams assuming operation in water, a beam density 
of 2330 kg/m3, and a Young’s modulus of 169 GPa using Eq. 4-4 for the values of the 
hydrodynamic function compared to using the values given in Ref. 97 for the values of 
the hydrodynamic function.              -93- 

 
Table 4-3. The quality factors calculated using several different approximations for nine 
different laterally vibrating beams assuming operation in water, a beam density of 2330 
kg/m3, and a Young’s modulus of 169 GPa.           -108- 

 
Table 4-4. The quality factors, Qlat, of nine laterally vibrating beams assuming operation 
in water and a Young’s modulus of 169 GPa and a beam density of 2330 kg/m3, 
calculated using Eq. 4-4 for Γlat compared to using the values given in Ref. 97 for Γlat. 
               -110- 

Table 4-5. The mass sensitivities of nine laterally vibrating beams calculated using 
several different approximations assuming operation in water and a Young’s modulus of 
169 GPa and a beam density of 2330 kg/m3.  Higher mass sensitivities could be obtained 
if the length of the beam was assumed to be shorter (i.e. 200 µm).      -123- 



  vi 

 
 
Table 4-6. The approximate mass sensitivities (Sm,approx) of nine laterally vibrating beams 
assuming operation in water, a Young’s modulus of 169 GPa , and a beam density of 
2330 kg/m3 calculated using Eq. 4-4 for the values of the hydrodynamic function 
compared to using the values given in Ref. 97 for the values of the hydrodynamic 
function.             -124- 

 
Table A-1. Magnitude of hydrodynamic force in Newtons on top and right hand side of 
laterally vibrating cross-section in water (b=20 µm, h=2 µm) as a function of Reynolds 
number and aspect ratio (h/b)           -160- 
       
Table A-2. Phase offset in degrees between hydrodynamic force and velocity on top and 
right hand side of laterally vibrating cross-section in water as a function of Reynolds 
number and aspect ratio (h/b)           -160- 
 
Table A-3. The real part of the hydrodynamic function of a laterally vibrating beam 
found as a function of Reynolds number and aspect ratio (h/b)      -160- 
 
Table A-4. The imagery part of the hydrodynamic function of a laterally vibrating beam 
found as a function of Reynolds number and aspect ratio (h/b)      -161- 
 
 
   
 
 



  vii 

LIST OF FIGURES 
 
 

Figure 1-1. An illustration of a microcantilever undergoing transverse (left) and lateral 
(right) excitation.              -11- 

 
Figure 2-1. A microcantilever with length, L, width, b, and thickness, h vibrating 
laterally with a deflection of v(x,t).              -22- 
 
Figure 2-2. The first 5 mode shapes of a vibrating microcantilever using Eq. 2-20, D4=1 
and the βi values found from Eq. 2-21.           -30- 
 
Figure 3-1. Hydrodynamic forces acting on the surfaces of a cross-section of a laterally 
vibrating microcantilever in fluid.              -37-  
 
Figure 3-2. A finite element mesh used to find the hydrodynamic forces acting on the 
cross-section of a laterally vibrating beam in fluid.  The mesh has a higher density near 
the vibrating cross-section and is fixed on the outer boundary.         -48- 
 
Figure 3-3. The mesh of the fluid defined near the right side of a beam cross-section with 
an aspect ratio of ~1/56.             -49- 
 
Figure 3-4. The simulated hydrodynamic force per unit length acting on the top and left 
hand side of a cross-section of a laterally vibrating microcantilever in water (b=20 µm, 
h/b=1/10, Re=1000) compared to the velocity of the cross-section.        -50- 
 
Figure 3-5. The wall shear stress and the shear force per unit length acting on a 20 µm 
wide microcantilever in water (b=20 µm, h/b=1/10, Re=1000).                      -52- 
 
Figure 3-6. The simulated hydrodynamic force per unit length acting on the top and right 
side of a laterally vibrating microcantilever in water (b=20 µm, h/b=1/10, Re=1000). 
Also shown are the pressure force per unit length from the thickness and the shear force 
per unit length from the width.                   -53- 
 
Figure 3-7. The real and imaginary parts of the hydrodynamic function for a laterally 
vibrating microcantilever (h/b=1/10, Re=10,000) as a function of the number of fluid 
elements used.  Also plotted is Stokes’ solution for Re=10,000.        -57- 
 
Figure 3-8. The real (left) and imaginary (right) parts of the simulated hydrodynamic 
function of a transversely vibrating microcantilever with an aspect ratio of ~1/56 as a 
function of Reynolds number compared to the hydrodynamic function given by Eq. 3-23.  
                -61- 
 
 
 



  viii 

Figure 3-9. The real (left) and imaginary (right) parts of the hydrodynamic function for a 
laterally vibrating beam calculated using FEA as a function of h/b and Re compared to the 
results for the hydrodynamic function found using Stokes’ theory, which are independent 
of h/b.                   -62- 

 
Figure 3-10. The real and imaginary parts of Γlat as a function of the Reynolds number 
found using a finite element model (h/b= 1/56) compared to the analytical results found 
using Stokes’ theory and the numerical results for an infinitely thin microcantilever which 
accounts for edge effects given by Ref. 97.            -63- 
 
Figure 3-11. The percent of the hydrodynamic force from the fluid’s pressure acting on a 
laterally vibrating microcantilever as a function of the aspect ratio and the Reynolds 
number.               -65- 
 
Figure 3-12. The percent of the real (left) and imaginary (right) parts of the 
hydrodynamic function coming from the fluid’s pressure acting on a laterally vibrating 
microcantilever as a function of aspect ratio and Reynolds number.        -66- 
 
Figure 3-13. The real and imaginary parts of the hydrodynamic function as a function of 
the Reynolds number found using a finite element model (h/b=1/10) compared to the 
analytical results found using Stokes’ theory which are independent of h/b and the 
Reynolds number-independent inviscid solution from Ref. 97.         -67- 
 
Figure 3-14. The hydrodynamic force per unit length from the shear and pressure both 
in-phase and out-of-phase acting on a laterally vibrating microcantilever in water (b=20 
µm, Re=1000) as a function of h/b.              -69- 
 
Figure 3-15. The ratio of the real part of the simulated hydrodynamic function to Stokes’ 
solution as a function of Re1/2 for eight different aspect ratios.        -72- 
 
Figure 3-16. The average slope of each CR vs. Re1/2 curve in Fig. 3-15 as a function of 
(h/b)1.83.                -73- 
 
Figure 3-17. The estimated value of CR when the Reynolds number is zero as a function 
of (h/b)0.85.                 -73- 
 
Figure 3-18. CI as a function of Re-1/2 plotted for eight different aspect ratios.      -74- 
 
Figure 3-19. The average slope of each CI vs. Re-1/2 curve as a function of the aspect 
ratio.                   -75- 
 
Figure 3-20. The value of CI when the Reynolds number is infinity as a function of 
(h/b)0.85.                 -76- 
 
 



  ix 

Figure 4-1. The simulated frequency spectrum of a 400x45x12 µm silicon 
microcantilever in air found from Eq. 4-1 normalized to its maximum deflection.  The 
contributions of the first three in-plane flexural modes are plotted separately.  The 
resonant frequencies of the first 5 out-of-plane flexural modes in air are indicated as 
vertical lines.               -85- 
 
Figure 4-2. The simulated frequency spectrum of a 400x45x12 µm silicon 
microcantilever operating in the in-plane flexural mode in both air and water.  The 
resonant frequencies of the first 5 transverse flexural modes in air and water are also 
given as dotted and solid vertical lines, respectively.                      -86- 
 
Figure 4-3. The resonant frequency of a 400x45x12 µm laterally vibrating silicon 
microcantilever calculated using the exact expression (Eq. 4-7), the approximate 
expression valid for high Reynolds numbers (Eq. 4-12), and assuming the medium is 
inviscid (Eq. 4-7 using Eq. 3-27 for Γlat) as a function of Reynolds number. The Reynolds 
number is varied assuming different mixtures of aqueous glycerol.  The resonant 
frequency in a vacuum is also given.            -95- 
 
Figure 4-4. The simulated resonant frequencies of laterally vibrating microcantilevers in 
air compared to experimental data as a function of b/L2 for widths of 45, 60, 75, and 90 
µm, lengths of 200, 400, 600, 800 and 1000 µm, and a thickness of 14.48 µm.  The 
experimental data is from Ref. 61.             -98- 
 
Figure 4-5. The simulated resonant frequencies of laterally vibrating microcantilevers in 
water compared to experimental data as a function of b/L2 for widths of 45, 60, 75, and 90 
µm, lengths of 200, 400, 600, 800 and 1000 µm, and a thickness of 14.48 µm.  The 
experimental data is from Ref. 61.           -100- 
 
Figure 4-6. The simulated resonant frequency of a laterally vibrating microcantilever 400 
µm long and 45 µm wide in water as a function of beam thickness.        -100- 
 
Figure 4-7. The simulated ratio of the fundamental resonant frequency of a 400x45x12 
µm silicon microcantilever vibrating laterally to the resonant frequency of the same 
microcantilever vibrating transversely as a function of percent aqueous glycerol found in 
the operational medium.           -102- 
 
Figure 4-8. The simulated frequency spectrum of a 400x45x12 µm silicon 
microcantilever in water vibrating both laterally and transversely. Each spectrum is 
normalized to the maximum tip deflection of the transverse beam, and is excited using 
the same magnitude force.             -105- 
 
Figure 4-9. The simulated frequency spectrum of a 400x45x12 µm silicon 
microcantilever in water vibrating laterally and a 175x45x12 µm silicon microcantilever 
in water vibrating transversely.  Both beams are excited by the same force and 
normalized to the maximum transverse deflection.        -106- 
 



  x 

Figure 4-10. The quality factor, Qlat, and its approximation for high Reynolds numbers, 
Qlat,approx, calculated for a 400x45x12 µm laterally vibrating silicon microcantilever as a 
function of (Re)1/2.  The Reynolds number is varied by using different values for density 
and dynamic viscosity corresponding to various aqueous solutions (0% to 72%) of 
glycerol.              -112- 
 
Figure 4-11. Simulated and experimentally determined quality factors of laterally 
vibrating microcantilevers in air.  The width is varied between 45 and 90 µm, the length 
from 200 to 1000 µm, and the thickness is fixed at 14.48 µm. Discontinuities in the 
theoretical data arise from variations in the length. The experimental data is from Ref. 61. 
                -114- 
Figure 4-12. Simulated and experimentally determined quality factors of laterally 
vibrating microcantilevers in water.  The width is varied between 45 and 90 µm, the length 
from 200 to 1000 µm, and the thickness is fixed at 14.48 µm. Discontinuities in the 
theoretical data arise from the variations in the length. The Young’s modulus of the beam 
is assumed to be 127.5 GPa. The experimental data is from Ref. 61.      -115- 
 
Figure 4-13.  Simulated quality factors for a beam 400 µm long and 45 µm wide laterally 
vibrating in water as a function of beam thickness. Also plotted is the quality factor 
calculated assuming CR =CI =1 (Stokes’ solution).          -116- 
 
Figure 4-14. The ratio of the quality factors of a laterally and a transversely vibrating 
beam for a 200x45x12 µm silicon microcantilever as a function of percent aqueous 
glycerol in the operational medium.          -118- 
 
Figure 4-15. The simulated frequency spectrum of a 400x45x12 µm silicon 
microcantilever laterally vibrating in water.  The spectrum is also plotted when the mass 
of the beam is uniformly increased over the length by 1%.         -119- 
 
Figure 4-16. Predicted decrease in the resonant frequency of four microcantilevers in air 
as a function of the change in beam mass.  Note that shorter and thicker beams are more 
sensitive to changes in beam mass (e.g., for a 400x45x12 µm silicon beam, Sm=0.369 
Hz/pg while a 200x45x12 µm silicon beam will have a Sm=2.9 Hz/pg).     -121- 
 
Figure 4-17. Predicted decrease in the resonant frequency of four microcantilevers in 
water as a function of the change in beam mass. Note that shorter and thicker beams are 
more sensitive to changes in beam mass. (e.g., for a 400x45x12 µm silicon beam, 
Sm=0.277 Hz/pg while a 200x45x12 µm silicon beam will have a Sm=2.33 Hz/pg).   -121- 
 
Figure 4-18. The mass sensitivity of a 200x45x12 µm laterally vibrating silicon 
microcantilever (E=169 GPa) calculated using the exact expression (Eq. 4-24) and the 
approximate expression valid for high Reynolds numbers (Eq. 4-27) as a function of 
Reynolds number.  The Reynolds number is varied by using different values for density 
and dynamic viscosity corresponding to various aqueous solutions (0-72%) of glycerol.     
              -126- 
 



  xi 

Figure 4-19. Predicted normalized chemical sensitivities of laterally vibrating 
microcantilevers in water.  The width is varied between 45 and 90 µm, the length from 
200 to 1000 µm, and the thickness is fixed at 14.48 µm. The beam’s Young’s modulus is 
assumed to be 127.5 GPa. If the normalized chemical sensitivity is multiplied by Kh2, a 
chemical sensitivity in Hz per concentration can be found.         -129- 
 
Figure 4-20. The parameter  3fres,lat / (Qlat cS ) plotted as a function of beam thickness for 

a laterally vibrating beam 400 µm long and 45 µm wide laterally vibrating in water. The 
parameter 3fres,lat / (Qlat cS ) is proportional to the limit of detection (LOD) of a laterally 

vibrating microcantilever in an oscillator configuration.        -130- 
 
Figure 4-21. The ratio of the mass sensitivities of a laterally and transversely vibrating 
200x45x12 µm beam and a 400x45x12 µm beam with Young’s moduli of 127.5 GPa as a 
function of percent aqueous glycerol in the operational medium.      -133- 
 
 
 
 



  1 

1. Introduction 
 
 
 

1.1 Microcantilevers as Chemical Sensor Platforms 

 Microcantilevers are devices that have great potential as micro-scale sensing 

platforms due to their high mass sensitivity and low fabrication cost.  Advances in 

photolithography and other microfabrication techniques have allowed the fabrication of 

these small beams from silicon wafers or silicon-on-insulator (SOI) wafers with 

dimensions ranging from millimeters to nanometers [1-8]. The small relative mass of 

these microcantilevers make them ideal platforms as highly sensitive mass sensors.  

Depositing mass onto a microcantilever operating in a resonance mode changes the 

frequency at which it resonates. The magnitude of this change can be used to quantify the 

amount of added mass, allowing the microcantilever to be used as a mass sensor [9-14].  

Using microspheres of various materials attached to the microcantilever’s tip, masses in 

the range of picograms (10-12
 g) have been detected [14], with the predicted minimum 

detectable mass in the range of femtograms (10-15
 g) [15].  

Microcantilevers have also been utilized extensively in bio-chemical sensing 

applications [1,2,15-44]. Applications range from detecting gases such as mercury vapor 

[21-22,25,42], volatile organic compounds [1,19,28], to very specific biological detection 

applications such as the detection of Bacillus Anthracis spores [34], as well as many 

other applications.  As a biochemical sensor, the microcantilever is generally coated with 

a chemically sensitive polymer layer, self-assembled monolayers, a metal film, or a layer 
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of biochemical receptors [31].  This layer selectively sorbs and concentrates particular 

analytes of interest from the operating environment. The result is a change in the layer’s  

characteristics such as its mass, volume, and viscoelastic properties [27,31,45-46]. The 

concentration of particular analytes in the operational medium can then be estimated by 

measuring the changes in the static deflection and/or the resonant frequency of the coated 

cantilevers. This layer is normally partially selective, so that it only responds to a 

particular group of analytes with similar chemical characteristics. The selectivity of the 

biochemical sensor can be further improved using an array of microcantilevers.   

Due to their small size, several microcantilevers can be fabricated in a small area 

(usually on the order of 1 mm2) [17,47].  This allows for the creation of micro-scale 

arrays of microcantilevers [5,17,27,41,48]. Each microcantilever can be coated with a 

layer of different chemical sensitivity which causes each microcantilever to respond 

differently when exposed to a particular analyte.  Pattern recognition schemes such as 

linear discriminants analysis (LDA) or principal components analysis (PCA) can then be 

used to correctly identify unknown analytes in the medium of operation [18,49].  

However, care must be taken when spacing the microcantilevers in an array.  If the 

microcantilevers are spaced too far apart, there might not be enough space available for 

the number of microcantilevers required for successful identification.  If they are placed 

too close together, the microcantilevers might interact and couple in the medium of 

operation [11,50]  This interaction is dependent both on the medium of operation and the 

choice of the mode of operation. 

 



  3 

1.2 Static and Dynamic Mode Operation 

Microcantilevers can be operated in two fundamental modes: the static mode and 

the dynamic mode [27,31,51].  When the microcantilever is operating in the static mode, 

the static deflection of the microcantilever is used as an indicator of changes in the 

sensing layer.  When the microcantilever is operating in the dynamic mode, changes in 

the sensing layer are indicated by changes in the microcantilever’s resonant frequency. A 

material commonly used for the sensing layer is a chemically selective polymer [52]. 

Polymers can be deposited or applied on one surface of the microcantilever through 

spincoating, spray-coating, vapor deposition, or dip-coating [1,53-55]. Analyte molecules 

interact with the polymer layer through the process of adsorption (adhering to the 

surface) and absorption (penetrating through the surface and diffusing into the layer) 

[56].  Analyte sorption (the combination of adsorption and absorption) differently affects 

each mode of operation.  

In static mode operation, the analyte absorption causes electrostatic and steric 

effects which in turn cause the polymer layer to swell [18,31,39]. The base layer is 

normally constructed of a chemically inert material, and thus will not expand.  This stress 

differential between the coating and the base causes the microcantilever to deflect.  The 

deflection is similar in nature to the operation of a bimetallic thermostat, which deflects 

due to the mismatch in stress caused by two different coefficients of thermal expansion 

[18,31,57-58].  While the surface stress caused by interaction between the sorbed analyte 

and the coating is a function of the amount of mass absorbed, the actual mass loading 

doesn’t directly cause the deflection [18,31,57].  One of the drawbacks in static mode 

operation is the sensor’s long response time to analyte exposure. The time it takes the 
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deflection to reach its steady state value depends on the characteristics of the 

microcantilever, the characteristics of the polymer, and the rate of absorption and 

diffusion of the analyte through the polymer layer [18].   

 A method of reducing the response time of the system is to operate the 

microcantilever in the dynamic mode.  Operating in the dynamic mode excites the 

microcantilever into resonance.  Several types of transduction mechanisms have been 

used to excite microcantilevers into resonance, including electrothermal [59-61], 

electrostatic [59,62], electromagnetic [59,62], and piezoelectric [59,62-63].  The 

microcantilever can even use the thermal noise of the system to undergo self-resonance 

[64-65]. Once the microcantilever is excited, the deflection of the microcantilever as a 

function of excitation frequency can be measured. A common method of measuring the 

deflection is by optical readout using a laser.  The laser can be shone onto the 

microcantilever at a particular angle and the angle of the reflected beam related to the 

magnitude of the deflection [19,27,31]. The microcantilever deflection can also be 

measured indirectly by circuitry placed on the microcantilever.  A Wheatstone bridge 

made up of piezoresistors can be fabricated either on or next to the microcantilever 

[1,61,66-67].  As long as at least one of the piezoresistors in the Wheatstone bridge is on 

the microcantilever, the deflection-induced stress will cause the resistance of the 

piezoresistors on the microcantilever to change. This change in resistance will cause a 

change in the bridge voltage which can then be related to the deflection of the 

microcantilever.   

Once the deflection is measured, the magnitude of the deflection can be 

investigated as a function of the frequency of excitation.  The shape of the magnitude 
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spectrum is roughly a Lorentzian around the resonant frequency of a particular mode [4].  

If the loss is low enough, the system can be modeled as if it were an RLC-circuit [68].  

The equivalent capacitance can be determined by the inverse of the microcantilever’s 

stiffness; the equivalent inductance determined by the mass of the microcantilever (as 

well as the displaced mass of the medium); and the equivalent resistance determined by 

the damping of the system [68]. An RLC-circuit will resonate at a particular frequency.  

If a property of the microcantilever or operating medium is altered, such as the mass of 

the sensing layer, the frequency at which the system resonates will also change.  

Operating in the dynamic mode will thus allow instantaneous detection of mass uptake by 

the coating. Changes in the viscoelastic properties of the sensing layer [45,69] and the 

viscosity and density of the medium of operation [70-72] can also be detected in this 

manner.  This work will primarily deal with dynamic mode operation. 

 

1.3 Gas and Liquid Phase Sensing  

There are numerous examples of dynamically driven microcantilevers used as 

sensing platforms.  Historically, the use of microcantilevers as sensing platforms arose 

out of modifications to standard atomic force microscopes (AFMs), which are 

microcantilevers with sharp tips on their free end.  The tip is placed into contact with a 

surface of unknown height. In a vacuum, the tip is repulsed by chemical, van der Waals, 

electrostatic, and magnetic forces when it gets within 100 nm of the surface [73]. When 

operating in a gas or a liquid, the AFM tip is repulsed by meniscus forces formed by 

adhesion layers on the tip and surface of the sample [73]. The deflection of the AFM is 

then related to the height of the unknown surface. In the 1990s, AFMs were observed to 
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be sensitive to various ambient effects from the environment [22,71,74].  Since then, 

dynamically operating microcantilevers have been applied to a large variety of gas-phase 

detection applications [1,15,20-23,25,27,40,67,75-81]. These include but are not limited 

to the detection of simple gasses such as hydrogen [76], helium, nitrogen, and carbon 

dioxide [40], environmental contaminants such as mercury vapor [21-22,25] or volatile 

organic compounds [1,78],  and explosive residues in air [9,27,79].  While a large 

number of works have been done related to gas-phase detection, there are fewer works to 

be found on direct detection in liquid-phase. 

Liquid-phase detection of aqueous analytes can be done either directly or 

indirectly. Indirect detection utilizes gas-phase sensors to detect the analyte as it 

evaporates off the liquid sample.  However, this changes the phase of the analyte to a 

vapor and limits the analytes that can be detected to volatile or semi-volatile chemicals. 

Some liquid sensing applications require the device to be placed directly in the sample. 

This allows the analyte to be detected without having to undergo a change in phase, 

allowing for the detection of non-volatile and biological analytes in liquids.  

Many liquid-phase sensing applications have used dynamically driven 

microcantilevers to sense analytes [9,16,28,30,31,35-36,46-47,61,64,68,70-72,74,82-83].  

However, a dynamically driven microcantilever’s frequency stability and mass sensitivity 

decrease drastically when exposed to a viscous liquid medium, thus decreasing its 

usefulness as an effective sensing platform [24,35,71,84-85].  These decreases are due to 

the additional fluid resistance (combined effects of fluid-related inertial and viscous 

forces) from the medium [35,45,84,86].  As the microcantilever vibrates, it drags along a 

portion of the fluid. This fluid mass acts to increase the effective mass of the 
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microcantilever which, in turn, decreases the microcantilever’s resonant frequency.  

Since the densities of liquids are much higher than those of gases, the resonant frequency 

of the microcantilever will drastically decrease when placed into a liquid.  The increased 

viscosity of the medium also decreases the resonant frequency by increasing the viscous 

damping from the medium of operation. The increased damping will also broaden the 

frequency spectrum, which, in turn, decreases the frequency stability of the system.  

A useful characteristic used as a measure of the frequency stability of a resonating 

device is the quality factor. The quality factor, denoted by Q, is usually defined within the 

context of systems with damped oscillatory behavior.  Two possible definitions can be 

used when dealing with dynamically driven microcantilevers [87]. The first definition is 

2π times the ratio of the maximum energy stored in the system to the amount of energy 

dissipated in one cycle.  The 2π keeps the definition consistent with the second definition, 

which is the ratio of the resonant frequency to the half power or 3 dB bandwidth of the 

system. When working with systems that undergo resonance, the 3 dB bandwidth 

definition is normally used to calculate the quality factor, as the 3 dB bandwidth is easily 

obtainable from the deflection measurements. Ideally, the energy definition should be 

used. However, it is noted that when the fluid damping is low (such that Q>>1), the two 

definitions are equivalent [85,87].   

Common dynamically driven microcantilevers vibrating in the out-of-plane 

direction have quality factors upwards of 20,000 in a vacuum and around 500 in air, 

depending on the geometry of the microcantilever [24,30,88].  The minimum detectable 

mass of analyte that a microcantilever chemical sensor can detect is proportional to the 

resonant frequency and inversely proportional to the quality factor of the system [89]. 
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When operating in a viscous liquid environment, the quality factor can drop as low as the 

single digits, raising the minimum detectable mass by several orders of magnitude 

[24,30,84,86]. The resonant frequency also decreases drastically when the 

microcantilever is operating in a viscous liquid medium, causing a similar decrease in 

both mass sensitivity and chemical sensitivity [24].  

Dynamically driven microcantilevers would be ideal liquid-phase sensing 

platforms if it were not for this decrease in both the resonant frequency and the quality 

factor [24,35,71,85].  Many techniques have been utilized to improve both the resonant 

frequency and the quality factor of a dynamically driven microcantilever. Increasing the 

resonant frequency while maintaining a constant 3 dB bandwidth increases the quality 

factor. The sensitivity would also increase, as it is a linear function of the resonant 

frequency [89].  One way of obtaining a higher resonant frequency is to operate in a 

higher-order mode.  Higher-order modes have flexural mode shapes that have one or 

more points along the length of the microcantilever (besides the clamped end) that do not 

deflect as a function of time [90]. Both theoretical [90] and experimental investigations 

[10,91] show that when working in air or liquids, the quality factor of a microcantilever 

operating in a higher-order mode is higher than the same microcantilever operating in the 

fundamental mode.  There are some drawbacks to operating in higher-order modes, such 

as an increase in support loss. The support losses for a particular microcantilever 

operating in the second mode are 10 times larger than operating in the first mode [92-93]. 

When working in a vacuum, experiments have shown that the quality factor of the 

microcantilever decreases with an increasing mode number [60]. This tends to be less of 

a concern when operating in air or liquid, since the viscous losses generally dominate the 
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support losses [94].  Higher-order modes also correspond to stiffer behavior and, thus, to 

smaller deflections than the fundamental mode [60].     

Another way of increasing the microcantilever’s resonant frequency and quality 

factor is by increasing the stiffness of the microcantilever.  Using a material with a higher 

Young’s modulus can increase the stiffness of the microcantilever.  However, the 

material chosen for the microcantilever is normally a function of the fabrication process 

and cannot be altered. The microcantilever can also be made stiffer by shortening its 

length. The resonant frequency of a microcantilever operating in a fluid is roughly 

proportional to the inverse of its length squared. Thus, decreasing the length by 10% 

would increase the resonant frequency by ~23% [45].  Shorter microcantilevers also have 

less surface area when interacting with the surrounding medium, thus decreasing the 

amount of fluid damping.  There are a few drawbacks to decreasing the length of the 

microcantilever. The support loss also increases for shorter microcantilevers. Again, this 

is less of a concern when operating in fluids as the increase in the support loss is 

negligible compared to the reduction of the viscous losses.  The deposition 

reproducibility is a function of the surface area of the microcantilever [92].  Decreasing 

the length will then decrease the deposition reproducibility, which will increase the error 

in the estimate of the thickness of a deposited sensing layer. Finally, while smaller 

surface areas lead to smaller levels of fluid damping, they also lead to smaller amounts of 

analyte that can be sorbed into the sensing layer.  This will decrease the change in the 

resonant frequency due to the sorbed analyte.   

The stiffness of the microcantilever can also be increased by operating in a 

different vibration mode.  The most common mode of operation is in the transverse 
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flexural mode, which vibrates the microcantilever in the out-of-plane direction 

[1,2,9,16,17,19,23,27,31,43,45]. Microcantilevers can operate in many other vibration 

modes.  Both the torsional mode (torsion or twisting) and the lateral flexural mode 

(bending vibration in-plane) have been investigated in the literature [10,60-61,84,95-97].  

The torsional mode can be excited by applying a torque to the microcantilever, causing it 

to twist.  The torsional mode has been investigated both theoretically [95] and 

experimentally in air [10,96].  The quality factor of a particular microcantilever is found 

to be larger when operating in the torsional mode compared to the transverse flexural 

mode [10,95]. While few investigations have been conducted using the torsional mode in 

liquid, the quality factor using the torsional mode is still predicted to be higher than in the 

transverse flexural mode [95].  

Excitation of the in-plane flexural mode has also been suggested in the literature 

as another technique for increasing the resonant frequency and the quality factor of 

dynamically driven microcantilever biochemical sensors [10,84,97].  Microcantilevers 

can be excited in the lateral direction as shown in Fig. 1-1 by the application of a lateral 

driving force.  It is expected that driving the microcantilever in the lateral direction will 

cause it to encounter less fluidic damping, which will increase its resonant frequency and 

quality factor. Due to the change in the direction of vibration, the microcantilever’s 

flexural rigidity will increase compared to microcantilevers vibrating transversely by a 

factor of (b/h)2, where b and h are the width and the thickness of the microcantilever, 

respectively. This will increase the resonant frequency.  Microcantilevers operating in the 

in-plane direction have also been investigated both theoretically [84,97] and 

experimentally [60-61].   
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Figure 1-1. An illustration of a microcantilever undergoing transverse (left) and lateral 
(right) excitation. 
 

As was the case with operating in a higher-order mode or shortening the 

microcantilever’s length, the support loss increases when operating in the lateral flexural 

mode.  Experimentally determined quality factors for laterally vibrating microcantilevers 

in vacuum have been found to be lower than similar microcantilevers vibrating in the out-

of-plane flexural mode [60]. However, the resonant frequency of each mode is different 

and the primary benefit of operating in the lateral flexural mode comes from the 

decreased fluid drag. In air, the quality factors of laterally vibrating microcantilevers 

were experimentally found to be significantly higher than the same microcantilevers 

operating in the transverse flexural mode [10]. When operating in liquid, the quality 

factor can reach 70 or higher depending on the microcantilever’s geometry [61].  

There have been several attempts to model the characteristics of laterally 

vibrating beams, such as its resonant frequency and quality factor.  A laterally vibrating 

beam can be modeled by a method similar to the method used to model the transversely 
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vibrating beam [84].  This approach works when the device is operating in air or vacuum.  

However, when laterally vibrating microcantilevers are operating in viscous liquid media, 

only the pressure forces on the thickness dimension would be considered, neglecting the 

effects of fluid shear acting on the width dimension.  Other approaches assume that the 

fluid shear on the width is dominant compared to the pressure [98-99]. The 

hydrodynamic damping is approximated using the solution to Stokes’ second problem 

which modeled the forces acting on an infinitely vibrating flat plate [98-99].  However, 

this approach neglects the effects of the pressure on the thickness dimension.  Recently, 

these effects have been found to contribute significantly to the overall hydrodynamic 

force acting on a laterally vibrating microcantilever [100].  Each of these forces and their 

effects on the characteristics of the device, such as the resonant frequency, quality factor, 

and mass sensitivity, should be modeled and their significance investigated.   

