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ABSTRACT 
ADAPTIVE REAL-TIME DECODING OF BRAIN SIGNALS FOR LONG-TERM 

CONTROL OF A NEURO-PROSTHETIC DEVICE 
 
 

Tushar Dharampal, B.E. 
 

Marquette University, 2011 
 
 

Changes in the statistical properties of neural signals recorded at the brain-
machine interface (BMI) pose significant challenges for accurate long-term control of 
prostheses interfaced directly with the brain by continuously altering the relationship 
between neural responses and desired action. In this thesis, we develop and test an 
adaptive decoding algorithm that can recover from changes in the statistical properties of 
neural signals within minutes. The adaptive decoding algorithm uses a Kalman filter as 
part of a dual-filter design to continuously optimize the relationship between the observed 
neural responses and the desired action of the prosthesis. Performance of the algorithm 
was evaluated by simulating the encoding of arm movement by neurons in the primary 
motor cortex under stationary conditions as well as nonstationary conditions depicting 
loss and/or replacement of neurons in the population. The time taken for the system to 
fully recover (3-12 minutes) was faster than other adaptive systems (Rotermund et al 
2006) and resulted in errors that were well matched to the initial system performance. 
The algorithm adapts to the instantaneous properties of the stimulus and is able to decode 
movements with high accuracy outside the trained movement space. This implementation 
lends itself favorably toward a portable long-term decoding approach at the brain-
machine interface capable of providing accurate real-time decoding of neural signals over 
periods of weeks to months without outside intervention.  
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1 INTRODUCTION AND SPECIFIC AIMS 

Changes in the statistical properties of neural signals recorded at the brain-

machine interface (BMI) pose significant challenges for accurate long-term control of 

prostheses interfaced directly with the brain by continuously altering the relationship 

between neural responses and desired action (Schwartz et al, 2006, Rotermund et al, 

2006). Prosthesis control algorithms rely on the accuracy of the information carried by 

these neural signals and optimally use this information to generate motion of the 

prosthesis as desired by the subject. Due to a variety of phenomenon including neuron 

loss and/or recruitment, neuroplasticity, and modulation due to attention/adaptation, such 

changes may manifest as ‘nonstationary’ signals whose statistical properties (including 

mean, variance etc.) are not constant. Such changes impact the accuracy of the prosthesis 

control algorithms (also referred to as ‘decoding algorithms’) thus requiring that the 

decoding of neural activity be continuously re-optimized.  

Current optimization procedures are typically performed intermittently and are 

computationally intensive, resulting in degraded performance between sessions. For 

algorithms that adapt continuously, recovery can take several hours (Rotermund et al, 

2006) or may not be easily realized in a portable implementation with current 

technologies (Rotermund et al, 2006, Srinivasan et al, 2007).  

While different approaches to neuronal signal loss and/or changes in recorded 

neurons over time scales of minutes to days have been investigated both with simulated 

neural signals (Rotermund et al, 2006) and physiological recordings (Wu et al, 2008), the 

algorithms have not been tested against the effects of neuro-physiological phenomenon 
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that occur over short timescales (seconds to minutes) such as attention modulation of 

neuron responses, neuroplasticity, and neuronal adaptation that could also bring about 

statistical changes in the neural signals. It is proposed that an adaptive decoding 

algorithm that is resistant to changes in the statistical properties of the neural signals 

across temporal scales will provide more accurate decoding of intended movement to 

actively control prosthetic systems. Therefore the specific aims are: 

Aim 1: Identify and characterize the effects of different sources of nonstationarity on 

non-adaptive decoding of neuronal signals in a simulated population of neurons. 

Aim 2: Design and implement an adaptive decoding algorithm that is resistant to 

nonstationary changes in neural signals and validate its performance using simulated 

datasets. 

Aim 3: Compare the performance of the proposed algorithm against current approaches 

and evaluate its potential implementation in a portable system. 
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2 BACKGROUND AND SIGNIFICANCE 

2.1 Neuromotor Prostheses 

Neuromotor prostheses are a subset of cortical neuroprostheses that replicate lost 

limb function for patients with intact cortical areas but disabled motor pathways or end 

effectors (Schwartz A. B. 2004). These may include amputees, patients with muscular 

dystrophy and paralysis patients. Either invasive (cortical implants) or noninvasive 

methods (Electroencephalography recordings) of recording neural data may be used in 

such prostheses to establish desired limb movement.  

Invasive neuromotor prostheses are made up of three essential components – the 

artificial limb (end effector), cortical implant and neuronal decoding system. In an ideal 

system, brain signals (single or multi-unit neuron recordings) from the relevant cortical 

area (e.g., pre-motor or motor cortex) are collected using the cortical implant and passed 

to the decoding system that estimates the intended movement parameters (e.g., velocity, 

position) to control the artificial limb based on the recorded neuronal responses (Lebedev 

M. A., et al. 2006; Schwartz A. B. 2004; Schwartz A. B., et al. 2006) . 

The most commonly used electrode implant is the Utah Array (Maynard E. M., et 

al. 1997). The implant contains 100 electrodes placed in a 10x10 grid (on a 4mm x 4mm 

surface), with each electrode capable of recording action potentials from 1 – 3 neurons. 

Through an invasive procedure, the electrode is placed directly on the surface of the 

cerebral cortex in the cortical area considered most relevant to the task. Typically, wires 

carrying data to the control system pass from the electrode and transcutaneously through 
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the skull to the control system. The control system is in turn connected to the actuators 

that drive the prosthesis. The control system typically consists of a digital microprocessor 

based system that runs a mathematical decoding algorithm to map movement-related 

activity in the brain to the specific control signals used to drive the prosthesis. Parameters 

(coefficients) of the decoding algorithm are trained/optimized over a training session(s) 

involving repeated movements within a predetermined training space so that both the 

patient and the algorithm learn the space and the use of the limb. Typically, such 

coefficients are determined using an error minimization technique (e.g. Least Squares 

Minimization) to associate the activity of a recorded neuron with a particular type of limb 

movement. Each neuron typically has a higher response to a preferred movement 

direction (or set of directions) and increases its activity when the desired limb movement 

is in that direction. The learning or optimization technique associates a higher coefficient 

with the neuron when the movement is in the neuron’s preferred direction. These 

coefficients (weights) are then used by the decoding algorithm to decode intended 

movement from the neuronal responses (Hochberg L. R., et al. 2006; Kalaska J. F. 2008; 

Schwartz A. B., et al. 2006). 

2.2 Nonstationary Neural Responses 

For invasive neuromotor prosthesis, the electrode is designed to be implanted for 

a prolonged period of time. During long term implantation of the electrode, a number of 

different processes can occur at the neuron – electrode interface that can influence the 

quality of the signals being recorded. These include biochemical processes (electrode 

immunological response), mechanical (movement/migration of electrode) and cognitive 
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processes (attention and adaptation). Each of these processes introduces unwanted 

changes in the neuron recordings that impact the statistics of the recorded data. Such 

changes are referred to as nonstationary changes or nonstationarities. 

In non-adaptive decoding algorithms, the weighting coefficients are optimized to 

the statistics of the recorded neuronal ensemble so as to minimize the overall error in the 

decoded movement. These weighting coefficients are used to obtain the movement 

variables from the encoded neural responses. Any changes in these statistical properties 

for a neuron population such as mean and variance result in non-optimal decoding and 

create undesired errors in the decoded movement. 

2.3 Improving Neuronal Recordings 

Coating the electrode with materials that encourage neuron growth or reduce 

inflammation at the site of implantation have been developed to improve recording 

performance. MEMS (micro-electro-mechanical system) electrodes with changeable 

depth and algorithms that position the electrode automatically have been shown to 

facilitate neuron recordings. However, the desired recording performance (recording 

from an adequate sample of neurons) is not typically sustained for the intended period (at 

least two – three years) (Kalaska J. F. 2008; Lebedev M. A., et al. 2006). Due to 

biological processes such as death of the neuron cells or dead tissue surrounding the 

electrode, the number of suitable recorded units changes over time with neurons dropping 

out and being replaced by other neurons. Physical and chemical solutions may alleviate 

the errors in performance due to biochemical and mechanical nonstationarities (such as 

scar tissue formation or electrode movement) but they do not correct for cognitive 



6 
 

processes that are intrinsic to the neuron or neuronal system. Additionally, they may 

increase the complexity of the implant procedure and the size of the implant. Finally, a 

specific method to deal with each nonstationarity-inducing process may be needed when 

such solutions are employed. An algorithmic solution may be easier to implement using 

current technology without increasing cost/size of the implant or taxing the implant 

procedure. Once programmed, the algorithmic solution would run continuously in the 

background, reducing movement error regardless of its source. 

2.4 Neural Decoding 

The decoding algorithm is a mathematical relationship that relates neuronal 

response to the desired movement parameters (e.g. movement velocity or position). It is 

based upon neuron responses that are parameterized in the movement space. For the 

purposes of decoding, these neuron responses are computed over a small time interval 

and are related to the decoding weights established during an initial optimization process. 

The decoding weights or coefficients are used by the algorithm to obtain movement 

information from the neuron responses (e.g. firing rates). 

To obtain movement information from neural recordings, a wide variety of 

decoding algorithms such as linear filters, Kalman filters (Wu et al, 2002, 2008; Gage et, 

2004, 2005) and Bayesian decoders (Rotermund et al, 2006) among others have been 

employed. For e.g, in a Kalman decoding approach, the movement parameters can be 

modeled as the Kalman state variables that are estimated by the Kalman filter. The neural 

responses can be modeled as the output of the system. An initial optimization process 

establishes the decoding coefficients of the filter (Kalman weights). During decoding, the 
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Kalman weights are used by the filter to obtain estimates of the state variables 

(movement variables). The Kalman filter does this in a two step process – by making a 

prediction of the movement and then correcting its estimate to minimize error (Wu et al, 

2002). 

2.5 Adaptive Decoding of Movement 

 When the source and/or quality of the neurons is affected by any undesirable 

biological, physical or biochemical processes (growth of scar tissue, movement of 

electrode, etc.) over the long term, the decoding parameters learnt by the algorithm may 

no longer be valid. Thus, nonstationary changes in neuronal signals may manifest 

themselves in the erroneous prediction of intended movement by the decoding algorithm. 

For the algorithm to cope with changes in the statistics of neuronal signals, corresponding 

changes to the decoding weights need to be made. This calls for an adaptive algorithm 

that updates the weights when it detects the presence of a nonstationary change in the 

neuronal signals. 

Typically, the decoding system is re-optimized before a decoding session within a 

laboratory or clinical environment. To achieve this, the subject with the implant may be 

asked to perform a set of pre-determined movements in the training space while the 

sampled neuron activity is recorded. Using a mathematical optimization procedure (as 

described above), the decoding coefficients are determined to minimize error in the 

decoded movement. These optimization procedures are intermittent and computationally 

intensive, resulting in degraded performance between sessions and limited portability for 

the patients (Rotermund D., et al. 2006) as they have to periodically revisit the 
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laboratories to maintain decoding accuracy. Since the long term goal is for the patient to 

be unconstrained by the assistive device, it is important that the adaptive decoding system 

be portable (Kalaska J. F. 2008). 

2.6 Adaptive Decoding Algorithms in Literature 

A number of decoding algorithms have been employed for estimating movement 

– these include linear filters (Paninski et al., 2001), neural networks (Wessberg et al, 

2000), classifier algorithms (Isaacs et al, 2000), Kalman filter algorithms (Wu et al, 2002, 

2008; Gage et, 2004, 2005) and Bayesian decoders (Rotermund D., et al. 2006). Ideally, a 

neural decoding algorithm would operate in real-time and be implemented in a portable 

system (i.e. with low power, computing and memory requirements). Thus, speed and ease 

of computation along with accurate prediction of movement are desired (Kalaska J. F. 

2008; Lebedev M. A., et al. 2006; Schwartz A. B., et al. 2006). 

Gage et al (Gage et al 2004; 2005) developed a ‘co-adaptive’ decoding filter 

based on a Kalman filter design that adjusts to changes in the measured neuronal activity 

as rats learn to control an auditory device during an auditory frequency-matching task. 

Kalman filter weights were used to decode an auditory signal from the neuronal ensemble 

that was matched to a test tone. The subject and the filter were naïve to the task and learnt 

how to perform the task over time. A sliding window consisting of ten trials (900 ms) 

was used to update the filter weights. Subsequent re-optimization of the weights was 

achieved during adaptation, when the Kalman filter weights were intermittently re-

optimized using the past 45 seconds of auditory signal (frequency). Such re-optimization 

is contingent on the space in which the errors driving the adaptation are defined and is not 
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easily extrapolated beyond this space. The estimate of auditory frequency made by the 

Kalman filter was fed back to the rats and with rewards offered for correct trials, the rats 

adopted a strategy to minimize the auditory errors. 

While error signals may be derived from brain areas or using external sensors and 

localizers, it may not always be possible to obtain errors represented in terms of the 

decoded movement parameters. The temporal history used in re-optimizing the system 

may place a lower bound on the speed at which the system can recover by requiring that 

nonstationary changes in the signal move beyond the re-optimization window (e.g. 45 

seconds). Also, the nature of the neuron ensemble encoding the task-relevant information 

drives the selection of the time window over which adaptation occurs. For example, 

responses from a small population of neurons responding to the task would result in 

sparse data and consequently require a longer time window. 

Eden et al (Eden et al 2004a; 2004b) have used a point process approach to 

construct an adaptive decoding filter wherein the intended movement (two-dimensional 

cursor movement on a video monitor) and the tuning of the individual neurons to 

movement were simultaneously estimated by the filter. This allowed the filter to learn 

and detect changes in the movements preferred by individual neurons thus making the 

system more resistant to changes in the response properties of the recorded neurons. They 

simulated a nonstationary population of 20 neurons from a set of physiological recordings 

in which the neurons ”died” and were subsequently replaced by new neurons at the rate 

of one per minute. The algorithm was trained for 20 minutes and allowed to estimate the 

tuning parameters of the neurons given the movement signal and the spiking activity of 

the neurons. After training the algorithm to obtain the tuning parameters, the algorithm 
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was used to reconstruct movement trajectory for 24 hours with a trial length of 10 

seconds during which neurons dropped out of the population and were replaced at the rate 

of one every minute. The algorithm was successfully able to estimate the tuning 

parameters for movement direction for the novel neurons in the 20 neuron ensemble after 

2 hours of decoding. Of the two point process filters, the receptive field parameter 

responsible for speed modulation decreased thus degrading the estimate for the speed 

over time.  

This algorithm employed unsupervised feature extraction learning using two point 

process filters in lock step and computed the neuronal parameters as estimates in a novel 

approach. With a simulated nonstationary neuronal ensemble constructed from a 

population of 20 neurons, the algorithm was able to accurately estimate the movement 

direction but not the speed of movement – which may be a limiting factor of the 

algorithm.  

Rotermund et al. (Rotermund D., et al. 2006)  have described a supervised 

adaptive system using a Bayesian approach to combat abrupt changes in the sources of 

neural signals used to decode movement. An error signal encoding differences between 

actual and simulated movement signals (a horizontal figure of eight stimulus) was used as 

an external teacher to drive the adaptation. A simulated population of 64 cosine tuned 

neurons in motor cortex underwent abrupt complete replacement which drove the 

accuracy in the reconstruction low. After a period of several hours (~17), the 

reconstruction was able to adapt to the performance level observed before the change 

occurred. While Bayesian estimators have been shown to approximate an optimal 

solution (Wu W., et al. 2006), the Bayesian approach is computationally intensive since it 
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involves a high number of computations making it difficult to implement in a portable 

system.  

Srinivasan and colleagues (Srinivasan L., et al. 2007)  have developed a general 

purpose point–process lock-step adaptive filter based on Eden et al (2004) that refines the 

filter parameter estimates over each timestep to compensate for changes in the neuronal-

electrode interface. A population of 25 neurons was simulated for the reconstruction of 

movement in an arm reaching task. As with the Eden algorithm, neuron parameters were 

estimated along with the movement using an unsupervised feature extraction learning 

algorithm. When the population lost one neuron per minute for 10 minutes for a total of 

10 neurons, the adaptive system was able to reliably decode the velocity of movement 

with 10% error in the estimate.  

With a loss of neurons, one might suspect that a loss in accuracy would result (as 

was the case with Eden et al) since less information is available to the decoder (with 

decoding error increasing in a 1/N2 fashion, N = number of available neurons). Their 

framework calls for a parallel processing architecture to be realized as a real-time 

decoding solution. With portable approaches, this may not always be possible. 

Wu et al (Wu W., et al. 2008)  describe an adaptive decoding filter approach that 

reoptimizes the decoding weights in a fashion similar to Gage et al. A recursive adaptive 

approach to the reoptimization was used to improve efficiency and performance was 

evaluated using data recorded from monkeys. Adaptive linear filter and adaptive Kalman 

filter implementations were compared with their respective non-adaptive counterparts in 

terms of efficiency and accuracy. The adaptive Kalman filter was found to be most 

efficient and accurate in decoding the neuronal ensemble.  
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For their experiments, Wu et al decoded two samples of electrical recordings 

offline - 33 and 45 minutes in length respectively. The sparse nature of the data 

influenced the length of the training stages. The speed of recovery was dependent on 

when the nonstationary changes (variation in firing rate of about 50% of the population) 

in the signal moved beyond the re-optimization window (between 350 and 500 seconds). 

Similar to the Gage algorithm, the adaptive Kalman filter requires explicit error 

information in the same dimensions as the movement parameters being estimated. Within 

the comparatively small time scale described, average neuron firing rates of about 50 % 

of the population varied over time with consistent hand positions thus exhibiting a 

nonstationary effect within the population. Loss of neurons may increase the size of the 

re-optimizing window because of the increase in sparsity of the data. While rate of 

adaptive decoding was better due to the iterative nature of the reoptimization (as opposed 

to the approach by Gage), the error levels described for the adaptive and non-adaptive 

Kalman filters were 30% MSE and 35% MSE respectively which is higher than 

comparable approaches (Srinivasan L., et al. 2007, 5 % MSE error in velocity (m/s)). 

2.7 Summary 

Accurate control of a neuromotor prosthetic system requires the development of 

adaptive decoding algorithms that quickly adapt to changes in properties of the recorded 

neural signals and are able to be implemented in a portable system. While other studies 

have looked at simultaneous loss and replacement of neurons, the proposed adaptive 

system performance was also tested in the presence of neuron loss, adaptation and 

attention modulation of neuron responses in addition to neuron replacement. 
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The primary aim of the system proposed here is to develop an adaptive decoding 

algorithm capable of compensating for the full range of nonstationary changes in the 

neural signals recorded at the brain-machine interface. The adaptive decoding algorithm 

proposed here is constrained computationally with the goal of ultimately implementing 

the algorithm in real-time in a low power, minimally computationally constrained 

microprocessor based environment. Finally, the algorithm is designed to facilitate system 

recovery from catastrophic changes in the properties of the neural signals of a time frame 

of seconds (as opposed to current algorithms that take minutes to hours (Rotermund et al 

2006)). 
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3 NEURON MODEL AND ADAPTIVE FILTER DESIGN 

An adaptive decoding algorithm was developed utilizing a Kalman filter 

framework to continuously optimize the internal state of the decoding algorithm in 

response to changes in the statistical properties of neural signals. In order to evaluate the 

resistance of the algorithm to the changes in neural signals typically encountered in a 

neuroprosthetic system, a population of spiking neurons was simulated with four different 

neuro-physiological effects (loss and replacement of neurons, attention modulation and 

adaptation) that together contribute to the recording of nonstationary neural signals at the 

brain-machine interface. At each time step, simulated neural signals were input to the 

Kalman filter to provide an estimate of the desired movement. The error between the 

decoded and desired movement were in turn used to update the Kalman filter weights to 

minimize movement error. 

The population of spiking neurons in primary motor cortex was simulated to 

evaluate the impact of external and physiologic nonstationary changes in the recorded 

neural signals on the performance of three decoding algorithms – the proposed adaptive 

Kalman filter, a reoptimizing linear filter and a reoptimizing Kalman filter (based on Wu 

et al 2008). The performances of these adaptive decoding algorithms were compared to a 

non-adaptive static Kalman filter to illustrate the impact of the nonstationary 

phenomenon on decoding. Decoding performance was also compared to an optimal 

decoding error corresponding to the best case non-adaptive Kalman filter decoding for a 

given condition. The movement was setup as a bandlimited white noise signal in two-

dimensions. 
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3.1 Neuronal Model 

 

Figure 3.1: Direction tuning curves for three example neurons in primary motor 
cortex with varying tuning width and response rate. Neurons were von Mises tuned 
for direction in the 2D task space with responses determined by the difference between 
the intended movement direction and each neuron's preferred direction (corresponding to 
the peak of each neuron’s tuning response). 

To evaluate the algorithm, we constructed a population of 100 leaky-integrate-

and-fire (LIF) neurons in MATLAB© (R2008a) whose spiking responses to movement 

where modeled on neurons in motor cortex (Figure 3.1) (Amirikian et al. 2000; Swindale 

1998; Moran et al. 1999). In the simulations, neuron responses increased linearly with the 

amplitude of movement and were tuned to movement direction using a von Mises 

function (Amirikian et al. 2000; Swindale 1998)  of the form, 
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ሻࣂሺࢌ ൌ ࢈  ࣄࢋ  ሻ,                   (3.1)ࣆିࣂሺܛܗ܋

where μ is the neuron's preferred direction of movement, θ is the intended 

movement direction, and κ is related to the tuning half-width at half maximum (θଵ
ଶൗ ) by 

the expression, 

ࣂ
ൗ ൌ ିܛܗ܋  ቂ൫ܖܔ൫ࢋࣄା൯ିܖܔ ିࣄ൯

ࣄ
ቃ,             (3.2) 

Preferred directions (μ) were uniformly distributed across the population from 0° 

to 360° and θ1/2 was selected from a range of 30° to 89° (Amirikian et al. 2000) for each 

neuron. Neuron responses (spikes/sec) were computed over 50 ms intervals (bins), 

commonly used in neural electrode recordings (Moran et al. 1999). The maximum 

response (k) of each neuron was drawn from a uniform distribution ranging from 10 to 40 

spikes/sec (Moran et al. 1999) at a speed of 1, and the background firing rate (b) and 

encoding error were set to 10% of the neuron's maximum response. The neuron responses 

were linearly tuned to speed such that maximum responses between 20 to 80 spikes/sec 

were observed for a speed of 2. For the simulated neural populations, approximately 40% 

of neurons responded above background over each 50 ms interval.  

The leaky integrate and fire (LIF) neuron model (as shown in Figure 3.2) 

approximates the nonlinear spiking behavior of a physiological neuron using a Resistive 

– Capacitive (RC) circuit that integrates the somatic current to a preset voltage threshold 

voltage Vth (sub-threshold phase) and generates an action potential (spike) after the 

somatic voltage crosses the threshold (super-threshold phase). After the formation of the 

spike, the model resets for a time period τref (absolute refractory period) before 

integrating the somatic current again. 
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Figure 3.2: Simulated Leaky Integrate and Fire Neuron. A resistive-capacitive circuit 
simulating a LIF neuron model (based on Eliasmith et al. 2002). Gray area indicates the 
super threshold behavior used to generate the action potentials (spikes). 

The membrane current ࡹࡶሺ࢞ሶ ሻ ൌ ሶ࢞ሺࢊࡶ  ሻ   is used to drive the somatic ࢙ࢇ࢈ࡶ

voltage above threshold to generate an action potential, after which the somatic voltage 

resets to zero. The membrane current incorporates an input driving current (Jd) that 

simulates the dendritic input to the soma which is a function of the input stimulus, x, such 

that, 

ሶ࢞ሺࢊࡶ                                                                ሻࢊࢋࢊࢋ࢚ ൌ ሶ࢞ሺࢍࢻ ଙࢊࢋࢊࢋ࢚ሶ ሻ,         (3.3) 

where ࢞ሶ ଙࢊࢋࢊࢋ࢚ሶ  defines the intended movement,  α is a parameter that defines the 

gain of the driving input, g(࢞ሶ ଙࢊࢋࢊࢋ࢚ሶ ) is the encoding function (e.g. von Mises tuning 

function) and ࢞ሶ  corresponds to the magnitude of the movement variable being ࢊࢋࢊࢋ࢚

R C Vm,  

Membrane 

voltage 

Jm, input 

current 

JR JC 

Tref 

Spike generator 

V = Vth 
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encoded. The input bias current (Jbias) defines the ‘background’ current due to neuron 

processes or constant current input from the nervous system. 

The differential membrane voltage is given by the equation, 

ࢂࢊ
࢚ࢊ ൌ  െ


ࡾ࣎ ሺࢂ െ  ,ሻࡾࡹࡶ

ࡾ࣎ ൌ  ࡾ

ࡾ࣎ ൌ ࡾ כ  is the time constant of the resistive capacitive circuit responsible for 

the sub-threshold properties of the neuron,  R represents the leakage resistance across the 

cell membrane due to the presence of ion channels C represents the dielectric nature of 

the membrane that separates the ionic charges across it. 

Once the membrane voltage exceeds the threshold voltage (V ≥ Vth), an action 

potential (spike) is generated. Thus, the membrane voltage V for a steady-state input is 

given as, 

ሻ࢚ሺࢂ ൌ ൫ࡾࡹࡶ െ ࢚ିࢋ ⁄ࡾࢀ ൯ 

Under steady-state conditions, the firing rate is then given by, 

ሻࢎ࢚࢚ሺࢇ ൌ


ࢎ࢚࢚   ࢌࢋ࢘࣎

τ୰ୣ is the absolute refractory time of the neuron which defines the period after the 

occurrence of a spike when the somatic voltage is shunted to its resting potential (zero). 
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In the simulations, the number of spikes within a 50ms time bin is counted to 

compute the firing rate for each neuron. The firing rate as a function of the encoded 

variable for a constant input can be approximated by the expression, 

ሻ࢞ሺࢇ     ൌ  

ࡾ࣎ିࢌࢋ࢘࣎ ࢎ࢚ࡶ ൬ିܖܔ
ሻ൰࢞ሺࡹࡶ

,                   (3.4) 

where J୲୦ is the threshold current given by J୲୦ ൌ  V౪
R

 that specifies the threshold 

boundary.  

The simulations were constructed with a leakage resistance (R) of 1, voltage 

threshold (Vth) of 1, neuron refractory periods (τ୰ୣ) between 2-5 ms and sub-threshold 

RC time constants (τRCሻ between 10-30 ms. Ranges for τ୰ୣ and τRC are based on 

neurophysiological data from Moran et al. 1999). A value of 1 was chosen for the leakage 

resistance and the threshold voltage for convenience. 

A von Mises tuning function allows for variable (especially narrower) tuning 

widths, which closely approximate to the observed profiles of motor cortical cells. 