 

1.4   Modeling Laterally Vibrating Microcantilevers  

Transversely vibrating microcantilevers have been successfully modeled using 

standard Euler-Bernoulli beam theory. The same method can be used to model laterally 

vibrating microcantilevers operating in a vacuum with the width and thickness switched 

in the equation of motion. When operating in a viscous liquid medium, the effects of the 

hydrodynamic force acting on a laterally vibrating microcantilever may be important; 

moreover, the relative importance of the various contributions to this force are 

fundamentally different than those corresponding to transverse vibrations and these 

differences must therefore be taken into account. This includes modeling both the 

pressure and fluid shear, accounting for the edge effects and the effects of thickness [100-
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102].  This will allow the case of using lateral excitation to be compared with that of 

transverse excitation.  

The total force from the pressure is composed of the hydrostatic and the dynamic 

pressures [101].  It will be assumed in this work that there is no net fluid flow. Thus, 

there is no net force acting on the microcantilever from the hydrostatic pressure. There is 

also no net dynamic pressure acting on a vibrating rectangular microcantilever in the 

direction perpendicular to its vibration.  However, there is a net dynamic pressure in the 

direction applied parallel to the microcantilever’s vibration.  This force is applied on the 

surfaces of the microcantilever which are perpendicular to the motion of vibration 

[90,97]. Since these surfaces involve the thickness dimension of the microcantilever 

when it is vibrating in the in-plane direction and the width dimension when it is vibrating 

in the out-of-plane direction, it is assumed that the hydrodynamic force from the pressure 

will be smaller when vibrating in the in-plane direction. However, when the 

microcantilever is vibrating in the in-plane direction, the pressure force may not be the 

dominant fluid force, as was assumed in Ref. 84. 

The pressure forces of microcantilevers vibrating in the out-of-plane direction 

were originally found by Tuck in Ref. 102. From the linearized version of the Navier-

Stokes’ equation, Tuck was able to derive an integral equation relating the velocity at any 

point in the medium to the fluid shear and pressure along the contour of the cross-section 

of the microcantilever. In order to find the fluid shear and pressure, the velocity of the 

medium must be known on some contour in the medium.  The velocity of the 

microcantilever is known.  The velocity of the fluid and microcantilever can be 

considered equal at the fluid-beam interface if the medium of operation can be considered 
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a continuum.  This boundary condition is called the no-slip condition. The medium can 

be considered a continuum if it is a liquid or if it is a gas with a Knudsen number (the 

ratio of the mean free path of molecules in the medium to the width of the 

microcantilever) less than 0.01 [103].  For air at standard temperature and pressure, the 

mean free path of molecules is 65 nm [103], meaning that the microcantilever’s width in 

air must be greater than 6.5 µm.  This condition is satisfied since in this investigation all 

the microcantilever’s widths in air are greater than 6.5 µm. This boundary condition can 

be used with Tuck’s integral equation to check if a particular given fluid shear and 

pressure distribution along the microcantilever’s cross-section is valid. However, the 

integral equation has not been analytically solved to find the pressure and fluid shear 

from this boundary condition.   

Using a numerical method called the Method of Moments, the integral equation 

can be discretized and the average pressure and shear can be estimated along particular 

segments of the microcantilever’s cross-section.  Tuck assumed the microcantilever to be 

a ribbon (infinitely thin) and vibrating transversely, so that both the thickness effect and 

the fluid shear could be neglected.  The pressure acting on this transversely vibrating 

ribbon was found to be very similar to that of a vibrating circular cylinder [102]. A 

correction factor was obtained in Ref. 85 that mapped the well-known analytical 

expression for the hydrodynamic force acting on a vibrating cylindrical pendulum [104] 

to that of an infinitely thin microcantilever vibrating in the out-of-plane direction.  

However, this method only accounts for the pressure force. 

In order to fully model the hydrodynamic forces, the frictional drag from the fluid 

shear must also be taken into consideration [100]. The fluid shear force is expected to be 
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larger for microcantilevers vibrating in the in-plane direction as opposed to the out-of-

plane direction since the shear force will act on the larger surfaces, i.e., those parallel to 

the direction of motion. The fluid shear force is expected to be the dominant 

hydrodynamic force for microcantilevers with small thicknesses when the 

microcantilever is vibrating in the in-plane direction.  

As noted before, the hydrodynamic force from the fluid shear can be 

approximately modeled using the results for the fluid shear found by Stokes for an 

infinite flat plate vibrating in the in-plane direction [105].  This problem is commonly 

referred to as Stokes’ second problem in the literature [106]. As the plate is infinitely 

wide, there are no edge effects (non-uniform hydrodynamic forces near the edges of a 

finite surface) or pressure effects assumed acting on the plate. Again, the linearized 

version of the Navier-Stokes equation was used to model the fluid velocity. A partial 

differential equation (PDE) with respect to the stream function can be found in the form 

of a modified biharmonic equation.  The stream function defines the stream lines in the 

fluid and the curl of the stream function is equal to the fluid velocity [102]. From this 

PDE, Tuck was able to create the integral equation given in Ref. 102. Since Stokes made 

the assumption that the plate was infinitely wide, the assumption could be made that the 

stream function was constant in the direction of the width.  From this assumption, a 

general form of the solution to the PDE could be written.  Using the no-slip condition and 

the assumption that the fluid velocity at infinity is zero as boundary conditions, the fluid 

shear on the laterally vibrating plate can be found.  The total fluid shear per unit length 

for a laterally vibrating microcantilever at a certain point along the length of the beam 

can then be approximated by the fluid shear per unit length acting on a laterally vibrating 
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plate with the same velocity and frequency of excitation.  However, this approximation 

does not take into account the microcantilever thickness or the edge effects. 

To account for these additional effects, several studies have attempted to model the 

cross-section of vibrating beams or cylinders in viscous liquids as ellipsoids [100,107-

109]. Utilizing an elliptical coordinate system, the PDE was solved and the exact 

analytical solution of the hydrodynamic forces derived for a vibrating ellipsoid in Ref. 

100. The solution was obtained in terms of an infinite series of Mathieu functions.  The 

resulting formulation is complicated and fails to account for the sharp edges of the non-

streamlined rectangular cross-section.  

Very recently, an investigation expanded upon the method used in Ref. 102 to obtain 

numerical results that accounted for the edge and thickness effects of a rectangular cross-

section [97].  The investigation used the same integral equation as Tuck in Ref. 102 but 

did not use the assumption of zero thickness.  The hydrodynamic forces found were 

similar to those found in the present investigation. However, the results were found for 

particular thicknesses and media and no attempt was made to create an analytical 

expression for the hydrodynamic forces.  A comparison between the hydrodynamic forces 

found in Ref. 97 and those found in this investigation will be presented. 

Other investigations have attempted to use finite element analysis (FEA) in order 

to account for the edge effects and the effects of thickness [86,107].  Finite element 

analysis is a numerical technique which is comparable to the method of moments 

technique used in Ref. 102, only the techniques used at approximating the PDE are much 

more efficient and are available from many different commercial FEA programs.  While it 

is easier to define the problem using FEA compared to other methods, FEA is still a 
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numerical technique and a sufficient number of fluid elements must be used to ensure an 

accurate solution.  FEA allows for the pressure and shear force to be found on the 

microcantilever’s cross-section as well as in the medium surrounding the microcantilever 

as a function of time.  However, as with the method used in Ref. 97, this technique does 

not yield an analytical expression for the hydrodynamic forces as a function of the 

properties of the medium of operation and the microcantilever’s thickness. 

The effect of thickness of a microcantilever vibrating in the out-of-plane mode has 

been investigated using FEA [107].  The numerical results were fit to the form of Oseen’s 

approximation of the drag force of an elliptical cylinder [110]. Using the same method, the 

edge effects and the thickness effects can be accounted for and an expression for the 

hydrodynamic forces acting on a microcantilever vibrating in the in-plane direction can be 

found. However, Oseen’s approximation only considered transversely vibrating elliptical 

cylinders where Re<<1 [111].  Stokes’ technique modeling the viscous drag on an infinite 

flat plate is a more appropriate technique to model lateral vibration and can be used at 

higher Reynolds numbers, thus making it a better technique for approximating the 

physical system.  Using FEA, the numerical results can be used to modify Stokes’ solution 

to account for edge effects and thickness effects. 

 

1.5 Problem Statement and Objectives 

Dynamically driven microcantilevers have been used as highly sensitive gas-

phase chemical sensors for many different applications.  The use of these sensors in 

liquid-phase sensing applications has been limited due to the device’s decreased 

frequency stability and decreased sensitivity caused by the larger fluidic forces when 
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operating in a liquid. Several methods have been investigated to improve the sensing 

characteristics including operating the microcantilever in higher-order modes and 

shortening the microcantilever’s thickness.  Another promising method mentioned in the 

literature [10,60-61] of increasing both the resonant frequency and quality factor is to 

flexurally vibrate the microcantilever  in the in-plane direction.  

Dynamically driven microcantilevers are commonly vibrated in the out-of-plane 

direction. Experiments have shown that when the microcantilever is excited in the in-

plane direction, both the resonant frequency and the quality factor are improved in both 

air and liquid [10,61]. In order to theoretically compare the benefits of using lateral 

excitation over transverse excitation, one must first define and account for all the 

hydrodynamic forces acting on the laterally excited microcantilever.  These include both 

the pressure force and the fluid shear force taking into account both the effects of the 

thickness of the microcantilever and the edge effects. Several attempts at modeling the 

hydrodynamic forces of a laterally vibrating microcantilever have been made.  Some 

investigations focused on modeling either the pressure or the fluid shear, but not both. 

Other investigations attempted to model the microcantilever as either a vibrating ribbon 

or an ellipsoid. However, in order to accurately account for all the forces, the edge 

effects, and the effects of thickness, both the pressure and the fluid shear force must be 

considered and found for a vibrating microcantilever with a rectangular cross-section. 

The primary objective of this work is to theoretically characterize and compare 

the characteristics of microcantilever-based biochemical sensors vibrating in the in-plane 

and out-of-plane direction and note the differences in characteristics of interest when the 

microcantilever is excited in the in-plane direction. Characteristics such as the 
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microcantilever’s resonant frequency, quality factor, sensitivity, and limit of detection 

will be investigated. These characteristics may be determined by solving the system’s 

equation of motion.  However, the equation of motion can only be solved if the 

hydrodynamic forces acting on a laterally excited microcantilever are known.  

The hydrodynamic forces will be expressed via the steady state solution to 

Stokes’ second problem modified using a correction factor. The form of the correction 

factor will be determined by performing FEA on the fluid domain.  This correction factor 

will account for both the effects of the thickness and the edge effects. Once the 

hydrodynamic forces are known, the equation of motion for the microcantilever can be 

solved and characteristics of the device can be extracted and investigated as a function of 

the direction of excitation, as well as functions of the geometry and the medium of 

operation.  The trends in these characteristics can be used to improve the choice of device 

geometry for liquid-phase detection, as well as quantify the benefits and drawbacks of 

using in-plane vibration as opposed to out-of-plane vibration. 

 

1.6 Dissertation Organization 

This dissertation is organized into five chapters. In chapter 2, the equation of 

motion will be solved for the deflection of a microcantilever vibrating in the in-plane 

direction in a viscous liquid fluid.  The result will be expressed in terms of an arbitrary 

exciting frequency. This can be used to find the characteristics of a microcantilever 

vibrating in the in-plane direction if the hydrodynamic forces are known.  Chapter 3 will 

define all the hydrodynamic forces and present Stokes’ solution.  It will also include a 

finite element analysis model used to approximate the hydrodynamic forces.  Using the 
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results of this numerical procedure, a correction factor for Stokes’ solution can be found 

and an analytical function for the hydrodynamic forces obtained.  Chapter 4 uses the 

expression for the sum of the hydrodynamic forces from chapter 3 to extract useful 

characteristics, such as the resonant frequency, quality factor, and sensitivity.  Trends in 

these characteristics as functions of microcantilever geometry and medium properties are 

found and recommendations made for design considerations. The characteristics of 

microcantilevers of similar geometry excited both laterally and transversely are then 

compared and contrasted. Finally, chapter 5 gives a summary of the results and identifies 

areas of future research.    
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2. Laterally Excited Microcantilevers in a 
Viscous Liquid Medium   
 
 
 

2.1 Introduction 
 

In order to analyze a laterally vibrating microcantilever in a viscous liquid 

medium, it is first necessary to obtain the solution to the equation of motion governing 

the deflection of the microcantilever. This will allow the characteristics of the vibrating 

microcantilevers to be found and investigated as functions of geometry, material 

properties, medium properties, and excitation direction. Figure 2-1 shows the 

microcantilever’s length, L, width, b, and thickness, h.  The origin is placed at the center 

of the beam-support interface with the x-axis, y-axis, and z-axis in the direction of the 

microcantilever’s length, width, and thickness, respectively. The microcantilever is 

clamped at x=0 and has a free end at x=L.  Also shown in Fig. 2-1 is the lateral deflection 

in the y direction, denoted by v(x,t).  Please note that v(x,t) stands for the lateral 

displacement of the microcantilever as a function of both time and position along the 

length of the microcantilever, and is not the microcantilever’s velocity.  

The microcantilever in Fig. 2-1 can be modeled using standard Euler-Bernoulli 

beam theory if certain assumptions listed below are satisfied. The equation of motion for 

a laterally vibrating microcantilever in a vacuum under harmonic loading is 
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Figure 2-1.  A microcantilever with length, L, width, b, and thickness, h vibrating 
laterally with a deflection of v(x,t).   
 
 123hbI lat = .                                                    (Eq. 2-1a)  

In Eq. 2-1, E is the Young’s modulus of the microcantilever in the longitudinal direction, 

ρΒ is the mass density of the microcantilever, and Fy(x) is the position-dependent forcing 

function per unit length operating at an angular frequency of ω.   

Note that the equation for the moment of inertia, I lat, has the width cubed instead 

of the thickness (opposite the case of transverse vibration).  The Young’s modulus is the 

same for both lateral and transverse vibration.  Thus, the flexural rigidity (EI) of a 

microcantilever undergoing lateral vibration is a factor of (b/h)2 times larger than that of 

the same microcantilever undergoing transverse vibration.  This increased flexural 

rigidity indicates that the beam is stiffer (compared to the same beam vibrating 

transversely).  Since the beam is stiffer when vibrating laterally, yet has the same amount 

of mass, it will have a higher resonant frequency [84]. 

Euler-Bernoulli beam theory places several assumptions on the beam geometry 

and deflection and, thus, the applicability of Eq. 2-1:  
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• The beam’s cross-sectional area is uniform over the length of the beam 

• The length of the beam greatly exceeds its width  

• The amplitude of the vibration of the beam is far smaller than any length scale 

in the beam geometry 

It will also be assumed in this work that the density and Young’s modulus are also 

uniform over the length of the beam. These assumptions generally hold true for standard 

commercially available microcantilevers [85]   However, some of the geometries 

investigated in this work do not have lengths that greatly exceed their widths.  The effects 

of violating this assumption will be investigated in chapter 4.  For microcantilevers made 

of several different layers of materials, the weighted average mass density can be used as 

the beam density. Likewise, an effective Young’s modulus can be found (either via 

composite beam theory [1] or use of experimental data) for a multilayer beam. If the 

microcantilever’s cross-sectional area changes as a function of x, such as in the case of a 

hammerhead or T-shaped microcantilever, the additional mass and rotational inertia of 

the head must be taken into account. One method of accounting for this additional mass is 

to use Rayleigh’s method, modeling the additional mass as a point mass at the end of the 

microcantilever [112].  Other methods utilize finite element analysis in order to model the 

additional effects of the head [113].  However, only beams that have a constant cross-

section are considered in this investigation.  If the length of the laterally vibrating 

microcantilever is on the order of its width, the shear strain and rotational inertia effects 

must be taken into account using Timoshenko’s beam theory [57] in place of Euler-

Bernoulli’s beam theory. Finally, if the amplitude of the vibration is too large, the 

problem becomes geometrically nonlinear and the stress versus strain relationship can 
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possibly become non-linear; in these cases failure criteria such as lateral-torsional 

buckling might need to be taken into account [59,114].  

 

2.2 Effects of a Viscous Liquid Medium 

When the microcantilever operates in a viscous liquid medium, an additional 

force from the medium affects the microcantilever and the equation of motion is modified 

to  
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This additional hydrodynamic force, Fmedium,lat is a force per unit length that is partially 

out-of-phase with the displacement, and can be represented as  

2

2

,2,1,

),(),(
),(

t

txv
g

t

txv
gtxF latlatlatmedium ∂

∂
−

∂
∂

−=
                         (Eq. 2-3) 

where g1,lat and g2,lat are time-independent coefficients associated with the fluidic damping 

force per unit length and the fluidic inertial force (displaced fluidic mass) per unit length, 

respectively [85-86].  It is common to normalize Fmedium,lat into a dimensionless form 

called the hydrodynamic function, Γlat, where [3,85] 

)/(Re,Re ,,1 bhg Ilatlat Γ=η ,                                   (Eq. 2-4) 

)/(Re,
4 ,

2
,2 bhbg RlatLlat Γ= ρ

π
.                     (Eq. 2-5) 

where ρL and η are the mass density and dynamic viscosity of the fluid, respectively. The 

subscripts R and I in Eqs. 2-4 and 2-5 represent the real and imaginary portions of the 
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hydrodynamic function, respectively, where h/b is the aspect ratio of the beam cross-

section and Re is the Reynolds number of the system.  

The Reynolds number is a measure of the relative size of the fluid’s inertial and 

viscous forces in the problem. An analytical expression for the Reynolds number can be 

defined from the ratio of the inertial term to the viscous term in the equation of motion of 

the fluid. The linearized incompressible form of the Navier-Stokes’ equation can be used 

to model the fluid if the fluid is assumed incompressible and the velocity gradient of the 

fluid is small. The fluid can be considered incompressible as the wavelength of the 

microcantilever’s vibration in the cases of interest in this work greatly exceeds the width 

of the microcantilever, which is the dominant length scale in the flow [85].  The velocity 

gradient of the fluid is related to the velocity gradient of the vibrating microcantilever.  

Since it is assumed that the microcantilever’s amplitude of vibration is far smaller than any 

length scale in the microcantilever’s geometry, the velocity gradient of the beam and fluid 

can be considered small.  Thus, the equation of motion for the fluid can be given as [86, 

98, 109]: 

uP
t

u
L

2∇+−∇=
∂
∂

ηρ                                      (Eq. 2-6) 

where P and u are the pressure and velocity at a particular point in the fluid, respectively. 

The term on the left hand side of Eq. 2-6, 
t

u
L ∂

∂
ρ , is the term related to the fluid’s inertial 

forces. The second term of the right hand side of Eq. 2-6 , u2∇η , is the term related to the 

fluid’s viscous forces. The Reynolds number, in this form sometimes called the non-
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dimensional frequency [102] or one fourth of the Valensi number [115], can then be found 

by taking the ratio of these terms and simplifying,   
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The viscous term is multiplied by a factor of four to keep the definition consistent with the 

one found in Ref. 102.    

 The hydrodynamic function, Γlat, is the total hydrodynamic force per unit length 

applied by the fluid onto the microcantilever normalized to the amount of force per unit 

length needed to excite fluid in a vibrating circular cylinder of diameter b to the same 

velocity as the microcantilever. The normalized hydrodynamic force per unit length is 

dependent on the microcantilever’s aspect ratio.  This dependency will be investigated in 

chapter 3.  

The hydrodynamic function is also dependent on the properties of the medium of 

operation. The properties of the medium of operation, along with the excitation frequency 

ω, will determine the skin depth of the liquid layer surrounding the vibrating beam.  The 

skin depth or boundary layer thickness, denoted δ,  is defined as the distance over which 

the fluid velocity decays to 1/e of its maximum value [116].  The larger the skin depth, the 

larger the amount of fluid excited by the vibrating beam. Physically, the boundary layer 

thickness can be thought of as the amount of fluid trapped in the vortex created by the 

vibrating microcantilever [104].   The boundary layer thickness can be found as  

ωρ
η

δ
L

2
=  .                        (Eq. 2-8) 
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Equation 2-8 can be rewritten as 

Re2

b
=δ                           (Eq. 2-9) 

The hydrodynamic function for a transversely vibrating beam was found to be a function 

of δ/b, or a function of the inverse of the square-root of the Reynolds number [86,116].  It 

is expected that the hydrodynamic function for a laterally vibrating beam will also 

depend on this ratio, and thus on the Reynolds number.   

The hydrodynamic function is a complex number.  The real portion of the 

hydrodynamic function is related to the effective displaced fluid mass per unit length and 

the imaginary portion of the hydrodynamic function is related to the amount of viscous 

damping per unit length.  The effective displaced fluid mass acts to increase the total 

effective mass of the system.  This, in turn, decreases the resonant frequency and 

increases the amount of energy stored in the system which increases the quality factor.  

Increasing the viscous damping will also decrease the resonant frequency. However, 

increasing the viscous damping will decrease the quality factor.  

 

2.3 Mode Shapes 

In order to find the characteristics of laterally vibrating beams, the frequency 

spectrum of the deflection (the deflection as a function of excitation frequency) must be 

found from the equation of motion.  First the mode shapes of the beam, or the shape of 

the beam at maximum deflection as a function of x, must be found.  The frequency 

spectrum can then be found using the mode shapes and the equation of motion.     
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It can be assumed that the deflection in the lateral direction is sinusoidal with 

respect to time.  Using separation of variables, the deflection can be given as  

tjexVtxv ω)(),( =                                          (Eq. 2-10) 

where V(x) is the overall mode shape with respect to x (and not the velocity of the 

microcantilever).  To solve for V(x), it is recalled that any appropriately smooth function 

can be written as an infinite series of weighted orthonormal functions [117], or  
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where each mode has an amplitude of Ci  and a particular mode shape φi(x).  Any infinite 

set of orthogonal mode shapes could be used for φi(x). However, it is convenient to use 

the set of mode shapes that the microcantilever takes naturally when freely vibrating in a 

vacuum.  These mode shapes satisfy the condition 
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where βi is a constant defining the modes of operation of the microcantilever and is given 

by  
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A general form of the solution to φi(x) is 
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where D1, D2, D3,and D4 are constants. Due to the orthogonality of the modes [118], the 

mode shapes will have the property such that  
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Because the microcantilever is clamped at x=0, each individual mode shape φi(x) must 

satisfy the following boundary conditions: 
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Since the microcantilever is free at x=L, there will be no bending moment or shear force 

at that point, thus:  
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From these four boundary conditions, the general form of the ith mode shape given by 

Eq. 2-14 can be rewritten as 
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       (Eq. 2-20) 

Using the second and third derivatives of Eq. 2-14 with respect to x at x=L, βi can be 

found as the infinite set of solutions to  

( ) 1coshcos −=LL ii ββ .                                   (Eq. 2-21) 

The smallest solution for βiL is approximately equal to 1.8751. This value will be used 

for i=1, with each successively larger solution (4.6941, 7.8548, 10.9955, 14.1372…) 

assigned to successively higher integer values of i. These values are well-known [92], 

and converge to  
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Figure 2-2. The first 5 mode shapes of a vibrating microcantilever using Eq. 2-20, D4=1 
and the βi values found from Eq. 2-21. 
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The mode shapes φi(x) of each individual mode, i, can then be plotted as a function of 

normalized length (see Figure 2-2). 

 

2.4 Mode Shape Amplitudes and Phases of Laterally Vibrating Microcantilevers in 
Viscous Liquid Media 
 

The variables D4 and Ci  in Eqs. 2-11 and 2-14 are still unknown. The constant D4 

can be written in terms of Ci.  From Eq. 2-10 it can be shown that  
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Using Eq. 2-23, Eq. 2-2 can then be rewritten as 
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Equations 2-24 and 2-11 can be combined to give 
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                 (Eq. 2-25) 

Canceling out the time dependency and using Eq. 2-12, Eq. 2-25 can be simplified to 
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Both sides can be multiplied by φj(x) where Cj is the desired mode amplitude to be found.  

Eq. 2-26 then becomes   
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    (Eq. 2-27) 

Integrating both sides of Eq. 2-27 along the length of the microcantilever from zero to L, 

and using Eq. 2-15,  
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      (Eq. 2-28) 

Eq. 2-28 can then be rearranged to obtain Cj as 
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  (Eq. 2-29) 
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Cj is a complex number, which indicates that the microcantilever’s deflection is not 

always in-phase with the excitation.  Eq. 2-29 can be rewritten as 
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     (Eq. 2-30a) 
The deflection amplitude at the tip of the microcantilever as a function of frequency can 

then be found by substituting Eq. 2-30 into Eq. 2-11,   
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     (Eq. 2-31) 

From Eq. 2-31, the frequency spectrum of the microcantilever can be calculated. 

It is important to note that the excitation force per unit length, Fy(x), can be any arbitrary 

force as a function of the position along the length of the microcantilever. If a tip force, is 

placed on the beam at x=L,    
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where Ftip is the amplitude of the harmonic tip force. Eq. 2-32 can be simplified, such that 



  33 

)()()(
0

LFdxxxF itip

L

iy φφ =∫ .             (Eq. 2-33) 

The deflection amplitude of the tip of a laterally vibrating microcantilever in a viscous 

liquid medium, V(L), excited using a tip force can then be found from Eq. 2-31 and 2-33 

as 

( )( ) ( )
∑

∫

∞

= ++−

=
1

0

22
,1

22
,2

4

2

)(

)(
)(

i
L

ilatlatBjlat

itip

dxxggbhEI

LF
LV

φωωρβ

φ
 

         (Eq. 2-34) 

Normally, when operating around the resonant frequency of the ith mode, only the ith 

term in Eq. 2-31 is significant.  This approximation will be investigated in chapter 4.  

By investigating the lateral deflection as a function of the excitation frequency, 

the resonant frequency and quality factor of the microcantilever can be found. Using the 

resonant frequency and the quality factor, sensing characteristics such as the mass 

sensitivity can be found.  In order to find the microcantilever’s spectrum, all the terms in 

Eq. 2-31 must be known.  The beam’s density, ρB, and Young’s modulus, E, are 

determined by the material or materials chosen for the microcantilever. For example, 

silicon’s density and Young’s modulus are 2330 kg/m3 and 169 GPa (for the <110> 

direction), respectively [119]. The length, L, width, b, and thickness, h, of the 

microcantilever are determined during its fabrication.  The excitation frequency, ω, is 

determined by the frequency of excitation of the transducers. The lateral excitation force 

per unit length Fy is determined by both the location of the transducers on the 

microcantilever and the amount of power used to excite it. The force per unit length, Fy, 
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while difficult to estimate, only acts as a multiplier for the tip deflection. The resonant 

frequency and quality factor thus do not depend on the value of the excitation force.  

However, the force per unit length must still be small enough to assume a deflection 

smaller than any length scale of the microcantilever. The moment of inertia I lat, the mode 

shape function φi, and the constant βi, can be found by Eq. 2-1a, Eq. 2-20, and Eq. 2-21, 

respectively.  

This leaves g1,lat and g2,lat as the only unknown quantities in Eq. 2-31. The values 

of g1,lat and g2,lat can be found from Eq. 2-4 and Eq. 2-5, respectively. Equations 2-4 and 

2-5 require the frequency of excitation, dynamic viscosity and density of the medium, 

and the width of the beam, all of which are known.  Equations 2-4 and 2-5 also require 

the real and imaginary parts of the hydrodynamic function, Γlat.  The hydrodynamic 

function, Γlat, is the hydrodynamic force per unit length normalized to the amount of 

force per unit length it would take to excite fluid occupying a cylindrical volume with a 

diameter equal to the microcantilever’s width to the same velocity as the microcantilever 

[85,102].  In order to find the characteristics of laterally vibrating beams, an expression 

for the hydrodynamic function of a laterally vibrating beam must be found. In the next 

chapter, the different hydrodynamic forces acting on laterally vibrating microcantilevers 

will be defined. An approximation of the hydrodynamic function for a laterally vibrating 

plate will be given. A numerical procedure for finding the precise value for the 

hydrodynamic function for particular values of the Reynolds number, Re, and aspect 

ratio, h/b will also be given. The simple expression for the hydrodynamic function of a 

laterally vibrating plate will then be mapped to the numerical results using a set of 

correction factors. The corrected expression for the hydrodynamic function can then be 
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used with Eq. 2-31 to find characteristics of a laterally vibrating microcantilever in a 

viscous liquid medium.  
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3. Hydrodynamic Forces on Laterally 
Vibrating Microcantilevers in a Viscous 
Liquid Medium   
 
 
 

3.1 Introduction 

In order to evaluate the characteristics of a laterally excited microcantilever, the 

hydrodynamic forces acting on the vibrating microcantilever must be known. All 

hydrodynamic forces must first be defined.  Using the equation of motion of the fluid, the 

hydrodynamic forces can be approximated using the steady state solution to Stokes’ 

second problem [105].  This, in turn, will yield a simple analytical expression for the 

hydrodynamic function.  However, this expression neglects the thickness and edge 

effects.  The fluid can be modeled more accurately using a numerical procedure which 

accounts for these effects and the hydrodynamic forces on the cross-section of the 

microcantilever can be estimated. Stokes’ solution can then be modified using a set of 

correction factors found from the numerical results to account for the edge effects and the 

effect of thickness.  The corrected expression for Stokes’ solution can then be used to 

find the viscous damping and effective displaced fluid mass per unit length as a function 

of the microcantilever’s geometry and the Reynolds number.  When used with the 

solution to the microcantilever’s equation of motion, relevant vibration characteristics of 

the system can be found. 
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3.2 Hydrodynamic Forces 

When a microcantilever is vibrating in an infinite viscous liquid medium (either in 

the in-plane or out-of-plane direction), the fluid acts to oppose the movement of the 

microcantilever, applying an opposing hydrodynamic force.  However, this 

hydrodynamic force is not always applied perpendicularly to the surface of the 

microcantilever, as shown in Fig. 3-1.  

Conceptually, the total hydrodynamic force is the sum of the hydrodynamic force   

perpendicular to the surface of the microcantilever, Fpressure, (also known as the pressure 

force), and a force parallel to the surface, Fshear, called the shear force. The shear force is 

proportional to the shear drag on the microcantilever [97,100]. The total hydrodynamic 

force can then be found as 

shearpressurelatmedium FFF +=, .                  (Eq. 3-1) 

 
 

 
Figure 3-1.  Hydrodynamic forces acting on the surfaces of a cross-section of a laterally 
vibrating microcantilever in fluid.   
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3.2.1 Pressure  

The pressure is the force per unit area applied perpendicularly to the 

microcantilever’s surface by the fluid and is the dominant hydrodynamic force 

encountered when relatively thin microcantilevers are excited in the out-of-plane 

direction [97,100].  It is noted that the calculated hydrodynamic force on a transversely 

vibrating microcantilever based on Ref. 85 neglects the shear force and is still found to be 

in good agreement with experimental results found in the literature [85].  However, it 

must be noted that the pressure might not always be the dominant hydrodynamic force.  

For thin microcantilevers undergoing in-plane vibration in a viscous liquid medium, the 

shear force is expected to be larger than the pressure force. When a microcantilever is 

vibrating in a liquid medium, pressure from the medium is applied on all surfaces of the 

microcantilever. When the microcantilever is at rest and there is no net flow in the 

medium, the pressure applied on the microcantilever by the medium is the static pressure 

of the medium and is essentially uniform over the surface of the microcantilever.  The 

forces in the y and z directions applied to the microcantilever by the static pressure will 

therefore cancel each other out.  

When the microcantilever vibrates in the in-plane direction, the pressure incident 

on the surface of the microcantilever becomes both a function of time and position. The 

pressure must maintain a value higher than the medium’s vapor pressure; otherwise the 

medium will undergo cavitation and form vapor bubbles [101].  The total pressure is the 

sum of the static pressure and the dynamic pressure [101].  Since the total pressure can be 

lower than the static pressure, the dynamic pressure can be a negative quantity.  
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Due to the symmetry of the problem, the dynamic pressure should be symmetric 

with respect to the y axis and anti-symmetric with respect to the z axis [97].  All the 

forces in the z direction from the pressure cancel each other out due to its symmetry about 

the y axis.  The hydrodynamic force from the pressure acting on the leading and trailing 

edges of the microcantilever will be equal. The total remaining hydrodynamic force per 

unit length from the pressure acting on the microcantilever is then twice that of the 

pressure acting on its leading edge, or 

∫
−

=
2/

2/

),2/(2)(
h

h

pressure dzzbPxF               (Eq. 3-2) 

where P is the pressure. 

It is noted [97,102,107] that the pressure is partially out-of-phase with the velocity 

of the microcantilever. As indicated in chapter 2, the hydrodynamic force from the 

pressure will then contribute to both the effective displaced fluid mass and the damping 

of the system.  The phase of the hydrodynamic force from the pressure will depend on the 

Reynolds number and the aspect ratio (h/b) of the microcantilever’s geometry.  When the 

Reynolds number increases (or the viscosity decreases), it is expected that the viscous 

damping will become negligible. The hydrodynamic force from the pressure can then be 

treated simply as an effective displaced fluid mass.  Since the hydrodynamic force from 

the pressure only comes from the leading and trailing edges of the microcantilever, it is 

also expected that the pressure’s effect on the microcantilever should become negligible 

as the aspect ratio of a laterally excited microcantilever goes to zero. 
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3.2.2 Fluid Shear  

The shear stress of the fluid acting on the microcantilever is given by 

dn

du
ητ =                  (Eq. 3-3) 

where u is the velocity of the fluid in the vicinity of the fluid-beam interface and n is a 

coordinate in the direction normal to the surface [100].  Note that, unlike the pressure, 

when the dynamic viscosity, η, of the medium goes to zero the shear stress also goes to 

zero. The total shear force per unit length, Fshear, is the resultant of all shear stresses 

acting over the entire contour of the microcantilever’s cross-section, or 

∫=
C

shear dxF λτ)(                 (Eq. 3-4) 

where C is the contour running around the cross-section of the microcantilever.  

The shear forces in the z direction will cancel each other out due to the symmetry 

of the problem about the y axis. The shear force in the y direction is a function of the area 

of the microcantilever’s surfaces parallel to the direction of motion.  For microcantilevers 

undergoing out-of-plane vibration, the shear force acts on the surface along the thickness 

of the microcantilever, which can safely be neglected as long as the width is not of the 

same order as the thickness [97].  When the microcantilever is vibrating in the in-plane 

direction, the shear force is applied to the top and bottom of the microcantilever. Due to 

the symmetry of the problem, the shear force acting on the top of the microcantilever will 

be the same as the shear force acting on the bottom.  Thus, when the microcantilever is 

vibrating in the in-plane direction, the shear force per unit length can be calculated as  

∫
−

=
2/

2/

)2/,(2)(
b

b

shear dyhyxF τ                (Eq. 3-5) 
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Using Eqs. 3-2 and 3-5 in Eq. 3-1, the total hydrodynamic force per unit length on 

a rectangular microcantilever can be calculated, provided that the fluid velocity can be 

obtained. However, several approximations can be made depending on the dimension of 

the microcantilever. If the thickness is small enough, the pressure can be neglected and 

only the shear force will contribute to the hydrodynamic force. However, as will be 

shown in Section 3.4.3, the pressure force can remain significant under certain 

conditions, even when the microcantilever’s width is much greater than its thickness. It 

will initially be assumed that the shear force is the dominant hydrodynamic force. This 

assumption will be investigated. The shear force is also partially out-of-phase with the 

velocity of the microcantilever, meaning that the shear force will also contribute to both 

the effective displaced fluid mass and the viscous damping of the system.  Since the shear 

force is a function of the dynamic viscosity, both the effective displaced fluid mass and 

the damping from the shear force are expected to approach zero as the Reynolds number 

approaches infinity. 

There have been several attempts to model the hydrodynamic forces acting on a 

microcantilever vibrating in the in-plane direction. When the microcantilever’s thickness 

is small compared to its width, it can be approximated as a laterally vibrating ribbon.  

Stokes investigated the forces acting on an infinitely wide flat plate brought from rest to 

sinusoidal lateral vibration.  This is commonly called Stokes’ second problem [106].  The 

problem of a laterally vibrating ribbon can be reduced to the steady state solution of 

Stokes’ second problem if the microcantilever under investigation is also quite wide 

relative to the boundary layer thickness of the fluid.  
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3.3 Stokes’ Solution  

The total hydrodynamic force per unit length can be found from first solving the 

fluid’s equation of motion given by Eq. 2-6, which is repeated here for convenience.   

uP
dt

ud
L

2∇+−∇= ηρ .               (Eq. 3-6) 

u  is the velocity field of the fluid at all points, P is the pressure, and ρL and η are the 

density and dynamic viscosity of the fluid, respectively. If the velocity field in the fluid is 

known everywhere, both the pressure and shear force per unit length incident on the 

microcantilever can be found.  Dividing both sides by the fluid density, taking the curl of 

each side to remove the pressure dependence, and assuming the fluid velocity to be 

sinusoidal, the Navier–Stokes equation can be modified to  

( ) ( )uuj
L

×∇∇=×∇ 2

ρ
η

ω .               (Eq. 3-7) 

In order to solve the above equation, the stream function, ψ (x,y,z;t), will be introduced 

and is the function that quantifies the amount of fluidic flux passing in between two 

points [102].  The contour of constant values for ψ  is known as a stream line which is 

always parallel to the direction of fluidic flow.  Mathematically, the stream function can 

be defined in terms of the velocity field as 

ψ×∇=u                   (Eq. 3-8) 

and, likewise, the curl of the velocity field as  

ψ2∇=×∇ u                  (Eq. 3-9) 

Since only the cross-section of the fluid and microcantilever in the y-z plane is under 

consideration and the assumption is made that the microcantilever is long enough so that 
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the variations in the fluid velocity in the x direction are small, only the x component of 

the stream function will be considered non-zero. ψx will be written as ψ for notation 

convenience. Eq. 3-7 can then be rewritten as 

( ) ( ) 02222 =∇−∇∇ ψαψ                 (Eq. 3-10) 

where 

η
ωρ

α Lj
=              (Eq. 3-10a) 

The general solution to Eq. 3-10 is difficult to obtain.  If b>>h, only the shear force can 

be considered significant.  If it is also assumed that the stream function is constant in the 

y direction, the general solution to Eq. 3-10 is given by   
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+++= η
ωρ

η
ωρ

ψ .          (Eq. 3-11) 

where A1, A2, B1 and B2 are amplitude terms that may depend on time. Making the 

assumption that the stream function is not dependent on y means that the anticipated 

stress singularities on the edge of the microcantilever (called edge effects) are neglected, 

making the implicit assumption that the microcantilever is infinitely wide.  These 

singularities have been previously noted in the literature [97,102] and are significant 

when the Reynolds number is low.  Thus, this procedure is only valid when Re>>1.  

From Eq. 3-8, the velocity of the fluid in the y direction can then be found as 
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         (Eq. 3-12) 

While, in practice, the microcantilever is in a finite volume cell, it is normally assumed 

that the microcantilever is operating in an infinitely bound medium. Thus, as |z| goes to 

infinity, the velocity must approach zero, implying that 2 0A = .  Likewise, by only 
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considering the half space of the fluid above the microcantilever (since the problem is 

symmetric about the x-y plane), it is found that2 0B = . Thus, Eq. 3-11 and Eq. 3-12 

become 

zjL

eBAtz
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2
11);(

+−

+= η
ωρ

ψ ,             (Eq. 3-13) 
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It has been assumed that fluid in contact with the microcantilever will have the same 

velocity as the microcantilever.  Using the no-slip boundary condition at z=h/2, for small 

thicknesses,  

10 )1(
2

BjeU Ltj +−=
η
ωρω .             (Eq. 3-15) 

where U0 is the amplitude of the excitation velocity.  Solving for B1 and applying 

symmetry, the velocity in the upper half-space of the fluid is then found as 

.
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eeUu
+−

= η
ωρ

ω              (Eq. 3-16) 

Using Eq. 3-3, the shear stress on the top face of the microcantilever can then be written 

as 

)1(
20 jeU Ltj +−=

ωηρ
τ ω                     (Eq. 3-17) 

and the total force per unit length can be found using Eq. 3-5 as  

)1(Re22)1(
2

2 00,, jeUjbeUF tjLtj
Stokeslatmedium +−=+−= η

ωηρ ωω .       (Eq. 3-18) 

Equation 3-18 indicates that, when edge effects and pressure forces are neglected, the 

total hydrodynamic force is 45° out of phase with the velocity, linearly dependent on both 
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the width and the amplitude of the excitation velocity U0, while dependent on the square-

root of the product of dynamic viscosity, liquid density and excitation frequency.  The 

hydrodynamic function can, in turn, be found from the total hydrodynamic force per unit 

length as 

)1(
Re

22

Re
(Re)

0

,,
*

, j
eUj

F
tj

Stokeslatmedium

Stokeslat +==Γ
− ππη ω .                     (Eq. 3-19) 

As stated in chapter 2, the hydrodynamic function is the total hydrodynamic force per 

unit length normalized to the amount of force per unit length it would take to excite fluid 

occupying a circular cylindrical volume with a diameter equal to the microcantilever’s 

width to the same velocity as the microcantilever [85,102].  Equation 3-19 indicates that, 

for the fluid resistance predicted by Stokes, the real and imaginary parts of the 

hydrodynamic function are equal.  Also note, as stated in chapter 2, the hydrodynamic 

function is a function of δ/b.  Equation 3-19 can give a good approximation for the 

hydrodynamic forces from the fluid shear if the edge effects are negligible, which 

happens when Re>>1. However, it does not account for the effects of thickness. In order 

to investigate the edge and thickness effects on both the hydrodynamic forces and on the 

device’s characteristics of interest, a method that takes into account all the hydrodynamic 

forces must be found.   

 

 

3.4 Numerical Evaluation of the Hydrodynamic Forces 

In order to account for both the edge and thickness effects, a set of correction 

factors will be found for Eq. 3-19 using results from finite element analysis (FEA). Finite 

element analysis, also called the finite element method (FEM), is a useful technique used 
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to simulate the behavior of complicated systems. FEA is based on discretizing of larger 

systems into smaller, less complicated systems [120].  Initially developed to model beams 

and trusses [121], FEA has been used to model problems in many different fields, such as 

electromagnetism, fluidics, and thermodynamics [120].  FEA finds field quantities (e.g., 

displacements, stresses) by attempting to minimize the equations of equilibrium [122]. In 

the case of fluid flows the fluid velocities in the medium are obtained from the 

conservation of momentum principle, and the pressure is obtained using the conservation 

of mass principle.  

The commercially available FEA package ANSYS 11.0 was utilized to simulate 

the hydrodynamic forces acting on the cross-section of a laterally vibrating rigid bar of 

rectangular cross-section.  First, the simulation procedure is defined and an arrangement 

of finite fluid elements, called a mesh, is produced.  These meshes are then tested to see if 

they produce a convergent solution for the hydrodynamic forces.  Once a converged 

solution is obtained, the hydrodynamic force is extracted as a function of both the 

Reynolds number, Re, and the aspect ratio, h/b.  The numerical results can then be 

compared to known hydrodynamic forces for special cases, such as the laterally vibrating 

ribbon at large Re values.  

 

 

3.4.1 Simulation Procedures 

The first step in defining the mesh was to choose the type of fluid elements to be 

used.  There are many different fluid elements available in ANSYS. FLUID141, the 2-D 

fluid-thermal element, was chosen because it was one of the elements available that 
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incorporated the viscous shear force of the fluid. A two-dimensional mesh of triangular 

elements was defined using FLUID141 elements with the microcantilever’s cross-section 

represented as a vibrating rectangular boundary condition.  A 2-D mesh was chosen over 

a 3-D mesh as the number of elements needed to produce a convergent solution for the 

hydrodynamic forces using a 3-D mesh was found to be computationally prohibitive. 

Using a two-dimensional model of the fluid surrounding a rigid vibrating 

microcantilever’s cross-section (see Fig. 3-1) has proved to be an accurate approximation 

in previous attempts at finding the hydrodynamic forces [102,105].  Modeling the effects 

of the length or the deformation of the microcantilever’s cross-section on the 

hydrodynamic function is also outside of the scope of this investigation. 

Two boundary conditions were placed on the mesh.  A lateral sinusoidal velocity 

was imposed on the cross-section, and a zero displacement and zero pressure boundary 

condition was placed on the outer boundary. This violated the assumption of an infinitely 

large operating medium, causing the hydrodynamic forces to become dependent on the 

total domain size. If the outer boundary of the mesh is placed very far away from the 

vibrating cross-section, this dependence becomes negligible.  However, the number of 

elements needed to define the mesh (for a fixed element size) increases as a function of 

the square of the mesh size. Estimating the velocity near the edge of the model is not as 

important as estimating the velocity near the vibrating cross-section; thus a tapering of 

element sizes was employed. Smaller elements were placed closer to the cross-section 

and larger elements (coarser mesh) placed near the outer boundary. Two regions in the 

fluid model were used, as shown in Fig. 3-2.   
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Figure 3-2.  A finite element mesh used to model the hydrodynamic forces acting on the 
cross-section of a laterally vibrating beam with an aspect ratio of 1/10 in fluid.  The mesh 
has a higher element density near the vibrating cross-section and has a zero displacement 
and pressure boundary condition placed on the outer boundary. 
 
 
  
 
 

The first region was a square centered on the cross-section with a width and 

thickness of twice the width of the cross-section.  The width of the cross-section can be 

set to any arbitrary distance as long as the excitation frequency and thickness produce the 

desired Reynolds number and aspect ratio.  For the majority of the simulations run, the 

width of the cross-section was kept at 20 µm.  However, the width was set to 10 µm and 

40 µm for two sample test cases, while the Reynolds number and the aspect ratio were 

maintained constant.  The numerical results of the hydrodynamic function were found to 

be nearly identical (within 1%). The assumption was then made that the numerical results 
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for the hydrodynamic function did not depend on the size of the cross-section as long as 

the Reynolds number and aspect ratio remain constant. 

The elements were triangular in shape, as indicated above, and defined via a free-

mesh of the area from the fluid-beam interface to the border of the first region.  The size 

of the elements in the first region was graded from a node spacing of 33.33 nm (600 

nodes along the width) when the elements were placed along the cross-section to 1.33 µm 

(40 times larger) when the elements were placed on the outer boundary of region 1.   

 

 

 
 
 
Figure 3-3.  The mesh of the fluid defined near the right side of a beam cross-section 
with an aspect ratio of ~1/56. 
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This is roughly 44 times larger than the largest boundary layer thickness 

considered in this work. The elements in the second region were also created via a free 

mesh of triangular elements, graded in size from a minimum node spacing of 1.33 µm 

along the interface of the two fluid regions to a node spacing of 13.33 µm along the outer 

edge of the total mesh. The velocity gradient near the fixed outer boundary is very small, 

such that the velocity found near (within a few elements) the outer boundary was less 

than 1% of the applied velocity. This is expected as the velocity should be zero on the 

outer boundary. It is then assumed that the overall fluid mesh volume is large enough to 

serve as an appropriate approximation of an infinite medium.  
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Figure 3-4. The simulated hydrodynamic force per unit length acting on the top and left 
hand side of a cross-section of a laterally vibrating microcantilever in water (b=20 µm, 
h/b=1/10, Re=1000) compared to the velocity of the cross-section. 
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Figure 3-4 shows a sample result of the simulated total force per unit length over 

the top and right side of the cross-section as a function of time.  Note the phase offset 

between the force per unit length and the velocity.  The force per unit length of a 

microcantilever undergoing only viscous damping would have no phase offset with 

respect to the velocity. The force per unit length of a microcantilever only undergoing the 

effects of displaced fluid mass would lag the velocity by 90°.  For the configuration used 

to produce the results in Fig. 3-4 (h/b= 1/10, Re=1000), the force per unit length lags the 

velocity by ~53.6°, which means that in this case the displaced mass is slightly larger 

than the viscous damping.   

The pressure and shear force can be investigated separately. Instead of finding the 

shear force, ANSYS calculates the wall shear stress (the total shear force distributed over 

the contour), as shown in Fig. 3-5.  The wall shear stress is always found as a positive 

quantity.  The wall shear stress can be corrected to the shear force by inverting its sign 

every half cycle.  Numerical discontinuities affect the shear force near those time values 

at which the imposed velocity is zero. These discontinuities are artifacts of the mesh 

density and decrease when the mesh density is increased. 
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Figure 3-5.  The wall shear stress and the shear force per unit length acting on a 20 µm 
wide microcantilever in water (b=20 µm, h/b=1/10, Re=1000).  

 

Figure 3-6 shows the pressure and shear force per unit length acting in the lateral 

(y) direction compared to the overall hydrodynamic force per unit length acting in the 

lateral direction. The total hydrodynamic force per unit length is the sum of the pressure 

and shear forces per unit length.  Note that they both have different phase offsets, which 

means that (in this case) the shear force contributes more to the viscous damping than the 

pressure force and the pressure force contributes more to the displaced mass than the 

shear force. It is interesting to note for this aspect ratio (h/b=1/10) that the magnitude of 

the pressure force per unit length is about the same as that of the shear force per unit 

length even though the pressure acts on a surface that is only one tenth of the size that the 

shear force acts on.  The pressure and shear forces per unit length were found at 200 

different times per cycle over two cycles.  More cycles could be used, but this increases 

the amount of computation time needed.  Investigating the predicted amplitude and phase 
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as a function of time, all transient effects (for the range of aspect ratios and Reynolds 

numbers in this investigation) were found to be negligible within the first cycle.    

The numerical results had noise.  In order to eliminate this noise, the data is 

smoothed by using the average of the current and prior time instant’s result.  This 

averaging introduces a half time-step phase offset in the total force per unit length. When 

finding the phase offset between the force per unit length and the velocity using the 

averaged data, this half a time-step phase offset must be taken into account. 

The hydrodynamic function is found next after calculating the magnitude and 

phase of the total hydrodynamic force per unit length.  The magnitude of the 

hydrodynamic force per unit length is found by doubling the maximum value of the force 

per unit length on the top and right-hand side of the cross-section over the second cycle.   
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Figure 3-6.  The simulated hydrodynamic force per unit length acting on the top and 
right side of a laterally vibrating microcantilever in water (b=20 µm, h/b=1/10, 
Re=1000). Also shown are the pressure force per unit length from the thickness and the 
shear force per unit length from the width.   
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The magnitude is doubled due to the symmetry of the problem, as the total force per unit 

length is twice that of the force per unit length acting on the top and right-hand side.  The 

maximum value of the force per unit length over the first cycle still has transient effects 

from starting the microcantilever from rest, thus the maximum value from the second 

cycle is used.  

The phase offset could be found by using the time difference between the zero 

crossings of the force per unit length and velocity.  However, the values for the real and 

imaginary parts of the hydrodynamic function are very susceptible to small variations in 

the phase offset caused by variations in the numerical data. For example, if the total 

hydrodynamic force per unit length lagged the velocity by 89.8°, a 0.1° variation in the 

phase offset would cause a 50% variation in the estimated value of the imaginary part of 

the hydrodynamic function. This is an extreme example. However, the phase will 

converge to 90° as the Reynolds number converges to infinity. Thus, there is a need for a 

more accurate method of finding the phase offset.  Using trigonometric identities, it is 

known that [123] 
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Multiplying the velocity by the force per unit length produces a sinusoid with twice the 

frequency and an amplitude offset of )cos( θ− .  The average phase offset over the second 

cycle can then be found as 
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Once the magnitude and phase of the hydrodynamic force per unit length are found, the 

hydrodynamic function can be determined as 
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It is noted again that the hydrodynamic function is the hydrodynamic force per unit 

length normalized to the amount of force per unit length it would take to excite fluid of a 

cylindrical cross-section, with a diameter of the microcantilever’s width, to the velocity 

of the microcantilever. The estimated phase is shifted by 0.005π radians (0.9°, or half a 

time step) to account for the two-point averaging of the pressure and shear force per unit 

length. 

  

3.4.2 Determining the Mesh Density 

The mesh density must be tested to ensure that it is high enough to produce a 

good estimate of the hydrodynamic forces. As the mesh density is increased, the 

estimated hydrodynamic function should converge to a particular value. The density of 

the elements in the mesh depends on the node spacing of the boundaries. The node 

spacing on the interface of the two fluid regions is 40 times greater than the node spacing 

on the microcantilever’s surface.  The node spacing on the outer boundary is 10 times 

larger than the node spacing on the interface of the two fluid regions.  Finally, the node 

spacing along the thickness of the microcantilever’s cross-section is approximately equal 

to the node spacing on the width. Thus, by increasing the number of nodes along the 

width of the microcantilever’s cross-section, the density of the entire mesh increases. For 

example, doubling the number of points along the width roughly quadruples the number 
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of elements used in the simulation.  If there are not enough elements used in the 

simulation, numerical artifacts such as those shown in Fig. 3-4 will grow larger and the 

error in the estimation of the total hydrodynamic force per unit length will increase, 

especially due to inaccuracies near the corners of the beam’s cross-section. 

Six different meshes were created by varying the number of nodes along the 

width of the microcantilever’s cross-section.  The number of nodes used along the width 

of the microcantilever’s cross-section in each of the 6 meshes was 100, 200, 300, 400, 

600, and 800.  This varies the number of elements used in the simulation from around 

1000 to around 80,000.  These 6 meshes were used to simulate the nine different 

combinations of aspect ratios and Reynolds numbers shown in Table 3-1.  Eight different 

aspect ratios were investigated in this work ranging from ~1/56 (or 10-1.75) to 1 with an 

increment of 0.25 on a logarithmic scale. This allows for smaller aspect ratios to be 

investigated more thoroughly.  Simulating an aspect ratio of 1/100 was attempted, but the 

number of elements required to produce a convergent solution (based on the difference 

between the numerical results from the two highest mesh densities) was too high.  The 13 

different Reynolds numbers investigated in this work range from 10 to 10,000, also with 

an increment of 0.25 on a logarithmic scale.  While the Reynolds numbers normally 

considered for transversely vibrated microcantilevers range from 1 to 1000, laterally 

excited microcantilevers have larger resonant frequencies and Reynolds numbers.  

 
Aspect Ratio (h/b) 1 1 1 1/10 1/10 1/10 1/56 1/56 1/56 

Reynolds Number (Re) 10 316.23 10000 10 316.23 10000 10 316.23 10000 

Table 3-1. Aspect ratios and Reynolds numbers used to test solution convergence. 
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Thus, the practical range for Reynolds numbers of laterally vibrating microcantilevers is 

an order of magnitude higher than those of transversely vibrating microcantilevers. There 

are then 108 different combinations of aspect ratios and Reynolds numbers investigated 

in this work. 

Figure 3-7 plots the real and imaginary parts of the hydrodynamic function for an 

aspect ratio of 1/10 and a Reynolds number of 10,000 as a function of the number of 

elements used.  Also plotted is the estimate of the real and imaginary hydrodynamic 

functions found from Eq. 3-19. Only one line is plotted as Stokes’ solution assumes that 

the real and imaginary parts of the hydrodynamic function to be equal.  The discrepancy 

between the numerical solution and Stokes’ solution is due to the edge effects and the 

effect of thickness. 
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Figure 3-7. The real and imaginary parts of the hydrodynamic function for a laterally 
vibrating microcantilever (h/b=1/10, Re=10,000) as a function of the number of fluid 
elements used.  Also plotted is Stokes’ solution for Re=10,000. 
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Note that the solution for the hydrodynamic function converges when the number 

of elements used increases.  The same trend was seen in all nine combinations of aspect 

ratios and Reynolds numbers. The second highest mesh size (600 points along the width 

of the cross-section) was chosen as a convergent mesh, as seen in Fig 3-3. The values for 

the hydrodynamic functions using the 600 node mesh and the 800 node mesh can be 

compared and given in terms of the percentage difference.  This percentage difference 

will give a measure of how close the estimation of the hydrodynamic force per unit 

length is to the convergent value. Ideally, there should be zero difference in the two 

hydrodynamic functions found from both meshes.  However, minimal differences are 

acceptable. 

The largest percentage difference between these two meshes for the nine different 

aspect ratios and Reynolds numbers investigated was 5.19% for the real part of the 

hydrodynamic function and 2.87% for the imaginary part of the hydrodynamic function.  

The largest differences were found for microcantilevers with aspect ratios of ~1/56. This 

is expected, as thinner microcantilevers require a higher number of elements to accurately 

model the forces along the thickness. For example, a microcantilever with an aspect ratio 

of ~1/56 with 600 nodes along the width of the microcantilever’s cross-section only has 

10 nodes along its thickness.  Increasing the number of overall elements by ~32,000 only 

increases the number of nodes on the thickness by 4.  The highest percentage difference 

for the real part of the hydrodynamic function was found for the highest Reynolds 

number used (Re=10,000), while the highest percentage difference for the imaginary part 

was for the lowest Reynolds number used (Re=10).  This is also expected because, as the 

Reynolds number increases, the hydrodynamic force per unit length along the thickness 
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(the pressure) becomes more out-of-phase with the velocity.  Errors in estimating this 

force per unit length would then cause a larger error in estimating the real part of the 

hydrodynamic function compared to the imaginary part when the Reynolds number is 

large (Re>>1). The other combinations of aspect ratios and Reynolds numbers have 

differences in the real and imaginary parts of the hydrodynamic function ranging from as 

high as 2.81% to as low as 0.03%, as shown in Table 3-2. While there may be some 

issues with convergence for very thin microcantilevers, generally the hydrodynamic 

function is convergent when using the chosen mesh. 

Another way of determining whether the mesh’s density is high enough is to 

simulate the hydrodynamic forces acting on a transversely vibrating microcantilever and 

compare the results to the known forces found from the literature. The hydrodynamic 

function of a transversely vibrating microcantilever is well-known and defined in the 

literature in the case of a zero thickness ribbon as [85] 


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Aspect Ratio 
(h/b) 

1 1 1 1/10 1/10 1/10 1/56 1/56 1/56 

Reynolds 
Number (Re) 

10 316.23 10000 10 316.23 10000 10 316.23 10000 

Percentage 
Difference in 
ΓR,lat (Re, h/b) 

-0.43% 0.85% 0.15% 1.59% 1.98% 2.02% 2.46% 2.81% 5.19% 

Percentage 
Difference in 
ΓI,lat (Re, h/b) 

-1.34% 0.43% 1.14% 2.00% 0.03% 1.86% 2.87% 1.70% 1.50% 

Table 3-2. The percentage difference in the real and imaginary parts of the hydrodynamic 
function using the two finest meshes as a function of aspect ratio and Reynolds number. 
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where K0 and K1 are modified Bessel functions of the third kind and the Ω(Re) function is 

a correction function that maps the hydrodynamic function for a microcantilever of 

circular cross-section to that of an infinitely thin transversely vibrating microcantilever, 

and is defined in Ref. 85.  

Figure 3-8 shows the simulated real and imaginary parts of the hydrodynamic 

function of a transversely vibrating microcantilever with an aspect ratio of ~1/56 over a 

range of Reynolds numbers. The numerical results can be compared to the results given 

by Eq. 3-23 by investigating the absolute percent difference, or 

%100*
(Re)

|)56/1(Re,(Re)|
||%

,

,,,

realtrans

realFEAtransrealtrans
realDiff

Γ

Γ−Γ
=               (Eq. 3-24)  

and             

%100*
(Re)

|)56/1(Re,(Re)|
||%

,

,,,

imagtrans

imagFEAtransimagtrans
imagDiff

Γ

Γ−Γ
=           (Eq. 3-25)  

 The real part of the hydrodynamic function calculated using the mesh has on 

average a 2% absolute percent difference with the values found from Eq. 3-23.  The 

numerical results range from 1.6% lower than the values found from Eq. 3-23 when Re = 

10 to 4.3% higher than the values found from Eq. 3-23 when Re = 10,000. The imaginary 

part of the hydrodynamic function was on average 7.7% lower than the values found 

from Eq. 3-23, ranging from 5.4% lower when Re = 10 to 10.3% lower when Re = 3162. 

This difference is most likely due to the assumption of zero thickness made in Ref. 85 

when Eq. 3-23 was derived. The work done in Ref. 97 shows that the viscous damping 

actually decreases and the displaced mass increases when the thickness for a transversely 

vibrating microcantilever is increased until the aspect ratio is larger than 1/10.  
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Figure 3-8. The real (left) and imaginary (right) parts of the simulated hydrodynamic 
function of a transversely vibrating microcantilever with an aspect ratio of ~1/56 as a 
function of Reynolds number compared to the hydrodynamic function given by Eq. 3-23.  
 
 Specifically, the real part of the hydrodynamic function should converge to a value of 

1.04 for h/b=1/56.  There could also still be some difference coming from the numerical 

modeling. However, the trends in the simulated hydrodynamic function are close enough 

to indicate that the chosen mesh is a good approximation of the operational medium. 

 

3.4.3 Results of the Numerical Simulation 

Figure 3-9 shows the real and imaginary parts of the hydrodynamic function of a 

laterally vibrating microcantilever as a function of the Reynolds number and aspect ratio 

using the procedure described in section 3.4.1 using the mesh chosen (an example of 

which is shown in Fig. 3-2) in section 3.4.2.  Also shown in Fig. 3-9 is the thickness-

independent Stokes’ solution which is given in section 3.3. Note that the real part of the 

hydrodynamic function converges to Stokes’ solution as the thickness goes to zero.  The 

imaginary part of the hydrodynamic function also converges to Stokes’ solution as the 

thickness goes to zero when the Reynolds number is large (Re>>1).  For small Reynolds 
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numbers, the edge effects become significant, causing additional viscous damping forces 

which are not accounted for in Stokes’ solution. The same effect is present for the real 

part of the hydrodynamic function; however the magnitude of the edge effects is not as 

large. It can be seen from Fig. 3-9 that Stokes’ solution diverges from the numerical 

results when the microcantilever’s aspect ratio is increased or the system’s Reynolds 

number is increased.  Over the range of Reynolds numbers and aspect ratios investigated, 

there is a difference of 10% or greater between Stokes’ solution and both the real and 

imaginary numerical results. If the thinnest aspect ratio (1/56) is not considered, this 

difference increases to 17% or more.  