Amirikian and Georgopoulos (2000) show that the commonly employed cosine tuning 

function (Georgopoulos et al. 1982), which has a fixed tuning width = 90°, is not the 

most appropriate model for a majority of motor cortex cells. The von Mises tuning 

function is a circular function that approximates a normal distribution over angle and 

permits different tuning widths among a population of neurons. 

Nonstationarities (undesirable processes that impact the statistical properties of 

the neural data) were induced into the neuronal population to simulate chronic implant 

effects. The processes were designed to modify the mean and variance of the tuning 



20 
 

properties of the simulated neuron population thus influencing decoding performance. 

The impact of removing neural signals, recruiting new neurons, neural adaptation, and 

attention were simulated to evaluate the performance of the adaptive algorithm. Table 3.1 

shows the nonstationary conditions that were simulated along with their effects: 

Simulated changes in the neural 
representation over time Physical effect 

Loss of neurons Encapsulation of the electrode as an 
immunological response 

Simultaneous loss and recruitment of 
neurons Movement of electrode 

Increase / decrease in maximum neuronal 
responses Modulation by attention 

Changes in the tuning properties of neurons Modulation by adaptation 

 

Table 3.1 Modeling nonstationary sources in the simulation. Four nonstationary 
processes were simulated to model undesirable changes at the neuron-electrode interface. 
Twenty simulations for each ‘nonstationary’ condition were created and the undesirable 
effects as well as system recovery were characterized. 

3.2  Compensating for the Effects of Nonstationary Signals at the Neuronal-
Electrode Interface 

In the system developed here, we applied a supervised learning approach within 

the context of Kalman filter architecture to continuously adapt to nonstationary changes 

in the neural signals recorded at the brain-machine interface. The algorithm was designed 

to facilitate system recovery from catastrophic changes in the neural interface within 

minutes while minimizing the computational requirements of the system. 
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3.2.1 Design Specifications 

The adaptive decoding system was developed to meet several design criteria – 

 Accuracy 

 Time to recovery 

 Computational cost 

 Real-time performance 

3.2.1.a. Accuracy 

The algorithm is required to produce accurate estimates of the stimulus properties 

encoded by the neurons (i.e., velocity) as quantified using a Normalized Root Mean 

Square Error (NRMSE) measure. The adaptive algorithm should achieve accuracy levels 

that are comparable with current decoding algorithms (0.1 – 0.2 NRMSE) for a stationary 

population of 100 neurons. 

3.2.1.b. Time to Recovery 

The performance of the proposed adaptive decoding system (which is based on a 

Kalman filter formulation) was compared to that of an optimal Kalman decoding system, 

given by movement decoded using optimal coefficients for the altered neuron population. 

Time to recovery for the adaptive filter was defined as the time taken for its decoding 

performance to achieve an accuracy level that approaches within 20% of the optimal 

decoding, after the appearance of a nonstationary condition. In our simulations, 
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catastrophic nonstationarities were used to replicate worst-case scenarios. The algorithm 

was designed to recover to the desired accuracy within minutes after a nonstationary 

occurs. 

3.2.1.c. Computational Cost 

The number of computations for an algorithm is the count of mathematical 

operations that the algorithm performs in a single iteration. It negates the effects of 

hardware and allows for direct comparisons of performance between algorithms. It also 

provides a means of estimating the hardware requirements for implementation of an 

algorithm in the face of additional constraints. The number of computations is desired to 

be less or equivalent to currently available adaptive schemes described in the literature. 

The reoptimizing Kalman algorithm described by Wu et al 2008, for example, requires 

the use of a number of discrete random variables with numerous possible values at each 

timestep resulting in a computational cost given by O (N3), where N is the size of the 

matrices (number of simulated neurons) and O denotes order of the operation. Typically, 

the big-O notation describes the order of the largest term in the number of steps required 

for computation. Within this document, the big-O notation illustrates the order of matrix 

multiplications that dominate the computations. A lower computational cost would make 

the algorithm amenable to a portable implementation in a microprocessor based 

prosthetic control system. 
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3.2.1.d. Real-time Performance 

The algorithm was designed to decode movement variables (such as velocity) 

from neural signals (simulated or obtained from the motor cortex). In the rate based 

decoding scheme, neuron responses were obtained as firing rates (spikes/sec) over 20-50 

ms temporal intervals. The algorithm should be able to decode neural signals in real time 

– i.e. within the bin width (50 ms) used for rate-based decoding. A real-time decoding 

algorithm would allow the prosthetic control system to provide control signals to the 

prosthesis within the movement duration and enable smooth movement. 

3.2.2 Implementation 

The adaptive decoding algorithm developed to achieve these design criteria is 

composed of two parts – a Kalman decoding filter and a corrective filter (Figure 3.3).  

3.2.2.a. Kalman Decoding Filter 

A Kalman filter was used to decode intended movement based on the firing rates 

(spikes/s) obtained from the sampled neural responses. As a linear control system, the 

Kalman filter has been well studied in the literature, and is widely used in cases where 

accurate estimation of the internal system properties is required from noisy measurements 

(Maybeck 1979 – Chapter 1, Welch and Bishop – SIGGRAPH 2001). Moreover, the 

Kalman filtering approach is computationally less intensive than other control strategies 

and has a standard implementation, making it ideal for decoding neural signals at the 

brain-machine interface.  
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Figure 3.3: Block Diagram of the Adaptive Filter system. The adaptive filter system 
consists of the adaptive algorithm and the feedback of movement error. This error was 
used by the adaptive decoding algorithm to dynamically adjust the Kalman decoding 
weights for each neuron. A Kalman decoding filter was then used to estimate the 
movement parameters from the motor neuron response input. 

In the Kalman filter implementation described here, the neural responses formed 

the measurement/observation matrix z while the state variable ࢞ሶ ଙࢊࢋࢊࢋ࢚ሶ  represented the 

velocity of the intended movement [vx; vy], 

zi = H*࢞ሶ  N(0,R)      (3.5) ك bi,   b + ࢊࢋࢊࢋ࢚

ሶ࢞    ሶ࢞*A = ࢊࢋࢊࢋ࢚  N(0,Q)          (3.6) ك  + wi,  wିࢊࢋࢊࢋ࢚

where, for a population of N neurons encoding a p-dimensional stimulus space, A 

is the state transition matrix (p x p), that relates the current iteration of the intended 
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movement velocity vector x, to the preceding velocity estimate, and w is Gaussian noise 

sampled from a normal distribution N (0, Q), where Q is the process noise covariance (p 

x p) estimated during the least squares optimization (Wu et al 2002). H is the 

measurement matrix (N x p), that defines the relationship between the neural responses z, 

and the estimated movement velocities ܠሶ , for the current time-step, and b is Gaussian 

noise sampled from a normal distribution N (0, R), where R is the measurement noise 

covariance (N X N) estimated during the least squares optimization. 

The Kalman filter employs a two-step prediction-correction computation for 

estimating its state variables. In eq. (3.6), a prediction for the state variable, i.e. 

movement velocity, at the ith timestep is generated based on the velocity from the 

previous (i-1) timestep. This estimate is then corrected for by using the following 

relationship, 

ሶ࢞      ሶ࢞ = ࢊࢋࢊࢋ࢚ ሶ࢞ࡷ + ିࢊࢋࢊࢋ࢚ *(zi - H*࢞ሶ  ),                 (3.7)ିࢊࢋࢊࢋ࢚

where ࢞ࡷሶ  is the Kalman filter gain that serves to bring the error in the neuron 

responses to the domain of the state variables (movement velocities). To facilitate 

decoding, the Kalman filter weights (A, H, Q and R) were optimized (as described below 

in Equation 3.8) using the firing rates from the population of neurons and the movement 

amplitudes. 

In the general Kalman formulation, (A, H, Q and R) may be time varying. Here, 

for simplicity and so that they can be estimated during the optimization phase, the state, 

measurement, and noise matrices were considered to be constant for the static Kalman 
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filter. During an initial optimization phase, the Kalman coefficients (A, H, Q and R) were 

optimized for each neuron using a least squares error minimization algorithm as 

described in Wu et al (2002). During this optimization process, the relationship that 

minimizes the decoding error between the firing rates of the neurons and the movement 

variable over the entire length of the training signal was established as described below in 

equation 3.8.  

A 250 second long band-limited white noise training signal sampled at 1 ms 

(Figure 3.4), was used to optimize the Kalman filter weights. The white noise movement 

with frequencies within the (0 – 1.5 Hz) range was chosen to span the movement space to 

approximate the motion of a prosthetic system. Since the decoding weights were 

determined so as to obtain the minimum decoding error over the entire length of the 

training signal, choosing a signal that sufficiently samples the space was necessary to 

ensure accurate decoded movements throughout the space. 

 

(A) 
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Figure 3.4: (A) X-component and (B) Y-component of the (C) two-dimensional 
training signal used to optimize the adaptive filter system. A two dimensional 0 – 1.5 
Hz bandlimited white noise signal was used to optimize the decoding weights of the 
Kalman filter using a least squares minimization process. The RMS power content of the 
training signal was set to 1 for convenience. 

(B) 

(C) 
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A simulated 100 neuron population was set up using the von Mises neuronal 

model described in section 3.1 with maximum response rates between 20 – 80 spikes/sec, 

with preferred directions uniformly distributed from 0° to 360°. 

The firing rates from this 100-neuron population to the white noise training 

stimulus were computed over 50 ms bins and were fed to the least squares minimization 

algorithm along with the actual movement amplitudes (in two dimensions), computed as 

the average over each 50ms interval for each dimension. The optimization was performed 

using the matrix equations detailed in eq. (3.8), which correspond to the least squares 

minimization of the Kalman filter prediction-correction equations listed in eq. (3.5 and 

3.6). 

Signal length N = 250 sec / 50 ms = 5000 bins 
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… (3.8) 

In the current implementation, the state transition matrix A was given by the 

identity matrix since the state variables ࢞ሶ  modeling movement [v1, v2] = ࢊࢋࢊࢋ࢚

velocities were independent. (When the matrix A was computationally determined during 

the training process, it approached a 2x2 Identity matrix.) More generally, however, the 

state transition matrix defines the relationships between internal states spanning multiple 

dimensions of movement, e.g., position and velocity, and can contain off-diagonal terms. 

3.2.2.b. Corrective Filter 

When the statistical properties of the signals at the neuronal-electrode interface 

change, the Kalman filter weights H are no longer optimized for the sampled neuronal 

population resulting in improper estimates of intended movement. Therefore, the weights 

themselves must be adjusted to compensate for the alterations in the neural responses, 

thereby re-optimizing the decoded movement. The corrective filter achieves this through 

the use of an external error source (corresponding to a movement error in the same 

dimensions as the decoded variables) to drive the weight correction. In a physically 

realized system, the error signal may be derived from external systems that utilize visual 

and/or sonic modalities to spatially localize the prosthesis or on error signals decoded 

directly from the brain. 
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From equation (3.7), changes in the neural responses, z, must be compensated for 

by error-driven changes in the measurement matrix, H, to optimize the mapping between 

intended movement ࢞ሶ  and neural responses z. Using the current predicted value ,ࢊࢋࢊࢋ࢚

of the movement velocities ࢞ሶ ሶ࢞ and the error signal ࢊࢋࢊࢋ࢚ e, H can be iteratively 

adjusted such that,  

    Hi = Hi-1 + η*KH*(zi - Hi-1*࢞ሶ act) , 

ሶ࢞ act = (࢞ሶ ሶ࢞+ࢊࢋࢊࢋ࢚ e) ,              … (3.9) 

where Hi is the corrected weight for the current timestep, Hi-1 is the erroneous 

weight from the previous timestep, η = 0.2 is a scaling factor determined empirically that 

is applied to enable lower weight changes over each iteration and bound the filter 

weights. While a faster value of η would help in improving the speed of recovery, a 

smaller value could improve decoding accuracy. In order to select the value of η, a 

gradient descent algorithm was implemented that modified the scale by ±5% over a 2.5 

second non-overlapping window so that error within this window was reduced. The 

initial value of η was set to a high value (20). It was observed that the value approached a 

0.2 asymptote for these simulations. The scaling factor η does not apply to other adaptive 

decoding filters implemented here (reoptimizing Kalman and reoptimizing linear filters 

described in Wu et al 2008) since these filters perform a complete reoptimization of their 

decoding weights over their 550 second reoptimizing window. 

KH is an adaptive mapping of the error between the predicted versus actual neural 

responses and therefore carries the dimensions of ࢞ሶ ࢊࢋࢊࢋ࢚
T, ࢞ሶ e is the error signal given 
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by the signed difference between the intended (࢞ሶ act) and predicted (࢞ሶ i) movements. KH is 

obtained over each timestep by computing the Kalman gain factor (Welch and Bishop – 

SIGGRAPH 2001) as follows – 

KH = PH, i-1*Hi-1
T* inv (Hi-1*PH, i-1*Hi-1

T + R),                        (3.10) 

where PH, i-1 is a measure of the covariance of the estimate of H for each timestep 

given by, 

PH, i = PH, i-1 - η*KH*࢞ሶ act* PH, i-1),                           (3.11) 

In Eq. 3.9, the term (࢞ሶ ሶ࢞+ࢊࢋࢊࢋ࢚ e) represents the actual movement ࢞ሶ act. This term 

acts as an external teacher and modulates the changes in H to iteratively minimize the 

difference term (zi - Hi-1*࢞ሶ act), where zi is the altered neural responses in the current time-

step (see Section 2.3), which are compared with the internal estimate of the neural 

responses ‘Hi-1*࢞ሶ act’ to drive iterative changes in H. 

The adaptive filter system was tested using stationary as well as nonstationary 

responses from simulated neuron populations. A 100-neuron population was simulated in 

most cases (unless otherwise specified). Each simulation initialized a new population of 

neurons so that algorithm performance could be evaluated independent of neuron bias.  

A non-recursive reoptimizing linear filter and a non-recursive reoptimizing 

Kalman filter based on (Wu et al. 2008) were constructed with a reoptimizing window of 

550 seconds. In addition, an optimal decoder that represented the optimal performance 
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for the altered neuron population was implemented by running the optimization on the 

neuron population after the introduction of the nonstationarity. 

For each simulation, the decoded movement was obtained for the adaptive 

Kalman filter and compared against the movement obtained using the reoptimizing linear 

filter, the reoptimizing Kalman filter, the optimal decoder and a non-adaptive static 

Kalman filter. Four nonstationary conditions were simulated – loss of neurons, 

replacement of neurons, attention modulation and adaptation. The following chapters 

discuss each type of nonstationarity separately along with their implementation and 

results.  
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4 DECODING PERFORMANCE BEYOND THE 
TRAINED SPACE 

As described in Chapter 3, an adaptive neural decoding system based on a 

Kalman filter design was implemented with an aim to provide accurate decoding in the 

presence of nonstationary neural signals. A simulated 100 neuron population was set up 

using the von mises neuronal model described in section 3.1 with maximum response 

rates between 10 to 40 spikes/sec at a speed of 1, with preferred directions uniformly 

distributed from 0° to 360° and no connectivity between the units. Background responses 

attributed to noise were limited to 10% of the spiking activity.  

An initial training or optimization process was used to establish the decoding 

coefficients (weights) of this filter using a two dimensional 0 - 1.5 Hz bandlimited white 

noise signal with a RMS power of 1 (see Figure 3.4). In order to provide a reference for 

comparison of decoding performance, a ‘static’ or non-adaptive Kalman filter based 

decoder was also implemented with the same initial optimized decoding weights as the 

adaptive filter. The decoding performance of the adaptive filter was also compared with a 

re-optimizing linear filter and a re-optimizing Kalman filter as described by Wu et al 

(2008). These adaptive filters were optimized over an initial 550 second time window 

after which their decoding performance was tested.  

Two types of bandlimited white noise movements (1450 seconds long each) were 

chosen to test decoding performance under stationary conditions (i.e. with no 

modification of the simulated neural population after optimization) as follows – 
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1. Bandlimited white noise movements with an RMS power of 1, but with differing 

frequency bands of 0 - 0.5Hz, 0 - 1Hz, 0 -  1.5Hz, 0 -  2Hz and 0 - 5Hz. 

2. Bandlimited white noise movements within a frequency band of 0 - 1 Hz, but with 

differing RMS powers of 0.5, 1, 2 and 5. 

The RMS power specifies the extent (range) of the motion of the prosthetic 

device, while the frequency range illustrates the speed of the motion. During the 

optimization process, the subject is asked to perform a series of typical movements while 

the filter learns the association of this movement to the neuron responses by assigning 

specific weights. This enables the filter to reliably decode similar movement using these 

weights when provided with the neuron responses. However, it may or may not be able to 

accurately decode beyond its trained (optimized) movement space. 

The two sets of test signals in this case were designed to evaluate the performance 

of the different filters in decoding motion beyond the range of movements provided 

during their optimization phases. This would enable a decoding filter to independently 

adapt to the novel movements without requiring the subjects to return to the labs for 

significant re-training of the decoding filter. 

For this experiment, a neuron population of 100 neurons was constructed as 

described earlier in Chapter 3. The training signal was a 250 second two-dimensional 0 - 

1.5 Hz bandlimited white noise signal with a RMS power of 1. With this neuron 

population, five simulations each were run for a white noise test stimulus of 2000 

seconds in length for each of the test signal conditions. Root Mean Square Errors 
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(RMSE) were computed over 10 second windows along the test stimulus length and 

normalized to the test amplitude. 

4.1 Results 

Figure 4.1 shows a comparison of normalized root mean square error (NRMSE) 

computed over the last 1450 seconds of the test stimulus for each of the four filters when 

the test movement bandwidth was varied in order to allow the reoptimizing filters to 

reach their optimal decoding state (after 550 seconds) before the advent of the 

nonstationarity. Within the range of optimized movements (0 - 1 Hz and an RMS power 

of 1), the decoding accuracy of the filters was good with the adaptive filter errors lowest 

(0.171 NRMSE). Low decoding errors for movements characterized from 0 - 0.5 Hz were 

obtained for all the decoding filters as shown in Table 4.1. Beyond the ranged of trained 

movements, i.e. 0 - 1 Hz, the non-adaptive ‘static’ filter error increased significantly (t (4) 

= -39.75, p<0.00001) with frequency range (bandwidth from 1.5-5 Hz). A similar trend 

was observed for the re-optimizing linear and re-optimizing Kalman decoding filters with 

all three filters approaching ~0.8 NRMSE for movements characterized from 0 - 5 Hz. 
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Figure 4.1: Normalized root mean square error (NRMSE) in response to changing 
test stimulus bandwidth across five simulations. NRMSE is shown for the static 
Kalman (red), adaptive Kalman (blue), reoptimizing Kalman (magenta) and reoptimizing 
linear filters (green). Errors were computed over a 10 second sliding window. Filter 
performance was initially optimized for pseudo-random movements with power from 0 - 
1 Hz. Decoding performance for the adaptive Kalman filter remained the same beyond 
the trained frequencies, while decoding errors rose significantly for the static Kalman, 
reoptimizing Kalman and reoptimizing linear filters. Error bars correspond to ±2 
Standard Errors and are within the symbols for all four plots 

The decoding accuracy of the adaptive decoding filter did not deteriorate to the 

extent seen for other decoding filters. The best performance of the adaptive filter 

occurred for a stimulus bandwidth of 0 - 1 Hz (NRMSE = 0.171) while it’s maximum 

decoding error for the 0 - 5 Hz stimulus (NRMSE = 0.245), is statistically different (t(4) 

= -59.41, p<1E-6) but still lower than the other adaptive decoding approaches. The 

decoding error for the adaptive filter was the lowest among the four filters for the 

frequency ranges tested (Figure 4.1). 
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Test Stimulus 
Bandwidth 

Mean Normalized Root Mean Square Decoding Errors 

Static filter Re-optimizing 
Kalman filter 

Re-optimizing 
Linear filter 

Adaptive 
Filter 

0 - 0.5 Hz 0.203±0.002 0.254±0.003 0.156±0.001 0.177±0.001 

0 - 1 Hz 0.275±0.002 0.299±0.003 0.219±0.002 0.171±0.001 
0 - 1.5 Hz 0.361±0.002 0.354±0.002 0.305±0.002 0.184±0.001 
0 - 2 Hz 0.449±0.003 0.416±0.003 0.387±0.003 0.193±0.001 
0 - 5 Hz 0.832±0.003 0.784±0.003 0.82±0.004 0.245±0.001 

Table 4.1 Decoding errors for the static Kalman filter, re-optimizing Kalman filter, 
re-optimizing linear filter and the adaptive Kalman filter as test stimulus bandwidth 
is varied. 

 

Figure 4.2: Normalized root mean square error (NRMSE) in response to changing 
stimulus power. NRMSE is shown for the static Kalman (red), adaptive Kalman (blue), 
reoptimizing Kalman (magenta) and reoptimizing linear filters (green) computed over the 
last 1450 seconds of the test stimulus across five simulations. Errors were computed over 
a 10 second window. Filter performance was initially optimized for a white noise signal 
(0 – 1.5 Hz) with an RMS power of 1. Decoding performance for the adaptive Kalman 
filter across stimulus amplitudes increased for untrained RMS amplitudes (0.5, 2, 5), and 
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the errors were significantly different (RMS = 0.5: t(4)=-53.15, p<1E-6; 2: t(4)=5.74, 
p<0.01; 5: t(4)=-16.79, p<1E-4) but still representing the best case decoding for these 
RMS amplitudes. Error bars correspond to ±2 Standard Errors and are within the symbols 
for all four plots. 

As shown in Figure 4.2, decoding accuracy was also compared for the different 

decoding filters with varying RMS power for a movement bandwidth of 0 - 1 Hz. The 

decoding error for the static filter was at its lowest (NRMSE = 0.275) for the trained 

range of movement amplitudes (RMS = 1). At RMS powers of 0.5, 2 and 5 decoding 

error was significantly different (RMS = 0.5: t(4)=-79.73, p<1E-6; 2: t(4)=-11.71, 

p<0.001; 5: t(4)=-48.5, p<1E-5) and increased as shown in the table below. 

Test 
Stimulus 

RMS power 

Mean Normalized Root Mean Square Decoding Errors 

Static filter Re-optimizing 
Kalman filter 

Re-optimizing 
Linear filter 

Adaptive 
Filter 

0.5 0.413±0.001 0.35±0.003 0.236±0.002 0.229±0.001
1 0.275±0.002 0.299±0.003 0.219±0.002 0.171±0.001
2 0.307±0.004 0.267±0.002 0.209±0.002 0.163±0.001
5 0.444±0.005 0.249±0.002 0.205±0.002 0.2±0.002 

Table 4.2 Decoding errors for the static Kalman filter, re-optimizing Kalman filter, 
re-optimizing linear filter and the adaptive Kalman filter as test stimulus RMS 
power is varied. 

4.2 Discussion 

The non-adaptive static Kalman filter and the adaptive filter were provided with 

the same initial decoding weights associated with each neuron. However, the adaptive 

filter performance was better than the optimized Kalman filter even under the best case 

conditions that fall within the bounds of the training signal – bandwidth = 0 - 1 Hz, 

movement amplitude RMS power = 1. We attribute this improvement in performance to 

the continuous reoptimization of the adaptive filter to the instantaneous statistics of the 
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movement at each time-step. Since the initial optimization process is based on a least 

squares minimization approach, the decoding weights associated with each neuron aim to 

minimize movement error over the two-dimensional movement space (encompassed by 

the training signal shown in Figure 3.3). The adaptive nature of the dual-Kalman 

approach allows it to induce slight changes to the individual weights based on the 

movement stimulus at each 50 ms timestep. Therefore, we see greater decoding accuracy 

than the static filter within the space over which both algorithms were optimized. 

For movements that fell outside the statistics of the training stimulus, the static 

Kalman filter errors were significantly higher than those for the adaptive decoding 

system. For movements beyond the trained bandwidth 0 - 1 Hz, the decoding accuracy of 

the re-optimizing linear and the re-optimizing Kalman filters suffered. The re-optimizing 

linear filter errors were 39.7%, 76.8% and 275% worse than its trained bandwidth error at 

bandwidths of 0-1.5 Hz, 0-2 Hz and 0-5 Hz respectively, while the errors for the re-

optimzing Kalman filter were 18.2%, 38.7% and 161% worse for these bandwidths 

respectively. Because the reoptimizing filters rely on a least squares minimization 

technique over a long stimulus window (550 seconds) in order to update the decoding 

weights, they are not able to update the weights in response to instantaneous variations in 

the statistics of the movement stimulus. As a result, decoding errors increased with 

increasing bandwidth of the white noise test signal since they are unable to compensate 

due to their long adaptive windows. 

This result may be significant for deciding the training parameters for a subject 

with a prosthetic implant. Typically, the range of amplitudes and bandwidth would be 
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chosen so as to encompass the entire range of movements that would likely be 

encountered with the device. This may entail longer training times, larger datasets and 

result in more generalized performance for which errors within specific regions of the 

movement space are not fully minimized. With the adaptive decoding system, a limited 

training signal can be used to initialize the system and subsequently adapt to 

instantaneous changes in the mapping between the input and output spaces while 

remaining within the range of weights necessary for global optimization. 
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5 LOSS OF NEURONAL SIGNALS 

In invasive neuroprosthetic systems, neural signals are collected from the cortex 

using an electrode array implant. The aim of the electrode array is to be implanted 

without significant degradation in the quality of the neuronal signals recorded over the 

long term. However, a number of phenomena can occur that contribute to neuron signal 

loss (Lebedev et al. 2006), (Schwartz et al. 2006). Trauma to the neural cells during the 

implant procedure, resulting from the shape and size of electrode implant, type of 

insulation material used and depth of insertion, may damage the surrounding neural tissue 

(Bjornsson et al. 2006), (Polikov et al. 2005). 

The region surrounding a chronically implanted electrode may see a rise in 

activated microglia clusters (1 – 3 weeks post implantation) and macrophages that engulf 

parts of the electrode during Phagocytosis. Glial scar formation is extremely common and 

results in the electrode being surrounded by glial tissue that may increase the distance 

between the electrode and the neuron population (Polikov et al. 2005). Both glial scar 

formation and astrocyte growth (up to 6 – 8 weeks post implantation) may result in 

displacement of neural tissue thus contributing to an increase in impedance and 

consequently loss of neural signal recordings. In a study of neural tissue response to 

chronically implanted electrode arrays, Biran et al. (2005) reported a 40% loss of neurons 

surrounding the tissue implant within a period of two weeks post implantation.  

To examine the impact of such signal loss on decoding performance, we 

simulated an abrupt loss of 50% of the neuron population (as illustrated in Figure 5.1). A 

100-neuron population was simulated with the same properties as described in Chapter 4. 
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Six hundred and fifty seconds into the simulation, 50 neurons were removed 

instantaneously from the population, simulating a worst-case neuron loss. The loss was 

simulated by zeroing out the responses of 50 neurons for all times (t >100 sec.): 

݁ݐܴܽ ൌ  ൜  0, ݅ א                ݊݅ݐ݈ܽݑ ݐݏܮ
ܴ, ݅ א ݐ    ݊݅ݐ݈ܽݑ ݄ܷ݀݁݃݊ܽܿ݊   (5.1) …                ݏ100

where Ri is the instantaneous rate response of the ith neuron. Performance for the 

static Kalman filter (optimized prior to the loss) before and after nonstationarity is shown 

in Fig. 5.1. 