 

 

 

 

Figure 3-9.  The real (left) and imaginary (right) parts of the hydrodynamic function for a 
laterally vibrating beam calculated using FEA as a function of h/b and Re compared to the 
results for the hydrodynamic function found using Stokes’ theory, which are independent 
of h/b.   
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Figure 3-10 shows the results of the real and imaginary parts of the hydrodynamic 

function for h/b=~1/56 compared with the approximation of the hydrodynamic function 

found using Stokes’ solution. The results from Ref. 97, which uses a numerical technique 

similar to that of Ref. 102, for an infinitely thin laterally vibrating microcantilever are 

also shown.  The difference between Stokes’ solution and the results from Ref. 97 is due 

to Ref. 97 accounting for edge effects. 

The real and imaginary parts of the hydrodynamic function calculated for a 

laterally vibrating microcantilever using an aspect ratio of 1/56 still diverges from 

Stokes’ solution by as much as 16.8% and 93.6%, respectively. The largest difference in 

the hydrodynamic function occurs for the smallest Reynolds number.   
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Figure 3-10.  The real and imaginary parts of Γlat as a function of the Reynolds number 
found using a finite element model (h/b= 1/56) compared to the analytical results found 
using Stokes’ theory and the numerical results for an infinitely thin microcantilever which 
accounts for edge effects given by Ref. 97.  
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While the real part of the hydrodynamic function generally follows the same trend as 

Stokes’ solution, a large portion of the viscous damping from the edge effects is not 

accounted for when using Stokes’ solution.  This causes a large difference in the estimate 

of the imaginary part of the hydrodynamic function when using Stokes’ solution. The 

edge effects can be taken into account using the results given in Ref. 97. Comparing the 

numerical results found using ANSYS to the results predicted from Ref. 97 for an 

infinitely thin microcantilever, the maximum difference in the real and imaginary parts of 

the hydrodynamic function decreases to 9.5% and 18.9%, respectively. This shows that 

the edge effects have a significant effect on the imaginary part of the hydrodynamic 

function when the Reynolds number is low and should be taken into account. However, 

there still is a discrepancy between the numerical results for a microcantilever of small 

yet finite thickness compared to the results for an infinitely thin microcantilever. 

The majority of the remaining discrepancy comes from the additional 

hydrodynamic forces from the pressure incident on the leading and trailing edges of the 

microcantilever.  Stokes’ solution does not consider the effects of the pressure force on 

the microcantilever.  Figure 3-11 shows the percent magnitude of the hydrodynamic force 

coming from the pressure as a function of both aspect ratio and Reynolds number. Even 

with an aspect ratio of 1/56, roughly 10% of the hydrodynamic force comes from the 

pressure acting on the leading and trailing edges of the microcantilever.  For larger aspect 

ratios and higher Reynolds numbers, the pressure becomes the dominant force.  This was 

seen previously in the results presented in Fig. 3-6. 
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Figure 3-11. The percent of the hydrodynamic force from the fluid’s pressure acting on a 
laterally vibrating microcantilever as a function of the aspect ratio and the Reynolds 
number. 
 

For a microcantilever with an aspect ratio of 1/10 and a Reynolds number of 1000, 41.8% 

of the hydrodynamic force comes from the pressure.  When the Reynolds number is 

increased to 10,000, this percentage increases to 71.3%.  This is because the 

hydrodynamic force from the pressure increases at a rate faster than the shear force as the 

Reynolds number is increased. 

The pressure also affects the real and imaginary parts of the hydrodynamic 

function differently.  Figure 3-12 shows the percent of the real and imaginary parts of the 

hydrodynamic function coming from the pressure on the leading and trailing edges. The 

pressure’s effect on the imaginary part of the hydrodynamic function is mostly 

independent of the Reynolds number.  This means that both the shear force per unit 

length and the pressure per unit length in-phase with the velocity have approximately the 

same dependency on the Reynolds number.  
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Figure 3-12. The percent of the real (left) and imaginary (right) parts of the 
hydrodynamic function coming from the fluid’s pressure acting on a laterally vibrating 
microcantilever as a function of aspect ratio and Reynolds number. 
 

The effect of the pressure on the real part of the hydrodynamic function as shown 

in Fig. 3-12, however, is a function of the aspect ratio and the Reynolds number. 

Analyzing Fig. 3-9 again, it can be seen that, for thick microcantilevers, the discrepancy 

between the real part of the numerical results and Stokes’ solution increases as the 

Reynolds number is increased. This trend is opposite of what is expected from the 

derivation of Stokes’ solution and opposite the trend seen in the numerical results for the 

imaginary part of the hydrodynamic function.  This discrepancy arises from the fact that 

microcantilevers with a non-zero thickness vibrating laterally in an inviscid medium will 

have a non-zero displaced mass. The hydrodynamic function for a laterally vibrating 

microcantilever of non-zero thickness in an inviscid medium as a function of the aspect 

ratio has been approximated in the literature as [97] 
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Figure 3-13 plots the real and imaginary parts of the hydrodynamic function as a function 

of the Reynolds number for an aspect ratio of 1/10. The results are also compared to both 

Stokes’ solution and the inviscid solution of Eq. 3-26. Note that the real part of the 

hydrodynamic function converges to the inviscid solution as the Reynolds number is 

increased, while the imaginary part of the hydrodynamic function converges to Stokes’ 

solution.  For thicker microcantilevers, the inviscid solution is larger and the numerical 

results for the real part of the hydrodynamic function diverge from Stokes’ solution at 

lower Reynolds numbers. 
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Figure 3-13.  The real and imaginary parts of the hydrodynamic function as a function of 
the Reynolds number found using a finite element model (h/b=1/10) compared to the 
analytical results found using Stokes’ theory which are independent of h/b and the 
Reynolds number-independent inviscid solution from Ref. 97.  
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While it is logical to expect the effects of pressure force per unit length to change 

as a function of the microcantilever’s thickness, the shear force per unit length can also 

have a dependency on the microcantilever’s thickness.  The hydrodynamic force per unit 

length from the shear and pressure, both in-phase and out-of-phase with velocity and with 

a Reynolds number of 1000, is plotted as a function of h/b in Fig. 3-14. The 

hydrodynamic force per unit length, as compared to the hydrodynamic function, is not 

only dependent on the aspect ratio and Reynolds number but also on the dynamic 

viscosity and density of the medium and width of the microcantilever.  

 The microcantilever in Fig. 3-14 has a width of 20 µm and is assumed to be 

operating in water. The shear force per unit length increases when the microcantilever’s 

thickness is increased. However, this increase in shear force per unit length is 

insignificant when compared to the increase in the pressure, since the pressure is the 

dominant force per unit length when the microcantilever is thick (or when the aspect ratio 

approaches one). The results show that both the edge effects and the effect of thickness 

are accounted for using this method.  

 Another method found in the literature that accounts for these effects is 

illustrated by the numerical results for the hydrodynamic function calculated in Ref. 97. 

The hydrodynamic function calculated for particular aspect ratios and Reynolds numbers 

using both methods can be compared.  However, because the set of aspect ratios and 

Reynolds numbers investigated in Ref. 97 is different from the set used in this 

investigation, only aspect ratios of 1/10 and 1 were studied in both investigations.  The 

results for these two particular aspect ratios are shown in Table 3-3. 
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Figure 3-14.  The hydrodynamic force per unit length from the shear and pressure both 
in-phase and out-of-phase acting on a laterally vibrating microcantilever in water (b=20 
µm, Re=1000) as a function of h/b.   
 

 
 
 

Aspect 
Ratio 
(h/b) 

1 1 1 1 1 1/10 1/10 1/10 1/10 1/10 

Reynolds 
Number 
(Re) 

10 31.622 100 316.22 1000 10 31.622 100 316.22 1000 

Γlat,real  2.63786 2.14498 1.86329 1.6966 1.6077 0.431921 0.248093 0.148863 0.092239 0.060745 

Γlat,real 
from 
Ref. 97 

2.68270 2.17551 1.88862 1.7259 1.6336 0.435349 0.249659 0.148772 0.093131 0.062098 

Γlat,imag 1.30009 0.691868 0.378749 0.211151 0.118406 0.614016 0.300438 0.151914 0.080176 0.043274 

Γlat,imag 
from 
Ref. 97 

1.31768 0.703142 0.384789 0.213840 0.119870 0.575374 0.283225 0.145302 0.076988 0.041760 

Table 3-3. Comparison of the numerical results for the hydrodynamic function calculated 
using FEA and the method given in Ref. 97. 
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Using the FEA results in the denominator, the numerical results had an average absolute 

difference of 1.2% (maximum of 2.2% for Re = 1000 and h/b = 1/10) in the real part of 

the hydrodynamic function and an average absolute difference of 3.09% (maximum of 

6.2% for Re = 10 and h/b = 1/10) in the imaginary part of the hydrodynamic function.  

The differences between the two results could be attributed to the fact that the solution is 

not completely convergent.  The FEA model also takes into account the convective terms 

of the equation of motion of the fluid, which might more accurately reflect the physical 

system.  If an analytical expression for the hydrodynamic function that covered all the 

combinations of aspect ratios and Reynolds numbers used in this investigation could be 

found, the two techniques could be more accurately compared.  The development of such 

an analytical expression is discussed in the next section.   

 
 

3.5 Analytical Approximation for the Hydrodynamic Function  

The hydrodynamic function of a laterally vibrating microcantilever can be found 

numerically using the procedure described in section 3.4.  However, the time required in 

finding the hydrodynamic function at a particular Reynolds number and aspect ratio is 

prohibitive.  Therefore, a simple analytical form for the hydrodynamic function is desired 

so that the trends in the hydrodynamic function with respect to the geometry and medium 

of operation can be investigated.  A simple analytical expression for the hydrodynamic 

function, Eq. 3-19, was found in section 3.3 for a well-known limiting case.  Equation 3-

19 can be modified using a correction factor to account for both edge effects and the 
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effect of thickness using the results from section 3.4.  A set of correction factors, CR and 

CI, can be found so that 

)(
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It can be seen from Fig. 3-15 that CR is roughly a linear function of Re1/2.  This linearity 

arises from the fact that the real part of the hydrodynamic function converges to the 

inviscid solution when h/b<<1 [97]. The ratio of the inviscid solution and the real part of 

Stokes’ solution is 
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However, due to the additional viscous damping from the medium, the dependency on 

the aspect ratio is not the same as in the inviscid solution case and it is expected that this 

trend would not hold for microcantilevers operating in media with high viscosities.  If 

each CR vs. Re1/2 curve is projected back to the case of a zero Reynolds number (infinite 

viscosity), the correction factor is found to be non-zero. This is due to edge effects.  The 

slope and intercept of each CR vs. Re1/2 curve can be found.  Plotting the slope of each 

curve as a function of (h/b)2, it can be seen that the trend is again roughly linear. 

However, there is a slight inflection in the curve due to the missing second term from the 

inviscid solution.  It is then found that using (h/b)1.83 gives a better fit of the curve, as 



  72 

shown in Fig. 3-16.  Using (h/b)1.83 instead of (h/b)2, the slope of the curve in Fig. 3-16 is 

approximately 1.658.   
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Figure 3-15. The ratio of the real part of the simulated hydrodynamic function to Stokes’ 
solution as a function of Re1/2 for eight different aspect ratios. 
 

When the Reynolds number goes to zero (or as the viscosity goes to infinity), it is 

shown in Fig. 3-15 that the ratio of the numerical data to Stokes’ solution goes to a 

particular value.  This value (the estimated y-intercept of the curves in Fig. 3-15) is found 

to be a function of aspect ratio. Since Stokes’ solution was derived for an infinitely thin 

microcantilever, this value should be one at h/b = 0.  It is found that the estimated value 

of CR when Re = 0, as shown in Fig. 3-17, is roughly linear with respect to h/b.  The 

power by which the aspect ratio is raised can again be adjusted, correcting for the slight 

inflection of the curve.  Investigating the R2 values for different exponents, (h/b)0.85 is 
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found to be the best exponent to fit the curve. The slope of the curve in Fig. 3-17 is 

approximately 3.08.   
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Figure 3-16. The average slope of each CR vs. Re1/2 curve in Fig. 3-15 as a function of 
(h/b)1.83.  
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Figure 3-17.  The estimated value of CR when the Reynolds number is zero as a function 
of (h/b)0.85.   
 

The same procedure can be used to find CI.  It is found that CI depends on Re-1/2, 

as seen in Fig. 3-18. The slope and y-intercept of each curve can again be found for each 

particular aspect ratio.  Figure 3-19 shows the slope of each curve as a function of h/b. 

Figure 3-19 shows that the slopes of the curves in Fig. 3-18 have a linear dependence on 

h/b.  However, when the microcantilever’s thickness is zero, the hydrodynamic function 

is not equal to Stokes’ solution.  This arises from the edge effects and can be clearly seen 

in Fig. 3-9.  It is found that the best exponent to fit the curve found in Fig. 3-19 is exactly 

one.  The slope of the line is approximately -1.321, with a y-intercept of approximately 

2.56.   
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Figure 3-18.  CI as a function of Re-1/2 plotted for eight different aspect ratios. 
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Figure 3-19. The average slope of each CI vs. Re-1/2 curve as a function of the aspect 
ratio.  
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The value of CI when the Reynolds number goes to infinity (or when the medium 

becomes inviscid) converges to a particular value.  These values are a function of the 

aspect ratio and are plotted in Fig. 3-20.  There is again a slight inflection, and (h/b)0.85  is 

found to provide the best fit to the curve with a slope of approximately 3.108.  Note that 

the power is the same as in the second term of CR, only with a different slope.   

The correction factor for the real and imaginary part of the hydrodynamic 

function can then be given as 
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Figure 3-20. The value of CI when the Reynolds number is infinity as a function of 
(h/b)0.85.   
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This shows that if the thickness is zero and Re>>1, Stokes’ solution can be used.  

However, even with an aspect ratio of 1/56, the real part of the hydrodynamic function is 

at least 10% greater (when Re= 10) than what is calculated using Stokes’ solution.  

Increasing the Reynolds number will increase this discrepancy.  For an aspect ratio of 

1/10 and a Reynolds number of 10, the displaced mass will be a factor of ~1.5 times 

greater than what is calculated using Stokes’ solution.  When the Reynolds number is 

increased to 10,000, the displaced mass will be a factor of ~3.77 times greater than the 

results obtained using Stokes’ solution. The same trends are seen for CI. Thus, Stokes’ 

solution cannot be used to predict the displaced mass without first using Eqs. 3-29 and 3-

30 to correct for the edge effects and the effect of thickness. 

These correction factors can be used to find the hydrodynamic function for every 

simulated combination of aspect ratio and Reynolds number.  The hydrodynamic function 

found from Eq. 3-27 can then be compared to the numerical results. This gives a measure 

of the quality of the fit of the numerical data.  For microcantilevers with an aspect ratio 

h/b ≥ 1/56 and Reynolds numbers between 10 and 10,000, the obtained imaginary part of 

the hydrodynamic function is within 5.7% of the numerical results. For Reynolds 

numbers between 10 and 1000 and h/b ≥ 1/56, the calculated real part of the 

hydrodynamic function is also within 5.7% of the numerical results.  At higher Reynolds 

numbers, the calculated real part of the hydrodynamic function shows a difference of up 

to 20.5% for microcantilevers with h/b < 1/10. A more complicated fitting model could 

be used to improve the semi-analytical method; however, at a high Reynolds number, the 

microcantilever’s mass is usually much larger than the displaced fluid mass.  
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Another test of the accuracy of Eq. 3-27 is to compare it to other values found in 

the literature.  As mentioned previously, Ref. 97 used a similar procedure to that found in 

Ref. 102 to find the hydrodynamic function as a function of both Reynolds number and 

aspect ratio.  Using Eq. 3-27 to calculate the hydrodynamic function, the real and 

imaginary part of the hydrodynamic function can be compared to the results given in the 

literature using  
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where Γlat,literature is the value given by Ref. 97. Table 3-4 gives the absolute percent 

difference of the real part of the hydrodynamic function between the two methods for a 

range of aspect ratios and Reynolds numbers.   

 

 Log(Re)=1 1.5 2 2.5 3 

h/b=1 1.07% 1.39% 1.55% 1.58% 1.56% 

0.5 1.11% 0.63% 0.02% 0.44% 0.73% 

0.2 1.02% 1.81% 1.65% 1.06% 0.42% 

0.1 1.09% 0.87% 1.66% 1.69% 1.33% 

0.05 3.49% 0.87% 0.66% 1.35% 1.53% 

0.02 5.88% 2.79% 0.89% 0.22% 0.82% 

Table 3-4.  The absolute percent difference in the real part of the hydrodynamic function 
calculated using Eq. 3-27 compared to the values given in Ref. 97 as a function of aspect 
ratio and Reynolds number. 
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There is an average absolute percent difference of 1.37% over the range of values 

considered in both methods. The maximum percentage difference between the two 

techniques when calculating the real parts of the hydrodynamic function is 5.88% when 

using an aspect ratio of 1/50 and a Reynolds number of 10.  

Table 3-5 gives the absolute percent difference of the imaginary part of the 

hydrodynamic function between the two methods for a range of aspect ratios and 

Reynolds numbers. There is an average absolute difference of 3.8% over the range of 

aspect ratios and Reynolds numbers simulated by both methods. The maximum 

percentage difference between the two techniques when calculating the imaginary part of 

the hydrodynamic function is 9.85%.   

 

 

 

 Log(Re)=1 1.5 2 2.5 3 

h/b=1 2.86% 1.47% 1.00% 1.11% 1.53% 

0.5 3.25% 3.30% 3.22% 2.95% 2.52% 

0.2 7.06% 5.37% 4.61% 4.19% 3.85% 

0.1 8.42% 5.44% 4.03% 3.48% 3.23% 

0.05 9.20% 5.21% 3.16% 2.36% 2.15% 

0.02 9.85% 4.93% 2.26% 1.12% 0.83% 

Table 3-5.  The absolute percent difference in the imaginary part of the hydrodynamic 
function calculated using Eq. 3-27 compared to the values given in Ref. 97 as a function 
of aspect ratio and Reynolds number. 

.   
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This again occurs when using an aspect ratio of 1/50 and a Reynolds number of 10. Due 

to the lower viscous damping predicted from Ref. 97, the quality factors calculated using 

Eq. 3-27 will be slightly lower than those calculated using the method found in Ref. 97.  

The effects of using this method as opposed to the one found in Ref. 97 to find sensor 

characteristics (such as the quality factor) will be investigated in chapter 4.   
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4. Characteristics of Laterally Vibrating 
Microcantilevers 
 

 

 

4.1 Introduction 

 The characteristics of laterally vibrating microcantilevers in viscous liquid media 

are theoretically evaluated in this chapter.  The characteristics investigated in this work 

include the beam’s resonant frequency, quality factor, and mass sensitivity, which can be 

calculated from the frequency response of the beam’s deflection. The deflection of the 

microcantilever’s tip was found in chapter 2 as a function of the properties of the beam, 

the total hydrodynamic force applied by the medium, and the frequency of excitation. An 

approximation of the hydrodynamic force was found in chapter 3 as a function of the 

Reynolds number and the beam’s aspect ratio. Using this expression with the expression 

for the deflection of the microcantilever’s tip, the frequency spectrum of the beam can be 

found. From the frequency spectrum, relevant characteristics of the system can be 

modeled and investigated as a function of both the properties of the medium and the 

beam’s geometry.  The characteristics of transversely vibrating beams can also be 

modeled using Eq. 3-23. This will allow the characteristics of both laterally and 

transversely vibrating beams of similar geometry to be compared and contrasted.  
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4.2 Resonant Frequency  

The resonant frequency (of a given mode) of a dynamically driven 

microcantilever is defined as the applied excitation frequency that maximizes the 

amplitude of deflection of a particular mode of vibration [124].  In sensing applications, 

changes in the resonant frequency of the microcantilever can be used to monitor changes 

in the microcantilever’s operational environment.  For example, if a sensing layer is 

applied to the top surface of the microcantilever, the resonant frequency will change as a 

function of the amount of analyte sorbed into the sensing layer due to added mass and 

changes in the viscoelastic properties of the layer. The resonant frequency can then be 

used to track the concentration of particular analytes in the medium of operation. It is also 

important to know the resonant frequency when evaluating other characteristics of the 

microcantilever, such as the quality factor, mass sensitivity, and chemical sensitivity.  

Eq. 2-31 can be used to find the tip displacement as a function of the frequency of 

excitation, and is repeated below for convenience: 
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Any point along the length of the beam may be chosen to investigate the response as a 

function of frequency of excitation as long as the point is not a vibrational node for the 

particular in-plane flexural mode under investigation.  The tip is chosen for convenience.  

It was noted in chapter 2 that all parameters in Eq. 4-1 could be estimated except for Fy, 
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g1,lat and g2,lat.  The excitation force per unit length, Fy, is not frequency-dependent and 

thus only acts to scale the magnitude of the tip deflection.  However, g1,lat and g2,lat are 

related to the viscous damping per unit length and displaced mass per unit length of the 

medium of operation, respectively. They can be calculated using Eqs. 2-4 and 2-5, 

repeated here for convenience: 

( ) ,/Re,
4 ,

2
,1 ωρ

π
bhbg IlatLlat Γ=               (Eq. 4-2) 
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where the subscripts R and I stand for the real and imaginary part of the hydrodynamic 

function Γlat , respectively. The hydrodynamic function was found in chapter 3 as 
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where CR and CI are correction factors to account for the edge effects and the effects of 

beam thickness and are given as 
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Equation 4-1 also requires the microcantilever’s dimensions, density, and 

Young’s modulus to be specified in order to calculate the frequency spectrum.  In this 

investigation, the theoretical results predicted from Eq. 4-1 will be compared to 
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experimentally determined results given in the literature.  When experimental data cannot 

be found in the literature, the theoretical results for laterally vibrating beams with an 

assumed density of 2330 kg/m3 and an assumed Young’s modulus of 169 GPa (silicon 

cut along the <110> direction [119]) will be given unless otherwise specified.  The length 

of the beam is chosen as 400 µm, which is assumed large enough to neglect shear and 

rotational inertia, while still short enough to illustrate the high resonant frequencies and 

quality factors associated with laterally vibrating beams.  Figure 4-1 shows the frequency 

spectrum of a 400x45x12 µm laterally vibrating silicon beam in air (ρL = 1.205 kg/m3 and 

η = 0.01827 cP for 20° C) [125-126].  The forcing function, Fy(x), is assumed to be 

uniform along the length of the beam. 

Figure 4-1 is normalized to the maximum deflection of the tip when vibrating 

laterally.  The higher-order modes have higher resonant frequencies yet smaller tip 

deflections compared with the fundamental mode.  Note that the tip deflection calculated 

from Eq. 4-1 is the infinite sum of the contributions from each mode. It is noted from Fig. 

4-1 that each mode is dominant around (within the 3 dB bandwidth) its resonant 

frequency.  Thus, only the ith term of Eq. 4-1 is significant in air when calculating the ith 

in-plane flexural mode’s resonant frequency.   
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Figure 4-1. The simulated frequency spectrum of a 400x45x12 µm silicon 
microcantilever in air found from Eq. 4-1 normalized to its maximum deflection.  The 
contributions of the first three in-plane flexural modes are plotted separately.  The 
resonant frequencies of the first 5 out-of-plane flexural modes in air are indicated as 
vertical lines. 

  

This trend also generally holds true for beams operating in liquid as long as the mode 

number is low and viscous damping is not significant. The resonant frequencies of the 

first five transverse modes calculated for a 400x45x12 µm silicon beam are also indicated 

using vertical lines in Fig. 4-1.  Note that the 1st lateral mode’s resonant frequency is 

roughly 3.75 times higher than the 1st transverse mode’s resonant frequency.  This is due 

to the beam’s greater stiffness when vibrating in the lateral direction. 
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Figure 4-2. The simulated frequency spectrum of a 400x45x12 µm silicon 
microcantilever operating in the in-plane flexural mode in both air and water.  The 
resonant frequencies of the first 5 transverse flexural modes in air and water are also 
given as dotted and solid vertical lines, respectively.   

 

Figure 4-2 gives the frequency spectrum of a 400x45x12 µm microcantilever 

laterally vibrating in water (ρL = 1000 kg/m3 and η = 1 cP for 20° C) [125], compared to 

the same beam’s frequency spectrum in air. The deflection in Fig. 4-2 is normalized to 

the maximum deflection of the tip in the first in-plane mode in air.  Using the same value 

for Fy, the maximum deflection is 167 times larger in air compared to water.  It is noted 

that in order to cause the same maximum deflection, the amount of force needed to drive 

the microcantilever for this geometry must be more than two orders of magnitude larger 

in water compared to air.  It is also noted that both the lateral and transverse resonant 

frequencies shift downward and the spectrum is broader due to the higher viscous 
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damping and displaced mass from the medium of operation.  For this particular geometry, 

while the fundamental resonant frequency for the transverse mode drops by 37.7% due to 

the increased displaced fluid mass and viscous damping, the lateral mode’s fundamental 

resonant frequency drops by only 10.14%.  The same trend is seen in the higher-order 

modes. This substantially smaller drop in resonant frequency for laterally vibrating beams 

compared to transversely vibrating beams of similar geometry indicates that the amount 

of fluid damping is smaller for laterally excited beams and thus the characteristics of the 

device will be less affected by operating in viscous liquid media. This indicates that 

lateral excitation is a more suitable method of excitation for dynamically driven 

microcantilevers compared to transverse excitation when operating in viscous liquid 

media.  

If an expression for the resonant frequency is found, the trends in the resonant 

frequency as a function of the microcantilever’s geometry and as a function of medium 

properties (dynamic viscosity and fluid density) can be given. An expression for the 

resonant frequency of a laterally vibrating beam can be derived using the procedures 

outlined in Ref. 124, as the form of the equation of motion is the same for both laterally 

and transversely vibrating beams.  However, the values for the moment of inertia (I lat) 

and the hydrodynamic function (Γlat) will be different from those given in Ref. 124 since 

the beam is vibrating laterally. It is noted that only the first part of Eq. 4-1 is frequency-

dependent. This means, neglecting the effects of other modes, that the maximum 

deflection of the tip of the microcantilever for its ith mode can be found as the excitation 

frequency, ω, that satisfies 
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The excitation frequency that satisfies both of these conditions is the resonant frequency 

of the ith lateral flexural mode and can be expressed in the form 
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where βi is given by Eq. 2-22; and the effective spring constant, klat, and the effective mass, 

Mlat are defined as 
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Equation 4-7a indicates that shorter beams and beams with higher flexural rigidities 

(EIlat) have higher resonant frequencies due to their increased stiffness.  However, 

changing the resonant frequency will also change the effective mass. As the Reynolds 

number is a function of the frequency of excitation, Eq. 4-7 is a transcendental equation 
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and any attempt at finding the system’s resonant frequency must be done through 

iteration. The resonant frequency can be found through an iterative process by   

)(lim 1, guess
n

n
latres fFf

∞>−
=                            (Eq. 4-8) 

where F1
n(fguess) is the function F1 applied n times to fguess, F1(fguess) is the right hand side 

of Eq. 4-7, and fguess is a guess value of the resonant frequency. Since the resonant 

frequency of a laterally vibrating beam does not decrease significantly when operating in 

water compared to the same beam operating in air or in vacuum, a good initial guess for 

the resonant frequency of a laterally vibrating microcantilever in a viscous liquid medium 

is the resonant frequency of the microcantilever in a vacuum, f0, which is given by  
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It was noted in chapter 3 that, as Re approaches infinity, both the hydrodynamic 

function and its derivative with respect to Re approach zero.  Taking the derivative of the 

real and imaginary parts of the hydrodynamic function as a function of the excitation 

frequency and using Eqs. 4-2 and 4-3,  
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When the Reynolds number is large, Eq. 4-10 and 4-11 approach zero (meaning that the 

hydrodynamic function is roughly frequency-independent) and Eq. 4-7 can be simplified 

to  
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Iteration must still be used, as g1,lat and g2,lat still depend on the resonant frequency. This 

approximation can be compared with the exact expression given by Eq. 4-7 with the same 

set of nine aspect ratios and Reynolds numbers that were used to test for solution 

convergence in chapter 3.  As the geometry of the beam is determined by three 

parameters, a constant length of 400 µm will be assumed for all nine test geometries.  

Assuming operation in water, the width can be varied over a range of values until the 

resonant frequency of the particular geometry yields the desired Reynolds number.  The 

minimum and maximum Reynolds number used in chapter 3 will be investigated.  A 

Reynolds number in-between these two values (on a log scale), 102.5 or 316.23, is also 

investigated.  The thickness is also varied to maintain the desired aspect ratio. The nine 

test geometries are given in Table 4-1 along with the first mode’s resonant frequency as 

calculated by Eq. 4-7.  It should be noted that these geometries are selected only for 

illustrating the accuracy of the approximations over the range of aspect ratios and 

Reynolds numbers investigated.  Some of the microcantilevers with geometries given in 

Table 4-1 would make poor sensing platforms, while others would be too stiff to excite 

laterally.  
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Aspect Ratio (h/b) 1 1 1 1/10 1/10 1/10 1/56 1/56 1/56 

Reynolds Number 
(Re) 

10 316.23 10000 10 316.23 10000 10 316.23 10000 

h (µm) 10.1367 30.8836 97.0374 1.13381 3.01424 9.22685 0.263799 0.598508 1.666543 

b (µm) 10.1367 30.8836 97.0374 11.3381 30.1424 92.2685 14.8345 33.6566 93.7166 

L (µm) 400 400 400 400 400 400 400 400 400 

fres Using Eq. 4-7 
(kHz) 

62.170 211.710 678.120 49.869 222.31 750.037 29.226 178.625 727.157 

fres Using Eq. 4-12 
(kHz) 

61.759 211.652 678.114 46.098 221.13 749.882 25.932 173.395 724.898 

fres Using Eq. 4-12, 
Numerical Results 
(kHz) 

61.822 211.706 678.326 47.636 221.805 752.584 27.084 172.179 734.92 

fres Using Eq. 4-7, 
CR=CI=1 (kHz) 

83.830 263.554 833.245 69.960 238.783 781.668 48.364 192.796 739.716 

f0 (kHz) 87.161 265.554 834.382 97.491 259.181 793.376 127.555 289.398 805.828 

Table 4-1.  The resonant frequency calculated using Eq. 4-7 and the resonant frequency 
calculated using several different approximations for nine different laterally vibrating 
beams assuming operation in water, a beam density of 2330 kg/m3, and a Young’s 
modulus of 169 GPa.   

Table 4-1 also gives the approximation of the resonant frequency for high 

Reynolds numbers calculated from Eq. 4-12.  It is shown that Eq. 4-12 is a good 

approximation of the resonant frequency over the range of aspect ratios investigated if the 

Reynolds number is large.  As the thickness decreases, the difference between the 

resonant frequencies calculated using Eq. 4-7 and Eq. 4-12 increases due to the 

decreasing beam mass.  The approximation only affects the displaced mass and viscous 

damping.  If the beam mass is much larger than the displaced mass and viscous damping, 

the approximation of the resonant frequency given by Eq. 4-12 should be equal to the 

value given by Eq. 4-7.   

The approximation of the resonant frequency for high Reynolds numbers 

calculated from Eq. 4-12 in the seventh row of Table 4-1 uses the approximation for the 
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hydrodynamic function given in chapter 3. Since there is some discrepancy between the 

approximation of the hydrodynamic forces and the numerical results, a more accurate 

method of finding the resonant frequency is to use the numerical results directly. The 

eighth row of Table 4-1 uses Eq. 4-12 using the numerical results found in chapter 3. The 

resonant frequency calculated using the numerical results for the hydrodynamic function 

are found to be within 4.4% of the values given in the seventh row.  The largest 

difference was again seen for thin beams, as variations in the hydrodynamic function 

affects the resonant frequency more when the beam mass is small. The resonant 

frequency can also be calculated using Stokes’ solution (CR=CI=1) for the hydrodynamic 

function.  These values are given in the ninth row of Table 4-1. As expected, when the 

beam is not thin and the Reynolds number is small, there is a significant discrepancy in 

the resonant frequency (up to 65%).  The last row of Table 4-1 gives the resonant 

frequency in a vacuum of the particular beam geometry, f0, for comparison.  

Reference 97 also gives the hydrodynamic function of laterally vibrating beams 

for several different aspect ratios and Reynolds numbers using the boundary integral 

technique given by Ref. 102.  The resonant frequency calculated using the method in Ref. 

97 and the method given in chapter 3 can be compared.  As Ref. 97 does not specify the 

derivative of g1,lat and g2,lat with respect to the frequency of excitation, Eq. 4-7 cannot be 

used with the results given in Ref. 97 to find the resonant frequency. As Eq. 4-12 was 

found to be a good approximation for the resonant frequency in Table 4-1 and does not 

depend on the derivatives of g1,lat and g2,lat, it can be used to compare the resonant 

frequency calculated from using the hydrodynamic function given by Eq. 4-4 and the 

values for the hydrodynamic function given by Ref. 97. A set of nine geometries are 
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again determined having lengths of 400 µm, aspect ratios ranging from 1/50 to 1, and 

Reynolds numbers ranging from 10 to 1000.  These ranges cover the intersection of the 

range of aspect ratios and Reynolds numbers used in both investigations.  It is assumed 

that the beam is operating in water.  

There is good agreement (<1% difference) between the resonant frequencies 

calculated using both methods for Reynolds numbers above 100.  For the lowest 

Reynolds number tested, the resonant frequencies calculated using the values for the 

hydrodynamic function in Ref. 97 were slightly higher (7.6% for the thinnest beam) due 

to the lower viscous damping predicted.  However, the beams with Reynolds numbers of 

10 are the beams with lower resonant frequencies and thus the lower quality factors and 

mass sensitivities.  Beams with higher Reynolds numbers are desired and these beams 

show good agreement for the two methods. 

Aspect Ratio 
(h/b) 

1 1 1 0.1 0.1 0.1 0.02 0.02 0.02 

Reynolds 
Number (Re) 

10 100 1000 10 100 1000 10 100 1000 

h (µm) 10.156 21.176 45.177 1.1534 2.1272 4.3501 0.297 0.497 0.924 

b (µm) 10.156 21.176 45.177 11.534 21.272 43.501 14.864 24.859 46.188 

L (µm) 400 400 400 400 400 400 400 400 400 

fres Using Eq. 
4-12, and Eq. 
4-4 for Γlat  
(kHz) 

61.904 142.395 312.863 48 141.113 337.421 28.898 103.322 299.316 

fres Using Eq. 
4-12, and Ref. 
97 for Γlat  
(kHz) 

61.677 141.969 312.011 49.705 142.009 337.955 31.101 104.101 299.946 

Table 4-2. The resonant frequencies calculated from the approximate expression given 
by Eq. 4-12 of nine laterally vibrating beams assuming operation in water, a beam density 
of 2330 kg/m3, and a Young’s modulus of 169 GPa using Eq. 4-4 for the values of the 
hydrodynamic function compared to using the values given in Ref. 97 for the values of 
the hydrodynamic function.  
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4.2.1 Effects of the Medium’s Density and Viscosity on the Resonant Frequency 

From Tables 4-1 and 4-2, it is noted that increasing the Reynolds number 

drastically increases the resonant frequency.  However, it is noted that in this case, the 

changes in the Reynolds number come from changes in the beam geometry. To 

investigate the effect the medium of operation has on the resonant frequency, the 

Reynolds number can be changed by using different dynamic viscosity and density values 

for the medium of operation.  Using Eq. 4-7 and Eq. 4-9, it is shown that  
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Using Eqs. 4-2, 4-3, 4-4, and 4-7, the ratio of the effective mass to the beam mass 
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Note that as the Reynolds number goes to infinity, the ratio does not approach one, 

as one of the terms in CR depends on Re.  This is due to the fact that the beam will still 

displace mass even in an inviscid medium, thus dropping the resonant frequency from 

that found for the same beam operating in vacuum.  Also note that the ratio is a function 

of the excitation frequency, both through the Reynolds number and CR and CI which 

depend on the Reynolds number. 

The effects of the dynamic viscosity or density of the medium of operation could 

be investigated by fixing one quantity and varying the other.  However, these values 
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would not correspond to realistic examples of operational media. One way of 

investigating the effects of the medium of operation on the resonant frequency is to 

simulate the resonant frequency of a beam in various aqueous mixtures of glycerol.  

Simulating a 400x45x12 µm laterally vibrating silicon microcantilever and varying the 

dynamic viscosity and density properties for aqueous mixtures of glycerol ranging from 

0% (pure water) to 72 w/w% (ρL = 1183 kg/m3 and η = 27.57 cP) [125], the resonant 

frequency can be plotted as a function of the Reynolds number using Eq. 4-7.  The results 

are shown in Fig. 4-3. Also plotted in Fig. 4-3 is the beam’s resonant frequency in 

vacuum, the high Reynolds number approximation of the resonant frequency calculated 

from Eq. 4-12, and the resonant frequency calculated for the case of an inviscid medium 

(Eq. 4-7 where the hydrodynamic function is given by Eq. 3-26).  
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Figure 4-3. The resonant frequency of a 400x45x12 µm laterally vibrating silicon 
microcantilever calculated using the exact expression (Eq. 4-7), the approximate 
expression, (Eq. 4-12), valid for high Reynolds numbers, and assuming the medium is 
inviscid (Eq. 4-7 using Eq. 3-27 for Γlat) as a function of Reynolds number. The Reynolds 
number is varied assuming different mixtures of aqueous glycerol.  The resonant 
frequency in a vacuum is also given. 
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It is shown in Fig. 4-3 that as the Reynolds number increases, the error in using 

Eq. 4-12 to approximate the resonant frequency decreases.  The resonant frequency 

calculated from Eq. 4-7 approaches the resonant frequency calculated assuming an 

inviscid medium as the Reynolds number increases.  Note that the resonant frequency 

calculated for the case of an inviscid medium changes due to the fact that the medium’s 

density changes, which will change the amount of displaced mass. 

The main change in the Reynolds number in Fig. 4-3 comes from the change in 

the medium’s dynamic viscosity.  This changes the hydrodynamic function, which will 

shift the resonant frequency.  Changing the medium’s density will also shift the resonant 

frequency.  However, since g1,lat and g2,lat are multiplied by ρL, the shift in the resonant 

frequency will not solely come from the change in the hydrodynamic function. Due to 

this dependency, beams with higher Reynolds numbers will occasionally have lower 

resonant frequencies. For example, for a 400x45x12 µm laterally vibrating silicon 

microcantilever, the resonant frequency of the fundamental mode is 10.14% lower when 

the beam is operating in water as opposed to air.  However, the Reynolds number of this 

beam in air is 81.1 and is 1102.44 in water.  The Reynolds number is higher in water 

because the Reynolds number is inversely dependent on the kinematic viscosity (the ratio 

of the dynamic viscosity, η, to the medium’s density).  Since air has a higher kinematic 

viscosity than water, the Reynolds number will be lower. Yet, the resonant frequency will 

be higher due to the lower density of the medium of operation. In general, beams laterally 

vibrating in media with lower densities or dynamic viscosities will have higher resonant 

frequencies. 
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4.2.2 Trends in the Resonant Frequency as a Function of Beam Geometry 

The resonant frequency can also be investigated as a function of the geometry of 

the beam. In a vacuum, Eq. 4-9 shows that the resonant frequency is dependent on b/L2 

with no dependency on the microcantilever’s thickness, h.  The resonant frequency was 

reported in Ref. 61 for laterally vibrating microcantilevers of various geometries in both 

air and water.  The lengths of the beams used were 200, 400, 600, 800, and 1000 µm and 

the widths of the beams used were 45, 60, 75, and 90 µm. An average beam thickness of 

14.48 µm was reported. The beam was primarily made of silicon with an average 

thickness of 12.61 µm.  However, there was a 0.67 µm thick layer of thermal oxide on 

the top of the beam.  In addition, several layers of silicon nitride (0.48 µm total) and 

silicon oxide (0.72 µm total) were also deposited onto the beam in order to mitigate the 

effects of pinholes on the circuitry used to excite the microcantilever [61]. The density of 

the beam can be assumed to be approximately that of pure silicon, or 2330 kg/m3. 

However, the Young’s modulus of the composite system is a function of the Young’s 

modulus of the individual layers.  An effective Young’s modulus for each beam can be 

found by varying the Young’s modulus and attempting to match the reported resonant 

frequency in air using Eq. 4-7. The average effective Young’s modulus of the 

microcantilevers used in air is found to be approximately 127.5 GPa.  The resonant 

frequencies in air can then be calculated using Eq. 4-7 and are given in Fig. 4-4. 
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Figure 4-4. The simulated resonant frequencies of laterally vibrating microcantilevers in 
air compared to experimental data as a function of b/L2 for widths of 45, 60, 75, and 90 
µm, lengths of 200, 400, 600, 800 and 1000 µm, and a thickness of 14.48 µm.  The 
experimental data is from Ref. 61.  

 

Note that the resonant frequencies only follow the b/L2 dependency for beams 

where b/L2<0.001 µm-1. The discrepancy between the theoretically and experimentally 

determined resonant frequencies for b/L2>0.001 µm-1 is likely due to not taking into 

account the support compliance and due to the fact that the shear deformation and 

rotational inertia effects were neglected in the equation of motion.  These effects 

significantly decrease the resonant frequency of the beam when the beam’s length is on 

the order of its width.  This particular limit (b/L2<0.001 µm-1) arises from the particular 

thickness and materials chosen for the beam, and may be higher or lower for devices 

made from different materials and with different thicknesses. 

Using the effective Young’s modulus of 127.5 GPa found previously, the resonant 

frequencies of each beam in water can also be calculated from Eq. 4-7 and are plotted in 

Fig. 4-5.  Again, the experimentally determined resonant frequencies are lower compared 
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to the theoretically determined resonant frequencies for beams where b/L2<0.001. There 

is a slight dependency on the beam’s aspect ratio. However, for long beams, the b/L2 

linear dependency still holds.  

When the microcantilever is laterally vibrating in water, the resonant frequency 

also has a slight dependency on the microcantilever’s thickness. Figure 4-6 shows the 

simulated resonant frequency of a 400x45 µm beam with a Young’s modulus of 127.5 

GPa as a function of beam thickness. A thin beam’s effective mass will mostly come 

from the fluid’s displaced mass.  While the displaced fluid mass ranges from 11%-35% 

of the total effective mass for the geometries given in Fig. 4-5, the displaced fluid mass 

will be much larger than the beam mass as the thickness goes to zero. Increasing the 

thickness will then increase the stiffness more quickly than it increases the effective mass.  

However, as seen in the chosen geometries of Table 4-1 for thick beams, increasing the 

thickness increases the effective mass of the microcantilever including the liquid 

contribution quicker than it increases its stiffness (which is proportional to the thickness 

and not the fluid properties), which reduces the resonant frequency.  For this particular 

length and width in water, the highest resonant frequency is found when the thickness is 

6.548 µm. 
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Figure 4-5. The simulated resonant frequencies of laterally vibrating microcantilevers in 
water compared to experimental data as a function of b/L2 for widths of 45, 60, 75, and 90 
µm, lengths of 200, 400, 600, 800 and 1000 µm, and a thickness of 14.48 µm.  The 
experimental data is from Ref. 61.  
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Figure 4-6. The simulated resonant frequency of a laterally vibrating microcantilever 400 
µm long and 45 µm wide in water as a function of beam thickness. 
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In general, shorter and wider beams have higher resonant frequencies following a 

roughly linear b/L2 dependency. In air, the resonant frequency has little to no dependence 

on the beam’s thickness.  However, in water, the effective mass is not a perfectly linear 

function of the thickness, which causes the resonant frequency to become dependent on 

the thickness.  

 

4.2.3 Comparison of the Resonant Frequency of Laterally and Transversely 
Vibrating Beams  
 

One of the main benefits of using lateral excitation over transverse excitation is 

that the stiffness and, thus, the resonant frequency for beams vibrating laterally are higher. 

The other advantage is the increase in the quality factor, which will be investigated in 

section 4.3. The amount that the resonant frequency increases is a function of the aspect 

ratio.  Since Eq. 4-7 is the same for both laterally and transversely vibrating 

microcantilevers, the ratio of the two resonant frequencies can be given as 
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In vacuum or a low density medium, the effective mass, M, is the mass of the 

beam, and the ratio of the resonant frequencies in Eq. 4-15 is b/h.  When the viscous 
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damping is significant, the ratio of the resonant frequencies becomes a function of the 

Reynolds number and fluid density.  The predicted ratio of the in-plane and out-of-plane 

flexural mode’s fundamental resonant frequencies of a 400x45x12 µm silicon 

microcantilever is plotted as a function of percent aqueous glycerol of the operational 

medium in Fig. 4-7. The ratio cannot be plotted as a function of the Reynolds number as 

the Reynolds number will be different for the cases of lateral and transverse excitation. 

However, the Reynolds numbers using both excitations still decrease as the percent 

aqueous glycerol increases. 
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Figure 4-7. The simulated ratio of the fundamental resonant frequency of a 400x45x12 
µm silicon microcantilever vibrating laterally to the resonant frequency of the same 
microcantilever vibrating transversely as a function of percent aqueous glycerol found in 
the operational medium. 
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As shown in Fig. 4-7, the increase in the resonant frequency using lateral 

excitation compared to transverse excitation is larger for lower Reynolds numbers (or 

higher percent glycerol). However, the overall resonant frequency will also decrease as 

the Reynolds number is increased.  The main increase in the ratio is due to the transverse 

resonant frequency dropping drastically in media with high viscosities.  In general, the 

resonant frequency of a laterally vibrating microcantilever will be a factor of b/h or 

higher than the resonant frequency of a transversely vibrating microcantilever.  Larger 

ratios are seen in media of higher density and dynamic viscosity due to the smaller 

effective mass encountered when exciting the beam laterally. 

 

4.3 Quality Factor 

A fundamental problem encountered by microcantilevers operating in the liquid-

phase is the dramatic decrease in the microcantilevers’ quality factors compared to the 

quality factors of microcantilevers operating in the gas-phase.  This decrease in the 

quality factor increases the frequency noise (which is proportional to fres,lat/Qlat  when 

operating in an oscillator configuration [89]),  thus increasing the limit of detection 

(LOD) in biochemical sensing applications. The quality factor is defined as 2π times the 

ratio of the maximum energy stored in a resonating system to the amount of energy 

dissipated in one cycle [87].  The 2π keeps the definition consistent with a second 

definition, which is the ratio of the resonant frequency to the 3 dB bandwidth of the 

system, 
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When the loss is low, the two definitions are equivalent. 

While the viscous damping from the medium may be the primary source of loss 

when a microcantilever is vibrating in a viscous liquid medium, it is not the only source 

of loss. Other common loss sources arise out of the support losses, squeeze film effects, 

and the viscoelastic damping of the sensing layer if the sensing layer is a viscoelastic 

material.  If the sensing layer is thin enough, the viscoelastic losses can be assumed 

negligible.  The squeeze film effect comes from the beam’s interaction with the 

boundaries of the fluidic cell in which it operates.  Since the operational medium in this 

work is considered infinite, this source of loss will not be considered.  The support loss 

depends on the length of the beam [93].  However, when operating in a viscous liquid 

medium, the support loss is negligible when compared to the losses from the medium 

[92]. 

The frequency spectrum of a 400x45x12 µm silicon microcantilever both laterally 

and transversely vibrating in water are found using Eq. 4-1 and plotted in Fig. 4-8.  Only 

the resonant frequency of the first in-plane flexural mode is shown, while the resonant 

frequencies of both the first and second out-of-plane flexural modes are shown. It is 

noted that in Fig. 4-8 the 3 dB bandwidth of the beam laterally vibrating is about three 

times larger than that of the same beam vibrating transversely.  However, since the 

resonant frequency is ~5.4 times larger, the quality factor is about two times larger for the 

laterally vibrating beam compared to the transversely vibrating beam. 
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Figure 4-8. The simulated frequency spectrum of a 400x45x12 µm silicon 
microcantilever in water vibrating both laterally and transversely. Each spectrum is 
normalized to the maximum tip deflection of the transverse beam, and is excited using 
the same magnitude force.   

 

If the transversely vibrating beam’s length was shortened to 175 µm, the beam’s 

resonant frequency (347.6 kHz) would be the same as that of the 400 µm long laterally 

vibrating beam in water.  The spectra of a 400x45x12 µm beam vibrating laterally and a 

175x45x12 µm beam vibrating transversely in water are given in Fig. 4-9.  The two 

beams’ quality factors are roughly the same (17.15 for the laterally vibrating beam and 

19.41 for the transversely vibrating beam).  However, the laterally vibrating beam has 

more than double the surface area and, thus, can absorb more than two times the mass of 

a particular analyte into its sensing layer.  Whether the frequency shift due to this 

sorption is larger for laterally vibrating beams compared to transversely vibrating beams 

is a function of the mass sensitivity and the chemical sensitivity, which will be 

investigated in section 4.4. 
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Figure 4-9. The simulated frequency spectrum of a 400x45x12 µm silicon 
microcantilever in water vibrating laterally and a 175x45x12 µm silicon microcantilever 
in water vibrating transversely.  Both beams are excited by the same force and 
normalized to the maximum transverse deflection. 

 

An analytical expression for the quality factor is given by Eq. 4-16 when the loss 

of the medium of operation is low. When determining the quality factor experimentally, 

the 3 dB bandwidth definition of the quality factor is normally used.  In this work, the 

quality factor will be found using the 3 dB bandwidth definition as opposed to the quality 

factor found from the energy definition. The resonant frequency was already found in 

section 4.2.  Since the deflection is proportional to the square root of the power stored in 

the system, the half power bandwidth of the system is the excitation frequency which 

causes the beam to deflect a factor of ~0.707 that of its maximum value.  Two excitation 

frequencies, ω3dB, satisfy this condition. These two frequencies can be found by solving 

for ω3dB in 
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The procedures to find these two frequencies are again the same for both 

transverse and lateral excitation.  Using the method outlined in Ref. 124, if the 

hydrodynamic function is assumed to be frequency-independent in the considered 

frequency range, the quality factor can be given as 
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When the resonant frequency is solved iteratively, the g1,lat and g2,lat values are also found.  

Thus, no further iteration is needed to evaluate Eq. 4-18.  Using a binomial expansion of 

the denominator of Eq. 4-18,  
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When the loss is low, the quality factor calculated from the 3 dB bandwidth can be 

approximated as  
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Equation 4-20 shows that the quality factor is related to the ratio of the amount of beam 

mass plus displaced mass over the amount of viscous damping.  As expected, increasing 

the beam mass or the displaced mass while maintaining the damping constant will increase 
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the quality factor, while increasing the damping will decrease the quality factor. However, 

the resonant frequency will also change when the total displaced mass or viscous damping 

changes. 

The nine geometries used in Table 4-1 can be used in comparing and contrasting 

the different approximations for the quality factor in Table 4-3. From Table 4-3, it is noted 

that the quality factor is higher for thicker and wider beams with higher Reynolds 

numbers.  Comparing the quality factor found from the spectrum (Eq. 4-16) and from Eq. 

4-18, the approximation that the hydrodynamic function is frequency-independent is 

found to be a good approximation unless the quality factor is very low. The quality 

factors approximated using Eq. 4-20 are slightly higher than the quality factors calculated 

from Eq. 4-18.   

 
      
Aspect Ratio 
(h/b) 

1 1 1 1/10 1/10 1/10 1/56 1/56 1/56 

Reynolds 
Number (Re) 

10 316.23 10000 10 316.23 10000 10 316.23 10000 

h (µm) 10.1367 30.8836 97.0374 1.13381 3.01424 9.22685 0.263799 0.598508 1.666543 

b (µm) 10.1367 30.8836 97.0374 11.3381 30.1424 92.2685 14.8345 33.6566 93.7166 

L (µm) 400 400 400 400 400 400 400 400 400 

Qlat,3 dB (Eq. 4-16) 4.125 21.770 121.177 0.863 4.652 24.990 0.545 1.438 6.013 

Qlat (Eq. 4-18) 4.129 21.850 121.190 0.794 4.654 24.990 0.635 1.437 6.025 

Qapprox (Eq. 4-20) 4.395 22.103 121.44 1.159 4.918 25.243 0.677 1.740 6.286 

Qlat (Eq. 4-18, 
Using Numerical 
Results) 

4.051 21.874 118.486 0.83 4.597 25.083 0.641 1.319 5.751 

Qlat (Eq. 4-18, 
Using CR=CI= 1) 

12.884 66.325 367.111 1.954 6.833 34.488 0.893 1.797 6.669 

Table 4-3.  The quality factors calculated using several different approximations for nine 
different laterally vibrating beams assuming operation in water, a beam density of 2330 
kg/m3, and a Young’s modulus of 169 GPa.   
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The effects of using the analytical approximation for the hydrodynamic function 

as opposed to directly using the numerical results are also given in row 9 of Table 4-3.  

Using Eq. 4-18 to calculate the quality factor, there is a difference of 0.1% to 4.5% in the 

quality factor in all cases except one.  For an aspect ratio of 1/56 and a Reynolds number 

of 316.23, using the analytical approximation for the hydrodynamic function instead of 

using the numerical results directly causes a variation in the quality factor by 8.21% 

(1.437 vs. 1.319) due to the higher viscous damping predicted by the numerical results.  

Since the viscous damping does not directly depend on the beam mass, variations in the 

hydrodynamic function affect the denominator of Eq. 4-2 much more than the numerator. 

Because of this, the quality factor, compared to the resonant frequency, is much more 

sensitive to variations in the estimate of the hydrodynamic function.  Table 4-3 also 

indicates that using Stokes’ solution without correcting for the edge effects and the 

effects of thickness (row 10) produces drastically larger quality factors due to the 

neglected additional viscous damping. 

The quality factor can also be calculated using the values given for the 

hydrodynamic function found in Ref. 97. Using the same set of nine geometries found in 

Table 4-2, the quality factor can be found from Eq. 4-18 using the hydrodynamic function 

calculated from both methods. Since the derivative of g1,lat and g2,lat with respect to 

excitation frequency is not given in Ref. 97, Eq. 4-12 will be used to calculate the 

resonant frequency.  These quality factors are given in Table 4-4. 
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Aspect Ratio 
(h/b) 

1 1 1 0.1 0.1 0.1 0.02 0.02 0.02 

Reynolds 
Number (Re) 

10 100 1000 10 100 1000 10 100 1000 

h (µm) 10.156 21.176 45.177 1.1534 2.1272 4.3501 0.297 0.497 0.924 

b (µm) 10.156 21.176 45.177 11.534 21.272 43.501 14.864 24.859 46.188 

L (µm) 400 400 400 400 400 400 400 400 400 

Qlat (Γlat from 
Eq. 4-4) 

4.128 12.436 38.576 0.794 2.688 8.095 0.639 0.97 2.441 

Qlat (Γlat from 
Ref. 97) 

4.027 12.386 38.199 0.932 2.797 8.354 0.667 1.013 2.456 

Table 4-4. The quality factors, Qlat, of nine laterally vibrating beams assuming operation 
in water and a Young’s modulus of 169 GPa and a beam density of 2330 kg/m3, 
calculated using Eq. 4-4 for Γlat compared to using the values given in Ref. 97 for Γlat. 

 

Again, there is good agreement (<4.1%) for the quality factors calculated using 

both methods for Reynolds numbers above 100. When the Reynolds number is 10, the 

imaginary hydrodynamic function given by Ref. 97 is smaller than what is found using 

Eq. 4-4.  This caused a discrepancy between the two values found for the quality factor of 

up to 17.4% (0.932 vs. 0.794).  However, the geometries that have the largest 

discrepancies are the ones with quality factors on the order of 1, which is too low a 

quality factor to use in liquid-phase chemical sensing applications.   

 

4.3.1 Effects of the Medium’s Density and Viscosity on the Quality Factor 

It is noted in Fig. 4-2 that the sharpness of the peaks of the frequency spectrum is 

drastically reduced when operating in a viscous liquid medium such as water.  Table 4-3 

also indicates that microcantilevers with lower Reynolds numbers have lower quality 

factors. Using Eqs. 4-2, 4-3 and 4-4, Eq. 4-20 can be rewritten as 
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                  (Eq. 4-21)  

The first term in Eq. 4-21 is proportional to the square root of the Reynolds number 

multiplied by the aspect ratio and the ratio of the beam’s density to the medium’s density.  

The correction factors are functions of the aspect ratio and Reynolds number, and are 

found in both terms of Eq. 4-21.  However, for thin beams, the correction factors are 

small and the quality factor is roughly proportional to the square root of the Reynolds 

number. The Reynolds numbers in Table 4-3 vary due to changes in the beam’s geometry.  

The effects of the medium of operation can again be investigated by changing the density 

and dynamic viscosity of the medium of operation.  The trend as a function of the 

Reynolds number can again be investigated by using the density and dynamic viscosity of 

various percent aqueous glycerol mixtures (0% to 72%). Figure 4-10 plots the quality 

factor of a 400x45x12 µm laterally vibrating silicon microcantilever as a function of the 

Reynolds number.  Also shown is the approximation of the quality factor calculated from 

Eq. 4-21. It is noted in Fig. 4-10 that as the Reynolds number increases, the quality factor 

increases with a trend approximately equal to the square root of the Reynolds number.  
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Figure 4-10. The quality factor, Qlat, and its approximation for high Reynolds numbers, 
Qlat,approx, calculated for a 400x45x12 µm laterally vibrating silicon microcantilever as a 
function of (Re)1/2.  The Reynolds number is varied by using different values for density 
and dynamic viscosity corresponding to various aqueous solutions (0% to 72%) of 
glycerol.  

 

The density of the medium also affects the quality factor independently of the 

Reynolds number.  When the beam mass is much larger than the displaced mass 

( )latB LghbL ,2>>ρ , the quality factor can be approximated as  

( )latB

IL

latB
approxlat LghbL

C

h
Q ,2, ,

2
>>= ρ

ηρ

ωρ
.                (Eq. 4-22) 

The quality factors calculated from Eq. 4-22 will be lower than those calculated from Eq. 

4-18, as the effects of the displaced fluid are not accounted for. Equation 4-22 shows, 

contrary to intuition, that the drop in the system’s quality factor when operating in water 

as opposed to air mostly arises from the increase in the medium’s density (1.205 to 
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998.23 kg/m3 at 20° C, an increase of a factor of 828.4) instead of the increase in the 

medium’s dynamic viscosity (0.01827 to 1 cP at 20° C, an increase of a factor of 54.7) 

[125]. As shown in section 4.2, the increase in the medium’s dynamic viscosity and 

density will also decrease the resonant frequency, further decreasing the quality factor.  

Equations 4-21 and 4-22 also explain why the quality factor in air is higher, even though 

the Reynolds number is lower.  In general, the quality factor of laterally vibrating 

microcantilevers decreases as the medium’s density or dynamic viscosity increases.   

 

4.3.2 Trends in the Quality Factor as a Function of Beam Geometry 

The quality factor can also be investigated as a function of the beam’s geometry.  

Since the resonant frequency in vacuum is linearly dependent on b/L2, using Eq. 4-22 

indicates that a good approximation for the dependency of the quality factor on the 

beam’s geometry is hb1/2/L. (This dependency might not hold when operating in highly 

viscous liquid media). The quality factors for various geometries are calculated using Eq. 

4-18 as a function of b1/2/L in air and compared in Fig. 4-11 to the experimentally 

measured quality factors reported in Ref. 61. The hydrodynamic function is assumed 

given by Eq. 4-4. The trend in the thickness is neglected since the data in Ref. 61 only 

used one thickness of 14.48 µm. The Young’s modulus is again assumed to be 127.5 GPa. 

There is a large discrepancy in Fig. 4-11 for the quality factor in air when (b1/2/L)>0.03 

µm-1/2.  This difference could be attributed to neglecting the shear and rotational inertia, 

neglecting the support loss, and neglecting the support’s deformation.   
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Figure 4-11. Simulated and experimentally determined quality factors of laterally 
vibrating microcantilevers in air.  The width is varied between 45 and 90 µm, the length 
from 200 to 1000 µm, and the thickness is fixed at 14.48 µm. Discontinuities in the 
theoretical data arise from variations in the length. The experimental data is from Ref. 61. 

 

The support loss is larger for shorter beams, and in air, may be the dominant source of 

loss for particular geometries [92]. For longer beams, the quality factors are roughly 

proportional to b/L2. 

The quality factors for the same geometries shown in Fig. 4-11 are calculated 

using Eq. 4-18 and plotted in Fig. 4-12 as a function of b1/2/L in water and compared to 

the experimentally determined quality factors reported in Ref. 61. The experimentally 

determined quality factors of beams laterally vibrating in water are found to follow the 

theoretically predicted trend.  Shorter and wider beams were found to have higher quality 

factors.  Quality factors as high as 66.8 were reported in Ref. 61 for laterally vibrating 

microcantilevers, whereas normal quality factors for transversely vibrating beams in 

water are on the order of 10 [24,45,71]. 
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Figure 4-12. Simulated and experimentally determined quality factors of laterally 
vibrating microcantilevers in water.  The width is varied between 45 and 90 µm, the length 
from 200 to 1000 µm, and the thickness is fixed at 14.48 µm. Discontinuities in the 
theoretical data arise from the variations in the length. The Young’s modulus of the beam 
is assumed to be 127.5 GPa. The experimental data is from Ref. 61. 

 

The beam’s thickness will also change the quality factor.  Equation 4-22 appears 

to show that the quality factor has a linear dependency with respect to the thickness.  

However, changing the thickness will also change the aspect ratio, which in turn will 

change the value of CI.  For small thicknesses and high Reynolds numbers, the quality 

factor will be roughly linearly dependent on the thickness.  However, as the thickness 

increases, this trend will not continue due to the additional fluid damping encountered on 

the leading edge of the beam.  The quality factor of a microcantilever 400 µm long and 

45 µm wide as a function of beam thickness in water is given in Fig. 4-13.  It is assumed 

that the beam’s Young’s modulus is 127.5 GPa. In general, when exciting a 

microcantilever laterally, shorter, thicker, and wider beams will have higher quality 

factors. 
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Figure 4-13.  Simulated quality factors for a beam 400 µm long and 45 µm wide laterally 
vibrating in water as a function of beam thickness. Also plotted is the quality factor 
calculated assuming CR =CI =1 (Stokes’ solution).   