 

 

(A) 
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(B) 

Figure 5.1 Effect of 50% neuron loss on non-adaptive decoding performance. (A): 
Decoded movement from a 100 neuron population for a five second long horizontal 
‘Figure of 8’ movement. The optimal decoded signal (blue) for the static Kalman filter 
closely approximates the desired movement (red) with a 100-neuron population. 
Accuracy suffers when half of the population is lost (green). (B): Effect of 50% neuron 
loss on adaptive algorithm decoding performance. All decoded signals were low pass 
filtered at 5 Hz for visibility (4th order zero-phase Butterworth filter). 

5.1 Results 

 Decoding accuracy was quantified by computing the root mean square errors 

normalized to the RMS power of the test movement stimulus (RMS power = 1 in this 

case). Figure 5.2 shows the normalized root mean square errors (NRMSE) averaged 

across 20 simulations with a 100 LIF neurons computed over the last 1450 seconds of the 

test stimulus. 
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Figure 5.2: Normalized root mean square error (NRMSE) in response to an 
instantaneous loss of 50% of the neural populations. NRMSE is shown for the static 
Kalman (red), adaptive Kalman (blue), reoptimizing Kalman (magenta) and reoptimizing 
linear filters (green) averaged across 20 simulations. Errors were computed over a 10 
second non-overlapping window. The shaded regions denote the 95% confidence interval 
in the mean NRMSE across simulations. One hundred seconds into the simulation, 50% 
of the neuronal population (50 of a 100 neurons) was lost, i.e. no responses were recorded 
from these neurons. The final error for the reoptimizing linear filter is the lowest among 
the adapting filters. The reoptimizing Kalman filter error recovers within 100 seconds to 
the level of the optimal Kalman decoder. The adaptive filter error approaches the optimal 
decoding but does not recover to that level (t(198) = 51.02, p<<0.01, t-test). 

The adaptive filter had the lowest errors (NRMSE=0.189) under stationary 

conditions (i.e., first 650 seconds of the simulation), consistent with the results in Chapter 

4 with the test signal at RMS power of 1 and a bandwidth of 0 – 1 Hz. Since the decoding 

errors were normalized to the RMS power of the test stimulus, an error of 0.189 signifies 

18.9% error in the output movement. The reoptimizing linear filter performed slightly 

worse at 0.221 NRMSE. 
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The errors for all decoding filters increased due to the abrupt loss of neurons with 

the reoptimizing linear filter error the highest at 0.967 NRMSE. Over time the 

repoptimizing linear filter recovered to 0.227 NRMSE after 580 seconds, which is near 

its pre-loss level. The reoptimizing Kalman filter error increased to 0.594 NRMSE and 

recovered very quickly (within 90 seconds) to the level of the optimal decoder (NRMSE 

= 0.345). The adaptive filter error increased at the onset of neuron loss (NRMSE = 0.601) 

and recovered to a level of 0.42 NRMSE after 550 seconds. 

5.2 Discussion 

The adaptive filter represented the best decoding case under stationary conditions. 

After the onset of the non-stationarity which increases the decoding error for all decoding 

filters, the reoptimizing linear filter slowly recovers (580 seconds) to the lowest decoding 

error while the reoptimizing Kalman filter quicklyrecovers its performance to the level of 

the optimal decoder. The adaptive filter performance recovered slowly to a better 

accuracy after the loss, but did not reach the error level of the optimal decoding. 

For any decoding system, loss of neurons translates into a loss of information 

available for use in decoding. The initial optimization process is responsible for 

determining which neuron firing rates are most useful for decoding the movement 

space.The adaptive decoding system is based on a Kalman decoding scheme that attaches 

a single optimal decoding weight to each stimulus dimension for each neuron in order to 

determine its relative contribution to the overall stimulus. The optimal decoder, with 

weights optimized to the residual 50 neurons, provides a benchmark for the best-case 

performance of a Kalman filter. The linear filter, on the other hand, employs multiple 
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decoding weights for each stimulus dimension and neuron (20 weights/neuron/dimension 

in this case of a one second filter) that are determined during the initial optimization 

process. Therefore, the linear filter takes advantage of this history of the neuron 

responses that is inherent in its’ decoding scheme to provide a better recovery 

performance than the (best-case) optimal Kalman filter. The reoptimizing Kalman does 

not have access to this history of neuron responses, but operates over the same 550 

second reoptimizing time window to optimize the decoding weights and drive the error of 

the decoding post-nonstationarity to approximate to that of the optimal Kalman decoder. 

If the lost neurons were to encode a specific region of the space that may have no 

(or sparse) representation in the residual 50 neuron population, less information about the 

encoded movement stimulus would be available to the decoding algorithm.  Since the 

decoding algorithm uses the current neuron response in order to estimate movement, this 

would increase the error in decoding. However, the remaining neuronal population 

adequately sampled the movement space in these simulations. Figure 5.3 (A) shows the 

sum of tuning response profiles for the entire population of neurons for a simulation 

while Figure 5.3 (B) shows the sum of the tuning profiles for the same neurons after the 

loss has occurred. No particular movement direction shows a drop in the firing rates 

compared to the rest. This would indicate that the loss impacted all movement directions. 

Also, the decoding errors plotted in Figure 5.2 were computed across 20 different 

simulations with different neuron populations so that neurons lost would not specifically 

encode for a particular movement space.   
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(A) 

 

(B) 

Figure 5.3: Population response as a function of movement direction (A) before and 
(B) after loss of 50% of the neural population. The shape of the population response as a 
whole is fairly uniform for (A) and (B). Thus, the lost neurons did not result in a loss of 
direction information from the encoded movement. 
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The reoptimizing Kalman filter approximates to the optimal decoder performance 

and does so quicker than expected due to the form of the re-optimization process. The re-

optimizing Kalman filter adjusts its decoding weights at each timestep by minimizing the 

error over the preceding 550 second window. The rate of weight modification is directly 

related to the overall error in this window. Since we simulated an abrupt catastrophic 

nonstationarity that drives the overall error high, the weight reoptimization is influenced 

very early in the reoptimizing window and therefore, a quick recovery is observed. 

Since less information is available about the encoded movement, the decoding 

performance of the adaptive filter is bound to suffer (see Eliasmith et al. 2002 – Chapter 

2). The error increases with lower number of neurons available for decoding movement 

thus describing an inverse (1/N) relation. It was not expected that the adaptive filter 

would be able to recover to the level of its initial decoding performance with a 100 

neurons since the information input to the system is reduced. The adaptive filter scheme 

is based on a gradient descent that adjusts the Kalman decoding weights by making 

instantaneous updates to the weights every 50 ms. The adaptive filter error reduces 

systematically after the nonstationarity is registered, however, the speed of recovery is 

slow due to the instantaneous properties of the stimulus when the nonstationarity occurs. 

As was observed in Chapter 4, the adaptive filter seeks to continuously optimize the 

decoding weights to the instantaneous region of the movement space at each 50 ms 

timestep. If the nonstationarity occurs at a movement timestep with high decoding error, 

the gradient descent scheme can be thrown off its path toward the global error minimum 

for the system. However, no such weight change was observed in our simulations. The 

adaptive filter acts to drive down the weights associated with the neurons that are lost 
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while preserving the weights of the neurons that are still present in the population as 

shown below in Figure 5.4. 

 

(A) 

 

(B) 

Figure 5.4: Change in decoding weights along one (X) dimension over time for (A) 
50 unaltered neurons and (B) 50 neurons that were lost from a 100 unit neuronal 
population. The filter weights for the 50 neurons that were lost see a decrease in the 
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weights associated with them. The adaptive filter retains the weights associated with the 
remaining 50 neuron population. 

The reoptimizing linear filter has more weights per neuron than the Kalman-based 

decoding filters. In order to minimize the error over its 550-second reoptimizing window, 

it has to optimize multiple weights associated with each neuron when compared with the 

reoptimizing Kalman approach that only uses one weight per neuron. The reoptimizing 

linear filter would not benefit from making large weight changes to individual weights 

associated with each neuron. It makes incremental changes to each weight for each 

neuron at every timstep and therefore, while it is able to recover from its high decoding 

error, it takes ~570 seconds to do so as opposed to the ~100 second recovery shown by 

the reoptimizing Kalman filter. It shows the largest increase in error due to the 

nonstationarity but recovers to a lower error than an optimal decoding of 50 neurons with 

a Kalman filter (which is not in agreement with (Wu et al. 2008) whose linear decoding 

filters performed worse than comparable Kalman decoding filters). 
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6 SIMULTANEOUS LOSS AND RECRUITMENT 
OF NEURONS 

The decoding algorithm relies on a set of decoding weights that are specific and 

optimized for the subset of the neuron population sampled by the electrode implant. Over 

time, movement of the electrode array can result in some neural signals being lost, as the 

array moves away from some neurons, and others being newly acquired with potentially 

different tuning characteristics to the neurons that were lost. Since the decoding 

optimization is specific to the decoded movement parameters and the tuning responses of 

the population, such “drift” in the electrode array is computationally similar to changing 

the tuning characteristics of the neurons in the sampled subset. 

Changes in the shape (tuning characteristics) of recorded neurons have been 

observed by (Xindong Liu et al. 1999)  and more recently by (Suner et al. 2005). In the 

Liu et al study, the stability of neural recordings was characterized over a number of 

months. The authors reported that recorded neural activity was unstable up to 4 – 8 weeks 

post implantation. While neural activity stabilized after this period, slow changes in the 

recordings were omnipresent. The authors provided evidence for electrode movement 

through the tissue, which resulted in previously active units being lost. Growth of 

connective tissue may have contributed to the movement of the electrode array along the 

cortical surface or into deeper layers of the cerebral cortex.  

Suner et al (2005) reported similar results in Macaque motor cortex. Over time, 

signals within individual recording channels disappeared while channels with low (or no) 

signal strength sometimes started recording signals. The shape of the recorded waveforms 
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varied across days for the chronic implants. Over a period of 91 days, action potential 

waveforms retained their shape 38% of the time. While this may suggest electrode 

movement and/or changes in neuron tuning characteristics, the effects of both are similar 

with respect to decoding algorithm performance. 

For these simulations, a 100-neuron population was simulated with the same 

properties as described in Chapter 4. To simulate simultaneous loss and recruitment 

associated with a shift in the electrode array, a population of 100 neurons was abruptly 

replaced with a 100 novel neurons. Both the original and the new populations had the 

same aggregate response properties (Chapter 3). Figure 6.1 shows an example of the 

effect on (static) Kalman filter decoding of replacing the entire population. Since the 

weights were optimized to the original population, replacing each neuron with an 

‘unknown’ neuron randomized the relative contributions of neurons’ responses, 

significantly impairing performance. 

 

(A) 
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(B) 

Figure 6.1: Effect of 100% neuron replacement on non-adaptive decoding 
performance. (A) Decoded movement from a 100 neuron population for a five second 
long horizontal ‘Figure of 8’ movement. The optimal decoded signal (blue) closely 
approximates the desired movement (red) with weights optimized for a 100-neuron 
population. Following instantaneous replacement of the entire population (green), 
accuracy of the decoded movement was poor. The reconstructed signal does not approach 
the intended movement in either amplitude or direction. (B): Effect of 100% neuron 
replacement on adaptive algorithm decoding performance. All decoded signals were low 
pass filtered at 5 Hz for visibility (4th order Butterworth filter). 

6.1 Results and Discussion 

Figure 6.2 shows the normalized root mean square errors (NRMSE) averaged 

across 20 simulations computed over the last 1450 seconds of the test stimulus length. 
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Figure 6.2: Normalized root mean square error (NRMSE) in response to an 
instantaneous replacement of 100% of the neural population. NRMSE is shown for 
the static Kalman (red), adaptive Kalman (blue), reoptimizing Kalman (magenta) and 
reoptimizing linear filters (green) averaged across 20 simulations. Errors were computed 
over a 10 second non-overlapping window. The shaded regions denote the 95% 
confidence interval across simulations. The entire neuronal population was replaced with 
novel neurons 100 seconds into the simulation. The reoptimizing linear filter shows the 
lowest errors when compared with the adaptive and the reoptimizing Kalman filters. The 
adaptive filter recovers to an error level lower than the reoptimizing Kalman filter. Pre-
nonstationary errors for the adaptive filter are similar to the reoptimizing linear filter but 
better than the reoptimizing Kalman filter. 

Following the switch in neuronal population characteristics Six hundred and fifty 

seconds into the simulation, static Kalman filter errors increased to 1.05 from a pre-

nonstationary error of 0.3. This indicates extremely poor decoding accuracy (error > 

100%) of the intended movement. During the initial Kalman filter optimization, the 

optimal decoding weight for each neuron was computed. Since the entire population was 

replaced, it is unlikely that any of the decoding weights remained optimal with respect to 

its newly associated neuron. Hence, a catastrophic increase in error is to be expected.    
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The reoptimizing Kalman filter errors increased to 0.64 and recovered within 50 

seconds to 0.36 (NRMSE) which is close to the optimal decoding error (NRMSE=0.32). 

The error further decreased to match the optimal decoder performance after the switch in 

population moved beyond the 550 second optimizing window. Total replacement of the 

neuronal population is an abrupt catastrophic nonstationarity that dominates the overall 

movement error within the 550 second optimization window. The filter then corrects for 

the large error by making correspondingly large changes to the weights, which is why a 

quick recovery to a low error is observed. Once the nonstationarity (at 100 sec) has 

completely passed through the reoptimizing window, the system is once again optimal 

and therefore behaves exactly like the optimal Kalman decoder. 

The adaptive filter error increased to 0.8 immediately after the population 

replacement and decreased to the level of the optimal decoder after approximately 500 

seconds. The decrease in error was non-monotonic – an initial fast decrease in error to 

0.45 after 40 seconds followed by a increase in error to 0.61 NRMSE at 200 seconds, 

after which the error decreased systematically to its final value (NRMSE = 0.268) after 

980 seconds. Following the population replacement, the rate of weight modification was 

large due to the large initial error. The adaptive filter shows a recovery beyond that of the 

optimal Kalman decoder, resulting in a NRMSE of 0.25, which is slightly higher than its 

pre-nonstationarity error (~NRMSE = 0.2). As seen in Chapter 4, the adaptive filter is 

able to make modifications to the weights based on the not just increased error 

attributable to nonstationary changes but also that due to the instantaneous properties of 

the stimulus, thus resulting in a lower error than the optimal decoder which has a set of 

unaltered decoding weights. To investigate the non-monotonic change, the algorithm was 
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tested with a known set of sinusoids and predefined decoding weights. A monotonic 

decrease in the RMS error was observed for this test case (see Appendix B). 

The reoptimizing linear filter shows the best performance among the adaptive 

filters for these simulations. It matches the adaptive filter before the introduction of 

nonstationarity (NRMSE = 0.2) and recovers to this level following full replacement of 

the population. The nonstationarity itself did not cause a high increase in error; and its 

recovery occurred within approximately 200 seconds.  

The reoptimizing linear filter has more weights per neuron (and hence more 

degrees of freedom) than the Kalman-based decoding filters. In order to minimize the 

error over its 550 second reoptimizing window, it has to optimize multiple (20) weights 

associated with each neuron when compared with the reoptimizing Kalman approach that 

only uses one weight per neuron. However, its decoding performance does not deteriorate 

catastrophically. The reoptimization aims to correct the linear decoding weights so as to 

minimize the decoding error within its reoptimizing time window (550 seconds) given the 

overall distribution of the neuron firing rates in the encoded movement space. The 

distribution of firing rates for the initial population is similar to that for the population 

that replaced it as shown in Figure 6.3 below. Thus, no large loss in decoding accuracy is 

seen for this filter. 



57 
 

 

(A) 

  

(B) 

Figure 6.3: Population response profiles (A) before and (B) after complete 
replacement of the neuronal population. The shape of the population response profile 
is largely uniform. Thus, the new neuron population adequately samples the movement 
space and direction information of the encoded movement is retained. 

The timecourse for the weight changes for the adaptive decoding filter for one of 

the simulations is shown in Figure 6.4. The weight changes are consistent with that 
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expected for going from one 100 neuron population to an entirely new population of 

neurons. 

 

Figure 6.4: Weight changes along the X-dimension for the adaptive decoding filter 
for one simulation. 

The replacement of motor neurons may potentially not be as catastrophic as 

neuron loss alone since the encoded stimulus is still represented by the same number of 

neurons; therefore the overall information about the stimulus is retained. This affords the 

opportunity to the adaptive filter to correct for the presence of the novel neurons by 

changing the values of the decoding weights associated with each neuron. 

Point process adaptive filters (Eden et al 2004, Srinivasan et al 2007) have been 

shown to be resistant to slow changes in neural response properties but it is unclear how 

such systems would perform under more extreme conditions. For neuron replacement at a 

rate of one per minute, the adaptive filter proposed by Eden and colleagues (Eden et al 
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2004), was able to perform well when reconstructing movement direction from a 

population of 20 neurons but was not able to consistently recover speed of movement. 

Srinivasan et al 2007 showed similar trends in performance when neurons were replaced 

at a rate one per minute. When an equivalent rate of replacement was simulated here, 

there was no observable effect on performance using the adaptive Kalman filter (Figure 

6.5). This performance is better than that of the proposed point process adaptive filters 

described above. Thus, the adaptive Kalman filter is able to recover in the presence of a 

catastrophic nonstationary replacement of the population instantaneously and shows good 

performance in the presence of a slower real world (Wu et al 2008) neuron replacement.  

Before the introduction of the nonstationarity at 100 seconds into the simulation, 

the adaptive filter decoding errors are the lowest. The optimal decoding uses the weights 

that were optimized for the new 100 neuron population and therefore, represents the best 

case Kalman filter error for this new population. After approximately 950 seconds into 

the simulation, the adaptive filter errors increase to match the optimal decoding errors 

that are the best case error for the new 100 neuron population. 

 



60 
 

 

Figure 6.5: Decoding errors for one simulation with complete replacement of a 20-
neuron population at the rate of one neuron per minute. One hundred seconds into 
the simulation, one neuron was replaced by a novel neuron every minute. The decoding 
performance of the adaptive Kalman filter approaches the optimal Kalman decoder after 
introduction of the nonstationarity.  
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7 ATTENTION 

7.1 Attention Modulation 

Attention has been shown to modulate neuron responses in cortical areas 

including the primary motor cortex. Johansen-Berg et al (2002) showed differential 

activation of primary motor cortex when subjects were asked to count backwards while 

performing a movement (button press). The backward counting from a three-digit number 

was intended to act as a distractor for the subject thus reducing attention to the movement 

task. The experimenters observed decreased responses in the primary motor cortex when 

both tasks were performed simultaneously as opposed to the condition when the subjects 

performed just the movement task. 

Attention has also been shown to modulate the tuning curves of neurons in 

primary visual cortex (Chen et al. 2008), visual area V4 (McAdams et al. 1999),   parietal 

cortex (Quraishi et al. 2007) and motor areas (Binkofski et al. 2002). When attention is 

allocated to tasks processed by these areas, changes in the amplitude, tuning width, 

background rate and preferred orientation of neuron responses have been reported (see 

McAdams et al. 1999). The decoding of movement depends on the neuronal responses 

from the given population of neurons. Unaccounted for changes to the neuronal 

parameters described above cause a loss of accuracy due to the decoding being no longer 

optimized to the attention modulated neuronal responses. 

For these simulations, a 100-neuron population was simulated with the same 

properties as described in Chapter 4. To examine the effects of attention on decoding 
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performance we modulated the amplitude (i.e. firing rate) of neurons’ responses to 

simulate the effects of attention. The instantaneous firing rates of the simulated neurons 

were modulated by ±20% (via the driving current Jd), using a shifted sine wave signal 

with a period of five seconds scaled to the range [0.8, 1.2], (McAdams et al 1999 report 

26% change in neuron response amplitudes brought about by attention). 

 

Figure 7.1: Effect of attention gain modulation of the neuron responses on non-
adaptive decoding performance. A five second long horizontal ‘Figure of 8’ movement 
was decoded from 100 neurons responding to movement in a two-dimensional space. 
Attention was modeled as a ±20% sinusoidal modulation of neuronal responses with a 
period of five seconds. A corresponding increase in decoded velocity values is seen on 
the right (with increased attention) and a decrease on the left (when attention is reduced). 

Figure 7.1 compares the decoding performance of a non-adaptive optimal filter 

with attention modulation of the neuron responses. The filter weights were optimized to 

responses from the neurons when no attention modulation was present. Responses for the 

first 2.5 seconds were enhanced (i.e. for the right half of the figure of eight). The 

increased responses resulted in higher velocity estimates than intended. For the next 2.5 

seconds, responses were suppressed (left half) and a corresponding drop in decoded 



63 
 

velocity estimates was obtained. It is important to note that since the weights of the filter 

were optimized without attentional modulation, a loss in accuracy is seen when attention 

is included. In either case, the decoded estimates incorporate higher errors than the 

optimal decoding of the velocity from the neural responses. 

7.2 Results and Discussion 

The normalized root mean square errors (NRMSE) for a simulation containing 

100 LIF neurons responding to a  0 - 1 Hz bandlimited white noise movement with a 

RMS power of 1 computed over the last 1450 seconds of the test stimulus length are 

shown in Figure 7.2. 

 

Figure 7.2: Normalized root mean square error (NRMSE) in response to attentional 
modulation of neuron firing rates. NRMSE is shown for the static Kalman (red), 
adaptive Kalman (blue), reoptimizing Kalman (magenta) and reoptimizing linear filters 
(light blue/green) averaged across 20 loss simulations. Inset: A 100 second section 
illustrating the change in error over each second. Since the period of attentional 
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modulation was set to 5 seconds, errors were computed over a 1 second non-overlapping 
window to capture the effect of attention on decoding error. The shaded regions illustrate 
the 95% confidence in the mean NRMSE across 20 simulations. Attention modulation of 
neuron responses began 100 seconds into the simulation. The optimal population 
decoding represents the performance of a decoding filter with weights optimized to the 
attention modulated responses. The adaptive filter performance is better than both the 
reoptimizing Kalman filter and the reoptimizing linear filter. 

As shown in Figure 7.3, the errors for all decoding filters show periodicity at 0.2 

Hz and 0.4 Hz due to the 5-second long attention modulation. The reoptimizing Kalman 

filter and the reoptimizing linear filter have the highest concentration of error at 0.2 Hz 

and 0.4 Hz respectively. Adaptive Kalman filter errors also show the periodicity, but the 

errors are the lowest of all the adapting filters. 

The attentional modulation was initiated six hundred and fifty seconds into the 

simulation. Attention modulation does not seem to have as large an effect as the other 

nonstationarities. With an instantaneous 50% loss of the population (see Chapter 5), the 

adaptive filter errors rose to 0.601 NRMSE while the reoptimizing linear filter errors and 

the reoptimizing Kalman filter errors increased to 0.967 and 0.594 NRMSE respectively. 

With attentional modulation, the errors were 0.072, 0.352, and 0.379 NRMSE for the 

adaptive Kalman, reoptimizing linear filter and the reoptimizing Kalman filters 

respectively.  
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Figure 7.3: Frequency spectrum of the normalized root mean square errors 
(NRMSE). Peaks of the errors for all filters are seen at 0.2 Hz and 0.4 Hz. Inset (left): 
Errors at 0.2 Hz. Inset (right): Errors at 0.4 Hz. 

 
The reoptimizing linear filter suffers a small increase in error from 0.278 to 0.352 

NRMSE. The reoptimizing Kalman filter shows an increase in error from 0.288 to 0.379 

NRMSE. No discernable recovery for the reoptimizing Kalman and the reoptimizing 

linear filter is seen. Both the reoptimizing linear filter and the reoptimizing Kalman filters 
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modify their decoding weights at each timestep by minimizing the error over their 

reoptimizing window, which is 550 seconds long for both filters. The rate of weight 

modification is directly related to the overall movement error in this window. The 

modulation of neural responses due to attention is periodic over 5 seconds which is a 

smaller time scale when compared to the window length. Therefore, the attentional 

modulation does not drive the error within this 550 second window high enough to 

influence the weight reoptimization. The attentional modulation is symmetric (as 

illustrated in Fig 7.1 and therefore the net signed error over this window length is small. 

This results in an inherent uncertainty that is present and remains the same within each 

successive 550 second window. When compared to an instantaneous 50% loss of the 

population, since the attention modulation is 20% of the neuronal responses, the effect of 

attention is not as catastrophic and more importantly, the reoptimizing filters see a large 

error in their reoptimizing window that they try to minimize over successive iterations. 

Due to attention modulation, the relation between the rate responses, weights and 

stimulus location is no longer constant. Thus, it is difficult for a reoptimizing filter to 

adjust to the attention induced neuron reponse changes and no recovery is seen. 

The adaptive filter scheme, on the other hand,  is based on a gradient descent 

scheme that influences the Kalman decoding weights and it makes instantaneous updates 

to the weights every 50 ms. This allows the weights to adjust to attention modulations 

that occur over longer timescales (e.g., seconds). Therefore, the adaptive filter error trend 

reduces after the introduction of attentional modulation. The adaptive filter continuously 

reoptimizes its decoding weights to the instantaneous region of the movement space at 

each 50 ms timestep (see Chapter 3). Its final error is the lowest of all the decoding filters 
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(as seen in Figure 7.2) and due to its ability to adjust to the instantaneous properties of the 

stimulus, it outperforms the optimal decoding filter. 
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8 ADAPTATION 

8.1 Neuronal Adaptation 

Neurons that are exposed to the same constant or time-varying stimulus over a 

period of time adapt to the strength of the stimulus thus resulting in reduced neuron 

spiking (Connors et al. 1990). During chronic implantation of an electrode at the brain 

machine interface, neuronal adaptation may cause the neuron responses to decrease over 

time, effectively changing the tuning characteristics of the neurons. Thus decoding 

algorithms optimized with dynamic stimuli may no longer be optimal when faced with 

repetitive or slowly time-varying stimuli. Because adaptation produces a change in the 

neuron tuning characteristics (e.g. firing rate), the decoding performance of a non-

adaptive linear decoder would be inaccurate. 