 

 

4.3.3 Comparison of the Quality Factor of Laterally and Transversely Vibrating 

Beams  

The quality factor, like the resonant frequency, also increases when exciting the 

beam in the in-plane direction.  The improvement is again a function of both the 

microcantilever’s aspect ratio and the properties of the medium of operation. Using the 

low-loss approximation for the quality factor calculated from Eq. 4-20, the ratio of the 

quality factor calculated for a particular geometry undergoing lateral excitation to that of 

the same beam undergoing transverse excitation can be written as  

latI
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The improvement in the quality factor is found to be the product of the ratio of the total 

mass (the beam mass plus the displaced mass) and the ratio of the imaginary parts of the 

hydrodynamic functions.  Note that the first term is the laterally vibrating beam’s total 

mass over the transversely vibrating beam’s total mass.  This factor is less than one (for 

h/b<1), as the transversely vibrating beam will displace more fluid than a laterally 

vibrating beam.  

 When g2,lat and g2,trans are small (for low density and viscosity media) the ratio of 

the quality factors is approximately the ratio of the imaginary part of the hydrodynamic 

function of the transversely vibrating beam to the laterally vibrating beam. This ratio of 

the two imaginary parts of the hydrodynamic functions is usually much greater than one. 

The ratio can be investigated as a function of the medium by again varying the density 

and dynamic viscosity of the medium using various concentrations of aqueous glycerol. 

The ratio of the quality factors of a 200x45x12 µm laterally vibrating silicon 

microcantilever is plotted as a function of percent aqueous glycerol in Fig. 4-14. It is 

noted in Fig. 4-14 that the improvement in the quality factor when using lateral excitation 

is a function of the operational medium. The improvement is larger for higher Reynolds 

numbers or lower viscosity media.  

The improvement is also a function of the beam’s geometry. Over the range of 

geometries investigated in Ref. 61, the predicted improvement in the quality factor in 

water ranged from 1.55 for the beam with the longest length and smallest width 

(1000x45x14.48 µm) to 2.53 for the shortest and widest beam (200x90x14.48 µm).  This 

indicates that when comparing the quality factors of laterally and transversely vibrating 

beams, the improvement is larger for shorter and wider beams. 
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Figure 4-14. The ratio of the quality factors of a laterally and a transversely vibrating 
beam for a 200x45x12 µm silicon microcantilever as a function of percent aqueous 
glycerol in the operational medium. 

 

In air, the improvement is much higher, with a predicted increase ranging from 3 

to 4.5 for the beams studied in Ref. 61.  However, this again neglects the effects of 

support loss.  In general, the quality factor is higher for laterally vibrating beams 

compared to transversely vibrating beams.  The improvement is larger for media with 

lower densities and dynamic viscosities.  The improvement is also larger for shorter and 

wider beams. 

 

 

4.4 Mass Sensitivity 

 In sensor applications, changes in the operational environment or changes in the 

mass of the microcantilever can be detected through changes in the resonant frequency. 

The resonant frequency’s sensitivity to changes in mass, or the mass sensitivity, can be 

defined as [12] 
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m

f
Sm ∆

∆
=  .                   (Eq. 4-24) 

Using Eq. 4-1, the shift in the fundamental resonant frequency of a 400x45x12 

µm laterally vibrating silicon microcantilever in water due to an increase in beam mass of 

~5 nanograms (a 1% increase in beam density) is shown in Fig. 4-15. This added mass 

increase shifts the resonant frequency by ~1.40 kHz, and also increases the deflection and 

stored energy (and thus quality factor) of the system. Note that by changing the density, 

the added mass is assumed to be uniformly distributed over the entire length of the beam. 
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Figure 4-15. The simulated frequency spectrum of a 400x45x12 µm silicon 
microcantilever laterally vibrating in water.  The spectrum is also plotted when the mass 
of the beam is uniformly increased over the length by 1%.   
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Adding the same amount of mass to just the tip of the microcantilever will cause a larger 

shift in the resonant frequency.  However, it will be assumed in this work that the added 

mass is always uniformly distributed over the length of the beam. 

Figure 4-16 shows the predicted frequency shift for four different geometries in 

water as a function of the change in the beam’s mass in air. Note that the magnitude of 

the slope of the lines in Fig. 4-16 represents the mass sensitivity.  The Young’s modulus 

of the beam is assumed to be 169 GPa and the density of the beam is assumed to be 2330 

kg/m3. Note that the shift in the resonant frequency is roughly linear as a function of the 

change in beam mass, and the slope varies for different beam geometries. The frequency 

shift can be non-linear for large changes in mass. However, it will be assumed, in this 

work, that the mass absorbed by the sensing layer is always small enough as to have a 

linear frequency response.   

The frequency shift of the four beams given in Fig. 4-16 as a function of the 

change in beam mass can also be investigated in water and is shown in Fig. 4-17.  Note 

that there is now a slight dependence on the width.   An analytical expression for the 

mass sensitivity can be found using the same procedures described in Ref. 124, using 

different values for the moment of inertia (I lat), g1,lat, and g2,lat.  The change in the 

resonant frequency as a function of change in mass is given by 

( )( )latmlatresfmf ,, λ∆=∆                    (Eq. 4-25) 
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Figure 4-16. Predicted decrease in the resonant frequency of four microcantilevers in air 
as a function of the change in beam mass.  Note that shorter and thicker beams are more 
sensitive to changes in beam mass (e.g., for a 400x45x12 µm silicon beam, Sm=0.369 
Hz/pg while a 200x45x12 µm silicon beam will have a Sm=2.9 Hz/pg). 
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Figure 4-17. Predicted decrease in the resonant frequency of four microcantilevers in 
water as a function of the change in beam mass. Note that shorter and thicker beams are 
more sensitive to changes in beam mass. (e.g., for a 400x45x12 µm silicon beam, 
Sm=0.277 Hz/pg while a 200x45x12 µm silicon beam will have a Sm=2.33 Hz/pg). 
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where the normalized mass sensitivity is given by 
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                            (Eq. 4-26) 

The second term in Eq. 4-26 is the effect of the mass increase on Mlat, while the first term 

arises out of the fact that in Eq. 4-7b, the effect of the viscous damping is normalized to 

the total mass.  When the beam’s mass is increased, the ratio of the viscous damping to 

the total mass will be smaller, causing the resonant frequency to increase.  This effect is 

modeled by the first term in Eq. 4-26.  However, when the beam’s mass is increased the 

effective mass will also increase which will result in a decrease in the resonant frequency.  

This effect is modeled by the second term in Eq. 4-26.  When the beam mass is much 

larger than the displaced mass and viscous damping, the second term in Eq. 4-26 

dominates the first term. The mass sensitivity can then be approximated as 

( )
( ) 2/3

332

,
342 lat

i
approxm
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hLEbL
S

−

=
π

β
             (Eq. 4-27) 

The approximation for the mass sensitivity given by Eq. 4-27 can be compared in Table 

4-5 to the exact value given by Eq. 4-25 for the nine geometries given in Table 4-1.  
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Aspect Ratio 
(h/b) 

1 1 1 1/10 1/10 1/10 1/56 1/56 1/56 

Reynolds 
Number (Re) 

10 316.23 10000 10 316.23 10000 10 316.23 10000 

h (µm) 10.1367 30.8836 97.0374 1.13381 3.01424 9.22685 0.263799 0.598508 1.666543 

b (µm) 10.1367 30.8836 97.0374 11.3381 30.1424 92.2685 14.8345 33.6566 93.7166 

L (µm) 400 400 400 400 400 400 400 400 400 

Sm (Eq. 4-24)     
Hz/ pg 

0.156 0.0755 0.0255 0.138 0.925 0.422 0.243 1.206 1.981 

Sm,approx      
(Eq. 4-27)    
Hz/ pg 

0.165 0.0757 0.0255 0.538 0.965 0.422 0.206 1.801 2.033 

Sm (Eq. 4-27) 
Using 
Numerical 
Results for Γlat  
Hz/ pg 

0.162 0.075 0.025 0.474 0.959 0.426 0.167 1.623 2.099 

Sm (Eq. 4-24) 
CR=CI=1     
Hz/ pg 

0.403 0.146 0.0473 1.204 1.173 0.478 0.333 1.756 2.096 

Table 4-5. The mass sensitivities of nine laterally vibrating beams calculated using 
several different approximations assuming operation in water and a Young’s modulus of 
169 GPa and a beam density of 2330 kg/m3.  Higher mass sensitivities could be obtained 
if the length of the beam was assumed to be shorter (i.e. 200 µm). 

It is noted in Table 4-5 that the approximation given by Eq. 4-27 for the mass 

sensitivity works well when the beam thickness or the Reynolds number is large.  This is 

because the second term in Eq. 4-26 dominates the first term when the viscous damping 

is small or the beam mass is much larger than the displaced mass. However, it is 

inappropriate to use the approximation when viscous damping contributes significantly to 

the effective mass as given by Eq. 4-7b.  Using the numerical results instead of the 

analytical approximation for the hydrodynamic function (row 8 in Table 4-5) also causes 

up to a 19% variation in the value of the mass sensitivity.  However, this variation is 

again smaller for thicker beams and beams with higher Reynolds numbers.  Using 

Stokes’ solution (row 9 in Table 4-5) causes a large overestimate of the mass sensitivity 

due to the unaccounted displaced mass and viscous damping.   
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The mass sensitivities are also calculated using both values for the hydrodynamic 

function given by Eq. 4-27 and the values given in Ref. 97. Equation 4-27 is used for the 

comparison as the derivative of g1,lat and g2,lat again are not given in Ref. 97.  The 

hydrodynamic function is also considered frequency-independent when calculating the 

effective mass.  These mass sensitivities are compared in Table 4-6 for the nine 

geometries given in Table 4-2. For thick beams (h/b=1, or when lateral excitation and 

transverse excitation are the same) and the highest Reynolds number (1000), there is 

good agreement (<1.9%) for the mass sensitivity calculated using the two hydrodynamic 

functions. However, for thin beams and low Reynolds numbers there is a large 

discrepancy (up to 67.2%) due to the variations in the effective mass.  These beams are 

again the geometries that have quality factors on the order of 1, and are the geometries 

that are not appropriate for sensing applications.     

 

 Aspect Ratio 
(h/b) 1 1 1 0.1 0.1 0.1 0.02 0.02 0.02 

Reynolds 
Number (Re) 10 100 1000 10 100 1000 10 100 1000 

h (µm) 10.156 21.176 45.177 1.1534 2.1272 4.3501 0.297 0.497 0.924 

b (µm) 10.156 21.176 45.177 11.534 21.272 43.501 14.864 24.859 46.188 

L (µm) 400 400 400 400 400 400 400 400 400 

Sm (Eq. 4-27) 
Hz/pg 

0.161 0.104 0.053 0.453 0.995 0.778 0.179 1.047 2.137 

Sm (Eq. 4-27 
Using Γlat 
from Ref. 97) 
Hz/pg 

0.160 0.103 0.052 0.503 1.014 0.782 0.223 1.071 2.151 

Table 4-6. The approximate mass sensitivities (Sm,approx) of nine laterally vibrating beams 
assuming operation in water, a Young’s modulus of 169 GPa , and a beam density of 
2330 kg/m3 calculated using Eq. 4-4 for the values of the hydrodynamic function 
compared to using the values given in Ref. 97 for the values of the hydrodynamic 
function. 
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4.4.1 Effects of the Medium’s Density and Viscosity on the Mass Sensitivity 

In air, when LbhM Blat ρ≅ , the mass sensitivity can be approximated as  
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The mass sensitivity decreases in viscous operating environments.  Assuming that Eq. 4-

27 can be used to approximate the mass sensitivity, using Eqs. 4-27, 4-28 and Eq. 4-14, 

the decrease in the mass sensitivity can be given as 
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.     (Eq. 4-29) 

It is noted from Eq. 4-29 that, if CR and CI are one, increasing the Reynolds 

number should increase the mass sensitivity in water.  This trend does not hold for thick 

beams in Tables 4-5 and 4-6 due to the fact that CR and CI are large and dependent on the 

Reynolds number.  

The changes in mass sensitivity as a function of the Reynolds number in Tables 4-

5 and 4-6 are again due to changes in the beam geometry. To investigate the changes in 

the mass sensitivity as a function of the medium’s properties, the medium’s density and 

dynamic viscosity can again be varied by assuming varying concentrations of percent 

glycerol. The mass sensitivity of a 200x45x12 µm laterally vibrating silicon 

microcantilever as a function of Reynolds number, using aqueous concentrations of 

glycerol (0% to 72%) is given in Fig 4-18. 
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Figure 4-18. The mass sensitivity of a 200x45x12 µm laterally vibrating silicon 
microcantilever (E=169 GPa) calculated using the exact expression (Eq. 4-24) and the 
approximate expression valid for high Reynolds numbers (Eq. 4-27) as a function of 
Reynolds number.  The Reynolds number is varied by using different values for density 
and dynamic viscosity corresponding to various aqueous solutions (0-72%) of glycerol. 

 

It is noted in Fig. 4-18 that, as the Reynolds number decreases, the mass 

sensitivity decreases.  It can also be seen that the variation in the predicted values of Sm 

caused by neglecting the first term in Eq. 4-26 will be larger when the Reynolds number 

is decreased.  This is because the viscous damping’s contribution to the effective mass 

increases as the Reynolds number decreases, while the beam mass remains constant. 

Again, it is noted from Eq. 4-29 that the medium’s density affects the mass 

sensitivity in a way that is independent of the Reynolds number.  For example, increasing 

the medium’s density from that of air to that of water, the mass sensitivity of a 

400x45x12 µm laterally vibrating microcantilever decreases by a factor of 1.38, while the 
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Reynolds number increases from 81.1 to 1102.44.  In general, the mass and chemical 

sensitivities of laterally vibrating microcantilevers will be lower for media with higher 

dynamic viscosities or densities.   

 

4.4.2 Trends in the Chemical Sensitivity as a Function of Beam Geometry  

 From Eq. 4-28, in air the mass sensitivity is proportional to the inverse of hL3.  As 

shown in Fig. 4-16, shorter and thinner beams will then have higher mass sensitivities. 

When dealing with dynamically driven microcantilever chemical sensors, the sensitivity 

to chemicals in the operational environment, or the chemical sensitivity, is also of interest.  

The chemical sensitivity is defined as the change in the resonant frequency of the 

microcantilever as a function of the ambient concentration, CA, of a particular analyte in 

the medium of operation [89], or   

A
c C

f
S

∆
= .                     (Eq. 4-30) 

The chemical sensitivity can be found as a function of the mass sensitivity [9] as 

mc SKLbhS 2=                (Eq. 4-31) 

where K is the partition coefficient of the sensing layer in the operational medium and h2 

is the sensing layer’s thickness. Finding the chemical sensitivity requires knowing the 

properties of the sensing layer, which is outside the scope of this investigation.  However, 

since the chemical sensitivity is proportional to the mass sensitivity, the trends in both the 

mass sensitivity and chemical sensitivity as a function of the medium of operation will be 
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the same (assuming K remains constant) and the trends in the chemical sensitivity as a 

function of the beam’s geometry will be the trends in the mass sensitivity multiplied by a 

factor of KLbh2.  It will be assumed that h>>h2.  A normalized chemical sensitivity that 

does not depend on the properties of the sensing layer, cS , can be found  

)/( 2KhSS cc = .                          (Eq. 4-32) 

Assuming Sm is roughly linearly dependent with respect to h-1L-3, the chemical sensitivity 

will be proportional to (h2/h) multiplied by (b/L2). Since b/L2 is the same geometric 

dependency as the resonant frequency, the chemical sensitivity will always be roughly 

proportional to the resonant frequency.  The chemical sensitivity will also be proportional 

to the ratio of the beam’s thickness to the sensing layer’s thickness.   

Unfortunately, no experimental data for the mass sensitivity or chemical 

sensitivity was published in Ref. 61.  However, cS  in water can still be predicted and 

plotted as a function of b/L2 for the geometries given in Ref. 61. Figure 4-19 shows that 

shorter and wider beams, assuming that the same sensing layer type and thickness are 

used, will be more sensitive to changes in analyte concentration compared to longer and 

narrower beams.  

Note that decreasing the length and increasing the width improve both the mass 

sensitivity and the quality factor. There is a predicted h-1 linear dependency on the mass 

sensitivity and chemical sensitivity if the sensing layer thickness is held constant.  

Thinner beams will have a smaller mass and the sorbed analyte mass by the sensing layer 

will thus change the average beam density by larger amounts.    
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Figure 4-19. Predicted normalized chemical sensitivities of laterally vibrating 
microcantilevers in water.  The width is varied between 45 and 90 µm, the length from 
200 to 1000 µm, and the thickness is fixed at 14.48 µm. The beam’s Young’s modulus is 
assumed to be 127.5 GPa. If the normalized chemical sensitivity is multiplied by Kh2, a 
chemical sensitivity in Hz per concentration can be found.   

 

However, thinner beams will have lower quality factors. As a result, there is a predicted 

tradeoff between the chemical sensitivity and the quality factor when choosing the 

beam’s thickness.   

The limit of detection (LOD) for a given analyte is often defined as three times 

the ratio of the device/system frequency noise to the chemical sensitivity, and represents 

a measure of performance for a chemical sensor. When operating in an oscillator 

configuration, the system’s frequency noise is proportional to fres,lat/Qlat [89].  In terms of 

the normalized chemical sensitivity, the limit of detection satisfies the following 

relationship: 
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clat

latres

SQ

f
LOD ,3

∝ .              (Eq. 4-33) 

This parameter is plotted as a function of beam thickness for a 400 µm long and 45 µm 

wide beam in Fig. 4-20.  The Young’s modulus of the beam is assumed to be 127.5 GPa. 

It is noted from Fig. 4-20 that the best thickness (the lowest detection limit) using the 

parameter given in Eq. 4-33 is 2.6 µm. The quality factor’s relationship with respect to 

the beam’s thickness is not linear when the thickness is large, whereas the mass 

sensitivity and normalized chemical sensitivity are linear with respect to the beam’s 

thickness.  When trying to minimize the limit of detection by varying the beam’s 

thickness, the optimal thickness will be a function of the beam’s length, the beam’s width, 

and the viscosity and density of the medium of operation. 
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Figure 4-20. The parameter  3fres,lat / (Qlat cS ) plotted as a function of beam thickness for 

a laterally vibrating beam 400 µm long and 45 µm wide laterally vibrating in water. The 
parameter 3fres,lat / (Qlat cS ) is proportional to the limit of detection (LOD) of a laterally 

vibrating microcantilever in an oscillator configuration.  
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In chemical sensor applications, the beam’s geometry should be designed with 

both the chemical sensitivity and the quality factor taken into account, as the system’s 

frequency noise varies proportional to fres,lat/Qlat [89].  However, as  3fres,lat / (Qlat cS ) 

doesn’t increase quickly with respect to thickness for thicknesses larger than 2.6 µm in 

Fig. 4-19, the limit of detection does not vary by much if the thickness is increased in 

order to reach a particular quality factor needed for a particular sensing application. 

 In general, the mass sensitivity is roughly proportional to the inverse of hL3 and 

the chemical sensitivity is roughly proportional to h2/h multiplied by b/L2.  Shorter and 

wider beams have higher chemical sensitivities along with higher quality factors. Thinner 

beams with the same sensing layer thickness will have higher chemical sensitivities but 

lower quality factors.  The thickness must then be chosen taking into account its effect on 

both the chemical sensitivity and quality factor. 

 

4.4.3 Improved Mass Sensitivity using Lateral Excitation Compared to Transverse 

Excitation 

The mass sensitivity is also higher for microcantilevers laterally vibrating 

compared to microcantilevers transversely vibrating.  The ratio of the mass sensitivity for 

a laterally vibrating beam compared to that of a transversely vibrating beam is  
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≈                                        (Eq. 4-34) 
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Equation 4-34 shows that the increase in the mass sensitivity (and chemical sensitivity) is 

approximately the increase in relative mass sensitivity multiplied by the increase in the 

stiffness and by the increase in the square root of the total effective mass.  If the second 

term in Eq. 4-26 dominates the first term for both the lateral and transverse normalized 

mass sensitivity, the ratio of the two normalized mass sensitivities can be approximated 

as 

lat

trans
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M
≅

,

,

λ

λ
                              (Eq. 4-35) 

The increase in the mass sensitivity when operating in the in-plane flexural mode 

compared to the out-of-plane flexural mode is then approximately  
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The effective mass of transversely vibrating beams is larger than that of laterally 

vibrating beams.  Thus, the increase in the mass sensitivity when using lateral excitation 

compared with transverse excitation will be equal to or greater than b/h. 

For media with low dynamic viscosities and densities, Eq. 4-36 is equal to b/h. As 

the operational medium becomes more viscous, the ratio of the effective masses should 

become larger.  The ratio of the mass sensitivities of a 200x45x12 µm beam and a 

400x45x12 µm beam with Young’s moduli of 127.5 GPa as a function of percent 

aqueous glycerol is given in Fig. 4-21.  It is noted from Fig. 4-21 that, for higher 

viscosities (lower Reynolds numbers), microcantilevers vibrating laterally will have 

higher mass sensitivities compared to beams vibrating transversely.  The mass sensitivity 
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will still decrease as the viscosity of the medium increases.  However, Fig. 4-21 indicates 

that the rate at which the mass sensitivity decreases is smaller for laterally vibrating 

beams compared to transversely vibrating beams.  For example, a 400x45x12 µm silicon 

beam transversely vibrating with a Young’s modulus of 127.5 GPa will have a mass 

sensitivity of 88.69 Hz/ng in air and a mass sensitivity of 20.84 Hz/ng in water (a 76.5% 

drop).  The same beam laterally vibrating will have a mass sensitivity of 333.6 Hz/ng in 

air and a mass sensitivity of 239.6 Hz/ng in water (only decreasing by 28.2%).   

The ratio of the mass sensitivities is also a function of the beam’s geometry. For 

the beams given in Ref. 61, the increase in the predicted mass sensitivity ranged from 7.3 

to 35.8 using lateral as opposed to transverse excitation.  The increase in mass sensitivity 

was higher for wider and longer beams.   
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Figure 4-21. The ratio of the mass sensitivities of a laterally and transversely vibrating 
200x45x12 µm beam and a 400x45x12 µm beam with Young’s moduli of 127.5 GPa as a 
function of percent aqueous glycerol in the operational medium. 
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In air, the increase in mass sensitivity is smaller as the ratio of the two effective masses is 

closer to one.  In air, the predicted mass sensitivity increases for the beams given in Ref. 

61 ranged from 3.11 to 6.25, and roughly followed the beam’s b/h values. 

In general, exciting beams laterally as opposed to transversely increased both the 

mass sensitivity and chemical sensitivity by a factor of b/h or greater.  The increase was 

larger for media with higher viscosity and densities. Thus, lateral excitation is a better 

method of excitation compared to transverse excitation for sensing applications when 

operating in media of high viscosities and densities.  
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5. Summary, Conclusions, and Future 
Work  
 
 

5.1 Summary 

The primary objective of this work was to theoretically characterize and compare 

the characteristics of microcantilever-based (bio)chemical sensors vibrating in the in-

plane and out-of-plane direction and note the improvement when the microcantilever is 

excited in the in-plane direction.  Dynamically driven microcantilevers are commonly 

vibrated in the transverse or out-of-plane direction in both gas- and liquid-phase sensing 

applications.  However, microcantilever (bio)chemical sensors vibrating in the transverse 

direction have a dramatic increase in their detection limit in liquid-phase sensing 

applications compared to gas-phase sensing applications due to the decrease in the 

device’s resonant frequency, quality factor, and chemical sensitivity.  It was expected that 

these characteristics would improve for beams vibrating in the in-plane or lateral 

direction due to the decreased viscous drag of the leading edge of the beam.  

Experimental results given in the literature have also shown that microcantilevers have 

higher resonant frequencies and quality factors when operating in the in-plane flexural 

mode as opposed to the out-of-plane flexural mode [10,61]. Modeling the characteristics 

of a laterally vibrating beam allowed for the trends in these characteristics to be 

investigated as functions of the properties of the medium and the beam’s geometry.  

Using these trends, geometries that improve the characteristics of laterally vibrating 

microcantilever (bio)chemical sensors in the liquid-phase could be identified. 



  136 

In order to successfully characterize laterally vibrating microcantilevers, standard 

Euler-Bernoulli beam theory was used to model the deflection of the beam as a function 

of the frequency of excitation.  The deflection was found to also depend on the properties 

of the microcantilever and the hydrodynamic forces from the operational medium acting 

on the beam. The hydrodynamic forces were found as the sum of the pressure and shear 

forces.  An analytical expression for the hydrodynamic forces acting on a laterally 

vibrating ribbon was previously derived by G. G. Stokes [105].  However, this solution 

neglected the effects of the pressure from the fluid on the thickness.  The assumption was 

also made that the fluid shear was constant along the width of the beam, which neglected 

the significant variation in the fluid shear near the edge of the beam.  

To account for the edge effects and the effect of thickness, a numerical model of 

the fluid surrounding a laterally vibrating beam was defined in the finite element analysis 

software ANSYS and used to evaluate the hydrodynamic forces acting on the beam.  The 

hydrodynamic forces from the fluid shear and pressure on a laterally vibrating cross-

section in water were found for various aspect ratios (the ratio of the beam’s thickness to 

the beam’s width) and Reynolds numbers (a measure of the ratio of the fluid’s inertial 

and viscous forces).  The number of elements used in the model was varied to confirm 

that the solution for the hydrodynamic forces was convergent. The numerical results for 

the hydrodynamic function (a normalized version of the hydrodynamic force) were then 

compared to the results given by another model published in the literature [97]. The 

hydrodynamic function was then found for aspect ratios ranging from 1/56 to 1 and 

Reynolds numbers ranging from 10 to 10,000. A set of correction factors were obtained 

so that the hydrodynamic function found from Stokes’ solution could be mapped to the 
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numerical results.  These two correction factors were found as functions of the aspect 

ratio and the Reynolds number. 

Using the same procedures found in Ref. 124, expressions for the resonant 

frequency, quality factor, and mass sensitivity of laterally vibrating beams were obtained.  

The trends in these characteristics were then investigated as functions of both the medium 

of operation (fluid density and dynamic viscosity) and the geometry of the 

microcantilever. These characteristics were also calculated using the values of the 

hydrodynamic function given by Ref. 97 and compared to the characteristics found using 

the hydrodynamic function obtained in this work.  

The improvement obtained for each characteristic (resonant frequency, quality 

factor, and mass sensitivity) when using in-plane flexural modes compared to out-of-

plane flexural modes was demonstrated.  This was done by finding an expression for the 

ratio of the characteristics of a laterally vibrating beam to a transversely vibrating beam 

of the same geometry.  This ratio was investigated as a function of the beam’s geometry 

and the medium of operation.  This then demonstrated the benefits of using lateral 

excitation over the more common transverse excitation when operating in a viscous liquid 

medium. 

 

5.2 Conclusions 

The approach taken to find the semi-analytical expression for the hydrodynamic 

function involved the use of correction factors to map Stokes’ solution to exact numerical 

results.  This technique is more appropriate for laterally vibrating beams compared to 

other methods given in the literature, which were primarily used to find the 
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hydrodynamic forces of transversely vibrating beams. The number of terms used in the 

correction factors was small, thus yielding simple expressions while still providing a 

good approximation to the numerical results. The error introduced by the mapping also 

did not significantly change the predicted characteristics (resonant frequency, quality 

factor, and mass sensitivity) over the range of Reynolds numbers and aspect ratios 

investigated. 

This semi-analytical expression is a significant benefit of this work, as it allowed 

for the rapid calculation of the hydrodynamic function over various ranges of aspect 

ratios and Reynolds numbers. Using the semi-analytical expression, it was found that the 

effects of the shear force acting on the width of the beam is significant and should be 

taken into account when modeling laterally vibrating beams operating in a viscous liquid 

medium.  It was also found that the pressure forces from the viscous liquid medium 

acting on laterally vibrating beams for particular ranges of geometric parameters and 

Reynolds numbers contribute significantly to the total hydrodynamic force.  For example, 

over the range of aspect ratios and Reynolds numbers investigated, the pressure force 

acting on the thickness contributed 10% or more of the total hydrodynamic force. It was 

noted that the significance of the shear forces and pressure forces on the total 

hydrodynamic force was also investigated by Brumley et al. [97] and similar results and 

conclusions were obtained.  However, a larger range of Reynolds numbers was 

investigated in the present work.  This may be important, as the Reynolds numbers of 

beams vibrating laterally compared to beams vibrating transversely are larger due to their 

increased resonant frequency.    
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Using the semi-analytical expression given in this work, the amount of displaced 

fluid mass is predicted, which compares well with recent results published in the 

literature [97].  Observed differences ranged from 5.88% (Re= 10, h/b=1/50) to -1.8% 

(Re= 31.62, h/b=1/5) and had an average absolute difference of 1.37%. However, the 

present method predicts a higher amount of viscous damping from the fluid.  The 

difference ranged from 9.85% (Re= 10, h/b=1/50) more viscous damping to 2.8% (Re= 

10, h/b=1) less viscous damping and had an average absolute difference of 3.8%. This 

difference could arise from errors in the hydrodynamic forces determined from the finite 

element analysis due to the selected mesh density dictating the convergence criteria of the 

computation. It is also possible that the results from the finite element analysis in this 

work more accurately represent the behavior of the fluid, as it accounts for the nonlinear 

convective effects of the fluid [127].  It was observed that the difference between the two 

methods is insignificant regarding the calculated resonant characteristics (frequencies, 

quality factors, and mass sensitivities) for practical cantilever geometries used in sensor 

applications over the range of aspect ratios and Reynolds numbers investigated. For 

example, the difference in the predicted characteristics from the two methods was found 

to be small (<4.1%) for beams that have quality factors high enough to be considered 

practical for sensor applications.  

Analyzing these characteristics, it was found that the resonant frequency, quality 

factor, and mass sensitivity of dynamically driven microcantilevers were all predicted to 

increase for beams undergoing lateral excitation compared to those undergoing transverse 

excitation when operating in viscous liquid media. This indicated that operating 

dynamically driven microcantilevers in the in-plane flexural mode is better for liquid-
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phase (bio)chemical sensing applications, assuming that such devices may be effectively 

excited. 

It was found that the ratio of the resonant frequencies of beams vibrating laterally 

compared to beams vibrating transversely increases by a factor proportional to the inverse 

of the beam’s aspect ratio. This was due to the increased stiffness of the beam when 

operating in the in-plane flexural mode.  This resonant frequency increase was predicted 

to be larger for media with higher densities and dynamic viscosities, which affect the 

effective mass more when operating in the out-of-plane flexural mode compared to when 

operating in the in-plane flexural mode.  Increasing the density or dynamic viscosity of 

the medium still decreases the laterally vibrating beam’s resonant frequency. However, 

this drop in resonant frequency for laterally vibrating beams (~10% when placed in 

water) was substantially smaller than the drop predicted for transversely vibrating beams 

(on the order of a ~50% drop when placed in water). This indicates that the resonant 

frequencies of beams operating in the in-plane flexural mode were both higher and less 

affected by the viscous damping from the medium of operation when compared to the 

resonant frequencies of similar beams operating in the out-of-plane flexural mode. 

The resonant frequencies of laterally vibrating beams were also investigated as a 

function of the beam’s geometry. The resonant frequency of a laterally vibrating 

microcantilever in air was found to be proportional to the width of the beam over the 

square of the length of the beam.  This trend was found to also hold approximately for 

beams laterally vibrating in water. These trends also matched experimentally obtained 

trends published in the literature when a microcantilever was laterally vibrated both in air 
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and in water.  If beams with high resonant frequencies are desired for particular sensing 

applications, shorter and wider beams should be chosen.    

The resonant frequency is expected to be approximately independent of the 

beam’s thickness when operating in air.  In water, it was predicted that the resonant 

frequency of a laterally vibrating beam has a slight dependence on the beam’s thickness.  

For small beam thicknesses, the total effective mass (the sum of the beam mass and 

displaced fluid mass) was found to be approximately independent of the thickness, while 

the stiffness had a linear dependence on the thickness. Initially, when the beam’s 

thickness was increased the resonant frequency was found to increase. This trend occurs 

when the beam’s mass is less than the displaced mass of the fluid. Using the practical 

geometries in water studied in Ref. 61, the predicted displaced fluid mass only accounts 

for 11% to 35% of the total effective mass. When the beam’s mass is greater than the 

displaced mass of the fluid, increasing the thickness increases the total effective mass 

more than the stiffness due to the additional viscous damping.  This caused the resonant 

frequency to decrease as the thickness of the beam is increased.  An optimal value for the 

beam thickness with respect to the resonant frequency could then be found if the 

operational medium and the beam’s length and width were known. 

The quality factor was also found to increase when beams were operating in the 

in-plane flexural mode compared to the out-of-plane flexural mode, with quality factors 

of laterally vibrating beams reaching values as high as 64 when operating in water. 

Unlike the trend found for the resonant frequency, the improvement when using the in-

plane flexural mode was smaller when beams were operating in media with higher 

densities and dynamic viscosities. The predicted improvement for the practical 
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geometries studied in Ref. 61 ranged from 3 to 4.5 in air and 1.55 to 2.53 in water. This 

improvement was also a function of the beam’s geometry.  The improvement in the 

quality factors of laterally vibrating beams compared to transversely vibrating beams was 

found to be larger for shorter and wider beams.  This was due to the shorter and wider 

beams having higher resonant frequencies and Reynolds numbers.  As the Reynolds 

number increases, the ratio of the viscous damping seen by the transversely vibrating 

beam to the laterally vibrating beam increases. 

Shorter and wider beams operating in the in-plane flexural mode also had higher 

quality factors compared to longer and narrower beams, since the quality factor of a 

laterally vibrating beam was found to be proportional to the square-root of the beam’s 

resonant frequency. This trend was predicted both in air and in water and was observed in 

experimental data published for laterally vibrating beams in water.  (In air, additional 

effects, such as the support loss, need to be taken into account when comparing the 

theoretical results to those observed in the experimental data).  The quality factor of a 

laterally vibrating beam in a viscous liquid medium was also found to be dependent on 

the beam’s thickness.  For small beam thicknesses, this dependence was approximately 

linear. However, the quality factor’s linear dependency on the beam’s thickness does not 

hold for larger beam thicknesses (when the beam’s mass is greater than the displaced 

mass of the fluid) due to the additional viscous damping and effective fluid mass coming 

from the pressure acting on the thickness.   

The quality factor was also found to be a function of the medium’s density. As the 

density of the medium increases, the quality factor decreases. The quality factor was 

found to have approximately the same dependence on the medium’s density as on the 
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medium’s dynamic viscosity. Since the medium’s density increases more than its 

dynamic viscosity when a beam is placed in water from air, it can be noted that the 

quality factor drops more due to the increase in the medium’s density compared to the 

drop from the increase in the medium’s dynamic viscosity.  

The ratio of the mass sensitivity of a laterally vibrating beam to that of a 

transversely vibrating beam of the same geometry, like the resonant frequency, was found 

to be proportional to the inverse of the aspect ratio.  For small aspect ratios, operating in 

the in-plane flexural mode compared to operating in the out-of-plane flexural mode then 

increases the mass sensitivity more than it increases the quality factor. For the practical 

geometries studied in Ref. 61, the predicted improvement ranged from 7.3 to 35.8. For 

thinner beams, this improvement could be much larger. As with the resonant frequency, 

increasing the density and dynamic viscosity of the medium of operation will decrease 

the mass sensitivity.  The mass sensitivity of beams operating in the in-plane flexural 

mode will decrease less than the mass sensitivity of beams operating in the out-of-plane 

flexural mode when the density and dynamic viscosity of the operational medium is 

increased. The ratio of these mass sensitivities was then higher for media with higher 

densities and dynamic viscosities.  Assuming the same sensing layer is used, the ratio of 

the chemical sensitivity of a laterally vibrating beam to the chemical sensitivity of a 

transversely vibrating beam will be the same as the ratio of the mass sensitivities. 

The mass sensitivity was found to be approximately proportional to the inverse of 

the beam’s thickness multiplied by the inverse of its length cubed.  This means that the 

chemical sensitivity will be proportional to the resonant frequency of the beam when it is 

excited laterally.  Shorter and wider beams vibrated laterally will thus have higher 
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chemical sensitivities as well as higher quality factors and resonant frequencies. The 

chemical sensitivity was also found to be a function of the ratio of the sensing layer’s 

thickness to the beam’s thickness.  There is then a trade-off between decreasing the 

chemical sensitivity of the device and increasing the quality factor of the device when 

increasing the thickness of the beam.  Since the limit of detection is proportional to the 

inverse of the product of the quality factor and the chemical sensitivity, a thickness exists 

that optimizes the limit of detection for a particular beam length and width in a particular 

medium of operation.  Regardless of the beam’s thickness, the limit of detection of 

laterally vibrating beams in viscous liquid media is predicted to be much smaller than that 

of transversely vibrating beams of similar geometries, thus indicating in-plane excitation 

is a better excitation method compared to out-of-plane excitation when operating in 

viscous liquid media.  

 

5.3 Future Work 

The work done in this investigation can easily be expanded upon and improved.  

The sensing layer effects were not discussed in this investigation.  The effects of different 

thicknesses of particular viscoelastic sensing layers on the characteristics of laterally 

vibrating beams can be incorporated into the model using the same method given in Ref. 

124.  The optimum thicknesses in terms of the limit of detection of particular sensing 

layers in viscous liquid media could then be calculated. The sensing layer’s viscoelastic 

properties can change as a function of the amount of analyte sorbed.  This will cause a 

change in the resonant frequency and change the chemical sensitivity of the device.  
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These effects can also be easily incorporated into the model if the properties of the 

sensing layer and its reaction to the analyte of interest are known. 

It was shown that the beams with the highest resonant frequencies and quality 

factors were also the shortest beams. These short beams also have the largest rotational 

and shear inertia effects. These effects were not accounted for in this investigation. 

Modeling the beam using Timoshenko beam theory instead of Euler-Bernoulli beam 

theory would account for these effects. This would also allow optimal beam lengths and 

widths with respect to the limit of detection to be found.  

 The in-plane flexural mode is not the only other alternative mode of operation for 

dynamically driven microcantilevers.  The torsional mode has also been investigated as a 

potential mode that would improve the characteristics of dynamically driven 

microcantilever (bio)chemical sensors over that of the out-of-plane flexural mode in 

liquid environments.  While there have been many attempts at modeling this mode of 

operation [10,95-96], these models have not included the effects of the thickness.  A 

numerical method similar to the one done in this work could be used to simulate the 

effects of thickness on the hydrodynamic loading of beams operating in the torsional 

mode.  From the hydrodynamic loading and the beam’s properties, the resonant 

frequency, quality factor, and mass sensitivity could be found as functions of the medium 

of operation and the beam’s geometry.  These characteristics could then be compared to 

those found for beams of similar geometries operating in both the in-plane and out-of-

plane modes.  One of the aspects of operating in the torsional mode that has been 

investigated previously is the dependence of the hydrodynamic function on the length of 

the beam [95].  Modeling this effect is not only important for short beams, but can also 
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aid in the modeling of the hammerhead or T-shaped beams whose widths are not constant 

as a function of length.  

 Another parameter of interest when working with dynamically excited 

microcantilever (bio)chemical sensors is the optimum spacing of microcantilevers in 

arrays. The interaction of transversely vibrating arrays of infinitely thin microcantilevers 

in water has previously been modeled [50].  However, neither the interaction’s 

dependence on the beam thickness or the interaction of arrays of laterally excited beams 

has been investigated in the literature. A numerical model of two cross-sections laterally 

vibrating could be defined and the change in the hydrodynamic loading as a function of 

the microcantilever’s spacing, the Reynolds number, and the aspect ratio of both beams 

could be found. 

 Finally, the effects of thermal noise on the microcantilever should be modeled.  

Thermal noise causes random variations in the resonant frequency of dynamically driven 

microcantilever (bio)chemical sensors limiting the minimum detectable analyte 

concentration. The thermal noise itself might depend on the geometry of the beam and 

the medium of operation.  Particular geometries or materials could then be chosen that 

limit the thermal noise. The thermal noise can also be positively utilized.  One of the 

limits to the minimum size of dynamically driven microcantilevers is the minimum size 

of the transducer used to excite the beam into resonance.  The thermal noise can cause the 

beam to undergo self-excitation.  If the thermal noise is appropriately modeled, the 

random thermal fluctuations in the deflection can be used to track the resonant frequency 

of the beam without needing to drive the beam into resonance. While this method of 

excitation has been investigated in the literature for beams vibrating transversely [64, 65], 
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no investigations have been published for lateral excitation, which, from the conclusions 

of this work, would be better suited for liquid-phase sensing applications.    
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APPENDIX A : NUMERICAL RESULTS FROM ANSYS  

 
 log(h/b)=0 0.25 0.5 0.75 1 1.25 1.5 1.75 
log(Re)=1 4.62e-4 2.59 e-4 1.77e-4 1.39 e-4 1.18 e-4 1.1 e-4 1.05 e-4 1.01 e-4 
1.25 1.261e-3 6.61 e-4 4.24 e-4 3.21 e-4 2.67 e-4 2.46 e-4 2.32 e-4 2.24 e-4 
1.5 3.54 e-3    1.734e-3 1.041 e-3 7.53 e-4 6.12 e-4 5.57 e-4 5.22 e-4 5.02 e-4 
1.75 0.010179  4.683 e-3 2.621 e-3 1.799 e-3 1.421 e-3 1.274 e-3 1.184 e-3 1.134 e-3 
2 0.029867 0.013004 0.006775 0.004379 0.003341 0.002939 0.002709 0.002582 
2.25 0.089009 0.037028 0.018001 0.010876 0.007956 0.006838 0.00624 0.005918 
2.5 0.268561 0.107789 0.049147 0.027616 0.019197 0.016046 0.014457 0.013638 
2.75 0.821627 0.318097 0.13771 0.071825 0.047039 0.03794 0.033662 0.031554 
3 2.532252 0.955205 0.393836 0.191633 0.117155 0.090508 0.078787 0.073227 
3.25 7.864478 2.907386 1.139516 0.524508 0.297407 0.217925 0.18516 0.170301 
3.5 24.53087 8.953956 3.398823 1.453204 0.771819 0.530605 0.436847 0.396544 
3.75 76.73886 27.75059 10.3261 4.143764 2.042715 1.308498 1.034591 0.923467 
4 239.8214 86.20338 31.60972 12.15687 5.51711 3.269185 2.458668 2.147008 

Table A-1. Magnitude of hydrodynamic force in Newtons on top and right hand side of 
laterally vibrating cross-section in water (b=20 µm, h=2 µm) as a function of Reynolds 
number and aspect ratio (h/b) 
 
 

 log(h/b)=0 0.25 0.5 0.75 1 1.25 1.5 1.75 
log(Re)=1 -63.76330 -53.50664 -44.26542 -38.38273 -35.12395 -33.20753 -32.22597 -31.11153 
1.25 -68.15430 -57.90142 -48.16814 -41.36597 -37.53344 -34.82186 -33.69106 -33.11546 
1.5 -72.12286 -62.43517 -52.20018 -44.46925 -39.54898 -36.89584 -35.65673 -35.02011 
1.75 -75.54705 -66.75285 -56.31586 -47.38066 -41.97502 -38.88040 -37.42441 -36.74974 
2 -78.51016 -70.67383 -60.35054 -50.74748 -44.41889 -40.72260 -39.02426 -38.23815 
2.25 -80.92598 -74.25600 -64.41381 -54.08272 -46.62607 -42.10859 -40.05742 -39.11227 
2.5 -82.90587 -77.36046 -68.41135 -57.65227 -49.00218 -43.55865 -40.97702 -39.84097 
2.75 -84.51849 -79.94275 -72.10805 -61.39611 -51.63494 -45.02736 -41.79886 -40.40481 
3 -85.78797 -82.11191 -75.37234 -65.22664 -54.53457 -46.65440 -42.62046 -40.83073 
3.25 -86.78245 -83.87635 -78.15498 -69.00095 -57.73629 -48.48177 -43.42677 -41.12138 
3.5 -87.55144 -85.29849 -80.67153 -72.30376 -61.15305 -50.51009 -44.14355 -41.14128 
3.75 -88.14273 -86.41880 -82.81018 -75.52771 -64.71762 -53.01765 -45.13836 -41.25305 
4 -88.57708 -87.27893 -84.51174 -78.50240 -68.22110 -55.78456 -46.21060 -41.13328 

Table A-2. Phase offset in degrees between hydrodynamic force and velocity on top and 
right hand side of laterally vibrating cross-section in water as a function of Reynolds 
number and aspect ratio (h/b) 
 
 

 log(h/b)=0 0.25 0.5 0.75 1 1.25 1.5 1.75 
log(Re)=1 2.637865 1.327356 0.786240 0.549178 0.431921 0.384095 0.354825 0.332673 
1.25 2.357109 1.126900 0.636330 0.426597 0.327220 0.283353 0.259489 0.246473 
1.5 2.144983 0.978523 0.523850 0.335850 0.248093 0.213075 0.193835 0.183339 
1.75 1.984367 0.866288 0.439110 0.266567 0.191286 0.161019 0.144911 0.136588 
2 1.863290 0.781189 0.374859 0.215897 0.148863 0.122084 0.108596 0.101731 
2.25 1.769470 0.717477 0.326858 0.177325 0.116424 0.092301 0.080849 0.075163 
2.5 1.696626 0.669580 0.290929 0.148524 0.092239 0.070395 0.060354 0.055625 
2.75 1.646512 0.630543 0.263827 0.126948 0.074250 0.054035 0.045168 0.041175 
3 1.607729 0.602349 0.242597 0.110771 0.060745 0.041902 0.033964 0.030480 
3.25 1.580757 0.581966 0.224519 0.098580 0.050629 0.032849 0.025624 0.022547 
3.5 1.560259 0.568109 0.213514 0.088136 0.043038 0.026069 0.019369 0.016609 
3.75 1.544072 0.557576 0.206247 0.080774 0.037184 0.021043 0.014763 0.012259 
4 1.526281 0.548169 0.200311 0.075840 0.032616 0.017210 0.011299 0.008991 

Table A-3. The real part of the hydrodynamic function of a laterally vibrating beam 
found as a function of Reynolds number and aspect ratio (h/b) 
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 log(h/b)=0 0.25 0.5 0.75 1 1.25 1.5 1.75 
log(Re)=1 1.300093 0.9819549 0.806664 0.693320 0.614016 0.586791 0.562887 0.551228 
1.25 0.944961 0.7068655 0.569582 0.484459 0.425927 0.407360 0.389220 0.377866 
1.5 0.691868 0.5107961 0.406338 0.342131 0.300438 0.283833 0.270180 0.261640 
1.75 0.511456 0.3721369 0.292675 0.245287 0.212631 0.199693 0.189368 0.182915 
2 0.378749 0.2739701 0.213378 0.176412 0.151914 0.141823 0.133988 0.129100 
2.25 0.282602 0.2022693 0.156508 0.128444 0.109996 0.102121 0.096157 0.092448 
2.5 0.211151 0.1501549 0.115121 0.094067 0.080176 0.074029 0.069486 0.066666 
2.75 0.158007 0.1118321 0.085173 0.069226 0.058776 0.053983 0.050519 0.048372 
3 0.118406 0.0834559 0.063317 0.051121 0.043274 0.039550 0.036909 0.035273 
3.25 0.088866 0.0624380 0.047089 0.037839 0.031961 0.029081 0.027072 0.025827 
3.5 0.066721 0.0467229 0.035074 0.028122 0.023707 0.021482 0.019957 0.019012 
3.75 0.050071 0.0348967 0.026018 0.020848 0.017563 0.015847 0.014692 0.013977 
4 0.037914 0.0260538 0.019247 0.015427 0.013032 0.011703 0.010832 0.010295 

Table A-4. The imagery part of the hydrodynamic function of a laterally vibrating beam 
found as a function of Reynolds number and aspect ratio (h/b) 
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APPENDIX B: M ACRO USED IN ANSYS TO COMPUTE HYDRODYNAMIC FORCES  
 
 
!Node spacing on width  
varycon=3.33333333333333e-8 
 
!Title (do not run program twice with same title) 
/FILNAME, rbbtest1, 1 
 
/CONFIG, NRES, 6002 
 
!Width 
h = 20.0e-6 
 
!Reynolds number 
Re = 1 
!Re = 1.7782794100389228012254211951927 
!Re = 3.1622776601683793319988935444327 
!Re = 5.6234132519034908039495103977648 
!Re = 10 
 
!Re = 17.782794100389228012254211951927 
!Re = 31.622776601683793319988935444327 
!Re = 56.234132519034908039495103977648 
!Re = 100 
 
!Re = 177.82794100389228012254211951927 
!Re = 316.22776601683793319988935444327 
!Re = 562.34132519034908039495103977648 
!Re = 1000 
 
!Re = 1778.2794100389228012254211951927 
!Re = 3162.2776601683793319988935444327 
!Re = 5623.4132519034908039495103977648 
!Re = 10000 
 
 
!Frequency in water 
frq=Re*4e-3/(4e-10*1000*6.283185307) 
 
numcycles=2 
numtimedivpercylce=200 
numtimdiv= numcycles*numtimedivpercylce 
 
!Set middle of mesh 
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mdl=10*h/2.0 
 
!Ratios of node spacings on boundaries 
inner=varycon   
out=40*inner  
outter=out*10  
 
/PREP7  
 
!Set displacement and velocity of beam 
*DEL,_FNCNAME    
*DEL,_FNCMTID    
*SET,_FNCNAME,'DIS' 
*DIM,%_FNCNAME%,TABLE,6,8,1  
! 
! Begin of equation: 1e-7*sin(6.28318*frq*{TIME}) 
%_FNCNAME%(0,0,1)= 0.0, -999 
%_FNCNAME%(2,0,1)= 0.0 
%_FNCNAME%(3,0,1)= 0.0 
%_FNCNAME%(4,0,1)= 0.0 
%_FNCNAME%(5,0,1)= 0.0 
%_FNCNAME%(6,0,1)= 0.0 
%_FNCNAME%(0,1,1)= 1.0, -1, 0, 6.28318, 0, 0, 0 
%_FNCNAME%(0,2,1)= 0.0, -2, 0, frq, 0, 0, -1 
%_FNCNAME%(0,3,1)=   0, -3, 0, 1, -1, 3, -2 
%_FNCNAME%(0,4,1)= 0.0, -1, 0, 1, -3, 3, 1 
%_FNCNAME%(0,5,1)= 0.0, -1, 9, 1, -1, 0, 0 
%_FNCNAME%(0,6,1)= 0.0, -2, 0, 1e-7, 0, 0, -1 
%_FNCNAME%(0,7,1)= 0.0, -3, 0, 1, -2, 3, -1 
%_FNCNAME%(0,8,1)= 0.0, 99, 0, 1, -3, 0, 0 
! End of equation: 1e-7*sin(6.28318*frq*{TIME}) 
!--> 
 
*DEL,_FNCNAME2    
*DEL,_FNCMTID    
*SET,_FNCNAME2,'VEL' 
 
*DIM,%_FNCNAME2%,TABLE,6,12,1 
! 
! Begin of equation: 6.283185*frq*1e-7*cos(6.28318*frq*{TIME}) 
%_FNCNAME2%(0,0,1)= 0.0, -999 
%_FNCNAME2%(2,0,1)= 0.0 
%_FNCNAME2%(3,0,1)= 0.0 
%_FNCNAME2%(4,0,1)= 0.0 
%_FNCNAME2%(5,0,1)= 0.0 
%_FNCNAME2%(6,0,1)= 0.0 
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%_FNCNAME2%(0,1,1)= 1.0, -1, 0, 6.283185, 0, 0, 0 
%_FNCNAME2%(0,2,1)= 0.0, -2, 0, frq, 0, 0, -1 
%_FNCNAME2%(0,3,1)=   0, -3, 0, 1, -1, 3, -2 
%_FNCNAME2%(0,4,1)= 0.0, -1, 0, 1e-7, 0, 0, -3 
%_FNCNAME2%(0,5,1)= 0.0, -2, 0, 1, -3, 3, -1 
%_FNCNAME2%(0,6,1)= 0.0, -1, 0, 6.28318, 0, 0, 0 
%_FNCNAME2%(0,7,1)= 0.0, -3, 0, frq, 0, 0, -1 
%_FNCNAME2%(0,8,1)= 0.0, -4, 0, 1, -1, 3, -3 
%_FNCNAME2%(0,9,1)= 0.0, -1, 0, 1, -4, 3, 1 
%_FNCNAME2%(0,10,1)= 0.0, -1, 10, 1, -1, 0, 0 
%_FNCNAME2%(0,11,1)= 0.0, -3, 0, 1, -2, 3, -1 
%_FNCNAME2%(0,12,1)= 0.0, 99, 0, 1, -3, 0, 0 
! End of equation: 6.283185*frq*1e-7*cos(6.28318*frq*{TIME}) 
!--> 
 
!Total domain 
RECTNG,0,10*h,0,10*h,   
 
!Create fluid inner layer 
 
!square  
RECTNG,mdl-h, mdl+h, mdl-h, mdl+h,   
 
ASBA, 1,2,,DELETE,KEEP 
 
!create beam 
 
!RECTNG,mdl-0.0316227766e-6,mdl+0.0316227766e-6,mdl-10e-6,mdl+10e-6, 
!RECTNG,mdl-0.0562341325e-6,mdl+0.0562341325e-6,mdl-10e-6,mdl+10e-6, 
!RECTNG,mdl-.1e-6,mdl+.1e-6,mdl-10e-6,mdl+10e-6, 
!RECTNG,mdl-0.17782794100e-6,mdl+0.17782794100e-6,mdl-10e-6,mdl+10e-6, 
!RECTNG,mdl-0.31622776601e-6,mdl+0.31622776601e-6,mdl-10e-6,mdl+10e-6, 
!RECTNG,mdl-0.56234132519e-6,mdl+0.56234132519e-6,mdl-10e-6,mdl+10e-6, 
!RECTNG,mdl-1e-6,mdl+1e-6,mdl-10e-6,mdl+10e-6, 
!RECTNG,mdl-1.7782794100e-6,mdl+1.7782794100e-6,mdl-10e-6,mdl+10e-6, 
!RECTNG,mdl-3.1622776601e-6,mdl+3.1622776601e-6,mdl-10e-6,mdl+10e-6, 
!RECTNG,mdl-5.6234132519e-6,mdl+5.6234132519e-6,mdl-10e-6,mdl+10e-6, 
RECTNG,mdl-10e-6,mdl+10e-6,mdl-10e-6,mdl+10e-6, 
 
ASBA, 2,1,,DELETE, DELETE 
 
 
et,3,141 
KEYOPT,2,4,1 
type,2 
mat,1 
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lsel,s,,,5 
lsel,a,,,6 
lsel,a,,,7 
lsel,a,,,8 
Lesize, ALL,out   
 
lsel,s,,,9 
lsel,a,,,10 
lsel,a,,,11 
lsel,a,,,12 
Lesize,ALL,inner 
 
 
!MESH 
 
asel,s,,,4 
mshape,1,2d 
mshkey,0 
amesh,all 
 
allsel 
et,4,141 
KEYOPT,3,4,1 
type,3 
mat,1 
asel,s,,,3 
esize, outter 
mshape,1,2d 
mshkey,0 
amesh,all 
 
!Set DOF 
 
nsel,s,loc,x,0 
D,ALL,pres,0.0 
D,ALL,UX,0.0,  
D,ALL,UY, 0.0 
 
nsel,s,loc,x,10*h 
D,ALL,pres,0.0 
D,ALL,UX,0.0,  
D,ALL,UY, 0.0 
 
nsel,s,loc,y,0 
D,ALL,pres,0.0 
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D,ALL,UX,0.0,  
D,ALL,UY, 0.0 
 
nsel,s,loc,y,10*h 
D,ALL,pres,0.0 
D,ALL,UX,0.0,  
D,ALL,UY,0.0, 
 
lsel,s,,,9 
lsel,a,,,10 
lsel,a,,,11 
lsel,a,,,12 
nsll,s,1 
 
!Lateral displacement (switch x and y for transverse displacement) 
 
d,all,UX, 0.0 
d,all,UY, %DIS% 
d,all,VX, 0.0 
d,all,VY, %VEL% 
D,ALL,ENKE,-1 
allsel 
!cdwrite,db,fluid,cdb, 
fini 
! Flotran Setup 
/solu 
FLDATA30,QUAD,MOMD,2,    
FLDATA30,QUAD,MOMS,2,    
FLDATA30,QUAD,PRSD,2,    
FLDATA30,QUAD,PRSS,2,    
FLDATA30,QUAD,THRD,0,    
FLDATA30,QUAD,THRS,0,    
FLDATA30,QUAD,TRBD,0,    
FLDATA30,QUAD,TRBS,2,    
/solu 
FLDATA4,TIME,NUMB,100000,    
 
!Set number of cycles 
frq2=numcycles/frq                   !2/frq for one cycle 
FLDATA4,TIME,TEND,frq2,     !should be 2e-2 for 20 cycles 
 
FLDA,SOLU,ALE,T                ! ALE solution 
FLDATA1,SOLU,FLOW,1 
FLDATA1,SOLU,TRAN,1 
!FLDATA1,SOLU,TURB,1  !No turbulence 
FLDATA2,TIME,GLOB,2400 
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FLDATA7,PROT,DENS,Constant 
FLDATA8,NOMI,DENS,1000 
FLDATA7,PROT,VISC,Constant 
FLDATA8,NOMI,VISC, 1e-3 
!FLDA,BULK,BETA,1.0e5 
 
!Number of total time instances 
frq3=frq2/numtimdiv 
FLDA,TIME,STEP, frq3 
FLDATA4A, STEP, APPE, 1 
! 
!!! Newmark method 
! 
FLDATA,OUTP,TAUW,T 
FLDATA,TIME,METH,NEWM 
FLDATA,TIME,DELT,0.5 
! 
!! Set ANSYS-STRUCTURE commands 
SAVE 
/COM  
/COM  Re-meshing Commands 
/COM  
FLDATA,REMESH,ELEM,ALL        ! all defined element re-meshing 
FLDATA,REMESH,ARMA,10.0       ! maximum aspect ratio 
FLDATA,REMESH,VOCH,5.0        ! maximum volume change 
FLDATA,REMESH,ARCH,5.0        ! maximum aspect ratio change 
 
SOLVE 
 
/post1 
 
!Set path (this should be changed depending on mesh) 
PATH,TOP,2,, 
PPATH,1,121, 
PPATH,2,122, 
 
!code for extracting shear and velocity (PAV) 
 
*DEL,_FNCNAME4    
*DEL,_FNCMTID    
*SET,_FNCNAME4,'SHE' 
*DIM,%_FNCNAME4%,TABLE, numtimdiv,1,1  
*DEL,_FNCNAME5    
*DEL,_FNCMTID    
*SET,_FNCNAME5,'PAV' 
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*DIM,%_FNCNAME5%,TABLE, numtimdiv,1,1  
 
 
 
count=1 
count2= numtimdiv-2 
 
 
*DOWHILE, count2 
count=count+1 
SET, 1, count 
PDEF,PRV,TAUW 
PCALC,INTG,IPV,PRV,YG 
*GET,PRDV, Path,   0,      LAST,  IPV 
%_FNCNAME4%(count,0,1)= count 
%_FNCNAME4%(count,1,1)= PRDV 
count2=count2-1 
*Enddo 
 
count=1 
count2= numtimdiv-2  
 
*DOWHILE, count2 
count=count+1 
SET, 1, count 
PDEF,PRV,VY 
PCALC,INTG,IPV,PRV,YG 
*GET,PRDV,Path,0,LAST,IPV 
%_FNCNAME5%(count,0,1)= count 
%_FNCNAME5%(count,1,1)= PRDV 
count2=count2-1 
*Enddo 
 
!This writes data to a file, only works if run as a .mac macro 
*CFOPEN,lg0b1SHElg0,, 
*VWRITE,SHE(1) 
(F20.14) 
 
*CFOPEN,lg0b1PAVlg0,, 
*VWRITE,PAV(1) 
(F20.14) 
 
!!Get the pressure force 
 
!Set path (this should be changed depending on mesh) 
PATH,TOP2,2,, 
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PPATH,1,1322, 
PPATH,2,122, 
 
*DEL,_FNCNAME6    
*DEL,_FNCMTID    
*SET,_FNCNAME6,'PRE' 
*DIM,%_FNCNAME6%,TABLE, numtimdiv,1,1  
 
count=1 
count2= numtimdiv-2 
 
*DOWHILE, count2 
count=count+1 
SET, 1, count 
PDEF,PRV,PRES 
PCALC,INTG,IPV,PRV,XG 
*GET,PRDV,Path,0,LAST,IPV 
%_FNCNAME6%(count,0,1)= count 
%_FNCNAME6%(count,1,1)= PRDV 
count2=count2-1 
*Enddo 
 
!This writes data to a file, only works if run as a .mac macro 
*CFOPEN,lg0b1PRElg0,, 
*VWRITE,PRE(1) 
(F20.14) 
 
/quit 
/clear 
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APPENDIX C: MATLAB PROGRAM USED TO CALCULATE FREQUENCY 
SPECTRUM OF LATERALLY VIBRATING MICROCANTILEVERS IN VISCO US 
LIQUID MEDIA 
 
 
%Lateral Microcantilever Spectrum Plotter  
  
clear;  
clc;  
%close all;  
  
%index of the frequency  
counter0=0;  
%modeN=1; 
  
%Frequency range to search  
%air  
plotl=[1:10:380,380:1:386,386:.1:386.7,386.7:.01:38 7,387:.1:388,388:1:4
00,400:10:2410,2410:1:2424,2424:.1:2424.3,2424.3:.0 1:2424.7,2424.7:.1:2
425,2425:1:2440,2450:10:5000,5000:25:6786,6786:.1:6 791,6791:25:8000]*2*
pi*10^3;  
  
%base layer Young's modulus  
Ep1=169*10^9;  
  
countdown=size(plotl);  
for w=plotl  
  
%Displays the clock  
counter0=counter0+1;  
countdown-counter0  
  
b=45*10^-6; %width  
h1=12*10^-6; %base  
L=400*10^-6; %length     
  
%choose medium of operation  
  
%52% Glycerol  
%pl=998.23*1.1308;  
%n=1*10^-3*6.6530;  
  