Spike frequency adaptation, commonly seen in ‘regular-spiking’ neurons 

(Connors et al. 1990) defines the adaptive behavior of the neuron once a spike is 

generated. In these neurons, after-hyperpolarization causes an increase in the membrane 

conductance following each action potential. This causes an increased difference between 

the threshold voltage and the resting potential thus increasing the time to reach threshold 

and generate a subsequent spike. Thus a drop in the spiking frequency (firing rate in 

spikes/sec) of the neuron is seen when constant stimuli are presented over a period of 50 

– 600 ms. 
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8.2 Adaptive LIF Neurons 

The properties of neuronal adaptation can be approximated using an Adaptive 

Leaky Integrate and Fire (Adaptive LIF) neuron model (Eliasmith et al. 2002; Koch 

1998). In the adaptive LIF neuron, a voltage dependant resistance is added to the normal 

LIF neuron, which acts to increase the interval between successive action potentials. 

Because this variable resistance is in parallel with the resistive – capacitive circuit of the 

LIF model (Figure 8.1), it reduces the current available to the capacitor to integrate to the 

threshold voltage Vth. 

 

 

Figure 8.1: Adaptive Leaky Integrate and Fire Neuron. The resistive-capacitive 
circuit of the LIF neuron model, is placed in parallel with a variable shunt resistance, 
Radapt, whose value varies dynamically in response to a stimulus in the neuron’s preferred 
direction that excites an action potential (Koch 1999; Eliasmith et al. 2002). 
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The variation of the adaptive neuron resistance Radapt is described as follows. On 

the occurrence of an action potential (spike), Radapt is decreased by a fixed value Rdec, i.e. 

࢚ࢇࢊࢇࡾ                                              ൌ ࢚ࢇࢊࢇࡾ  െ  ࢉࢋࢊࡾ 

When there is no input (or no spike is generated), Radapt increases exponentially 

towards its resting state, i.e. 

࢚ࢇࢊࢇࡾ           ൌ ࢚ࢇࢊࢇࡾ                      ,࢚ࢇࢊࢇࡾࢊ 

࢚ࢇࢊࢇࡾࢊ     

࢚ࢊ
ൌ ࢚ࢇࢊࢇࡾ 

࢚ࢇࢊࢇ࣎
              … (7.1) 

In Chapter 3 (equation (3.4)), we saw that the value of the threshold current Jth is 

set by the leakage resistance R. For an adaptive LIF neuron, this resistance is in parallel 

with the adaptive resistance Radapt; therefore a change in Radapt produces a change in the 

RC time constant of the neuron thus impacting its ability to produce spikes at its 

maximum response even when it encodes stimulus at its preferred direction. 

8.3 Simulation 

A 100-neuron population was simulated with the same properties as described in 

Chapter 4 to investigate the effects of adaptation on the decoding accuracy. The decoding 

of movement through a linear filter is directly related to the optimized weights and the 

neural responses encoding that movement. The rates for the static Kalman decoding filter 

were optimized for non-adapting neurons. The reduction in neuronal responses with 

adaptation, can reduce the effective gain of the decoded response. This effect can be seen 
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in Figure 8.3 (green). For the decoded movement shown, the parameters were set as 

shown in Table 8.1 below: 

Simulation parameter Symbol Value 

Adaptive Resistance 20 ࢚ࢇࢊࢇࡾ 

Time constant for adaptation 600 – 50 ࢚ࢇࢊࢇ࣎ ms 

Drop in resistance due to spiking 5 ࢉࢋࢊࡾ 

Table 8.1 Adaptive Leaky Integrate and Fire (LIF) neuron parameters used in the 
simulation. The resistance ࢉࢋࢊࡾcontributes to the adaptive response of the neuron when 
encoding the stimulus at its preferred direction. The adaptive resistance and time constant 
control the rate of recovery of the neuron from its adaptive response to its resting state. 

The time constant for adaptation is described by Liu and Wang (Liu et al. 2001) to 

be within the range 50 – 600 ms. Since the value of leakage resistance (in Chapter 3) is 

set to 1, Radapt is set to a comparatively high value (20) for the simulation and the drop 

in resistance is set to five to produce a noticeable change due to adaptation. These values 

were chosen so as to see a significant change in the neuron responses due to adaptation 

(as illustrated below in Figure 8.2) within the time course that was chosen for the 

simulations. 
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Figure 8.2: Effect of adaptation on the spike activity of a sample neuron. The firing 
rate of a neuron with a maximum firing rate of 80 spikes/sec at its preferred stimulus 
direction decreases when this preferred direction is present in the movement signal over a 
period of 3 seconds. 

 

Figure 8.3 Effect of neuronal adaptation on non-adaptive decoding performance. A 
five second long horizontal ‘Figure of eight’ movement was decoded from 100 neurons 
responding to movement in a two-dimensional space. A loss in decoding accuracy was 

Before Adaptation 
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seen with neurons adapting to the movement signal (green) as compared to decoding 
before adaptation (blue). Decoded signals were low-pass filtered at 5 Hz (4th order 
Butterworth filter). 

8.4 Results and Discussion 

The normalized root mean square errors (NRMSE) for a simulation containing 

100 LIF neuron responding to a 0 - 1 Hz bandlimited white noise movement with a RMS 

power of 1 computed over the last 1450 seconds of the test stimulus length are shown in 

Figure 8.4. 

 

Figure 8.4: Normalized root mean square error (NRMSE) in response to adaptation 
of the neurons to a bandlimited white noise stimulus with a RMS power of 1. 
NRMSE is shown for the static Kalman (red), adaptive Kalman (blue), reoptimizing 
Kalman (magenta) and reoptimizing linear filters (light blue/green) averaged across 20 
simulations. Optimal filter errors were exactly the same as the static Kalman errors and 
not shown here for clarity. Errors were computed over a 10 second non-overlapping 
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window. The shaded regions illustrate the 95% confidence in the mean NRMSE across 
20 simulations. One hundred seconds into the simulation all neurons began adapting to 
the movement stimulus.  

Neuron adaptation was introduced six hundred and fifty seconds into the 

simulation by setting Radapt to a nonzero value. The static Kalman filter suffers an 

increase in error from 0.277 to 0.437 NRMSE. As described in Chapter 3, in the Kalman 

filter, the movement is decoded via the internal state variables using the product of the 

neural firing rates with its optimized Kalman coefficients. During adaptation, neural 

firing rates drop, such that the decoding weights are no longer optimal. This in turn 

results in decreased amplitude of the decoded movement. 

The reoptimizing Kalman filter approaches the same level of error as the static 

Kalman filter following the onset of adaptation, but recovers to 0.247 NRMSE after 650 

seconds. The effect of adaptation of the neural responses is not as catastrophic as the loss 

of 50% of the population. As seen in Chapter 5, an instantaneous loss of 50% of the 

population causes the decoding error to increase by approximately 200% while the 

change seen here is approximately 50%.  The rate of change of the weights depends on 

the decoding error seen by the filter.  Therefore, the rate of modification of the weights is 

comparatively slower and we see a slower recovery in the case of neuronal adaptation.  

The reoptimizing linear filter, on the other hand, starts with a low pre-

nonstationarity error of 0.210 NRMSE that increases to 0.329 NRMSE with the 

introduction of adaptation and recovers to pre-adaptation levels at 0.215 NRMSE after 

650 seconds. The reoptimizing linear filter has more weights per neuron than the 

Kalman-based decoding filters. In order to minimize the error over its 550 second 

reoptimizing window, it has to optimize multiple weights associated with each neuron. It 
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is able to combat the effects of adaptation because it has more (20) weights optimized to 

each neuron. The effect of the slow change in the neuronal response due to adaptation is 

tempered by the multiple weights associated with that neuron since the estimated 

movement is a matrix product of the weights and the neuron response. This has an 

averaging effect on the computation of the predicted movement and thus, it shows low 

overall error when compared to the other filters. It reaches its optimal error about 650 

seconds into the simulation (like the reoptimizing Kalman) at which point its weights are 

optimized to the adaptive responses. 

 

Figure 8.5: Progression of changes to the individual weights associated with each 
neuron for the movement along one (X) dimension for the population of adaptive 
neurons. 

The adaptive filter has a pre-nonstationarity error at 0.268 NRMSE and is 

resistant to the effects of neuronal adaptation and ends up at 0.26 NRMSE. The adaptive 

filter optimizes its weights over each 50 ms time step and to the instantaneous properties 

of the test stimulus and the neuronal responses. The adaptation effects modeled here had 
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a time scale of between 50 to 600 ms, as discussed earlier. Compared to a sudden loss of 

50% of the population or replacement of the entire population over 50 ms, the effects of 

the adaptation are not as drastic. The filter weights for the adaptive neurons see a small 

decrease in the weights associated with them as shown in Figure 8.5. 

Compared to the loss of neurons scenario, the adaptation does not impact the loss 

of space being sampled (i.e. retains the same tuning widths), only the amplitudes of the 

responses that the neurons generate. The adaptive filter operates over each 50 ms time bin 

to change its weights to counter this small effect on the amplitudes brought about by 

adaptation and thus, is able to maintain its level of optimal error. Thus, the errors for the 

reoptimizing linear filter are the lowest among the adapting filters and the performance of 

the adaptive filter is not affected by the neuronal adaptation. 
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9 DISCUSSION AND CONCLUSION 

This thesis presents an adaptive neural decoding system based on a Kalman filter 

that was designed to be resistant to the occurrence of nonstationary neural signals. Filter 

decoding performance was compared to a non-adaptive system and several alternative 

adaptive decoding algorithms (reoptimizing linear filter and reoptimizing Kalman filter), 

proposed in the literature. 

The algorithm was implemented using simulated motor cortical neurons encoding 

intended movement velocity. The decoded movement and therefore the performance 

(NRMS errors) was described within the velocity space. Other approaches (Wu et al 

2008) estimated movement from neuron responses as decoded velocity as well as 

position. If intended position were to be included in the simulations here, it would not 

impact the accuracy of velocity decoding as long as the number of neurons encoding for 

velocity is retained. The decoded velocity information could be used toward estimating 

intended position more accurately, potentially reducing errors in decoded position. 

The white noise signals used for training the algorithms and for testing the 

decoding performance were bandlimited to approximate the range of limb movement 

frequencies (0 - 1.5Hz). In a real world scenario, the intended movement would likely not 

have a uniform power distributed along all frequencies. A single bandlimited signal was 

used here since it provides the most generalization across the space of possible 

movements. We have shown the proposed algorithm to be resistant to changes in the 

movement bandwidth (Chapter 4), therefore, its performance would be retained under 

real world conditions. 
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9.1 Decoding Beyond the Trained Movement Constraints 

The adaptive filter performance was the best among all the filters implemented 

under the trained RMS power (of 1) and bandwidth constraints (0 – 1.5 Hz) of the 

optimizing signal. Also, although the performance of the adaptive filter was significantly 

different (t-test for bandwidth 0-5 Hz, t(4) = -59.41, p<1E-6) when the frequency range 

of decoded movements exceeded the optimized bandwidth, it represented the lowest 

decoding errors. For decoding movements beyond the adaptive filter’s trained RMS 

power, decoding accuracy remained high. This performance was better than comparable 

adaptive algorithms such as the reoptimizing linear filter and reoptimizing Kalman filter 

(both described in Wu. et al 2008). The decoding accuracy for the adaptive Kalman filter 

was the highest for the RMS power variations of 0.5, 1, 2 and 5 in the test signal. For the 

BW changes, the adaptive Kalman filter had the lowest decoding errors for the test 

bandwidths of 0-1Hz, 0-1.5Hz, 0-2Hz and 0-5Hz. The reoptimizing linear filter had the 

best decoding accuracy for the test bandwidth of 0 -0.5Hz. 

In order to achieve low decoding errors in the case of a non-adaptive system, it 

would be necessary to perform the initial optimization of the weights using all possible 

movements with a wide range of frequencies and amplitudes. This would result in a 

longer duration for the training sessions and greater inconvenience to the subjects. Even 

with sufficient training, as seen during our simulations, the static filter decoding accuracy 

may suffer when compared that of the adaptive filter since it is unable to optimize to the 

instantaneous stimulus properties such as current amplitude and frequency of the 

movement (velocity). 
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9.2 Nonstationary Conditions 

The simulation results for the nonstationary conditions show that the adaptive 

decoding filter is capable of recovering from catastrophic changes in the neural signals to 

maintain accurate decoding of the intended movement. With some approaches, full 

recovery to events such as neuron replacement can require hours (Rotermund et al 2006). 

The time taken for recovery was 12 minutes for a 50% loss of neural signals and 3 

minutes for full replacement of neural signals.  

For catastrophic nonstationary changes such as loss of 50% of the neurons and 

replacement of 100% of the neuron population, the reoptimizing Kalman and the 

reoptimizing linear filters show better decoding accuracy and faster recovery than the 

proposed adaptive Kalman filter. Since these adaptive systems depend on minimizing 

error in their reoptimizing window (550 seconds), their rate of recovery for a large error 

change is better than the proposed adaptive filter. These adaptive approaches are better 

suited to catastrophic nonstationary effects such as loss and replacement of neurons since 

they are more sensitive to the large error that is produced.  

However, for nonstationarities such as attention modulation and adaptation, the 

induced error at each timestep is small. The time scale of the induced changes (~ 5 

seconds for attention and 50-600 ms for adaptation) allows the adaptive Kalman filter to 

modify its weights over each iteration to combat the nonstationary effects. This allows 

the gradient descent approach of the adaptive Kalman algorithm to make changes to the 

weights over each successive iteration and combat the increased error. The adaptive 

Kalman filter decoding is resistant to both these nonstationarities and no increase in error 
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is observed. For the reoptimizing Kalman filter and the reoptimizing linear filters, the 

timescale of these nonstationarities is smaller than their reoptimizing window of 550 

seconds. Those approaches make a change to the weights to reduce the error over a 550 

second window and therefore, they are not able to achieve optimal decoding. The 

proposed adaptive Kalman filter is thus better suited to combating nonstationarities of 

attention and adaptation of neurons. 

Gage et al. (2005) have previously proposed an adaptive Kalman filtering 

approach that is similar to the reoptimizing Kalman filter approach outlined here. The key 

difference between the two approaches lies in the method for re-optimization (windowed 

vs. instantaneous) and the requirements on the type of error signal used by the system. In 

the adaptive Kalman filter developed by Gage and colleagues, the system is intermittently 

re-optimized using the standard least-square optimization over a sliding temporal 

window. The temporal history used in re-optimizing the system places a lower bound on 

the speed at which the system can recover by requiring that nonstationary changes in the 

signal move beyond the re-optimization window. However, it was observed in that study 

that the reoptimizing filters had error trends that did not conform to this idea (the 

reoptimizing Kalman filter recovered ~100 seconds for a loss of 50% of the population). 

The total error over the window that a reoptimizing filter tries to minimize determines the 

rate of change of its weights. Higher error results in faster changes and thus faster 

recovery to the minimum error. For catastrophic changes (neuron loss, replacement) that 

induce a high error into this window, a quicker recovery is therefore observed. 

Point process adaptive filters (Eden et al 2004a, 2004b; Srinivasan et al 2007) 

have been shown to be resistant to slow changes in the neural response properties but it is 
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unclear how such systems would perform under more extreme conditions. For neuron 

replacement at a rate of one per minute, the adaptive filter proposed by Eden and 

colleagues (2005), was able to reconstruct movement direction from a population of 20 

neurons but was not able to consistently recover speed of movement. Srinivasan et al 

(2007) showed similar trends in performance when neurons were replaced at a rate one 

per minute. When an equivalent rate of replacement was simulated here, there was no 

observable effect on performance using the adaptive filter proposed here (see Chapter 6).  

Use of least-squares optimization for obtaining the decoding weights also requires 

that the error signals be explicitly represented in units that define the movement space. 

Such information is generally not available outside of a laboratory setting posing 

challenges for real-world implementation. Error information could likely be extracted 

from other cortical areas and neural populations, although the same issues inherent in 

decoding non-stationary signals would affect the decoded estimates of error.  

The adaptive decoding algorithm described here uses a gradient descent scheme 

to update its weights. With this type of system it is possible to use more reliable 

“qualitative” measures of error (e.g., signed/direction of error, relative error, quantized 

‘levels’ error) to guide weight changes along with a gain adjustment to optimize the 

speed of convergence based on the type of error information available. Thus, having an 

exact error signal is not an explicit requirement of the adaptive decoding algorithm 

described here. Future work will examine the ability of the system to adapt using more 

generalized error signals that do not explicitly encode error within the movement space.  
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9.3 Computational Requirements 

In conjunction with good performance, the practical application of adaptive 

decoding systems will ultimately require their implementation in a portable system. 

Current adaptive algorithms have shown considerable promise for the reliable decoding 

of neural signals at the brain machine interface; however, they often have high 

computational demands (Rotermund et al 2006, Srinivasan et al, 2007) that may not be 

suited to a portable implementation.  

For the initial optimization, the computational cost associated with the Kalman-

based decoders is given by O (N3), where N is the size of the matrices and O denotes 

order of the operation. The cost is due to the estimation of the decoding weights during 

the least squares optimization process using matrix sizes of  

 NxN  (100 x 100), N is the number of neurons in the population 

 NxNt  (100 x 5000), Nt is the number of 50 ms bins in the 250 second 

movement stimulus 

Since N denotes the number of neurons in the population, the least squares 

optimization process yields a (N x N x N) size matrix multiplication operation that 

dominates the order O of operations. The number of steps required for these 

computations, would therefore, be dominated by a N3 term. The big-O notation for these 

operations, by definition, would be given by O (N3). 

While the computational cost for the linear filter would also be given by O (N3), 

since it requires 20 additional decoding weights, its cost is 20 times higher than a Kalman 
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based approach. This is not relevant in a computational system such as a desktop 

computer, but for a portable implementation with more limited computational resources, 

this could potentially impact real-time implementation. Since it reoptimizes at each 

timestep using an optimization technique over a 550 second time window, the filter 

carries a high computational cost during each operation (NxNtx20)  (100 x 11000 x 20) 

at each iteration (11000 neuron response bins of 50ms each in a 550 second window). 

Since the reoptimizing Kalman filter uses a window of length 550 seconds as well, the 

computational cost associated with it operating at each timestep is given by (NxNt)  

(100 x 11000). 

The adaptive Kalman filter proposed here requires information only from the 

previous timestep to obtain the current estimate. After its initial optimization, the 

computational cost per iteration is given by (N x N x N) for estimation of the corrected 

decoding weight (see eq (3.8) and (3.9)). Thus, the maximum cost for a hundred neuron 

population would be (100 x 100 x 100). Thus, it has lower computational requirements 

that make it amenable to a portable implementation with current technology. 

9.4  Conclusion 

The aim of the project was to identify the sources of nonstationarity associated 

with prostheses during the long term and create an algorithm that would combat any 

errors in decoding attributable to these sources. In addition, the alogirthm was compared 

to other approaches in literature in terms of decoding accuracy and recovery time. 
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The proposed adaptive filter was able to reliably decode movement outside the 

movement attributes such as movement range and speed that it was trained over. Its 

performance was better than comparable approaches and thus, the algorithm can be 

employed for decoding under non-stationary conditions without requiring frequent and 

cumbersome retraining. 

For catastrophic nonstationary effects such as loss of 50% of the population and 

replacement of the entire population of sampled neurons, the filter recovery was slower 

and did not recover to an optimal error when compared to other proposed approaches 

such as the reoptimizing linear and Kalman filters. The catastrophic effects were 

simulated as a worst case. When the rate of the impact of the nonstationarity was lessened 

(for e.g. 1 neuron replaced per minute), the adaptive filter was able to retain its decoding 

performance and approached an optimal error within 50 ms of the impact. 

The filter recovered its performance for nonstationary changes that are not as 

drastic, such as attention and adaptation and results were comparable to other approaches 

or better. The smaller timescale over which these nonstationarities occur allow the filter 

to recover to a lower error in its decoding.  

This would suggest that in addition to a very good performance under stationary 

conditions, the adaptive filter would be able to combat slow replacement, attention and 

adaptation in a practical implementation. The filter was evaluated to meet certain design 

criteria to achieve such an implementation: 
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• Real-time performance 

As per the requirements, the algorithm was able to decode neuron response rates 

computed over 50 ms time bins and provide movement estimates over each bin. 

• Accuracy 

The algorithm reached the specified accuracy levels of 10-20% while decoding 

movement stimuli using a stationary population of neurons. After nonstationary 

impact, the algorithm was able to recover to decode with better accuracy than 

comparable approaches for Attention (21.7%) and Adaptation (24.7%) while 

worse for Loss (18.9%) and Replacement (25%). 

• Time to recovery 

The algorithm had a quicker time to recovery for nonstationarities such as 

Attention (130 seconds) and Adaptation (110 seconds), while for catastrophic 

nonstationarities such as Loss (550 seconds) and Replacement of neurons (980 

seconds), the time to recovery was much slower than comparable approaches. 

• Number of computations 

The computations required by the proposed algorithm for adaptive decoding 

resulted in a computational cost of (100 x 100 x 100) or O (N3), which is less than 

comparable approaches such as the reoptimizing Kalman filter by a factor of 110 

and the linear filter by a factor of 110x20 = 2200. This is more relevant in 

portable implementations due to limited computational power and thus the 
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proposed algorithm is amenable to a portable implantation than comparable 

approaches. 

9.5 Future Directions 

A future implementation of this algorithm would be realized in an embedded 

system producing the control signals for limb prostheses. Furture steps would include 

identifying the specifications of such as computational system, and creating a prototype 

implementation. Since the prototyping language used here in this case is MATLAB, 

implementing the algorithm in a faster compiled environment (C, embedded C) would 

lend itself well to a real-time portable implementation. 

Also, the reliance on the absolute error signal used by the algorithm to adapt to 

the nonstationarity could be investigated. An error signal analogue that carries direction 

and not amplitude information could be potentially employed. The sources of movement 

error that can be tapped into in order to get the desired error signal could also be 

investigated. 
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Appendix A 

 

 

MATLAB® code for the neuron model, decoding algorithms and simulations follows. 
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DecodingSimulation.m 

close all; clear; clc 
dbstop if error 
tic 
  
% Decoding simulation for the adaptive decoding filter 
  
for NumberSim = 1:20 
    close all; clear; 
  
    [Sim, Stim] = InitializeNewSim; 
    newSim = 1; 
    validSim = 1; 
  
  
    if validSim          %RUN THE SIMULATION 
  
        %       Initialize Local Simulation Parameters 
        rand('state',Sim.RSeed);                    %#ok<RAND> %Set 
seed for random number generator 
        nBins = Sim.FR.FiltLength/Sim.FR.tRateInt;  %Number of temporal 
intervals comprising the linear filter 
  
  
        % START SIMULATION 
  
        for i = 1:length(Sim.nUnits)             %for each population 
            for j = 1:Sim.nRuns 
                t0 = clock;     %Initialize timer 
  
                N = Sim.nUnits(i); 
                Sim.Pop(i).nUnits = N; 
  
                %Create neural population 
                switch(Sim.phiEnc_func) 
                    case 'GaussTuningResp' 
                        if newSim 
                            %Initialize Gaussian tuned neurons 
                            if Sim.nDim == 1 
                                Sim.Pop(i).Spref = (max(Stim.sRange)-
min(Stim.sRange))*rand(N,Sim.nDim) + min(Stim.sRange); 
                                Sim.Pop(i).Ssig = 
0.11*(2*rand(N,Sim.nDim)-1) + 0.16;    %for linear rep. 
                                Sim.Pop(i).SmaxLin = max(Stim.sRange); 
                            else 
                                Sim.Pop(i).Spref = (max(Stim.sRange)-
min(Stim.sRange))*rand(N,Sim.nDim-1) + min(Stim.sRange); 
                                Sim.Pop(i).Ssig = 
0.34.*(2*rand(N,Sim.nDim-1)-1) + pi/4;    %for 2D polar rep. 
                                Sim.Pop(i).Tau = Sim.Tau; 
                                Sim.Pop(i).SmaxLin = 
Stim.Training.maxMag; 
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                            end 
                            [Sim.Pop(i).LIFparams, Sim.Pop(i).noiseVar, 
Sim.Pop(i).maxResp] = InitGaussLIFNeurons(Stim.sRange, N, 
Sim.Pop(i).Spref, Sim.Pop(i).Ssig, Sim.maxRespRange, ... 
                                Sim.tauRefRange, Sim.tauRCRange, 
Sim.V_th, Sim.R_leak, Sim.error, 1); 
                        end 
  
                    case 'LinearTuningResp' 
                        if newSim 
                            %Initialize Linearly tuned neurons 
                            Sim.Pop(i).Sint = (max(Stim.sRange)-
min(Stim.sRange))*rand(N,1) + min(Stim.sRange);  %Randomly place x-
intercepts across input range 
  
                            [Sim.Pop(i).LIFparams, Sim.Pop(i).noiseVar, 
Sim.Pop(i).maxResp] = InitLinearLIFNeurons(Sin, N, Sim.Pop(i).Sint, 
Sim.maxRespRange, ... 
                                Sim.tauRefRange, Sim.tauRCRange, 
Sim.V_th, Sim.R_leak, Sim.error); 
                        end 
  
                        if Sim.nDim > 1 
                            Sim.Pop(i).prefAngle = rand(1,N)*2*pi;               
%Randomly select each neurons preferred direction (for multi-
dimensional stimulus representations) 
                            phiEnc = [cos(Sim.Pop(i).prefAngle); 
sin(Sim.Pop(i).prefAngle)];  %Compute normalized encoding weights based 
on the preferred direction 
                        else 
                            phiEnc = ones(1,N);                     
%For the 1D case the preferred direction is +-1 cand is already 
incorporated into the neuron's response. 
                        end 
  
                    case 'CosineTuningResp' 
                        if newSim 
                            %Initialize Cosine tuned neurons 
                            if Sim.nDim == 1 
                                Sim.Pop(i).Spref = (max(Stim.sRange)-
min(Stim.sRange))*rand(N,Sim.nDim) + min(Stim.sRange); 
                                Sim.Pop(i).SmaxLin = max(Stim.sRange); 
                            else 
                                Sim.Pop(i).Spref = (max(Stim.sRange)-
min(Stim.sRange))*rand(N,Sim.nDim-1) + min(Stim.sRange); 
                                Sim.Pop(i).Tau = Sim.Tau; 
                                Sim.Pop(i).SmaxLin = 
Stim.Training.maxMag; 
                            end 
                            [Sim.Pop(i).LIFparams, Sim.Pop(i).noiseVar, 
Sim.Pop(i).maxResp] = InitCosineLIFNeurons(Stim.sRange, N, 
Sim.Pop(i).Spref, Sim.maxRespRange, ... 
                                Sim.tauRefRange, Sim.tauRCRange, 
Sim.V_th, Sim.R_leak, Sim.error, 1); 
                        end 
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                    case 'vonMisesTuningResp' 
                        if newSim 
                            %Initialize von Mises tuned neurons 
                            if Sim.nDim == 1 
                                Sim.Pop(i).Spref = (max(Stim.sRange)-
min(Stim.sRange))*rand(N,Sim.nDim) + min(Stim.sRange); 
                                Sim.Pop(i).SmaxLin = max(Stim.sRange); 
                            else 
                                Sim.Pop(i).Spref = (max(Stim.sRange)-
min(Stim.sRange))*rand(N,Sim.nDim-1) + min(Stim.sRange); 
                                Sim.Pop(i).Spref = 
round(Sim.Pop(i).Spref.*(180/pi)); % Round off the preferred direction 
to the nearest degree 
                                Sim.Pop(i).Spref = 
Sim.Pop(i).Spref.*(pi/180); 
                                Sim.Pop(i).SmaxLin = 
Stim.Training.maxMag; 
                            end 
                            clear kappa 
                            [Sim.Pop(i).LIFparams, Sim.Pop(i).noiseVar, 
Sim.Pop(i).maxResp, a_S, kappa, halfwidth] = 
InitvonMisesLIFNeurons(Stim.sRange, N, Sim.Pop(i).Spref, 
Sim.maxRespRange, ... 
                                Sim.tauRefRange, Sim.tauRCRange, 
Sim.V_th, Sim.R_leak, Sim.error, 1); 
                            Sim.Pop(i).kappa = kappa; 
                            Sim.Pop(i).halfwidth = halfwidth; 
                        end 
                    otherwise 
                        error('Invalid stimulus tuning profile 
specified'); 
                end 
  
                % GENERATE THE TRAINING SIGNAL 
                tt = 0:Stim.FR.dt:Stim.Training.FR.T; 
  
                Amps_training = zeros(Sim.nDim, length(tt)); 
  
                switch (Stim.Training.type) 
                    case 'Constant' 
                        Sin_training = Stim.Test.mag*ones(2, 
length(tt)); 
                    case 'Figure 8' 
                        theta = linspace(-pi/4, 3/4*pi, length(tt)); 
                        Sin_training = [1.5*cos(2*theta); 
1*cos(2*theta).*sin(2*theta)]; %(April 12, 2007 - shifted center back 
to (0,0)) 
                        Sin_training = 
repmat(Sin_training,1,Stim.Test.FR.tst_runs); 
                    case 'Circle' 
                        thetaTemp = -
pi:Stim.Test.degreepert*(pi/180):pi; 
                        Ntheta = length(thetaTemp); 
                        theta = repmat(thetaTemp, 1, 
floor(length(tt)/Ntheta)); 
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                        theta = cat(2, theta, 
thetaTemp(1:mod(length(tt),Ntheta))); 
                        Sin_training = [Stim.Test.radius*cos(theta); 
Stim.Test.radius*sin(theta)]; 
                    case 'White Noise' 
                        for f = 1:Sim.nDim 
                            [Sin_training(f,:),Amps_training(f,:)] = 
genSignal(Stim.Training.FR.T,Stim.FR.dt,Stim.Training.rms,Stim.Training
.bandwidth,Sim.RSeed*pi*f);  %#ok<AGROW> %Increment random seed in 
deteministic way across multiple dimensions when RandomSeed >0 
                            %pi multiple in randomSeed used to ensure 
                            %different amplitude coeff in generaiton of 
random training and test signals 
                        end 
                end 
  
                Sin_mag_training = sqrt(sum(Sin_training.^2,1)); 
                Ind95pctrain = ceil(0.95*size(Sin_mag_training, 2)); 
                Sin_mag_training_ascend = sort(Sin_mag_training, 
'ascend'); 
                Sim.Pop(i).SmaxLin = 
Sin_mag_training_ascend(Ind95pctrain); 
  
                nRateStepsT = 
floor(Stim.Training.FR.T/Sim.FR.tRateInt); 
                ndtperBin = Sim.FR.tRateInt/Sim.FR.dt; 
                LIFinit_training.V = zeros(1,Sim.nUnits); 
                LIFinit_training.EndRefPeriod = zeros(1,Sim.nUnits); 
                LIFinit_training.jitterSig = []; 
  
                SUrateResp_training=zeros(Sim.nUnits,nRateStepsT); 
                sSUCenters_training=zeros(2,nRateStepsT); 
  
  
                t_A = 0:Sim.FR.tRateInt:Stim.Training.FR.T; 
                if strcmp(Sim.Nonstatdecision, 'Yes') && 
(strcmp(Sim.NonStatType, 'Attention') || strcmp(Sim.NonStatType, 
'AttentionReplacement')) 
                    AttnSig = sin(2*pi*(1/Sim.AttnPeriod)*t_A); 
                    AttnSig = (AttnSig + abs(min(AttnSig))); 
                    AttnSig = AttnSig./max(AttnSig); 
                    AttnSig = Sim.AttentionMod(1) + 
(Sim.AttentionMod(2)-Sim.AttentionMod(1)).*AttnSig; 
                else 
                    AttnSig = ones(1, length(t_A)); 
                end 
  
                Gadapt_training = Sim.Gadapt; 
  
                for cnt=1:nRateStepsT 
                    [SUrateResp_training(:,cnt), 
sSUCenters_training(:,cnt), LIFinit_training, Gadapt_training, 
spikeTimes_training, GadaptTemp_training] = 
GetNeuronFiringRatesIterative_G(Sim, Stim, Sin_training(:,((cnt-
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1)*ndtperBin)+1:cnt*(ndtperBin)), LIFinit_training, Sim.nUnits, 
AttnSig(cnt), Gadapt_training); 
                end 
  
                % PLOT TRAINING STIMULUS 
                figure, plot (Sin_training(1,:), Sin_training(2,:), 
'LineWidth', 2); 
                set(gca, 'FontSize', 14), legend('Training stimulus') 
                title ('Training Stimulus', 'FontSize', 16); 
                xlabel('X velocity V_x', 'FontSize', 14) 
                ylabel('Y velocity V_y', 'FontSize', 14) 
                drawnow; 
  
                % OPTIMIZATION PROCESS 
                if strcmp(Sim.Nonstatdecision, 'Yes') && 
(strcmp(Sim.NonStatType, 'Replacement') || strcmp(Sim.NonStatType, 
'AttentionReplacement')) 
                    Nusable = N - Sim.nchangedpop; % NO OF UNCHANGED 
UNITS IN THE POPULATION 
                else 
                    Nusable = N; 
                end 
  
                [AdaptiveFilter.static.Asu, AdaptiveFilter.static.Hsu, 
AdaptiveFilter.static.Wsu, AdaptiveFilter.static.Qsu] = 
GetDecodingWeights(sSUCenters_training, 
SUrateResp_training(1:Nusable,:)); 
  
                % Generate a new bandlimited white noise stimulus for 
TESTING 
                t = 0:Stim.FR.dt:Stim.Test.FR.T;    %Time at each 
sample 
  
                Amps = zeros(Sim.nDim, length(t)); 
  
                switch (Stim.Test.type) 
                    case 'Constant' 
                        Sin_tst = Stim.Test.mag*ones(2, length(t)); 
                    case 'Figure 8' 
                        theta = linspace(-pi/4, 3/4*pi, length(t)); 
                        Sin_tst = [1.5*cos(2*theta); 
1*cos(2*theta).*sin(2*theta)]; 
                        Sin_tst = 
repmat(Sin_tst,1,Stim.Test.FR.tst_runs); 
                    case 'Circle' 
                        thetaTemp = -pi:Stim.Test.degreepert:pi; 
                        Ntheta = length(thetaTemp); 
                        theta = repmat(thetaTemp, 1, 
floor(length(t)/Ntheta)); 
                        theta = cat(2, theta, 
thetaTemp(1:mod(length(t),Ntheta))); 
                        Sin_tst = [Stim.Test.radius*cos(theta); 
Stim.Test.radius*sin(theta)]; 
                    case 'White Noise' 
                        for f = 1:Sim.nDim 
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                            [Sin_tst(f,:),Amps(f,:)] = 
genSignal(Stim.Test.FR.T,Stim.FR.dt,Stim.Test.rms,Stim.Test.bandwidth,S
im.RSeed*pi*f);  %Increment random seed in deteministic way across 
multiple dimensions when RandomSeed >0 
                            %pi multiple in randomSeed used to ensure 
different amplitude coeff in generaiton of random training and test 
signals 
                            clear Amps 
                        end 
                end 
  
                % PLOT TEST STIMULUS 
                figure, plot (Sin_tst(1,:), Sin_tst(2,:),'r', 
'LineWidth', 2); 
                title ('Test Stimulus', 'FontSize', 16); 
                set(gca, 'FontSize', 14), legend('Test like stimulus') 
                xlabel('X velocity V_x', 'FontSize', 14) 
                ylabel('Y velocity V_y', 'FontSize', 14) 
                drawnow; 
  
                % GENERATE A OPTIMIZING SIGNAL WITH PROPERTIES SIMILAR 
TO THE TEST 
                tt = 0:Stim.FR.dt:Stim.Training.FR.T; 
  
                Amps_tst_like = zeros(Sim.nDim, length(tt)); 
  
                switch (Stim.Test.type) 
                    case 'Constant' 
                        Sin_tst_like = Stim.Test.mag*ones(2, 
length(tt)); 
                    case 'Figure 8' 
                        theta = linspace(-pi/4, 3/4*pi, length(tt)); 
                        Sin_tst_like = [1.5*cos(2*theta); 
1*cos(2*theta).*sin(2*theta)]; 
                        Sin_tst_like = 
repmat(Sin_tst_like,1,Stim.Test.FR.tst_runs); 
                    case 'Circle' 
                        thetaTemp = -
pi:Stim.Test.degreepert*(pi/180):pi; 
                        Ntheta = length(thetaTemp); 
                        theta = repmat(thetaTemp, 1, 
floor(length(tt)/Ntheta)); 
                        theta = cat(2, theta, 
thetaTemp(1:mod(length(tt),Ntheta))); 
                        Sin_tst_like = [Stim.Test.radius*cos(theta); 
Stim.Test.radius*sin(theta)]; 
                    case 'White Noise' 
                        for f = 1:Sim.nDim 
                            [Sin_tst_like(f,:),Amps_tst_like(f,:)] = 
genSignal(Stim.Training.FR.T,Stim.FR.dt,Stim.Test.rms,Stim.Test.bandwid
th,Sim.RSeed*pi*f);  %Increment random seed in deteministic way across 
multiple dimensions when RandomSeed >0 
                            %pi multiple in randomSeed used to ensure 
different amplitude coeff in generaiton of random training and test 
signals 
                            clear Amps_tst_like 
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                        end 
                end 
  
                nRateStepsT = 
floor(Stim.Training.FR.T/Sim.FR.tRateInt); 
                ndtperBin = Sim.FR.tRateInt/Sim.FR.dt; 
                LIFinit_tst_like.V = zeros(1,Sim.nUnits); 
                LIFinit_tst_like.EndRefPeriod = zeros(1,Sim.nUnits); 
                LIFinit_tst_like.jitterSig = []; 
                SUrateResp_tst_like=zeros(Sim.nUnits,nRateStepsT); 
                sSUCenters_tst_like=zeros(2,nRateStepsT); 
                Radapt = Sim.Radapt; 
  
                t_A = 0:Sim.FR.tRateInt:Stim.Training.FR.T; 
                if strcmp(Sim.Nonstatdecision, 'Yes') && 
(strcmp(Sim.NonStatType, 'Attention') || strcmp(Sim.NonStatType, 
'AttentionReplacement')) 
                    AttnSig = sin(2*pi*(1/Sim.AttnPeriod)*t_A); 
                    AttnSig = (AttnSig + abs(min(AttnSig))); 
                    AttnSig = AttnSig./max(AttnSig); 
                    AttnSig = Sim.AttentionMod(1) + 
(Sim.AttentionMod(2)-Sim.AttentionMod(1)).*AttnSig; 
                else 
                    AttnSig = ones(1, length(t_A)); 
                end 
  
                Gadapt_tst_like = Sim.Gadapt; 
  
                for cnt=1:nRateStepsT 
                    [SUrateResp_tst_like(:,cnt), 
sSUCenters_tst_like(:,cnt), LIFinit_tst_like, Gadapt_tst_like, 
spikeTimes_tst_like, GadaptTemp_tst_like] = 
GetNeuronFiringRatesIterative_G(Sim, Stim, Sin_tst_like(:,((cnt-
1)*ndtperBin)+1:cnt*(ndtperBin)), LIFinit_tst_like, Sim.nUnits, 
AttnSig(cnt), Gadapt_tst_like); 
                end 
  
                if strcmp(Sim.Nonstatdecision, 'Yes') 
                    if strcmp(Sim.NonStatType, 'Loss') 
                        [AsuTestLikeSig, HsuTestLikeSig, 
WsuTestLikeSig, QsuTestLikeSig] = 
GetDecodingWeights(sSUCenters_tst_like, 
SUrateResp_tst_like(1:(Sim.nUnits-Sim.nchangedpop),:)); 
                    elseif strcmp(Sim.NonStatType, 'Replacement') || 
strcmp(Sim.NonStatType, 'AttentionReplacement') 
                        [AsuTestLikeSig, HsuTestLikeSig, 
WsuTestLikeSig, QsuTestLikeSig] = 
GetDecodingWeights(sSUCenters_tst_like, 
SUrateResp_tst_like(Sim.nchangedpop+1:Sim.nUnits,:)); 
                    else 
                        [AsuTestLikeSig, HsuTestLikeSig, 
WsuTestLikeSig, QsuTestLikeSig] = 
GetDecodingWeights(sSUCenters_tst_like, SUrateResp_tst_like); 
                    end 
                else 
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                    [AsuTestLikeSig, HsuTestLikeSig, WsuTestLikeSig, 
QsuTestLikeSig] = GetDecodingWeights(sSUCenters_tst_like, 
SUrateResp_tst_like); 
                end 
  
                % PLOT TEST LIKE STIMULUS FOR TRAINING 
                figure, plot (Sin_tst_like(1,:), Sin_tst_like(2,:),'k', 
'LineWidth', 2); 
                title ('Test Like Stimulus', 'FontSize', 16); 
                set(gca, 'FontSize', 14), legend('Test like stimulus') 
                xlabel('X velocity V_x', 'FontSize', 14) 
                ylabel('Y velocity V_y', 'FontSize', 14) 
                drawnow; 
  
                nRateSteps = 
floor(Stim.Test.FR.tst_runs*Stim.Test.FR.T/Sim.FR.tRateInt); 
  
                ndtperBin = Sim.FR.tRateInt/Sim.FR.dt; 
  
                LIFinit.V = zeros(1,N); 
                LIFinit.EndRefPeriod = zeros(1,N); 
                LIFinit.jitterSig = []; 
  
                LIFinitcat.V = []; 
                LIFinitcat.EndRefPeriod = []; 
                LIFinitcat.jitterSig = []; 
  
                clear SUrateResp; 
                SUrateResp=zeros(N,nRateSteps); 
                SUrateRespTemp=zeros(N,nRateSteps); 
                sSUCenters=zeros(Sim.nDim,nRateSteps); 
  
                % STATIC FILTER INITIALIZATIONS 
                sx = repmat(struct('A', 0, 'B', 0, 'H', 
zeros(size(AdaptiveFilter.static.Hsu(:,1))), 'Q', 0, 'R', 
zeros(size(AdaptiveFilter.static.Qsu)), 'P', 0, 'u', 0), 1, 
nRateSteps); 
                sy = repmat(struct('A', 0, 'B', 0, 'H', 
zeros(size(AdaptiveFilter.static.Hsu(:,2))), 'Q', 0, 'R', 
zeros(size(AdaptiveFilter.static.Qsu)), 'P', 0, 'u', 0), 1, 
nRateSteps); 
  
                sx(1).A = AdaptiveFilter.static.Asu(1,1); 
                sx(1).B = 0; 
                sx(1).H = AdaptiveFilter.static.Hsu(:,1); 
                sx(1).Q = AdaptiveFilter.static.Wsu(1,1); 
                sx(1).R = AdaptiveFilter.static.Qsu; 
  
                sx(1).P =(sx(1).H\sx(1).R)/sx(1).H'; %P = 
inv(H)*R*inv(H') 
                sx(1).u = 0; 
                sxscale = 1; 
  
                sy(1) = []; 
                sy(1).A = AdaptiveFilter.static.Asu(2,2); 
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                sy(1).B = 0; 
                sy(1).H = AdaptiveFilter.static.Hsu(:,2); 
                sy(1).Q = AdaptiveFilter.static.Wsu(2,2); 
                sy(1).R = AdaptiveFilter.static.Qsu; 
  
                sy(1).P = (sy(1).H\sy(1).R)/sy(1).H'; %P = 
inv(H)*R*inv(H') 
                sy(1).u = 0; 
                syscale = 1; 
  
                % STATIC FILTER INITIALIZATIONS FOR THE REMAINING 
POPULATION OF 
                % NEURONS WITH TEST LIKE TRAINING SIGNAL 
  
                sxTstLk = repmat(struct('A', 0, 'B', 0, 'H', 
zeros(size(HsuTestLikeSig(:,1))), 'Q', 0, 'R', 
zeros(size(QsuTestLikeSig)), 'P', 0, 'u', 0), 1, nRateSteps); 
                syTstLk = repmat(struct('A', 0, 'B', 0, 'H', 
zeros(size(HsuTestLikeSig(:,2))), 'Q', 0, 'R', 
zeros(size(QsuTestLikeSig)), 'P', 0, 'u', 0), 1, nRateSteps); 
  
                sxTstLk(1).A = AsuTestLikeSig(1,1); 
                sxTstLk(1).B = 0; 
                sxTstLk(1).H = HsuTestLikeSig(:,1); 
                sxTstLk(1).Q = WsuTestLikeSig(1,1); 
                sxTstLk(1).R = QsuTestLikeSig; 
                sxTstLk(1).P 
=(sxTstLk(1).H\sxTstLk(1).R)/sxTstLk(1).H'; %P = inv(H)*R*inv(H') 
                sxTstLk(1).u = 0; 
                sxTstLkscale = 1; 
  
                syTstLk(1).A = AsuTestLikeSig(2,2); 
                syTstLk(1).B = 0; 
                syTstLk(1).H = HsuTestLikeSig(:,2); 
                syTstLk(1).Q = WsuTestLikeSig(2,2); 
                syTstLk(1).R = QsuTestLikeSig; 
                syTstLk(1).P = 
(syTstLk(1).H\syTstLk(1).R)/syTstLk(1).H'; %P = inv(H)*R*inv(H') 
                syTstLk(1).u = 0; 
                syTstLkscale = 1; 
  
  
                % ADAPTIVE FILTER INITIALIZATIONS 
                clear statex; 
                clear statey; 
  
                [AdaptiveFilter adaptiveKalman]= 
InitAdaptiveFilter(AdaptiveFilter); 
  
                AdaptiveFilter.Hsaveoff = 
zeros(size(AdaptiveFilter.static.Hsu,1),Sim.nDim*nRateSteps); 
  
                flag = 0; 
                errstep = 1; 
                step = 1; 
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                xscalecat = []; 
                yscalecat = []; 
                changedpopcat = []; 
  
                Ksx = []; 
                Ksy = []; 
                Kallcat = []; 
                K2xycat = []; 
                statex = zeros(1,nRateSteps); 
                statey = zeros(1,nRateSteps); 
                timecount = zeros(1,nRateSteps); 
                normx = zeros(1,nRateSteps); 
                normy = zeros(1,nRateSteps); 
                times = zeros(1,nRateSteps); 
  
                if strcmp(Sim.NonStatType, 'Loss') 
                    indchangedpopLoss = Nusable - 
Sim.neuronsEachTime+1; 
                    indchangedpopReplace = zeros(1, Nusable); 
                end 
                if strcmp(Sim.NonStatType, 'Replacement') || 
strcmp(Sim.NonStatType, 'AttentionReplacement') 
                    indchangedpopReplace = 
Nusable+1:Sim.neuronsEachTime:N; 
                    indchangedpopLoss = zeros(1, Nusable); 
                end 
  
                indchangedpopNusable = 1:Sim.neuronsEachTime:Nusable; 
                replaceIndex = 0; 
  
                errorx = zeros(1, 
(AdaptiveFilter.errorwindow/Sim.FR.tRateInt)+1); 
                errory = zeros(1, 
(AdaptiveFilter.errorwindow/Sim.FR.tRateInt)+1); 
                errorstatx = zeros(1, 
(AdaptiveFilter.errorwindow/Sim.FR.tRateInt)+1); 
                errorstaty = zeros(1, 
(AdaptiveFilter.errorwindow/Sim.FR.tRateInt)+1); 
                errorxTstLk = zeros(1, 
(AdaptiveFilter.errorwindow/Sim.FR.tRateInt)+1); 
                erroryTstLk = zeros(1, 
(AdaptiveFilter.errorwindow/Sim.FR.tRateInt)+1); 
  
                rmserrx = zeros(1, 
nRateSteps/(AdaptiveFilter.errorwindow/Sim.FR.tRateInt)); 
                rmserry = zeros(1, 
nRateSteps/(AdaptiveFilter.errorwindow/Sim.FR.tRateInt)); 
                rmserrstatx = zeros(1, 
nRateSteps/(AdaptiveFilter.errorwindow/Sim.FR.tRateInt)); 
                rmserrstaty = zeros(1, 
nRateSteps/(AdaptiveFilter.errorwindow/Sim.FR.tRateInt)); 
                rmserrxTstLk = zeros(1, 
nRateSteps/(AdaptiveFilter.errorwindow/Sim.FR.tRateInt)); 
                rmserryTstLk = zeros(1, 
nRateSteps/(AdaptiveFilter.errorwindow/Sim.FR.tRateInt)); 
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                % TAKE A SNAPSHOT OF PERFORMANCE AT THE BEGINNING 
                % ADAPTIVE 
                [snapStartx, snapStarty] = Kalmansnapshot('Figure 8', 
Sim, Stim, Nusable, [adaptiveKalman.adaptfilt3x.H 
adaptiveKalman.adaptfilt3y.H], AdaptiveFilter, 
adaptiveKalman.adaptfilt1x.P, [adaptiveKalman.adaptfilt1x.R 
adaptiveKalman.adaptfilt1y.R], flag, 0, 0, 0, 1); 
                Snapshotfigs(1)= gcf; 
                % STATIC 
                [snapstatStartx, snapstatStarty] = 
Kalmansnapshot('Figure 8', Sim, Stim, Nusable, 
AdaptiveFilter.static.Hsu, AdaptiveFilter, sx(1).P, 
[AdaptiveFilter.static.Qsu AdaptiveFilter.static.Qsu], flag, 0, 0, 0, 
1); 
                Snapshotfigs(2)= gcf; 
  
                t_A = 0:Sim.FR.tRateInt:Stim.Test.FR.T; 
                if strcmp(Sim.Nonstatdecision, 'Yes') && 
(strcmp(Sim.NonStatType, 'Attention') || strcmp(Sim.NonStatType, 
'AttentionReplacement')) 
                    AttnSig = sin(2*pi*(1/Sim.AttnPeriod)*t_A); 
                    AttnSig = (AttnSig + abs(min(AttnSig))); 
                    AttnSig = AttnSig./max(AttnSig); 
                    AttnSig = Sim.AttentionMod(1) + 
(Sim.AttentionMod(2)-Sim.AttentionMod(1)).*AttnSig; 
                else AttnSig = ones(1, length(t_A)); 
                end 
  
                Gadapt = Sim.Gadapt; 
  
                for cnt=1:nRateSteps 
                    [SUrateResp(:,cnt), sSUCenters(:,cnt), LIFinit, 
Gadapt, spikeTimes, GadaptTemp] = GetNeuronFiringRatesIterative_G(Sim, 
Stim, Sin_tst(:,((cnt-1)*ndtperBin)+1:cnt*(ndtperBin)), LIFinit, 
Sim.nUnits, AttnSig(cnt), Gadapt); 
                    SUrateRespTemp(:,cnt) = SUrateResp(:,cnt); 
                end 
  
                for cnt=1:nRateSteps 
                    % INTRODUCTION OF NONSTATIONARITY 
                    if strcmp(Sim.Nonstatdecision, 'Yes') 
                        if sum(cnt == Sim.NonStatTime/Sim.FR.tRateInt) 
                            replaceIndex = replaceIndex + 1; 
                            if strcmp(Sim.NonStatType, 'Replacement') 
|| strcmp(Sim.NonStatType, 'AttentionReplacement') 
                                if Sim.nchangedpop == 
Sim.neuronsEachTime 
                                    SUrateResp(1:Sim.neuronsEachTime , 
cnt:end) = SUrateResp(Sim.neuronsEachTime+1:end, cnt:end); 
                                else 
                                    
SUrateResp(indchangedpopNusable(replaceIndex), cnt:end) = 
SUrateResp(indchangedpopReplace(replaceIndex), cnt:end); 
                                end 
                                flag = 2; 
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                            elseif strcmp(Sim.NonStatType, 'Loss') 
                                flag = 1; 
                                SUrateResp(Nusable:-
1:indchangedpopLoss,cnt:end) = 0; 
                                Nleft = indchangedpopLoss - 1; 
                            end 
                            if sum(size(Sim.NonStatTime)) ~=2 
                                indchangedpopLoss = indchangedpopLoss - 
Sim.neuronsEachTime; 
                            end 
                        end 
                        % TAKE A SNAPSHOT OF PERFORMANCE AT THE 
INTRODUCTION OF NONSTATIONARITY 
                        if strcmp(Sim.NonStatType, 'Replacement') || 
strcmp(Sim.NonStatType, 'Loss') || strcmp(Sim.NonStatType, 
'AttentionReplacement') 
                            if cnt == 
(Sim.NonStatTime(end))/Sim.FR.tRateInt 
                                % ADAPTIVE 
                                [snapNonstatx, snapNonstaty] = 
Kalmansnapshot('Figure 8', Sim, Stim, Nusable, 
[adaptiveKalman.adaptfilt3x.H adaptiveKalman.adaptfilt3y.H], 
AdaptiveFilter, adaptiveKalman.adaptfilt1x.P, 
[adaptiveKalman.adaptfilt1x.R adaptiveKalman.adaptfilt1y.R], flag, 
indchangedpopNusable(replaceIndex), indchangedpopReplace(replaceIndex), 
indchangedpopLoss, cnt); 
                                Snapshotfigs(3)= gcf; 
                                % STATIC 
                                [snapstatNonstatx, snapstatNonstaty] = 
Kalmansnapshot('Figure 8', Sim, Stim, Nusable, 
AdaptiveFilter.static.Hsu, AdaptiveFilter, sx(cnt).P, 
[AdaptiveFilter.static.Qsu AdaptiveFilter.static.Qsu], flag, 
indchangedpopNusable(replaceIndex), indchangedpopReplace(replaceIndex), 
indchangedpopLoss, cnt); 
                                Snapshotfigs(4)= gcf; 
                            end 
                        end 
                    end 
                end 
  