%air  
pl=1.205;  
n=1.827*10^-5;  
  
%CCl4 
%pl=1590;  
%n=8.79*10^-4;  
  
%acetone  
%pl=785;  
%n=3.08*10^-4;  
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%water  
%pl=997;  
%n=10*10^-4;  
  
mB=2330*(1.00)*b*h1; % 2330 kg/m^3 (Si) * 20 *10^-6  *2 *10^-6+ 917 
kg/m^3 (PIB)* same = kg/m  
  
I1=(1/12).*b.^3.*h1;  
  
%flextural rigidity  
EIp=Ep1.*I1;  
  
  
%Reynolds number  
Re=(pl.*w.*b.^2)/(4.*n);  
  
%Hydrodynamic function  
h=h1;  
  
gamma=2*sqrt(2)/(pi*sqrt(Re))*(((1.657624692.*(h/b) ^1.83).*sqrt(Re)+3.0
807413409.*(h/b)^.85+1)  +j.*(    (-
1.321274*(h/b).^1+2.5602901549).*1./sqrt(Re)+3.1077 195556.*(h/b).^.85+1
));  
  
  
%Mass per unit length  
mBp=mB+(pi/4).*pl.*b.^2.*real(gamma);  
mBpp=(pi/4).*pl.*b.^2.*imag(gamma);  
  
%mode numbers  
Bg=[1.87510406871196 4.69409113297418 7.85475743823 761 10.9955407348755 
14.1371683910465 17.2787595320882 20.4203522510413 23.5619449018064 
26.7035375555183 29.8451302091028];  
  
%length index  
counter=0;  
  
%change to look at different points along the lengt h,  
%currently only looking at beginning, middle and en d 
overlength=0:(L/2):L/1;  
  
for x=overlength  
  
    counter=counter+1;  
    wxtotal=0;  
    for i=1:10  
      
        Bi=Bg(i)./L;  
         
        %mode shape  
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        phi=((cos(Bi.*x)-
cosh(Bi.*x)).*(cos(Bi.*L)+cosh(Bi.*L))+(sin(Bi.*x)-
sinh(Bi.*x)).*(sin(Bi.*L)-sinh(Bi.*L)))./(sin(Bi.*L )-sinh(Bi.*L));  
        F1= @(x) (((cos(Bi.*x)-
cosh(Bi.*x)).*(cos(Bi.*L)+cosh(Bi.*L)))./(sin(Bi.*L )-
sinh(Bi.*L))+(sin(Bi.*x)-sinh(Bi.*x)));  
         
        %Modal excitation assumption  %uncomment to  force in modeshape 
of mode  
     
        %if i==modeN  
                %integral top part  
            itp=quad(F1,0,L);  
        %else  
        %    itp=0;  
        %end  
         
        F2= @(x) (((cos(Bi.*x)-
cosh(Bi.*x)).*(cos(Bi.*L)+cosh(Bi.*L)))./(sin(Bi.*L )-
sinh(Bi.*L))+(sin(Bi.*x)-sinh(Bi.*x))).^2;  
         
        %second integral part  
        sip=quad(F2,0,L);  
         
        %frequency dependent part  
        fdp=(EIp.*(Bi.*L).^4-mBp.*w.^2.*L.^4)+j*(mB pp.*w.^2.*L.^4);  
         
        Fx=(175/400)*10^-6;%constant force along be am 
  
        %amplitude of delection @ x  
        C=L^4*(Fx*itp./(fdp.*sip));  
         
        %deflection from this mode  
        wx=C.*phi;  
         
        %total defelction  
        wxtotal=wx+wxtotal;  
     
        %store deflection for this mode  
        wxi(i)=wx;  
         
    
    end  
     
    %store deflections as a function of x  
     
    Wbig(counter)=(wxtotal);  
     
    Wpart(counter)=(wxi(1));  
    Wpart2(counter)=(wxi(2));  
    Wpart3(counter)=(wxi(3));  
    Wpart4(counter)=(wxi(4));  
    Wpart5(counter)=(wxi(5));  
    Wpart6(counter)=(wxi(6));  
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    Wpart7(counter)=(wxi(7));  
    Wpart8(counter)=(wxi(8));  
     
     
end  
  
%store tip deflection as a function of frequency  
%(You can look at different points on the beam  
%by changing ENDL to the correct index)  
[nothing ENDL]=size(overlength);  
%ENDL=2; 
sweep1(counter0)=Wpart(ENDL);  
sweep2(counter0)=Wpart2(ENDL);  
sweep3(counter0)=Wpart3(ENDL);  
sweep4(counter0)=Wpart4(ENDL);  
sweep5(counter0)=Wpart5(ENDL);  
sweep6(counter0)=Wpart6(ENDL);  
sweep7(counter0)=Wpart7(ENDL);  
sweep8(counter0)=Wpart8(ENDL);  
sweep(counter0)=Wbig(ENDL);  
  
  
end  
  
%Plot graphs  
  
rad=2*pi*10^3  
  
%Change this to normalize sweep to a particular val ue 
maxabssweep=max(abs(sweep));  
  
figure (14)  
grid('on');  
hold on;  
plot(plotl./(rad),20*log10(abs(sweep)./maxabssweep) ,'r')  
plot(plotl./(rad),20*log10(abs(sweep1)./maxabssweep ),'r--')  
plot(plotl./(rad),20*log10(abs(sweep2)./maxabssweep ),'r--')  
plot(plotl./(rad),20*log10(abs(sweep3)./maxabssweep ),'r--')  
  
%air (transverse resonant frequencies)  
plot([103.046173231076,103.046173231076],[min(20*lo g10(abs(sweep)./maxa
bssweep)) 0],'k')  
plot([645.964652687217,645.964652687217],[min(20*lo g10(abs(sweep)./maxa
bssweep)) 0],'k')  
plot([1808.86734001235,1808.86734001235],[min(20*lo g10(abs(sweep)./maxa
bssweep)) 0],'k')  
plot([3544.78700981296,3544.78700981296],[min(20*lo g10(abs(sweep)./maxa
bssweep)) 0],'k')  
plot([5859.9095844272,5859.9095844272],[min(20*log1 0(abs(sweep)./maxabs
sweep)) 0],'k')  
%plot([8753.80997837765,8753.80997837765],[min(20*l og10(abs(sweep)./max
(abs(sweep)))) 0],'k')  
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%water  
% 
plot([64.1961148174447,64.1961148174447],[min(log10 (abs(sweep)./maxabss
weep)) 0],'k') 
%plot([417.699903858705,417.699903858705],[min(log1 0(abs(sweep)./maxabs
sweep)) 0],'k') 
%plot([1182.20035206476,1182.20035206476],[min(log1 0(abs(sweep)./maxabs
sweep)) 0],'k') 
%plot([2327.68289764804,2327.68289764804],[min(log1 0(abs(sweep)./maxabs
sweep)) 0],'k') 
%plot([3858.31415669093,3858.31415669093],[min(log1 0(abs(sweep)./maxabs
sweep)) 0],'k')  
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APPENDIX D: MATLAB PROGRAM USED TO CALCULATE 
CHARATERISTICS OF LATERALLY VIBRATING MICROCANTILEVERS I N 
VISCOUS LIQUID MEDIA 
 
 
%This is the matlab algorithm for investigation of laterally excited  
%microcantilevers  
  
%Technical (remove close all to allow for multiple run plots)  
clc;  
clear all;  
%close all;  
  
%switches (mode active [on = 1, off = 0])  
%Choose which parameter to sweep  
watergly=0;  
watereth=0;  
varyh1=1;  
varyb=0;  
varyL=0;  
  
  
%Choose min, max, and step size of parameter sweep  
%For water-gly and water-eth, use integer values  
%representing the first and last data points desire d 
bottom=45*10^-6; %Note: Do not set to zero  
every=15*10^-6;  
top=90.001*10^-6; %.001 added so that bottom!=top  
  
%Choose default beam geometry  
h1=12*10^-6; %Thickness [in meters]  
b=45*10^-6;   %Width [in meters]  
L=200*10^-6;  %Length [in meters]  
  
%Mode numbers  
Bg=[1.87510406871196 4.69409113297418 7.85475743823 761 10.9955407348755 
14.1371683910465 17.2787595320882 20.4203522510413 23.5619449018064 
26.7035375555183 29.8451302091028];  
  
%Choose mode number  
bl=Bg(1);  
rad=2*pi;  
  
%Operational Medium Properties:  
  
%glycerol data: 37 points  
  
%Viscosity  
gnarray=[1 1.009 1.020 1.046 1.072 1.098 1.125 1.15 5 1.186 1.218 1.253 
1.288 1.362 1.442 1.530 1.627 1.734 1.984 2.274 2.6 32 3.082 3.646 4.434 
5.402 6.653 8.332 10.66 13.63 18.42 27.57 40.49 59. 78 84.17 147.2 383.7 
778.9 1759.6];  
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%Density  
gplarray=[1 .9994 1.0005 1.0028 1.0051 1.0074 1.009 7 1.0120 1.0144 
1.0167 1.0191 1.0215 1.0262 1.0311 1.036 1.0409 1.0 459 1.0561 1.0664 
1.0770 1.0876 1.0984 1.1092 1.1200 1.1308 1.1419 1. 1530 1.1643 1.1755 
1.1866 1.1976 1.2085 1.2192 1.2299 1.2404 1.2508 1. 2611];  
%Percent (w/w) aqueous glycerol  
gperarray=[0 .5 1 2 3 4 5 6 7 8 9 10 12 14 16 18 20  24 28 32 36 40 44 
48 52 56 60 64 68 72 76 80 84 88 92 96 100] ;  
  
%ethanol data: 71 points  
  
%Viscosity  
eplarray=[1 .9973 .9963 .9954 .9945 .9936 .9927 .99 18 .9910 .9902 .9893 
.9885 .9878 .9870 .9862 .9855 .9847 .9840 .9833 .98 26 .9819 .9805 .9792 
.9778 .9765 .9752 .9739 .9726 .9713 .9700 .9687 .96 60 .9632 .9602 .9571 
.9539 .9504 .9468 .9431 .9392 .9352 .9311 .9269 .92 27 .9183 .9139 .9095 
.9049 .9004 .8958 .8911 .8865 .8818 .8771 .8724 .86 76 .8629 .8581 .8533 
.8485 .8436 .8387 .8335 .8284 .8232 .8180 .8125 .80 70 .8013 .7954 
.7893];  
%Density  
enarray=[1 1.021 1.044 1.068 1.093 1.116 1.138 1.15 9 1.181 1.203 1.226 
1.250 1.276 1.301 1.328 1.355 1.382 1.411 1.439 1.4 68 1.498 1.560 1.624 
1.691 1.757 1.822 1.886 1.951 2.015 2.077 2.138 2.2 54 2.365 2.471 2.576 
2.662 2.721 2.762 2.797 2.823 2.840 2.846 2.844 2.8 37 2.826 2.807 2.783 
2.749 2.696 2.627 2.542 2.474 2.410 2.342 2.276 2.2 10 2.144 2.078 2.011 
1.944 1.877 1.804 1.738 1.671 1.603 1.539 1.472 1.4 04 1.339 1.270 
1.201];  
%Percent (w/w) aqueous ethanol  
eperarray=[0 .5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5  7 7.5 8 8.5 9 9.5 
10 11 12 13 14 15 16 17 18 19 20 22 24 26 28 30 32 34 36 38 40 42 44 46 
48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 
96 98 100];  
     
%Water  
nwa=1*10^-3;   %Viscosity of water in Pa * s, or kg /(m s)  @ 20'C (@ 
T=25'C= .89*10^-3) (1 cP= 10^-3 Pa*s)  
plwa=997;       %Density of water in kg/m^3  
  
%Air  
nair=1.827*10^-5 ; %viscosity of air in Pa * s from  CRC (1984, pp.F-42-
44, a different CRC than the one in the lab)  
plair=1.205;       %density of air in kg/m^3 from C RC  
  
%Uncomment to Run in Air  
%nwa=nair;  
%plwa=plair;  
  
%Uncomment here and in algorithm to force a particu lar gamma value  
%saderin=1.696626383+j.*0.211151462;  
  
%Indexing variable  
c=0;  
  
for param=bottom:every:top  
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        c=c+1; %Main counter  
        n=nwa;  
        pl=plwa;  
         
        %%%If statements to put param into the righ t variable%%%  
        if watergly==1;  
            n=gnarray(c)*nwa;  
            pl=gplarray(c)*plwa;  
            per=gperarray(c);  
        end  
        if watereth==1;  
            n=enarray(c)*nwa;  
            pl=eplarray(c)*plwa;  
            per=eperarray(c);  
        end  
        if varyb==1;  
            b=param;  
        end  
        if varyh1==1;  
            h1=param;  
        end  
        if varyL==1;  
            L=param;  
        end    
         
        %%%Define everything%%%  
     
        %beam density  
        pB=2330;  
         
        %mass per unit length  
        mB=pB*b*h1;  
  
        %Young's modulus of beam  
        Ep1=(127.5*10^9); %Pa= kg/(m s^2) Si:169e9 Experimental:127.5e9  
         
        %Vacuum Resonant Frequency  
        I1=(1/12).*b^3.*h1;  
        EIp=Ep1.*I1;  
        Pwvac(c)=((bl.^2)./L.^2).*sqrt(EIp./mB);  
         
        %initial frequency  
        w=Pwvac(c);  
         
        wh = Pwvac(c);  
         
        %%Find an approximation for the resonant fr equency%%% 
        for iteration=1:20  
         
            %Centroidal moment of inertia  
            I1=(1/12).*b^3.*h1;  
             
            EIp=Ep1.*I1;  
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            %Reynolds number  
            Re=(pl.*wh.*b.^2)/(4.*n);  
              
            %Hydrodynamic function (Stokes' approxi mation)  
            gamma=sqrt(2)*2./(pi*sqrt(Re))*(1+j);  
             
            mBp=mB+(pi/4).*pl.*b.^2.*real(gamma);  
            mBpp=(pi/4).*pl.*b.^2.*imag(gamma);  
             
            %resonant frequency  

                  
wh=((bl.^2)./L.^2).*sqrt((mBp.*EIp)./(mBp.*mBp+mBpp .*mBpp));  

             
        end  
     
        %Lateral ribbon quality factor  
        IQlr=(mBpp)./(mBp);  
        Qlr=1./(2.*(1-sqrt(1-abs(IQlr))));  
         
        %Collect plot variable data from Stokes' so lution   
        PQlr(c)=Qlr;  
        Pwlr(c)=wh;  
        Pg2s(c)=(pi/4).*pl.*b.^2.*2.*sqrt(2)./(pi*s qrt(Re));  
        Pg1s(c)=Pg2s(c).*Pwlr(c);  
        PRes(c)=Re;  
     
        %%%Calc exact res freq%%%  
         
        %initial approximation  
        wh2d=wh;  
  
        for iteration=1:20  
  
            %centroidal moment of inertia  
            I1=(1/12).*b^3.*h1;  
            EIp=Ep1.*I1;  
             
            %Reynolds number  
            Re=(pl.*wh2d.*b.^2)/(4.*n);             
            h=h1;  
             
            %Hydrodynamic function found from ANSYS  
            
gamma2d=2*sqrt(2)/(pi*sqrt(Re))*(((1.657624692.*(h/ b)^1.83).*sqrt(Re)+3
.0807413409.*(h/b)^.85+1)  +j.*(    (-
1.321274*(h/b).^1+2.5602901549).*1./sqrt(Re)+3.1077 195556.*(h/b).^.85+1
));  
     
            mBp2d=mB+(pi/4).*pl.*b.^2.*real(gamma2d );  
            mBpp2d=(pi/4).*pl.*b.^2.*imag(gamma2d);  
         
            %Effective spring constant (off by fact or of three from 
normal  
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            %notation)  
            klat= (EIp./L.^3);  
             
            %Effective mass (with the dgamma/dw acc ounted for)  
            Mlat = mBp2d.*L+L.*((mBpp2d-
((sqrt(2).*pl.*b.^2./4./Re).*(2.5602901549-
1.321274.*(h./b))+(sqrt(2).*pl.*b.^2./8./sqrt(Re)). *(3.1077195556.*(h./
b).^0.85+1)))./(mBp2d-
((sqrt(2).*pl.*b.^2./8./sqrt(Re)).*(3.0807413409.*( h./b).^.85+1)))).*mB
pp2d;  
             
            %Resonant frequency  
            wh2d=(bl.^2).*sqrt(klat./Mlat);  
        end  
     
        Pw2d(c)=wh2d;  
         
        %%%Quality factor with Thickness Effects%%%  
        IQ2d=(mBpp2d)./(mBp2d);  
        Qapprox=1./IQ2d;  
        if IQ2d>1  
            Q2d=1./(sqrt(1+abs(IQ2d)));  
        else  
            Q2d=1./(2.*(1-sqrt(1-abs(IQ2d))));  
        end  
         
        %%%Sensitivity%%%  
         
        A=mBpp2d;  
        Apdiv=(mBpp2d-((sqrt(2).*pl.*b.^2./4./Re).* (2.5602901549-
1.321274.*(h./b))+(sqrt(2).*pl.*b.^2./8./sqrt(Re)). *(3.1077195556.*(h./
b).^0.85+1)));  
        Bpdiv=(mBp2d-
((sqrt(2).*pl.*b.^2./8./sqrt(Re)).*(3.0807413409.*( h./b).^.85+1)));  
         
        B=mBp2d;  
        k=(EIp)/L.^3;  
         
        %If forcing a particular gamma, use these l ines  
        %M=L.*B+L.*(A.^2./B);  
        %lamM(c)=((A.^2.*EIp)./(2.*k.*L.*M.*(L.*B). ^2)-1./(2.*M));%  
         
        %Normalized mass sensitivity  
        M = mBp2d.*L+L.*((mBpp2d-
((sqrt(2).*pl.*b.^2./4./Re).*(2.5602901549-
1.321274.*(h./b))+(sqrt(2).*pl.*b.^2./8./sqrt(Re)). *(3.1077195556.*(h./
b).^0.85+1)))./(mBp2d-
((sqrt(2).*pl.*b.^2./8./sqrt(Re)).*(3.0807413409.*( h./b).^.85+1)))).*mB
pp2d;  
        lamM(c)=((A.*Apdiv.*EIp)./(2.*k.*L.*M.*(L.* Bpdiv).^2)-
1./(2.*M));%  
         
        %Mass sensitivity in Hz/kg  
        PSmass(c)=lamM(c).*(Pw2d(c)/(2*pi));  
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        %Mass sensitivity approx  
        lamMap(c)=(1./(2.*M));  
        PSmap(c)=(1./(2.*M)).*(Pw2d(c)/(2*pi));  
  
        %Normalized Chemical sensitivity in Hz/pg *  um^2  
        PScbar(c)= (PSmass(c)./1000./10.^12).*b.*L. *10^12;  
         
         
        %Collect plot variable data  
        Phb(c)=h1/b;  
        PRe(c)=Re;  
        Pgamma2d(c)=gamma2d;  
        PmBp2d(c)=mBp2d;  
        PmBpp2d(c)=mBpp2d;  
        Pklat(c)=klat;  
        PMlat(c)=Mlat;  
        Pw2d(c)=wh2d;  
        Pf2d(c)=wh2d./(2*pi);  
        PQ2d(c)=Q2d;  
        PQapprox(c)=Qapprox;  
         
        Pg1(c)=mBpp2d.*wh2d;  
        Pg2(c)=(pi/4).*pl.*b.^2.*real(gamma2d);  
        Pnwa(c)=nwa;  
        PL(c)=L;  
        Pb(c)=b;  
        Ph(c)=h1;  
         
         
        %%%Calculate other approximations%%%  
         
        %Re>>1 approximation res freq (no-div [nd])  
         
        wh2dnd=wh;  
         
        for iteration=1:20  
         
            %Centroidal moment of inertia  
            I1=(1/12).*b^3.*h1;  
            EIp=Ep1.*I1;  
             
            %Reynolds number  
            Re=(pl.*wh2dnd.*b.^2)/(4.*n);  
              
            %Hydrodynamic function found from ANSYS  
            h=h1;  
            
gamma2dnd=2*sqrt(2)/(pi*sqrt(Re))*(((1.657624692.*( h/b)^1.83).*sqrt(Re)
+3.0807413409.*(h/b)^.85+1)  +j.*(    (-
1.321274*(h/b).^1+2.5602901549).*1./sqrt(Re)+3.1077 195556.*(h/b).^.85+1
));  
      
            %Uncomment here and above to force a pa rticular gamma value  
            %gamma2d=saderin;  
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            mBp=mB+(pi/4).*pl.*b.^2.*real(gamma2dnd );  
            mBpp=(pi/4).*pl.*b.^2.*imag(gamma2dnd);  
             
            %resonant frequency  
            
wh2dnd=((bl.^2)./L.^2).*sqrt((mBp.*EIp)./(mBp.*mBp+ mBpp.*mBpp));  
        end  
         
        Pw2dnd(c)=wh2dnd;  
         
        %%%Quality factor with Thickness Effects%%%  
        IQ2dnd=(mBpp)./(mBp);  
        Qapproxnd=1./IQ2dnd;  
        if IQ2dnd>1  
            Q2dnd=1./(sqrt(1+abs(IQ2dnd)));  
        else  
            Q2dnd=1./(2.*(1-sqrt(1-abs(IQ2dnd))));  
        end  
         
        A=mBpp;  
        B=mBp;  
        k=(EIp)/L.^3;  
        M=L.*B+L.*(A.^2./B);  
        lamMnd(c)=((A.^2.*EIp)./(2.*k.*L.*M.*(L.*B) .^2)-1./(2.*M));%  
     
        %Mass sensitivity in Hz/kg  
        PSmassnd(c)=lamM(c).*(Pw2dnd(c)/(2*pi));  
  
        %Mass sensitivity approx  
        lamMapnd(c)=(1./(2.*M));  
        PSmapnd(c)=(1./(2.*M)).*(Pw2dnd(c)/(2*pi));  
         
        %Collect plot variable data  
        Pgamma2dnd(c)=gamma2dnd;  
        PmBp2dnd(c)=mBp;  
        PmBpp2dnd(c)=mBpp;  
        Pw2dnd(c)=wh2dnd;  
        PQ2dnd(c)=Q2dnd;  
        PQapproxnd(c)=Qapproxnd;  
         
         
        %Inviscid approximation [in]  
        wh2din=wh;  
  
        for iteration=1:20  
  
            %centroidal moment of inertia  
            I1=(1/12).*b^3.*h1;  
            EIp=Ep1.*I1;  
             
            %Reynolds number  
            Re=(pl.*wh2din.*b.^2)/(4.*n);             
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            h=h1;  
             
            %Inviscid approximation [works for 0<h/ b<<1, Re=inf]  
            
gamma2din=(2./(pi.^2)).*(h1./b).^2.*(1+2.*log(4.*pi .*b./h));  
             
            mBp2d=mB+(pi/4).*pl.*b.^2.*real(gamma2d in);  
            mBpp2d=(pi/4).*pl.*b.^2.*imag(gamma2din );  
         
            %Effective spring constant (off by fact or of three from 
normal  
            %notation)  
            klat= (EIp./L.^3);  
             
            %Effective mass (with the dgamma/dw acc ounted for)  
            Mlat = mBp2d.*L+L.*((mBpp2d-
((sqrt(2).*pl.*b.^2./4./Re).*(2.5602901549-
1.321274.*(h./b))+(sqrt(2).*pl.*b.^2./8./sqrt(Re)). *(3.1077195556.*(h./
b).^0.85+1)))./(mBp2d-
((sqrt(2).*pl.*b.^2./8./sqrt(Re)).*(3.0807413409.*( h./b).^.85+1)))).*mB
pp2d;  
             
            %Resonant frequency  
            wh2din=(bl.^2).*sqrt(klat./Mlat);  
        end  
         
        Pw2din(c)=wh2din;  
         
         
         
        %Countdown clock: if numbers to high, chang e the value of 
"every"  
        top/every-c-bottom  
     
  
     
end  
  
  %A2 will output a resonant frequency [kHz], quali ty factor, and Sm 
[Hz/pg]  
   
  A2(:,1)=Pw2d./2./pi/10^3;  
  A2(:,2)=PQ2d;  
  A2(:,3)=(abs(PSmass)/1000/10^12);  
  
%if statements separating different plot types  
  
if varyb==1  
     
     %b/L^2 vs. Resonant frequency (kHz)  
     figure (1)  
     hold on;  
     plot((bottom:every:top)./(PL.^2),Pw2d./(rad*10 ^3),'b')  
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     grid('on'); 
     xlabel('b/L^2 [m^-1]'); 
     ylabel('resonant frequency [kHz]'); 
 
     %sqrt(b)/L vs. Quality Factor  
     figure (2)  
     hold on;  
     plot(sqrt(bottom:every:top)./(PL),PQ2d,'b')  
     grid('on'); 
     xlabel('b^1/2/L [m^-1/2]'); 
     ylabel('Quality Factor'); 
 
      
     %b/L^2 vs. Scbar  
     figure (3)  
     hold on;  
     plot((bottom:every:top)./(PL.^2),abs(PScbar),' b')  
     grid('on'); 
     xlabel('b/L^2 [m^-1]'); 
     ylabel(‘Normalized Chemical Sensitivity [Hz/pg  * um^2]'); 

 
  
 end  
  
if varyL==1  
     
     %b/L^2 vs. Resonant frequency (kHz)  
     figure (1)  
     hold on;  
     plot(Pb./(bottom:every:top).^2,Pw2d./(rad*10^3 ),'b')  
     grid('on');  
     xlabel('b/L^2 [m^-1]'); 
     ylabel('resonant frequency [kHz]'); 
 
     %sqrt(b)/L vs. Quality Factor  
     figure (2)  
     hold on;  
     plot(sqrt(Pb)./(bottom:every:top),PQ2d,'b')  
     grid('on');  
     xlabel('b^1/2/L [m^-1/2]'); 
     ylabel('Quality Factor'); 
 
     %b/L^2 vs. Scbar  
     figure (3)  
     hold on;  
     plot(Pb./(bottom:every:top).^2,abs(PScbar),'b' )  
     grid('on');  
     xlabel('b/L^2 [m^-1]'); 
     ylabel(‘Normalized Chemical Sensitivity [Hz/pg  * um^2]'); 

 
end  
  
if varyh1==1  
     



  184 

     %h1 (um) vs. Resonant frequency (kHz)  
     figure (1)  
     hold on;  
     plot((bottom:every:top).*10^6,Pw2d./(rad*10^3) ,'b')  
     grid('on');  
     xlabel('h [um]'); 
     ylabel('resonant frequency [kHz]'); 

 
     %h1 (um) vs. Quality Factor  
     figure (2)  
     hold on;  
     plot((bottom:every:top).*10^6,PQ2d,'b')  
     grid('on');  
     xlabel('h [um]'); 
     ylabel('Quality Factor'); 

 
     %h1 (um) vs. Scbar  
     figure (3)  
     hold on;  
     plot((bottom:every:top).*10^6,abs(PScbar),'b')  
     grid('on');  
     xlabel('h [um]'); 
     ylabel(‘Normalized Chemical Sensitivity [Hz/pg  * um^2]'); 
 
 end  
  
if watergly==1  
     
     %Re vs. Resonant frequency (kHz)  
     figure (1)  
     hold on;  
     plot(PRe,Pw2d./(rad*10^3),'b')  
     plot(PRe,Pw2dnd./(rad*10^3),'r--')  
     plot(PRe,Pw2din./(rad*10^3),'k')  
     grid('on'); 
     xlabel('Reynolds Number'); 
     ylabel('resonant frequency [kHz]');  
     
     %sqrt(Re) vs. Quality Factor  
     figure (2)  
     hold on;  
     plot(sqrt(PRe),PQ2d,'k')  
     plot(sqrt(PRe),PQapprox,'r--')      
     grid('on'); 
     xlabel('Reynolds Number'); 
     ylabel('Quality Factor'); 

 
     %Re vs. Smass  
     figure (3)  
     hold on;  
     plot(PRe,abs(PSmass)/1000/10^12,'b')  
     plot(PRe,abs(PSmap)/1000/10^12,'r--')  
     grid('on'); 
     xlabel('Reynolds Number'); 
     ylabel(‘Mass Sensitivity [Hz/pg]');  
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    % %gly vs. Resonant frequency (kHz)  
     figure (4)  
     hold on;  
     plot(gperarray(bottom:every:top),Pw2d./(rad*10 ^3),'b')  
     grid('on'); 
     xlabel('Percent Aqueous Glycerol’); 
     ylabel('resonant frequency [kHz]');  
 
     % %gly vs. Quality Factor  
     figure (5)  
     hold on;  
     plot(gperarray(bottom:every:top),PQ2d,'b')  
     grid('on'); 
     xlabel('Percent Aqueous Glycerol’); 
     ylabel('Quality Factor'); 

 
     % %gly vs. Smass  
     figure (6)  
     hold on;  
     plot(gperarray(bottom:every:top),abs(PSmass)/1 000/10^12,'b')  
     grid('on'); 
     xlabel('Percent Aqueous Glycerol’); 
     ylabel(‘Mass Sensitivity [Hz/pg]');  
      
end  
  
if watereth==1  
     
     %Re vs. Resonant frequency (kHz)  
     figure (1)  
     hold on;  
     plot(PRe,Pw2d./(rad*10^3),'b')  
     plot(PRe,Pw2dnd./(rad*10^3),'r--')  
     plot(PRe,Pw2din./(rad*10^3),'k')  
     grid('on'); 
     xlabel('Reynolds Number'); 
     ylabel('resonant frequency [kHz]');  
 
     %sqrt(Re) vs. Quality Factor  
     figure (2)  
     hold on;  
     plot(sqrt(PRe),PQ2d,'k')  
     plot(sqrt(PRe),PQapprox,'r--')      
     grid('on'); 
     xlabel('Reynolds Number'); 
     ylabel('Quality Factor');  
      
     %Re vs. Smass [Hz/pg]  
     figure (3)  
     hold on;  
     plot(PRe,abs(PSmass)/1000/10^12,'b')  
     plot(PRe,abs(PSmap)/1000/10^12,'r--')  
     grid('on'); 
     xlabel('Reynolds Number'); 
     ylabel(‘Mass Sensitivity [Hz/pg]');  
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     % %gly vs. Resonant frequency (kHz)  
     figure (4)  
     hold on;  
     plot(eperarray(bottom:every:top),Pw2d./(rad*10 ^3),'b')  
     grid('on'); 
     xlabel('Percent Aqueous Ethanol’); 
     ylabel('resonant frequency [kHz]');  
 
     % %gly vs. Quality Factor  
     figure (5)  
     hold on;  
     plot(eperarray(bottom:every:top),PQ2d,'b')  
     grid('on'); 
     xlabel('Percent Aqueous Ethanol’); 
     ylabel('Quality Factor');  
      
     % %gly vs. Smass [Hz/pg]  
     figure (6)  
     hold on;  
     plot(eperarray(bottom:every:top),abs(PSmass)/1 000/10^12,'b')  
     grid('on');  

xlabel('Percent Aqueous Ethanol’);      
ylabel(‘Mass Sensitivity [Hz/pg]'); 

 
end  
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