                %                 save LongLongSim 
  
                for cnt=1:nRateSteps 
                    % STATIC FILTER 
                    sx(cnt).z = SUrateResp(1:Nusable,cnt); 
                    sy(cnt).z = SUrateResp(1:Nusable,cnt); 
                    if(cnt == 1) % PROVIDE INITIAL BEST ESTIMATES FOR 
THE KALMAN FILTER 
                        sx(1).x = sx(1).H\sx(1).z; 
                        sy(1).x = sy(1).H\sx(1).z; 
                    end 
                    [sx(cnt+1), Kx] = kalmanf(sx(cnt),sxscale); 
                    [sy(cnt+1), Ky] = kalmanf(sy(cnt),syscale); 
  
                    % STATIC FILTER - Test for optimal pop 
                    if strcmp(Sim.Nonstatdecision, 'Yes') 
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                        if strcmp(Sim.NonStatType, 'Loss') 
                            sxTstLk(cnt).z = SUrateResp(1:(Sim.nUnits-
Sim.nchangedpop),cnt); 
                            syTstLk(cnt).z = SUrateResp(1:(Sim.nUnits-
Sim.nchangedpop),cnt); 
                        elseif strcmp(Sim.NonStatType, 'Replacement') 
|| strcmp(Sim.NonStatType, 'AttentionReplacement') 
                            sxTstLk(cnt).z = 
SUrateResp(Sim.nchangedpop+1:Sim.nUnits,cnt); 
                            syTstLk(cnt).z = 
SUrateResp(Sim.nchangedpop+1:Sim.nUnits,cnt); 
                        else 
                            sxTstLk(cnt).z = SUrateResp(1:Nusable,cnt); 
                            syTstLk(cnt).z = SUrateResp(1:Nusable,cnt); 
                        end 
                    else 
                        sxTstLk(cnt).z = SUrateResp(1:Nusable,cnt); 
                        syTstLk(cnt).z = SUrateResp(1:Nusable,cnt); 
                    end 
  
                    if(cnt == 1) % PROVIDE INITIAL BEST ESTIMATES FOR 
THE KALMAN FILTER 
                        sxTstLk(1).x = sxTstLk(1).H\sxTstLk(1).z; 
                        syTstLk(1).x = syTstLk(1).H\syTstLk(1).z; 
                    end 
                    [sxTstLk(cnt+1), KxT] = 
kalmanf(sxTstLk(cnt),sxTstLkscale); 
                    [syTstLk(cnt+1), KyT] = 
kalmanf(syTstLk(cnt),syTstLkscale); 
  
                    % ADAPTIVE FILTER 
                    if (cnt == 1) % PROVIDE INITIAL BEST ESTIMATES FOR 
THE KALMAN FILTER 
                        adaptiveKalman.adaptfilt1x.x = 
adaptiveKalman.adaptfilt1x.H\SUrateResp(1:Nusable,1); 
                        adaptiveKalman.adaptfilt1y.x = 
adaptiveKalman.adaptfilt1y.H\SUrateResp(1:Nusable,1); 
                    end 
  
                    [adaptiveKalman, AdaptiveFilter, statex(cnt), 
statey(cnt), Kall, K2xy] = 
adaptKalmanIterate(adaptiveKalman,AdaptiveFilter,sSUCenters(:,cnt),SUra
teResp(1:Nusable,cnt),cnt); 
                    AdaptiveFilter.Hsaveoff(:,2*cnt-1:2*cnt) = 
[adaptiveKalman.adaptfilt3x.H adaptiveKalman.adaptfilt3y.H]; 
                    xscalecat = cat(2,xscalecat,AdaptiveFilter.xscale); 
                    yscalecat = cat(2,yscalecat,AdaptiveFilter.yscale); 
  
                    % ERROR CALCULATIONS - relative errors 
                    % Normalized Mean Square Errors 
                    errorx(step) = (sSUCenters(1,cnt) - statex(cnt)); 
                    errory(step) = (sSUCenters(2,cnt) - statey(cnt)); 
                    errorstatx(step) = (sSUCenters(1,cnt) - sx(cnt).x); 
                    errorstaty(step) = (sSUCenters(2,cnt) - sy(cnt).x); 
                    errorxTstLk(step) = (sSUCenters(1,cnt) - 
sxTstLk(cnt).x); 
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                    erroryTstLk(step) = (sSUCenters(2,cnt) - 
syTstLk(cnt).x); 
  
                    if 
mod(cnt,(AdaptiveFilter.errorwindow/Sim.FR.tRateInt)) == 0 % CALCULATE 
THE NRMS ERROR FOR EACH ERROR WINDOW 
                        rmserrx(errstep) = sqrt(mean((errorx).^2)); 
                        rmserry(errstep) = sqrt(mean((errory).^2)); 
  
                        rmserrstatx(errstep) = 
sqrt(mean((errorstatx).^2)); 
                        rmserrstaty(errstep) = 
sqrt(mean((errorstaty).^2)); 
  
                        rmserrxTstLk(errstep) = 
sqrt(mean((errorxTstLk).^2)); 
                        rmserryTstLk(errstep) = 
sqrt(mean((erroryTstLk).^2)); 
  
                        errstep = errstep+1; 
                        step = 1; 
                    end 
                    if 
mod(cnt,((AdaptiveFilter.errorwindow*10)/Sim.FR.tRateInt)) == 0 
                        sprintf('%d of %d seconds done !!! (Simulation 
Time)', round(cnt*Sim.FR.tRateInt), 
round(Stim.Test.FR.T*Stim.Test.FR.tst_runs)) 
                        sprintf('Sim running for %d seconds !!! (Real 
Time)', round(toc)) 
                    end 
                    step = step +1; 
                end 
  
                % TAKE A SNAPSHOT OF PERFORMANCE AT THE END 
  
                if strcmp(Sim.Nonstatdecision, 'Yes') && 
strcmp(Sim.NonStatType, 'Loss') 
                    % ADAPTIVE 
                    [snapEndx, snapEndy] = Kalmansnapshot('Figure 8', 
Sim, Stim, Nusable, [adaptiveKalman.adaptfilt3x.H 
adaptiveKalman.adaptfilt3y.H], AdaptiveFilter, 
adaptiveKalman.adaptfilt1x.P, [adaptiveKalman.adaptfilt1x.R 
adaptiveKalman.adaptfilt1y.R], flag, 
indchangedpopNusable(replaceIndex), indchangedpopReplace(replaceIndex), 
indchangedpopLoss, cnt); 
                    Snapshotfigs(5)= gcf; 
                    % STATIC 
                    [snapstatEndx, snapstatEndy] = 
Kalmansnapshot('Figure 8', Sim, Stim, Nusable, 
AdaptiveFilter.static.Hsu, AdaptiveFilter, sx(cnt).P, 
[AdaptiveFilter.static.Qsu AdaptiveFilter.static.Qsu], flag, 
indchangedpopNusable(replaceIndex), indchangedpopReplace(replaceIndex), 
indchangedpopLoss, cnt); 
                    Snapshotfigs(6)= gcf; 
                else 
                    % ADAPTIVE 
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                    [snapEndx, snapEndy] = Kalmansnapshot('Figure 8', 
Sim, Stim, Nusable, [adaptiveKalman.adaptfilt3x.H 
adaptiveKalman.adaptfilt3y.H], AdaptiveFilter, 
adaptiveKalman.adaptfilt1x.P, [adaptiveKalman.adaptfilt1x.R 
adaptiveKalman.adaptfilt1y.R], flag, 0, 0, 0, cnt); 
                    Snapshotfigs(5)= gcf; 
                    % STATIC 
                    [snapstatEndx, snapstatEndy] = 
Kalmansnapshot('Figure 8', Sim, Stim, Nusable, 
AdaptiveFilter.static.Hsu, AdaptiveFilter, sx(cnt).P, 
[AdaptiveFilter.static.Qsu AdaptiveFilter.static.Qsu], flag, 0, 0, 0, 
cnt); 
                    Snapshotfigs(6)= gcf; 
                end 
  
                AdaptiveFilter.statex = statex; 
                AdaptiveFilter.statey = statey; 
                AdaptiveFilter.Kall = Kall; 
  
                sxplot = zeros(1,nRateSteps-1); 
                syplot = zeros(1,nRateSteps-1); 
                sxTstLkplot = zeros(1,nRateSteps-1); 
                syTstLkplot = zeros(1,nRateSteps-1); 
  
                for cnt=1:nRateSteps % for extracting the array from 
the struct 
                    sxplot(cnt)=sx(cnt).x; 
                    syplot(cnt)=sy(cnt).x; 
                    sxTstLkplot(cnt)=sxTstLk(cnt).x; 
                    syTstLkplot(cnt)=syTstLk(cnt).x; 
                end 
  
                AdaptiveFilter.sxplot = sxplot; 
                AdaptiveFilter.syplot = syplot; 
                AdaptiveFilter.sxTstLkplot = sxTstLkplot; 
                AdaptiveFilter.syTstLkplot = syTstLkplot; 
  
                %Scale the errors with the RMS power of the TEST signal 
  
                AdaptiveFilter.nrmserrx = 
rmserrx./sqrt(mean((sSUCenters(1,:)).^2)); 
                AdaptiveFilter.nrmserry = 
rmserry./sqrt(mean((sSUCenters(2,:)).^2)); 
                AdaptiveFilter.nrmserrstatx = 
rmserrstatx./sqrt(mean((sSUCenters(1,:)).^2)); 
                AdaptiveFilter.nrmserrstaty = 
rmserrstaty./sqrt(mean((sSUCenters(2,:)).^2)); 
                AdaptiveFilter.nrmserrxTstLk = 
rmserrxTstLk./sqrt(mean((sSUCenters(1,:)).^2)); 
                AdaptiveFilter.nrmserryTstLk = 
rmserryTstLk./sqrt(mean((sSUCenters(2,:)).^2)); 
                AdaptiveFilter.nrmsError = sqrt((rmserrx).^2 + 
(rmserry).^2)./sqrt(mean(sSUCenters(1,:).^2 + sSUCenters(2,:).^2)); 
                AdaptiveFilter.nrmsErrorStat = sqrt((rmserrstatx).^2 + 
(rmserrstaty).^2)./sqrt(mean(sSUCenters(1,:).^2 + sSUCenters(2,:).^2)); 
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                AdaptiveFilter.nrmsErrorTstLk = sqrt((rmserrxTstLk).^2 
+ (rmserryTstLk).^2)./sqrt(mean(sSUCenters(1,:).^2 + 
sSUCenters(2,:).^2)); 
  
                % CONSTRUCT ALL THE PLOTS 
                figure 
                hold on 
                grid on 
                plot 
(sSUCenters(1,1:Stim.Test.FR.T/Sim.FR.tRateInt),sSUCenters(2,1:Stim.Tes
t.FR.T/Sim.FR.tRateInt),'r-', 'LineWidth', 2); 
                plot (sxplot(1:Stim.Test.FR.T/Sim.FR.tRateInt-
1),syplot(1:Stim.Test.FR.T/Sim.FR.tRateInt-1),'m-.', 'LineWidth', 2); 
                plot 
(statex(1:Stim.Test.FR.T/Sim.FR.tRateInt),statey(1:Stim.Test.FR.T/Sim.F
R.tRateInt),'--', 'LineWidth', 2); 
                title (['Reconstruction of the static and adaptive 
filters without nonstationarity - signal length = ', 
num2str(Stim.Test.FR.T), ' seconds'], 'FontSize', 16) 
                set(gca, 'FontSize', 14), legend('Original Signal', 
'Static Filter Reconstruction', 'Adaptive Filter Reconstruction'); 
                xlabel('X velocity V_x', 'FontSize', 14) 
                ylabel('Y velocity V_y', 'FontSize', 14) 
                drawnow; 
                FigHandle(1)=gcf; 
                figure 
                hold on 
                grid on 
                plot (sSUCenters(1,:),sSUCenters(2,:),'r-', 
'LineWidth', 2); 
                plot (sxplot,syplot,'m-.', 'LineWidth', 2); 
                plot (statex,statey,'--', 'LineWidth', 2); 
                title (['Reconstruction of the static and adaptive 
filters with induced nonstationarity - signal length = ', 
num2str(Stim.Test.FR.T), ' seconds'], 'FontSize', 16) 
                set(gca, 'FontSize', 14), legend('Original Signal', 
'Static Filter Reconstruction', 'Adaptive Filter Reconstruction'); 
                xlabel('X velocity V_x', 'FontSize', 14) 
                ylabel('Y velocity V_y', 'FontSize', 14) 
                drawnow; 
                FigHandle(2)=gcf; 
                timeRecon = (1:length(sxplot))*Sim.FR.tRateInt; 
                timeReconPlus = (1:length(sxplot)+1)*Sim.FR.tRateInt; 
                figure, hold on, grid on, 
plot(timeRecon,sSUCenters(1,:),'r', 'LineWidth', 2), plot 
(timeRecon,sxplot,'m', 'LineWidth', 2), plot(timeRecon,statex, 
'LineWidth', 2) 
                title ('Reconstruction of the static and adaptive 
filters along x with induced nonstationarity', 'FontSize', 16); 
                set(gca, 'FontSize', 14), legend('Original Signal', 
'Static Filter Reconstruction', 'Adaptive Filter Reconstruction'); 
                xlabel('Time (seconds)', 'FontSize', 14) 
                ylabel('X velocity V_x', 'FontSize', 14) 
                drawnow; 
                FigHandle(3)=gcf; 
                figure, hold on, grid on, plot 
(timeRecon,sSUCenters(2,:),'r', 'LineWidth', 2), plot 
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(timeRecon,syplot,'m', 'LineWidth', 2), plot(timeRecon,statey, 
'LineWidth', 2) 
                title ('Reconstruction of the static and adaptive 
filters along y with induced nonstationarity', 'FontSize', 16); 
                set(gca, 'FontSize', 14), legend('Original Signal', 
'Static Filter Reconstruction', 'Adaptive Filter Reconstruction'); 
                xlabel('Time (seconds)', 'FontSize', 14) 
                ylabel('Y velocity V_y', 'FontSize', 14) 
                drawnow; 
                FigHandle(4)=gcf; 
                timenrmserr = 
(1:length(AdaptiveFilter.nrmserrstatx))*AdaptiveFilter.errorwindow; 
                figure, hold on, grid on, plot (timenrmserr, 
AdaptiveFilter.nrmserrstatx, 'r', 'LineWidth', 2), plot (timenrmserr, 
AdaptiveFilter.nrmserrx, '--', 'LineWidth', 2), plot (timenrmserr, 
AdaptiveFilter.nrmserrxTstLk, 'k-.', 'LineWidth', 2); % plot 
(timenrmserr, AdaptiveFilter.nrmserrRemPopx, 'g:', 'LineWidth', 2), 
                title (['NRMS errors along X Test RMS power = ', 
num2str(Stim.Test.rms)], 'FontSize', 16) 
                set(gca, 'FontSize', 14), legend('Static Filter', 
'Adaptive Filter', 'Optimal Population'); 
                xlabel('Time (seconds)', 'FontSize', 14) 
                ylabel('NRMSE_x', 'FontSize', 14) 
                drawnow; 
                FigHandle(5)=gcf; 
                figure, hold on, grid on, plot (timenrmserr, 
AdaptiveFilter.nrmserrstaty, 'r', 'LineWidth', 2), plot (timenrmserr, 
AdaptiveFilter.nrmserry, '--', 'LineWidth', 2), plot (timenrmserr, 
AdaptiveFilter.nrmserryTstLk, 'k-.', 'LineWidth', 2); % plot 
(timenrmserr, AdaptiveFilter.nrmserrRemPopy, 'g:', 'LineWidth', 2), 
                title (['NRMS errors along Y Test RMS power = ', 
num2str(Stim.Test.rms)], 'FontSize', 16) 
                set(gca, 'FontSize', 14), legend('Static Filter', 
'Adaptive Filter', 'Optimal Population'); 
                xlabel('Time (seconds)', 'FontSize', 14) 
                ylabel('NRMSE_y', 'FontSize', 14) 
                drawnow; 
                FigHandle(6)=gcf; 
                figure, hold on, grid on, plot (timenrmserr, 
AdaptiveFilter.nrmsErrorStat, 'r', 'LineWidth', 2), plot (timenrmserr, 
AdaptiveFilter.nrmsError, '--', 'LineWidth', 2), plot (timenrmserr, 
AdaptiveFilter.nrmsErrorTstLk, 'k-.', 'LineWidth', 2), % plot 
(timenrmserr, AdaptiveFilter.nrmsErrorRemPop, 'g:', 'LineWidth', 2),  
plot (timenrmserr, AdaptiveFilter.nrmsErrorvalue, 'LineWidth', 4); 
                title (['Total NRMS errors Test RMS power = ', 
num2str(Stim.Test.rms)], 'FontSize', 16) 
                set(gca, 'FontSize', 14), legend('Static Filter', 
'Adaptive Filter', 'Optimal Population'); 
                xlabel('Time (seconds)', 'FontSize', 14) 
                ylabel('NRMSE_t_o_t', 'FontSize', 14) 
                drawnow; 
                FigHandle(7)=gcf; 
                figure, plot(timenrmserr, 
xscalecat(1:AdaptiveFilter.errorwindow/Sim.FR.tRateInt:nRateSteps), 
'LineWidth', 2) % Downsampled to match AdaptiveFilter.errorwindow 
                title ('Scale changes along X', 'FontSize', 16) 
                set(gca, 'FontSize', 14), legend('Scale variation'); 
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                xlabel('Time (seconds)', 'FontSize', 14) 
                ylabel('Scale_x', 'FontSize', 14) 
                FigHandle(8)=gcf; 
                figure, plot(timenrmserr, 
yscalecat(1:AdaptiveFilter.errorwindow/Sim.FR.tRateInt:nRateSteps), 
'LineWidth', 2) % Downsampled to match AdaptiveFilter.errorwindow 
                set(gca, 'FontSize', 14), legend('Scale variation'); 
                title ('Scale changes along Y', 'FontSize', 16) 
                xlabel('Time (seconds)', 'FontSize', 14) 
                ylabel('Scale_y', 'FontSize', 14) 
                FigHandle(9)=gcf; 
                if strcmp(Stim.Test.type, 'Figure 8') 
                    figure 
                    hold on 
                    grid on 
                    plot (sSUCenters(1,end+1-
(Stim.Test.FR.T/Sim.FR.tRateInt):end),sSUCenters(2,end+1-
(Stim.Test.FR.T/Sim.FR.tRateInt):end),'r-', 'LineWidth', 2); 
                    plot(sxplot, syplot,'m-.', 'LineWidth', 2); 
                    plot (statex(end+1-
(Stim.Test.FR.T/Sim.FR.tRateInt):end),statey(end+1-
(Stim.Test.FR.T/Sim.FR.tRateInt):end),'g--', 'LineWidth', 2); 
                    title (['Final Reconstruction of the static and 
adaptive filters with induced nonstationarity - signal length = ', 
num2str(Stim.Test.FR.T), ' seconds'], 'FontSize', 16) 
                    set(gca, 'FontSize', 14), legend('Original Signal', 
'Static Filter', 'Adaptive Filter'); 
                    xlabel('X velocity V_x', 'FontSize', 14) 
                    ylabel('Y velocity V_y', 'FontSize', 14) 
                    drawnow; 
                    FigHandle(10)=gcf; 
                end 
            end %j 
        end %i 
  
  
        % TIME TAKEN BY THE SIMULATION 
        totalTime = toc; 
        TotalTime = sprintf('%d seconds', round(totalTime)); 
        display(TotalTime) 
  
        % SAVE SIMULATION DATA 
        a = date; 
        load('runcount.mat'); 
        runcount = runcount+1; 
        if strcmp(Sim.Nonstatdecision, 'Yes') 
            foldernameFig = ([a(1:6), ' ', Sim.NonStatType,  ' Run ', 
num2str(runcount)]); 
        else 
            foldernameFig = ([a(1:6), ' ', 'Stationary',  ' Run ', 
num2str(runcount)]); 
        end 
        save runcount runcount 
        mkdir(foldernameFig); 
        chdir(foldernameFig); 
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        save(foldernameFig, 'SUrateResp_training', 
'sSUCenters_training', 'Sim', 'Stim', 'SUrateResp', 'sSUCenters', 
'AdaptiveFilter', 'xscalecat', 'yscalecat', 'TotalTime'); %, 
'Zdiffall', 'ZstatdiffX', 'ZstatdiffY', 'ZTstLkdiffY', 'ZTstLkdiffX', 
'ZRemPopdiffY', 'ZRemPopdiffX'); %, 'spikeTrains'); 'phiSU' 
  
        % SAVE FIGURES 
        saveas(FigHandle(1), [foldernameFig ' - Static and adaptive 
filter reconstruction without nonstationarity'], 'fig'); 
        saveas(FigHandle(2), [foldernameFig ' - Static and adaptive 
filter reconstruction with nonstationarity induced at 
',num2str(Sim.begofnonstat),' seconds'], 'fig'); 
        saveas(FigHandle(3), [foldernameFig ' - X recon'], 'fig'); 
        saveas(FigHandle(4), [foldernameFig ' - Y recon'], 'fig'); 
        saveas(FigHandle(5), [foldernameFig ' - X nrms error'], 'fig'); 
        saveas(FigHandle(6), [foldernameFig ' - Y nrms error'], 'fig'); 
        saveas(FigHandle(7), [foldernameFig ' - Total nrms error'], 
'fig'); 
        saveas(FigHandle(8), [foldernameFig ' - X Scale'], 'fig'); 
        saveas(FigHandle(9), [foldernameFig ' - Y Scale'], 'fig'); 
        if strcmp(Stim.Test.type, 'Figure 8') 
            saveas(FigHandle(10), [foldernameFig ' - Final static and 
adaptive filter reconstruction'], 'fig'); 
        end 
        for i = 1:length(Snapshotfigs) 
            if Snapshotfigs(i)~=0 
                saveas(Snapshotfigs(i), [foldernameFig ' - Snapshot ' 
num2str(i)], 'fig'); 
            end 
        end 
        cd ..; 
  
    end 
end 
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InitializeNewSim.m 

function [Sim, Stim] = InitializeNewSim() 
  
Sim.RSeed = sum(100*clock); %162    %Set Random Seed 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Initialize simulation parameters 
Sim.nDim = 2;                 %Number of stimulus dimensions 
represented across the population 
Sim.nUnits = 200;           %Specify number of units for the simulated 
populations - FOR ENTIRE POP CHANGE --> Sim.nUnits = 2* Sim.nchangedpop  
Sim.nRuns = 1;                %Number of simulation to run for each 
population size 
Sim.tAvgWindow = 0.1;         %Temporal averaging window (sec) for 
Error statistics 
Sim.neuronsPerElect = 3;      %Number of neurons per electrode 
Sim.errorwindow = 10; % seconds 
  
Sim.ReOptTimeWindow = 550; % seconds 
Sim.LinReOptTimeWindow = 550; 
  
% NONSTATIONARITY INITIALIZATIONS 
Sim.Nonstatdecision = 'Yes'; % 'Yes' or 'No' 
Sim.begofnonstat = 650; % TIME AT WHICH THE CHANGE BEGINS IN SECONDS 
Sim.periodofnonstat = 1;% PERIOD BETWEEN TWO SUCCESSIVE ALTERATIONS 
Sim.neuronsEachTime = 100; % NUMBER OF NEURONS ALTERED AT EACH TIME 
INSTANT 
Sim.nchangedpop = 100; % NUMBER OF NEURONS THAT ARE ALTERED 
Sim.endofnonstat = Sim.begofnonstat + 
(Sim.periodofnonstat*(Sim.nchangedpop/Sim.neuronsEachTime-1)); % TIME 
AT WHICH THE CHANGE ENDS IN SECONDS 
Sim.NonStatType = 'Replacement'; % TYPE OF NONSTATIONARITY - 'Loss' OR 
'Replacement'OR 'Adaptation' OR 'Attention' OR 'AttentionReplacement' 
Sim.NonStatTime = 
Sim.begofnonstat:Sim.periodofnonstat:Sim.endofnonstat; 
  
% Adaptation 
Sim.TauAdapt = 0.49*(0.05 + round((0.6-0.05)*rand(Sim.nUnits, 
1)*1000)/1000); % 0.055*ones(Sim.nUnits, 1); % 50 - 600 ms --> F_adap = 
0.51, T_adap = (1 - F_adap)*T_ca... T_ca = 50 - 600 ms 
Sim.Radapt = 20*ones(Sim.nUnits, 1); % Larger than R_leak 
Sim.Gadapt = zeros(Sim.nUnits, 1);  
Sim.Rdec = ones(Sim.nUnits, 1); % 5*R_leak 
  
%Population Temporal-specific parameters 
Sim.PT.dt = 0.00025;                    %Time step (sec) 
%Define PSC linear filter for decoding 
Sim.PT.tauPSC = 0.02*rand(1,Sim.nUnits)+0.01;   %Heterogeneous taus 
[10,30]ms - 10-19-06 
%Sim.PT.tauPSC = 0.015;%0.005;           %PSC time constant (sec) 
Sim.PT.fOrderPSC = 0;                   %Filter Order 
  
%Firing Rate-specific parameters 
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Sim.FR.dt = 0.001;%0.00025;             %Time step (sec) 
Sim.FR.FiltLength = 1;                  %length of linear rate filter 
(s) 
Sim.FR.tRateInt = 0.05;                 %Temporal window used to est 
firing rate from spike train 
  
% Attention 
Sim.AttnPeriod = 5; %seconds 
Sim.AttentionMod = [0.8 1.2]; % range of modulation produced by 
attention 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Initialize neuron population parameters 
Sim.phiEnc_func ='vonMisesTuningResp'; %'LinearTuningResp' 
'GaussTuningResp' 'CosineTuningResp' 'vonMisesTuningResp' 
Sim.error = 0.1;                    %Percentage error in neuron 
response due to noise 
Sim.maxRespRange =  [20 80];  %[100 300];    %Range of max. responses 
(spikes/s) 
Sim.V_th = 1; 
Sim.R_leak = 1; 
Sim.tauRefRange = [0.002 0.005];     %Set range for refactory periods 
across the neural population 
Sim.tauRCRange = [0.01 0.03];        %Set range for RC-time constants 
across the neural population 
Sim.Tau = 1; 
  
%Specify phase shift in signal representation (in time steps) 
introduced by 
%convolution with the PSC filter in the reconstruction. Used to adjust 
time 
%series for computation on MSE. 
%phShift = uint32(round(Sim.tauPSC/Sim.dt)); 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Initialize signal parameters 
Stim.PT.dt = Sim.PT.dt; 
Stim.FR.dt = Sim.FR.dt; 
  
%TRAINING 
Stim.Training.type = 'White Noise'; %'White Noise'; % '2D Plane';  
%'Spiral Sampling'; 
switch (Stim.Training.type) 
    case 'Spiral Sampling' 
        Stim.sRange = (-2:0.001:2)*pi/2;     %Signal Range 
        Stim.Training.maxRad = 200*pi; 
        Stim.Training.minRad = 0; 
        Stim.Training.maxMag = 2; 
        Stim.Training.FR.T = 200; 
    case 'White Noise' 
        Stim.sRange = -1:1/180:1;             %Signal Range - sampling 
per degree = 360 samples  
        if Sim.nDim == 2 
            Stim.sRange = Stim.sRange.*pi./max(Stim.sRange); 
        end 
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        Stim.Training.randomSeed = Sim.RSeed;%0;%99;     %RandomSeed>0 
resets the random number generator, =0 selects new state, <0 uses 
existing state 
        Stim.Training.PT.T = 10;             %Length of PT training 
signal in seconds 
        Stim.Training.FR.T = 2.5*Sim.nUnits;    % 
(ceil(Sim.nUnits*Sim.nDim/100))*100;  %Length of FR training signal in 
seconds = %120 of df (p180 = 450, p120 = 300, p100 = 250, p80 = 200, 
p40 = 100, p20 = 50) 
        Stim.Training.upperBandLimit = 1.5;%5;    %High frequency 
cutoff for white noise signal 
        Stim.Training.lowerBandLimit = 0;    %Low frequency cutoff for 
white noise signal 
        Stim.Training.rms = 1;%1;               %RMS signal level 
        Stim.Training.maxMag = sqrt(2); % Changed to 2 - Aug 13 2008 
%max(abs(Stim.sRange)); 
        Stim.Training.bandwidth = [Stim.Training.lowerBandLimit 
Stim.Training.upperBandLimit]*2*pi; 
    otherwise 
        error('Invalid type for training stimulus'); 
end 
  
%TEST 
Stim.Test.type = 'White Noise'; % 'Figure 8', 'White Noise', 'Circle', 
'Constant' 
Stim.Test.PT.T = 1.0;                  %Length of PT test signal in 
seconds 
Stim.Test.FR.T = 2000.0;                 %Length of FR test signal in 
seconds 
Stim.Test.FR.tst_runs = 1;            % Runs of replicating test 
stimulus 
switch (Stim.Test.type) 
    case 'Figure 8' 
        Stim.Test.maxRad = 40*pi; 
        Stim.Test.minRad = 0; 
        Stim.Test.maxMag = 2;  
    case 'White Noise' 
        Stim.Test.randomSeed = 0;%6546546;       %RandomSeed>0 resets 
the random number generator 
        Stim.Test.upperBandLimit = 1;      %High frequency cutoff for 
white noise signal 
        Stim.Test.lowerBandLimit = 0;        %Low frequency cutoff for 
white noise signal 
        Stim.Test.rms = 1;                %RMS signal level 
        Stim.Test.bandwidth = [Stim.Test.lowerBandLimit 
Stim.Test.upperBandLimit]*2*pi; 
    case 'Circle' 
        Stim.Test.rms = Stim.Training.rms; % Set the radius of the  
        Stim.Test.radius = Stim.Test.rms;  % circle 
        Stim.Test.degreepert = 1/200; % Aribitary step along the 
circumference 
    case 'Constant' 
        Stim.Test.theta = [-pi/2 pi/2]; 
        Stim.Test.mag = 1/sqrt(2); 
        Stim.Test.rms = 1; 
end 
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InitvonMisesLIFNeurons.m 
 
 
function [LIFparams, noiseVar, maxResp, a_S, kappa, halfwidth] = 
InitvonMisesLIFNeurons(S, N, Spref, maxRespRange, tauRefRange, 
tauRCRange, V_th, R_leak, error, figNum) 
  
% [LIFparams, noiseVar, maxResp, a_S, kappa, halfwidth] = 
InitvonMisesLIFNeurons(S, N, Spref, maxRespRange, tauRefRange, 
tauRCRange, V_th, R_leak, error, figNum); 
% 
% Initializes the LIF parameters for a population of Gaussian tuned 
neurons. 
% 
%-------INPUTS-------- 
% "S" is an 1xNt vector containing the range of representative values 
over 
%       which the neurons should encode a signal (e.g., -2:0.1:2). 
% "N" specifies the number of neurons to initialize. 
% "Spref" is a MxN matrix specifying the location of the M-dimensional 
mean 
%   for each neuron's tuning curve within the range specified by S. For 
%   Cosine tuned neurons the mean corresponds to the neuron's preferred 
%   stimulus. 
% "maxRespRange" is a 1x2 vector specifying the range of maximum 
responses (spikes/s) 
%   for the population of neurons [maxresp_low maxresp_high]. Each 
neuron's 
%   maximum response is selected randomly from the range. 
% "tauRefRange" is a 1x2 vector specifying the range of refractory 
times (sec) 
%   for the population of neurons. Each neuron's refractory time is 
selected 
%   randomly from the range. 
% "tauRCRange" is a 1x2 vector specifying the range of RC time 
constants (sec) 
%   for the population of neurons. Each neuron's RC time constant is 
selected 
%   randomly from the range. 
% "V_th" specifies the voltage threshold used to determine when an 
action 
%   potential occurs. Curently this value is applied to all neurons. 
% "R_leak" specifies the leakage resistance across the neurons' cell 
membrane. 
%   Curently this value is applied to all neurons. 
% "error" specifies the percentage error in neuron response due to 
noise 
%   for preferred stimulus. The value is specified as a ratio relative 
to the 
%   neuron's maximum response. 
% "figNum" specifies the figure number to display a plot of the tuning 
%   curves for the population of neurons. If figNum = 0, no figure is 
displayed. 
% 
%-------OUTPUTS-------- 
% "LIFparams" is a MxN matrix containing the LIF parameters specific to 
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%      each neuron. Each row specifies values for a specifi LIF 
parameter 
%       (1,1:N) -> Refractory periods (sec) 
%       (2,1:N) -> RC time-constants (sec) 
%       (3,1:N) -> Gains of driving input 
%       (4,1:N) -> Bias currents (amps) 
%       (5,1:N) -> Threshold voltages (volts) 
%       (6,1:N) -> Leakage resistances (ohms) 
%       (7;9;11;etc,1:N) -> Preferred stimulus (mean of Cosine tuning). 
%                           One row per dimension 
% "noiseVar" is a 1xN vector of noise variances (spikes/s) for the 
initialized neurons. 
% "maxResp"  of maximum responses (spikes/s) for the initialized 
neurons. 
% "a_S" represents the tuning curves for the entire population of 
neurons. 
% "kappa" is a 1xN vector of constants related to the tuning half-width 
of the neuron 
% "halfwidth" is a 1xN vector of tuning halfwidths for the entire 
% population of neurons. 
  
% vonMises tuning width - consistent with Amirikian and Georgopulos 
(2000) 
% Jan 24, 2008 
% Tushar Dharampal 
% Integrative Neural Systems Lab 
halfwidth = zeros(N,1); 
kappa = zeros(N,1); 
  
kappaRange = 0.01:0.01:5; % Empirical range 
deltaRange = acosd((log(exp(2.*kappaRange)+1)-log(2)-
kappaRange)./kappaRange); 
  
v1 = find(deltaRange >= 30 & deltaRange < 45); 
v2 = find(deltaRange >= 45 & deltaRange < 60); 
v3 = find(deltaRange >= 60 & deltaRange < 75); 
v4 = find(deltaRange >= 75 & deltaRange < 90); 
  
pop1 = round((6/30)*N);  % 30 - 45 degrees 
pop2 = round((11/30)*N); % 46 - 60 
pop3 = round((8/30)*N);  % 61 - 75 
pop4 = N-(pop1+pop2+pop3);  % 76 - 89 
  
for i = 1:pop1 
    index = ceil(rand()*length(v1)); 
    kappa(i) = kappaRange(v1(index)); 
    halfwidth(i) = deltaRange(v1(index)); 
end 
  
for i = pop1+1:pop1+pop2 
    index = ceil(rand()*length(v2)); 
    kappa(i) = kappaRange(v2(index)); 
    halfwidth(i) = deltaRange(v2(index)); 
end 
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for i = pop1+pop2+1:pop1+pop2+pop3 
    index = ceil(rand()*length(v3)); 
    kappa(i) = kappaRange(v3(index)); 
    halfwidth(i) = deltaRange(v3(index)); 
end 
  
for i = pop1+pop2+pop3+1:pop1+pop2+pop3+pop4 
    index = ceil(rand()*length(v4)); 
    kappa(i) = kappaRange(v4(index)); 
    halfwidth(i) = deltaRange(v4(index)); 
end 
  
clear i; 
  
nDim = size(Spref,2); 
Nt = length(S); 
J_th = V_th/R_leak; 
tauRef = (tauRefRange(2) - tauRefRange(1))*rand(N,1) + tauRefRange(1); 
%Set refactory period randomly for each neuron 
tauRC = (tauRCRange(2) - tauRCRange(1))*rand(N,1) + tauRCRange(1);     
%Set RC-time constant randomly for each neuron 
  
maxResp = (maxRespRange(2) - maxRespRange(1))*rand(N,1) + 
maxRespRange(1); 
noiseVar = maxResp.*error;                  %Compute noise variance for 
each neurons (spikes/s) 
  
v = find(maxResp > 1./tauRef);  %Look for max resp. values that violate 
the absolute refractory period 
while ~isempty(v) 
    maxResp(v) = (maxRespRange(2) - maxRespRange(1))*rand(length(v),1) 
+ maxRespRange(1); 
    v = find(maxResp > 1./tauRef); 
end 
  
%Compute alpha and Jbias for von Mises tuning response based on 
%the neuron's preferred stimulus, tuning variance, maximum response, 
and baseline noise (expressed as % of max response). 
minResp = noiseVar; 
J_bias = J_th*(1./(1-exp((tauRef.*minResp-1)./(tauRC.*minResp)))); 
J_bias_sigma = abs(J_bias - (J_th*(1./(1-
exp((tauRef.*(minResp+sqrt(noiseVar))-
1)./(tauRC.*(minResp+sqrt(noiseVar)))))))); 
alpha = J_th*(1./(1-exp((tauRef.*maxResp-1)./(tauRC.*maxResp)))) - 
J_bias; 
  
  
LIFparams(1,:) = tauRef';  %Refractory period 
LIFparams(2,:) = tauRC';   %RC time-constant 
LIFparams(3,:)= alpha';   %Gain of driving input 
LIFparams(4,:) = J_bias';  %Bias current 
LIFparams(5,:) = V_th*ones(1,N);    %Threshold voltage 
LIFparams(6,:) = R_leak*ones(1,N);  %Leakage resistance 
LIFparams(7:7+nDim-1,:) = Spref';   %preferred direction of neuron 
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LIFparams(end+1,:) = J_bias_sigma; % S.D of variation in the J_bias 
values 
  
if figNum > 0 
    figure(figNum); 
    clf; 
    offset = 1./exp(kappa); 
    scale = (exp(kappa)-offset)*ones(1,Nt); 
    Jin = 
alpha*ones(1,Nt).*((exp(kappa*ones(1,Nt).*cos(angle_mod(ones(N,1)*S(1,:
),Spref(:,1)*ones(1,Nt)))) - offset*ones(1,Nt))./scale); 
    Jin = Jin + J_bias*ones(1,Nt); 
    a_S = 1./((tauRef*ones(1,length(S)))-
(tauRC*ones(1,length(S))).*log(1-J_th./Jin)); 
    plot(S(1,:)*180/pi,a_S) 
    title ('Tuning curves for the entire population of neurons', 
'FontSize', 16); 
    xlabel ('Preferred Direction (Degrees)', 'FontSize', 16); 
    ylabel ('Firing rate (spikes/second)', 'FontSize', 16); 
    drawnow; 
    figure 
    plot(S(1,:)*180/pi,sum(a_S)) 
    title ('Sum of tuning profiles for the entire population of 
neurons', 'FontSize', 16); 
    xlabel ('Preferred Direction (Degrees)', 'FontSize', 16); 
    ylabel ('Firing rate (spikes/second)', 'FontSize', 16); 
    if(N<=100) 
        axis([-200 200 0 4000]) 
    else 
        axis([-200 200 0 8000]) 
    end 
    drawnow; 
    if(find(~isfinite(sum(a_S, 2)))) 
        error('a_S has a NaN') 
    end 
end 
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GetNeuronFiringRatesIterative_G.m 
 
function [SUrateResp, sSUCenters, LIFinit, Gadapt, spikeTimes, 
GadaptTemp] = GetNeuronFiringRatesIterative_G(Sim, Stim, Sin, LIFinit, 
NumNeurons, AttnSig, Gadapt) 
% [SUrateResp, sSUCenters, LIFinit, Gadapt, spikeTimes, GadaptTemp] = 
GetNeuronFiringRatesIterative_G(Sim, Stim, Sin, LIFinit, NumNeurons, 
AttnSig, Gadapt) 
  
Generate the firing rates for the provided stimulus for the given 
neuron population 
  
%-------INPUTS-------- 
% "Sim" is the structure that holds the simulation specific parameters. 
% "Stim" is the structure that holds the stimulus specific parameters. 
% "Sin" is the provided stimulus along two-dimensions. 
% "LIFinit" is a structure that carries over the current state of each 
neuron for the next 
%   call to genLIFSpikes_iterate. It contains the fields: 
%       ".V" is a 1xN vector containing the final voltage for each 
neuron 
%       ".EndRefPeriod" is a 1xN vector containing the ending time for 
each neuron's refractory 
%           period relative to the local time for the next function 
call. 
%       ".jitterSig" is a 1xN vector containing the standard deviations 
of the random temporal jitters 
%           applied to the timing of each neuron's spikes. 
% "NumNeurons" is the number of neurons in the population. 
% "AttnSig" is a vector that represents the attention signal over the 
% length of the stimulus 
% "Gadapt" is a vector representing the current adaptive conductance 
for 
% each neuron. 
%  
%-------OUTPUTS-------- 
% "SUrateResp" is a vector that holds the binned rates for each neuron 
over the 
% current timestep. 
% "sSUCenters" is a 2x1 vector tjat holds the averaged stimulus along 
two 
% dimensions for each timestep. 
% "LIFinit" is a structure that carries over the current state of each 
neuron for the next 
%   call to genLIFSpikes_iterate. It contains the fields: 
%       ".V" is a 1xN vector containing the final voltage for each 
neuron 
%       ".EndRefPeriod" is a 1xN vector containing the ending time for 
each neuron's refractory 
%           period relative to the local time for the next function 
call. 
%       ".jitterSig" is a 1xN vector containing the standard deviations 
of the random temporal jitters 
%           applied to the timing of each neuron's spikes. 
% "Gadapt" is a vector representing the current adaptive conductance 
for 
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% each neuron. 
% "spikeTimes" is a NxP matrix containing the times for each action 
potential. 
%   The dimension P is specified by the neurons with the most spikes 
=max(spikeCount). 
%   For neurons with fewer spikes (Q; Q<P) the row of spike times is 
padded 
%   with P-Q zeros to complete the matrix. 
% "GadaptTemp" is a matrix used to hold the Gadapt values between 
function 
% calls. 
  
  
i=1; % ONE POPULATION 
  
Nt = length(Sin); 
  
%Parse Global Stuctures 
LIFparams = Sim.Pop(i).LIFparams(:,1:NumNeurons); 
noiseVar = Sim.Pop(i).noiseVar(1:NumNeurons); 
maxResp = Sim.Pop(i).maxResp(1:NumNeurons); 
  
scale = Sim.Pop(i).SmaxLin; 
  
% Incorporate attention responses 
if strcmp(Sim.Nonstatdecision, 'Yes') && (strcmp(Sim.NonStatType, 
'Attention') || strcmp(Sim.NonStatType, 'AttentionReplacement'))% && 
strcmp(SigType, 'Test') 
   scale = scale./AttnSig; 
end 
  
%Convert signal to polar form for Gaussian tuned neurons 
switch(Sim.phiEnc_func) 
    case 'GaussTuningResp' 
        if Sim.nDim == 1 
            Sin_mag = max(Stim.sRange)*ones(1,Nt); 
            Sin_angle = Sin; 
        else 
            Sin_mag = sqrt(sum(Sin.^2,1)); 
            Sin_angle = atan2(Sin(2,:), Sin(1,:)); 
        end 
        Sin_plr = {Sin_mag, Sin_angle}; 
        respParam = {Sim.Pop(i).Spref(1:NumNeurons), 
Sim.Pop(i).Ssig(1:NumNeurons), scale}; 
  
    case 'LinearTuningResp' 
        Sin_plr = {Sin_temp}; 
        respParam = {phiEnc'}; 
  
    case 'CosineTuningResp' 
        if Sim.nDim == 1 
            Sin_mag = max(Stim.sRange)*ones(1,Nt); 
            Sin_angle = Sin; 
        else 
            Sin_mag = sqrt(sum(Sin.^2,1)); 
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            Sin_angle = atan2(Sin(2,:), Sin(1,:)); 
        end 
        Sin_plr = {Sin_mag, Sin_angle}; 
        respParam = {Sim.Pop(i).Spref(1:NumNeurons), scale}; 
         
    case 'vonMisesTuningResp' 
        if Sim.nDim == 1 
            Sin_mag = max(Stim.sRange)*ones(1,Nt); 
            Sin_angle = Sin; 
        else 
            Sin_mag = sqrt(sum(Sin.^2,1)); 
            Sin_angle = atan2(Sin(2,:), Sin(1,:)); 
        end 
        Sin_plr = {Sin_mag, Sin_angle}; 
        respParam = {Sim.Pop(i).Spref(1:NumNeurons), 
Sim.Pop(i).kappa(1:NumNeurons), scale}; 
    otherwise 
        error('Invalid stimulus tuning profile specified'); 
end 
clear Sin_temp; 
  
%Compute alpha and Jbias for rectified linear tuning response based on 
%the neuron's x-intercept and maximum response. 
alpha = LIFparams(3,1:NumNeurons)'; 
J_bias = LIFparams(4,1:NumNeurons)'; 
  
J_bias_sigma = LIFparams(end,1:NumNeurons)'; 
  
%Compute driving current and corresponding neuron reponses for the 
input signal 
J_d = CalcDrivingCurrent(alpha, Nt, Sim.phiEnc_func, respParam, 
Sin_plr);%, expa); 
  
J_in = J_d + (J_bias*ones(1,Nt)+J_bias_sigma*randn(1,Nt)); % Add 
variability to the J_bias values with a S.D. of J_bias_sigma - August 
24 2007 
  
[spikeCount, spikeTimes, LIFinit, Gadapt, GadaptTemp] = 
genLIFSpikes_iterate_G(J_in, Stim.FR.dt, LIFparams, noiseVar, maxResp, 
LIFinit, Gadapt, Sim.TauAdapt, Sim); 
  
SUrateResp = spikeCount/Sim.FR.tRateInt; 
  
sSUCenters = (mean(Sin,2))'; 
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genLIFSpikes_iterate_G.m 
 
 
function [spikeCount,spikeTimes,LIFinit,Gadapt,GadaptTemp] = 
genLIFSpikes_iterate_G(J_in, dt, LIFparams, noiseVar, maxResp, LIFinit, 
Gadapt, TauAdapt, Sim) 
% [spikeCount,spikeTimes,LIFinit,Gadapt,GadaptTemp] = 
genLIFSpikes_iterate_G(J_in, dt, LIFparams, noiseVar, maxResp, LIFinit, 
Gadapt, TauAdapt, Sim) 
% 
% Compute timing of action potentials for a population of Leaky 
Integrate and Fire (LIF) 
% neurons based on the integrated input current received by each neuron 
% including optional adaptation of neuron responses. 
% 
%-------INPUTS-------- 
% "J_in" is an NxNt matrix containig the input current received by N 
neurons 
%       for each of Nt time points. 
% "dt" is the interval between time points expressed in sec. 
% "LIFparams" is a MxN matrix containing the LIF parameters specific to 
%      each neuron. The parameters matrix is generated automatically 
using 
%      the functions InitGaussLIFNeurons or InitLinearLIFNeurons to 
%      generate neurons with Gaussian or linear tuning curves 
respectively. 
%      The parameters specific to each row are 
%       (1,1:N) -> Refractory periods (sec) 
%       (2,1:N) -> RC time-constants (sec) 
%       (3,1:N) -> Gains of driving input 
%       (4,1:N) -> Bias currents (amps) 
%       (5,1:N) -> Threshold voltages (volts) 
%       (6,1:N) -> Leakage resistances (ohms) 
% "noiseVar" is a 1xN vector of noise variances (spikes/s). This vector 
is 
%   generated automatically together with LIFparams as part of the 
neuron 
%   initialization. 
% "maxResp" is a 1xN vector of maximum responses (spikes/s). his vector 
is 
%   generated automatically together with LIFparams as part of the 
neuron 
%   initialization. 
% "LIFinit" is a structure that carries over the current state of each 
neuron for the next 
%   call to genLIFSpikes_iterate. It contains the fields 
%       ".V" is a 1xN vector containing the final voltage for each 
neuron 
%       ".EndRefPeriod" is a 1xN vector containing the ending time for 
each neuron's refractory 
%           period relative to the local time for the next function 
call. 
%       ".jitterSig" is a 1xN vector containing the standard deviations 
of the random temporal jitters 
%           applied to the timing of each neuron's spikes. 
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% "Gadapt" is a vector representing the current adaptive conductance 
for 
% each neuron. 
% "TauAdapt" is a vector representing the time period of adaptation for 
% each neuron. 
% "Sim" is the structure that holds the simulation specific parameters. 
% 
%-------OUTPUTS-------- 
% "spikeCount" is a 1xN vector containing the total number of spikes 
generated 
%   during the input sequence for each neuron. 
% "spikeTimes" is a NxP matrix containing the times for each action 
potential. 
%   The dimension P is specified by the neurons with the most spikes 
=max(spikeCount). 
%   For neurons with fewer spikes (Q; Q<P) the row of spike times is 
padded 
%   with P-Q zeros to complete the matrix. 
% "LIFinit" is a structure that carries over the current state of each 
neuron for the next 
%   call to genLIFSpikes_iterate. It contains the fields 
%       ".V" is a 1xN vector containing the final voltage for each 
neuron 
%       ".EndRefPeriod" is a 1xN vector containing the ending time for 
each neuron's refractory 
%           period relative to the local time for the next function 
call. 
%       ".jitterSig" is a 1xN vector containing the standard deviations 
of the random temporal jitters 
%           applied to the timing of each neuron's spikes. 
% "Gadapt" is a vector representing the current adaptive conductance 
for 
% each neuron. 
% "GadaptTemp" is a matrix used to hold the Gadapt values between 
function 
% calls. 
  
% Created 4-1-06 (Scott Beardsley) 
% 
% Modification History: 
% 
  
%Initialize LIF paramters 
N = size(LIFparams,2); 
tauRef = LIFparams(1,:)';  %Refractory period 
tauRC = LIFparams(2,:)';   %RC time-constant 
alpha = LIFparams(3,:)';   %Gain of driving input 
J_bias = LIFparams(4,:)';  %Bias current 
V_th = LIFparams(5,:)';    %Threshold voltage 
R_leak = LIFparams(6,:)';  %Leakage resistance 
  
spikeCount = zeros(1,N); 
  
spikeTimes = zeros(N, ceil(Sim.FR.tRateInt/Sim.FR.dt)); 
  
T = (size(J_in, 2)-1)*dt;   %Total Time 
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RateSS = 0.49*Sim.Pop.maxResp; 
B = ((1./tauRC).*(tauRef - 1./RateSS)); 
Jm = alpha + J_bias; 
Q = 1./Jm; 
  
As = (B.^2)/2; 
Bs = (B + (Q./exp(B))); 
Cs = (1 - ((1-Q)./exp(B))); 
Gad = (-Bs + sqrt(Bs.^2 - 4.*As.*Cs))./(2.*As); 
  
Ginc = (1 - ((1 - dt./TauAdapt).^(1./(dt.*RateSS)))).*Gad; 
  
if isempty(LIFinit.jitterSig) 
    resJitter = dt/4;            %Jitter in spike timing due to 
resolution of the time step 
    maxJitterSig = (1./maxResp - 1./(maxResp+sqrt(noiseVar)))/4; 
    jitterSig = resJitter.*ones(1,N); % Changed to increase variability 
in the Inter Spike Intervals 
    z = find(maxJitterSig>resJitter);   %Find neurons whose temporal 
jitter due to noise exceeds the time step resolution 
    if ~isempty(z) 
        jitterSig(z) = maxJitterSig(z); %Use the larger source of 
jitter (i.e., jitter due to noise) for the above neurons 
    end 
    LIFinit.jitterSig = jitterSig; 
end 
  
GadaptTemp = zeros(N, size(J_in,2)-1); 
  
for j = 1:N 
    V(1) = LIFinit.V(j); 
    endRefPeriod = LIFinit.EndRefPeriod(j); 
  
    for i = 2:size(J_in,2) %Loop over the length of the signal J_in(t) 
        if i*dt > endRefPeriod 
            if strcmp(Sim.Nonstatdecision, 'Yes') && 
strcmp(Sim.NonStatType, 'Adaptation') 
                V(i) = V(i-1)-(V(i-1)+ V(i-1)*(R_leak(j)*Gadapt(j)) - 
J_in(j, i-1)*R_leak(j))/tauRC(j)*dt; % Adaptive LIF neuron Voltage 
            else 
                V(i) = V(i-1)-(V(i-1) - J_in(j, i-
1)*R_leak(j))/tauRC(j)*dt; % Normal LIF neuron Voltage 
            end 
            if V(i)>=V_th(j) 
                tJitter = (randn*LIFinit.jitterSig(j));   %Incorporate 
noise as variability in spike timing 
                tSpike = (i-1)*dt + tJitter; 
                if (spikeCount(j) ~= 0 && tSpike <= 
(spikeTimes(j,spikeCount(j)) + tauRef(j))) 
                    tSpike = (spikeTimes(j,spikeCount(j)) + tauRef(j)); 
                end 
                if  tSpike <= T && tSpike >= dt 
                    spikeCount(j) = spikeCount(j) + 1; 
                    spikeTimes(j,spikeCount(j)) = tSpike; 
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                    endRefPeriod = spikeTimes(j,spikeCount(j)) + 
tauRef(j); 
                end 
                V(i) = 0; 
                if strcmp(Sim.Nonstatdecision, 'Yes') && 
strcmp(Sim.NonStatType, 'Adaptation') %&& (Radapt(j) > Sim.R_leak) 
  
  
                    Gadapt(j) = Gadapt(j) + Ginc(j); 
                end 
            else 
                if strcmp(Sim.Nonstatdecision, 'Yes') && 
strcmp(Sim.NonStatType, 'Adaptation') %&& (Radapt(j) < Sim.Radapt(j)) 
  
                    Gadapt(j) = Gadapt(j) - 
(Gadapt(j)/(TauAdapt(j)/dt)); 
                    if Gadapt(j) <= 0 
                        Gadapt(j) = 0; 
                    end 
                end 
            end 
        else 
            V(i) = 0; 
        end 
  
  
        GadaptTemp(j,i) = Gadapt(j); 
    end 
  
    LIFinit.V(j) = V(i);                              %Carry over each 
neuron's final voltage for next function call 
    LIFinit.EndRefPeriod(j) = endRefPeriod-T;         %Adjust each 
neuron's endRefPeriod to the local time for the next function call 
    %Reset V 
    V = V*0; 
  
end 
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vonMisesTuningResp.m 
 
function resp = vonMisesTuningResp(S, p) 
  
% resp = vonMisesTuningResp(S, p); 
% 
% Calculates the response (spikes/s) of von Mises tuned neurons to a 1D 
or 2D 
% signal expressed in polar coordinates. 
% 
%-------INPUTS-------- 
% "S" is a {1xM} cell array of 1xNt vectors containing the M-
dimensional input signal 
%       over Nt time steps. 
%           [s{1}] is an optional input containing the magnitude of a 
2D stimulus. 
%                When present it scales the amplitude of the Cosine 
%                response. 
%           s{2} is the polar angle of the 2D stimulus. 
% "p" is a {1x3} cell array of 1xN vectors containing the Cosine tuning 
parameters for 
%       N neurons. 
%           p{1} contains the preferred stimulus angle 
%           p{2} contains the kappa value - the scale in the 
exponential 
%           of the von Mises tuning 
%           [p{3}] is an optional parameter that normalizes stimulus 
magnitude. 
%                It is used to incorporate linear tuning as a function 
of radius. 
% 
%-------OUTPUTS-------- 
% "resp" is a NxNt matrix containing the responses (spikes/s) of N 
neurons at Nt 
%       time steps. 
% 
  
% Created 11 - 6 - 07 (Tushar Dharampal) 
% 
% Modification History: 
%11 - 6 - 07 Initializing resp variable (Tushar Dharampal) 
  
N = length(p{1}); 
Nt =length(S{1}); 
resp = zeros(N,Nt); 
kappa = p{2}'; 
for j = 1:N 
    % Jan 24 2008 
    % Tushar Dharampal 
    % Subtract from and scale the tuning function in order to conform 
it to the 
    % Alpha-Jbias format i.e be able to use the same Alpha and Jbias 
equations 
    % as before 
    resp(j,:) = 
S{1}./p{3}.*((exp(kappa(j)*ones(1,Nt).*cos(angle_mod(S{2},p{1}(j,:)'*on
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es(1,Nt))))-(1./exp(kappa(j)))*ones(1,Nt))./((exp(kappa(j))-
(1./exp(kappa(j))))*ones(1,Nt))); 
end 
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GetDecodingWeights.m 
 
function [A,H,W,Q] = GetDecodingWeights(S, a_S) 
  
% [phi] = GetDecodingWeights(S, a_S, noiseVar); 
% 
% Computes the optimal decoding weights for a fixed temporal filter. 
% 
%-------INPUTS-------- 
% "S" is a 1xNt vector containing the signal amplitudes at Nt time 
points  
% "a_S" is a NxNt matrix containing the convolution of the temporal 
decoding  
%      with the spike trains of N neurons. The result approximates the 
instantaneous  
%      firing rate of each neuron at each time point. 
% 
%-------OUTPUTS-------- 
% "phi" is a 1xN vector containing the optimal decoding weights used to  
%   perform the signal decoding and reconstruction.  
% 
% Created 8-16-06 (Scott Beardsley) 
%  
% Modification History:  
% 
%Estimate decoding weights w/ noise 
gamma = S*S'; %+ (noiseVar*ones(1,N).*eye(N, N)); 
upsilon = a_S*S'; 
phi = upsilon*inv(gamma); 
  
X1 = S(:,1:size(S,2)-1); 
X2 = S(:,2:size(S,2)); 
  
A = X2*X1' * inv(X1*X1'); 
H = phi; 
Z = a_S; 
X = S; 
W = (X2 - A*X1)*(X2 - A*X1)'/size(X1,2); 
  
Q = (Z - H*X)*(Z - H*X)'/size(X,2); 
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InitAdaptiveFilter.m 
 
function [AdaptiveFilter adaptiveKalman] = 
InitAdaptiveFilter(AdaptiveFilter) 
% [AdaptiveFilter adaptiveKalman] = InitAdaptiveFilter(AdaptiveFilter) 
  
% The 'InitAdaptiveFilter' function initializes the components of the 
adaptive filter. 
% For the adaptive Kalman filter there are three filters to be 
initialized. 
% 
% INPUTS 
% ------- 
% AdaptiveFilter = Struct variable with variables specific to the 
adaptive filter 
% 
% OUTPUTS 
% -------- 
% adaptiveKalman = Struct variable with Kalman filter specific 
initializations 
  
AdaptiveFilter.type = 'Kalman Filter'; 
Px = 
(AdaptiveFilter.static.Hsu(:,1)\AdaptiveFilter.static.Qsu)/AdaptiveFilt
er.static.Hsu(:,1)'; %P = inv(H)*R*inv(H') 
Py = 
(AdaptiveFilter.static.Hsu(:,2)\AdaptiveFilter.static.Qsu)/AdaptiveFilt
er.static.Hsu(:,2)'; %P = inv(H)*R*inv(H') 
  
% FILTER 1 
adaptiveKalman.adaptfilt1x=[]; 
adaptiveKalman.adaptfilt1x.A = AdaptiveFilter.static.Asu(1,1); 
adaptiveKalman.adaptfilt1x.B = 0; 
adaptiveKalman.adaptfilt1x.H = AdaptiveFilter.static.Hsu(:,1); 
adaptiveKalman.adaptfilt1x.Q = AdaptiveFilter.static.Wsu(1,1); 
adaptiveKalman.adaptfilt1x.R = AdaptiveFilter.static.Qsu; 
adaptiveKalman.adaptfilt1x.u = 0; 
adaptiveKalman.adaptfilt1x.P = Px; 
  
adaptiveKalman.adaptfilt1y=[]; 
adaptiveKalman.adaptfilt1y.A = AdaptiveFilter.static.Asu(2,2); 
adaptiveKalman.adaptfilt1y.B = 0; 
adaptiveKalman.adaptfilt1y.H = AdaptiveFilter.static.Hsu(:,2); 
adaptiveKalman.adaptfilt1y.Q = AdaptiveFilter.static.Wsu(2,2); 
adaptiveKalman.adaptfilt1y.R = AdaptiveFilter.static.Qsu; 
adaptiveKalman.adaptfilt1y.u = 0; 
adaptiveKalman.adaptfilt1y.P = Py; 
  
% FILTER 2 
adaptiveKalman.adaptfilt2x=[]; 
% adaptiveKalman.adaptfilt2x.P = 0.1; 
adaptiveKalman.adaptfilt2x.A = eye(1); 
adaptiveKalman.adaptfilt2x.B = 0; 
adaptiveKalman.adaptfilt2x.Q = zeros(1); 
adaptiveKalman.adaptfilt2x.R = AdaptiveFilter.static.Qsu(1,1); 
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adaptiveKalman.adaptfilt2x.u = 0; 
adaptiveKalman.adaptfilt2x.x = AdaptiveFilter.static.Hsu(:,1)'; 
  
adaptiveKalman.adaptfilt2y=[]; 
% adaptiveKalman.adaptfilt2y.P = 0.1; 
adaptiveKalman.adaptfilt2y.A = eye(1); 
adaptiveKalman.adaptfilt2y.B = 0; 
adaptiveKalman.adaptfilt2y.Q = zeros(1); 
adaptiveKalman.adaptfilt2y.R = AdaptiveFilter.static.Qsu(1,1); 
adaptiveKalman.adaptfilt2y.u = 0; 
adaptiveKalman.adaptfilt2y.x = AdaptiveFilter.static.Hsu(:,2)'; 
  
% FILTER 3 
adaptiveKalman.adaptfilt3x = []; 
adaptiveKalman.adaptfilt3x.A = AdaptiveFilter.static.Asu(1,1); 
adaptiveKalman.adaptfilt3x.B = 0; 
adaptiveKalman.adaptfilt3x.Q = AdaptiveFilter.static.Wsu(1,1); 
adaptiveKalman.adaptfilt3x.R = AdaptiveFilter.static.Qsu; 
adaptiveKalman.adaptfilt3x.P = Px; 
adaptiveKalman.adaptfilt3x.u = 0; 
adaptiveKalman.adaptfilt3x.H = AdaptiveFilter.static.Hsu(:,1); 
  
adaptiveKalman.adaptfilt3y = []; 
adaptiveKalman.adaptfilt3y.A = AdaptiveFilter.static.Asu(2,2); 
adaptiveKalman.adaptfilt3y.B = 0; 
adaptiveKalman.adaptfilt3y.Q = AdaptiveFilter.static.Wsu(2,2); 
adaptiveKalman.adaptfilt3y.R = AdaptiveFilter.static.Qsu; 
adaptiveKalman.adaptfilt3y.P = Py; 
adaptiveKalman.adaptfilt3y.u = 0; 
adaptiveKalman.adaptfilt3y.H = AdaptiveFilter.static.Hsu(:,2); 
  
AdaptiveFilter.xest=0; 
AdaptiveFilter.yest=0; 
AdaptiveFilter.zest = zeros(size(AdaptiveFilter.static.Hsu,1),1); 
AdaptiveFilter.xtrue=0; 
AdaptiveFilter.ytrue=0; 
  
AdaptiveFilter.window_size_filter = 1; % Iterations 
AdaptiveFilter.window_size_scale = 50; % Iterations 
AdaptiveFilter.xscale = 0.2; 
AdaptiveFilter.yscale = 0.2; 
AdaptiveFilter.errorwindow = 10; % TIME WIDTH FOR RMS ERROR CALCULATION 
IN SECONDS 
AdaptiveFilter.true_avgerrorx = 0; 
AdaptiveFilter.true_avgerrory = 0; 
AdaptiveFilter.prev_avgerrorx = 0; 
AdaptiveFilter.prev_avgerrory = 0; 
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Kalmansnapshot.m 
 
function [sxplot, syplot] = Kalmansnapshot(TestType, Sim, Stim, 
Nusable, H, AdaptiveFilter, P, R, flag, indchangedpopNusable, 
indchangedpopReplace, indchangedpopLoss, cntt) 
  
% The Kalmansnapshot function is used to measure the performance of the 
algorithm as a snapshot during various points in the simulation. 
% It gives a reconstruction of the desired stimulus as if it were the 
current TEST stimulus (at this point in the simulation). 
% {The 'Figure of 8' stimulus is chosen because the response is easily 
assessed qualitatively} 
% It does not alter the state / weights of the system in any way. 
% 
% INPUTS 
% ------- 
% TestType = Stimulus used for the snapshot test 
% Sim = Simulation parameters. 
% Stim = Stimulus parameters. 
% Nusable = The number of neurons that are used for the reconstruction. 
% H = Current H matrix (hence, the snapshot). 
% AdaptiveFilter = Adaptive filter parameters. 
% changedpopcat = The indices for the neurons that are altered. 
% flag = Variable that indicates the type of nonstationarity. 
% 
% OUTPUTS 
% -------- 
% sxplot = Reconstruction along the X dimension. 
% syplot = Reconstruction along the Y dimension. 
  
TestLength = 5; 
t = 0:Stim.FR.dt:TestLength; 
N = Sim.nUnits; 
  
switch (TestType) 
    case 'Constant' 
        theta = Stim.Test.theta.*ones(1,length(t)); 
        Sin_tst = Stim.Test.mag.*[cos(theta); sin(theta)]; 
    case 'Figure 8' 
        theta = linspace(-pi/4, 3/4*pi, length(t)); 
        Sin_tst = [1.5*cos(2*theta); 1*cos(2*theta).*sin(2*theta)]; 
    case 'White Noise' 
        for f = 1:Sim.nDim 
            [Sin_tst(f,:),Amps(f,:)] = 
genSignal(Stim.Test.FR.T,Stim.FR.dt,Stim.Test.rms,Stim.Test.bandwidth,S
tim.Training.randomSeed*pi*f);  %Increment random seed in deteministic 
way across multiple dimensions when RandomSeed >0 
            %pi multiple in randomSeed used to ensure different 
amplitude coeff in generaiton of random training and test signals 
            clear Amps 
        end 
end 
  
LIFinit.V = zeros(1,N); 
LIFinit.EndRefPeriod = zeros(1,N); 
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LIFinit.jitterSig = []; 
LIFinit.Radapt = Sim.Radapt; 
  
ndtperBin = Sim.FR.tRateInt/Sim.FR.dt; 
  
% STATIC FILTER INITIALIZATIONS 
sx = []; 
sx.A = AdaptiveFilter.static.Asu(1,1); 
sx.B = 0; 
sx.H = H(:,1); 
sx.Q = AdaptiveFilter.static.Wsu(1,1); 
sx.R = R(:,1:Nusable); 
  
sx.P = P; 
sx.u = 0; 
sxscale = 1; 
  
sy = []; 
sy.A = AdaptiveFilter.static.Asu(2,2); 
sy.B = 0; 
sy.H = H(:,2); 
sy.Q = AdaptiveFilter.static.Wsu(2,2); 
sy.R = R(:,Nusable+1:end); 
  
  
sy.P = P; 
sy.u = 0; 
syscale = 1; 
  
SUrateResp = zeros(N, TestLength/Sim.FR.tRateInt); 
sSUCenters = zeros(2, TestLength/Sim.FR.tRateInt); 
  
Radapt = Sim.Radapt; 
  
for cnt=1:TestLength/Sim.FR.tRateInt 
    % GENERATE THE FIRING RATES FOR THE TEST SIGNAL 
  
    [SUrateResp(:,cnt), sSUCenters(:,cnt), LIFinit, Radapt] = 
GetNeuronFiringRatesIterative(Sim, Stim, Sin_tst(:,((cnt-
1)*ndtperBin)+1:cnt*(ndtperBin)), LIFinit, N, 1, Radapt); 
  
    % INTRODUCTION OF NONSTATIONARITY 
    if flag == 1 
        SUrateResp(Nusable:-1:indchangedpopLoss,cnt) = 0; 
    elseif flag == 2 
        if Sim.nchangedpop == Sim.neuronsEachTime 
            SUrateResp(1:Sim.neuronsEachTime, cnt:end) = 
SUrateResp(Sim.neuronsEachTime+1:end, cnt:end); 
        else 
            SUrateResp(1:indchangedpopNusable, cnt:end) = 
SUrateResp(Nusable+1:indchangedpopReplace, cnt:end); 
        end 
    end 
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    % STATIC FILTER 
    sx(end).z = SUrateResp(1:Nusable,cnt); 
    if(cnt == 1) % PROVIDE INITIAL BEST ESTIMATES FOR THE KALMAN FILTER 
        sx.x = sSUCenters(1,1); 
        sy.x = sSUCenters(2,1); 
    end 
    [sx(end+1), K] = kalmanf(sx(end),sxscale); 
    sy(end).z = SUrateResp(1:Nusable,cnt); 
    [sy(end+1), K] = kalmanf(sy(end),syscale); 
  
end 
  
for cnt=1:TestLength/Sim.FR.tRateInt-1 % for extracting the array from 
the struct 
    sxplot(cnt)=sx(cnt+1).x; 
    syplot(cnt)=sy(cnt+1).x; 
end 
  
% PLOTS 
  
figure 
hold on 
grid on 
plot 
(sSUCenters(1,1:TestLength/Sim.FR.tRateInt),sSUCenters(2,1:TestLength/S
im.FR.tRateInt),'r', 'LineWidth', 2); 
plot (sxplot(1:TestLength/Sim.FR.tRateInt-
1),syplot(1:TestLength/Sim.FR.tRateInt-1),'m--', 'LineWidth', 2); 
axis([-2 2 -1 1]) 
set(gca, 'FontSize', 14), legend('Snapshot Test Signal', 'Filter 
Reconstruction'); 
xlabel('X velocity V_x', 'FontSize', 14) 
ylabel('Y velocity V_y', 'FontSize', 14) 
if(flag == 0) 
    title (['Snapshot of performance - ', 
num2str((cntt*Sim.FR.tRateInt)), ' seconds'], 'FontSize', 16) 
else 
    title (['Snapshot of performance with nonstationarity - ', 
num2str(round(cntt*Sim.FR.tRateInt)), ' seconds'], 'FontSize', 16) 
end 
drawnow; 
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kalmanf.m 
 
function [s, K] = kalmanf(s,scale) 
% Modified from KALMANF VERSION 1.0, JUNE 30, 2004 BY Michael C. Kleder 
% http://www.mathworks.com/matlabcentral/fileexchange/5377-learning-
the-kalman-filter 
%  
% [s, K] = kalmanf(s,scale) 
% ---INPUTS--- 
% s is a struct that holds the state variables 
% scale is the factor influencing the progression of the Kalman gain 
%  
% ---OUTPUTS--- 
% s is a struct that holds the state variables 
% K holds the Kalman gain between function calls 
  
% set defaults for absent fields: 
if ~isfield(s,'x'); s.x=nan*z; end 
if ~isfield(s,'P'); s.P=nan; end 
if ~isfield(s,'z'); error('Observation vector missing'); end 
if ~isfield(s,'u'); s.u=0; end 
if ~isfield(s,'A'); s.A=eye(length(x)); end 
if ~isfield(s,'B'); s.B=0; end 
if ~isfield(s,'Q'); s.Q=zeros(length(x)); end 
if ~isfield(s,'R'); error('Observation covariance missing'); end 
if ~isfield(s,'H'); s.H=eye(length(x)); end 
  
if isnan(s.x) 
    s.x = s.H\s.z; 
    s.P = (s.H\s.R)/s.H'; 
end 
  
% Discrete Kalman filter: 
  
% Prediction for state vector and covariance: 
s.x = s.A*s.x + s.B*s.u; 
s.P = s.A * s.P * s.A' + s.Q; 
  
% Compute Kalman gain factor: 
K = s.P*s.H'*inv(s.H*s.P*s.H'+s.R); 
  
% Correction based on observation: 
s.x = s.x + scale*K*(s.z-s.H*s.x);%//a factor of 0.2 is introduced into 
the gain -- Jan 02, 2007 
s.P = s.P - scale*K*s.H*s.P; 
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adaptKalmanIterate.m 
 
function [adaptiveKalman,AdaptiveFilter,statex,statey,Kall, K2xy] = 
adaptKalmanIterate(adaptiveKalman,AdaptiveFilter,sSUCenters,SUrateResp,
cnt) 
  
% An adaptive filter based on a cascaded Kalman filtering scheme 
% 
% [adaptiveKalman,AdaptiveFilter,statex,statey,Kall, K2xy] = 
adaptKalmanIterate(adaptiveKalman,AdaptiveFilter,sSUCenters,SUrateResp,
cnt) 
% ---INPUTS--- 
% adaptiveKalman is a struct that holds the state variables for each 
Kalman 
% filter. 
% AdaptiveFilter is a Struct variable with variables specific to the 
% adaptive filter. 
% sSUCenters is a 2x1 vector that holds the averaged stimulus along two 
% dimensions for each timestep. 
% SUrateResp is a vector that holds the binned rates for each neuron 
over the 
% current timestep. 
% cnt holds the value of the current bin timestep 
% 
% ---OUTPUTS--- 
% adaptiveKalman is a struct that holds the state variables for each 
Kalman 
% filter. 
% AdaptiveFilter is a Struct variable with variables specific to the 
% adaptive filter. 
% statex holds the value of the decoded movement along the X-axis at 
the current timestep 
% statey holds the value of the decoded movement along the X-axis at 
the current timestep 
% Kall is a struct that holds the Kalman gains for the first and third 
Kalman 
% filters. 
% K2xy is a struct that holds the Kalman gains for the second Kalman 
% filter. 
  
xscale = AdaptiveFilter.xscale; 
yscale = AdaptiveFilter.yscale; 
  
temp_x = adaptiveKalman.adaptfilt1x.x; % X AND Y VALUES FOR THE CURRENT 
TIMESTEP TO BE FED INTO THE THIRD KALMAN 
temp_y = adaptiveKalman.adaptfilt1y.x; 
  
%################################ 
%For "window_size" timesteps... 
  
adaptiveKalman.adaptfilt1x.z = SUrateResp; 
[adaptiveKalman.adaptfilt1x, K1x] = 
kalmanf(adaptiveKalman.adaptfilt1x,1); 
  
adaptiveKalman.adaptfilt1y.z = SUrateResp; 
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[adaptiveKalman.adaptfilt1y, K1y] = 
kalmanf(adaptiveKalman.adaptfilt1y,1); 
  
AdaptiveFilter.xtrue = AdaptiveFilter.xtrue + sSUCenters(1,:); 
AdaptiveFilter.ytrue = AdaptiveFilter.ytrue + sSUCenters(2,:); 
  
AdaptiveFilter.xest=AdaptiveFilter.xest+adaptiveKalman.adaptfilt1x.x; 
AdaptiveFilter.yest=AdaptiveFilter.yest+adaptiveKalman.adaptfilt1y.x; 
AdaptiveFilter.zest=AdaptiveFilter.zest+adaptiveKalman.adaptfilt1x.z; 
  
true_errorx = AdaptiveFilter.xtrue - AdaptiveFilter.xest; 
true_errory = AdaptiveFilter.ytrue - AdaptiveFilter.yest; 
  
%################################ 
%For calculating Q and H for the next time step 
if (AdaptiveFilter.window_size_filter == 1 || 
mod(cnt,AdaptiveFilter.window_size_filter)==1) 
    % FOR P 
    if (cnt == 1 || (cnt-1)/AdaptiveFilter.window_size_filter == 1) % 
INITIALIZE THE P VALUE THE VERY FIRST TIME 
        adaptiveKalman.adaptfilt2x.P 
=(adaptiveKalman.adaptfilt1x.x\adaptiveKalman.adaptfilt2x.R)/adaptiveKa
lman.adaptfilt1x.x'; %P = inv(H)*R*inv(H') 
        adaptiveKalman.adaptfilt2y.P 
=(adaptiveKalman.adaptfilt1y.x\adaptiveKalman.adaptfilt2y.R)/adaptiveKa
lman.adaptfilt1y.x'; %P = inv(H)*R*inv(H') 
    end 
  
    true_errorx = true_errorx/AdaptiveFilter.window_size_filter; 
    true_errory = true_errory/AdaptiveFilter.window_size_filter; 
  
    AdaptiveFilter.xest = 
AdaptiveFilter.xest/AdaptiveFilter.window_size_filter; 
    AdaptiveFilter.yest = 
AdaptiveFilter.yest/AdaptiveFilter.window_size_filter; 
    AdaptiveFilter.zest = 
AdaptiveFilter.zest/AdaptiveFilter.window_size_filter; 
  
    %         INCORPORATING THE TRUE ERROR INTO THE SIMULATION 
  
    adaptiveKalman.adaptfilt2x.H = (AdaptiveFilter.xest + 
true_errorx)'; 
    adaptiveKalman.adaptfilt2x.x = adaptiveKalman.adaptfilt1x.H'; 
    adaptiveKalman.adaptfilt2x.z = AdaptiveFilter.zest'; 
  
    [adaptiveKalman.adaptfilt2x, K2x] = 
kalmanf(adaptiveKalman.adaptfilt2x,xscale); 
  
    adaptiveKalman.adaptfilt2y.H = (AdaptiveFilter.yest + 
true_errory)'; 
    adaptiveKalman.adaptfilt2y.x = adaptiveKalman.adaptfilt1y.H'; 
    adaptiveKalman.adaptfilt2y.z = AdaptiveFilter.zest'; 
  
    [adaptiveKalman.adaptfilt2y, K2y] = 
kalmanf(adaptiveKalman.adaptfilt2y,yscale); 
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    AdaptiveFilter.xest=0; 
    AdaptiveFilter.yest=0; 
    AdaptiveFilter.zest=zeros(size(AdaptiveFilter.static.Hsu,1),1); 
    AdaptiveFilter.xtrue=0; 
    AdaptiveFilter.ytrue=0; 
end 
  
adaptiveKalman.adaptfilt3x.H = adaptiveKalman.adaptfilt2x.x'; 
adaptiveKalman.adaptfilt1x.H = adaptiveKalman.adaptfilt3x.H; 
  
adaptiveKalman.adaptfilt3x.x = temp_x; % TO MAKE AN ESTIMATE FOR THE 
SAME TIMESTEP USING THE NEWLY ADAPTED WEIGHTS 
adaptiveKalman.adaptfilt3x.z = SUrateResp; 
  
adaptiveKalman.adaptfilt3y.H = adaptiveKalman.adaptfilt2y.x'; 
adaptiveKalman.adaptfilt1y.H = adaptiveKalman.adaptfilt3y.H; 
adaptiveKalman.adaptfilt3y.x = temp_y; 
adaptiveKalman.adaptfilt3y.z = SUrateResp; 
  
[adaptiveKalman.adaptfilt3x, K3x] = 
kalmanf(adaptiveKalman.adaptfilt3x,1); 
  
[adaptiveKalman.adaptfilt3y, K3y] = 
kalmanf(adaptiveKalman.adaptfilt3y,1); 
  
statex=adaptiveKalman.adaptfilt3x.x; 
statey=adaptiveKalman.adaptfilt3y.x; 
  
adaptiveKalman.adaptfilt1x.x=adaptiveKalman.adaptfilt3x.x; 
adaptiveKalman.adaptfilt1y.x=adaptiveKalman.adaptfilt3y.x; 
  
adaptiveKalman.adaptfilt1x.R=adaptiveKalman.adaptfilt3x.R; 
adaptiveKalman.adaptfilt1y.R=adaptiveKalman.adaptfilt3y.R; 
  
AdaptiveFilter.xscale = xscale; 
AdaptiveFilter.yscale = yscale; 
  
Kall = [K1x; K1y; K3x; K3y]; 
K2x = 1; K2y = 1; % Temporary place holder for K values 
K2xy = [K2x; K2y]; 
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Appendix B 

 

 

To investigate the performance of the adaptive algorithm, a set of ten 400 second 

long sinusoid signals at frequencies every 0.1 Hz between 0.1 and 1 Hz was sampled at 

every 50 ms. A hundred randomized weights were assigned to each sinusoid and the 

composite signal obtained by the product of the weight matrix (100 x 10) with the 

sinusoid matrix (10 x 12000) was used to optimize the weights of the Kalman filter. 

To simulate an effect similar to that observed in Chapter 6 for replacement of 

neurons, the order of the sinusoids was randomized and the resulting composite signal on 

multiplying the weights was used as the test signal input (measurement matrix z, see 

Chapter 3) to the Kalman filter. The adaptive filter showed a monotonic decrease in RMS 

errors when compared to a static Kalman filter that used the pre-optimized weight matrix 

as seen in the figure below. 
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Figure A2.1: Normalized root mean square error (NRMSE) for a 400 second long 
composite of sinusoids. NRMSE is shown for the static Kalman (red) and adaptive 
Kalman (blue). Errors were computed over a 10 second non-overlapping window. The 
static Kalman filter was optimized to the initial order of the sinusoid waveforms. The 
order of the sinusoids was randomized at zero seconds in the plot shown above. 
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