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performance we modulated the amplitude (i.e. firing rate) of neurons’ responses to
simulate the effects of attention. The instantaneous firing rates of the simulated neurons
were modulated by £20% (via the driving current Jy), using a shifted sine wave signal
with a period of five seconds scaled to the range [0.8, 1.2], (McAdams et al 1999 report

26% change in neuron response amplitudes brought about by attention).

Figure 7.1: Effect of attention gain modulation of the neuron responses on non-
adaptive decoding performance. A five second long horizontal ‘Figure of 8 movement
was decoded from 100 neurons responding to movement in a two-dimensional space.
Attention was modeled as a £20% sinusoidal modulation of neuronal responses with a
period of five seconds. A corresponding increase in decoded velocity values is seen on
the right (with increased attention) and a decrease on the left (when attention is reduced).

Figure 7.1 compares the decoding performance of a non-adaptive optimal filter
with attention modulation of the neuron responses. The filter weights were optimized to
responses from the neurons when no attention modulation was present. Responses for the
first 2.5 seconds were enhanced (i.e. for the right half of the figure of eight). The
increased responses resulted in higher velocity estimates than intended. For the next 2.5

seconds, responses were suppressed (left half) and a corresponding drop in decoded
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velocity estimates was obtained. It is important to note that since the weights of the filter
were optimized without attentional modulation, a loss in accuracy is seen when attention
is included. In either case, the decoded estimates incorporate higher errors than the

optimal decoding of the velocity from the neural responses.

7.2 Results and Discussion

The normalized root mean square errors (NRMSE) for a simulation containing
100 LIF neurons responding to a 0 - 1 Hz bandlimited white noise movement with a
RMS power of 1 computed over the last 1450 seconds of the test stimulus length are

shown in Figure 7.2.

Normalized Root Mean Square Error Trend for Attention Simulations
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Figure 7.2: Normalized root mean square error (NRMSE) in response to attentional
modulation of neuron firing rates. NRMSE is shown for the static Kalman (red),
adaptive Kalman (blue), reoptimizing Kalman (magenta) and reoptimizing linear filters
(light blue/green) averaged across 20 loss simulations. Inset: A 100 second section
illustrating the change in error over each second. Since the period of attentional
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modulation was set to 5 seconds, errors were computed over a 1 second non-overlapping
window to capture the effect of attention on decoding error. The shaded regions illustrate
the 95% confidence in the mean NRMSE across 20 simulations. Attention modulation of
neuron responses began 100 seconds into the simulation. The optimal population
decoding represents the performance of a decoding filter with weights optimized to the
attention modulated responses. The adaptive filter performance is better than both the
reoptimizing Kalman filter and the reoptimizing linear filter.

As shown in Figure 7.3, the errors for all decoding filters show periodicity at 0.2
Hz and 0.4 Hz due to the 5-second long attention modulation. The reoptimizing Kalman
filter and the reoptimizing linear filter have the highest concentration of error at 0.2 Hz
and 0.4 Hz respectively. Adaptive Kalman filter errors also show the periodicity, but the

errors are the lowest of all the adapting filters.

The attentional modulation was initiated six hundred and fifty seconds into the
simulation. Attention modulation does not seem to have as large an effect as the other
nonstationarities. With an instantaneous 50% loss of the population (see Chapter 5), the
adaptive filter errors rose to 0.601 NRMSE while the reoptimizing linear filter errors and
the reoptimizing Kalman filter errors increased to 0.967 and 0.594 NRMSE respectively.
With attentional modulation, the errors were 0.072, 0.352, and 0.379 NRMSE for the
adaptive Kalman, reoptimizing linear filter and the reoptimizing Kalman filters

respectively.
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Comparison of the frequency spectrum of NRMS errors
for the decoding filters for the attention simulations
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Figure 7.3: Frequency spectrum of the normalized root mean square errors
(NRMSE). Peaks of the errors for all filters are seen at 0.2 Hz and 0.4 Hz. Inset (left):
Errors at 0.2 Hz. Inset (right): Errors at 0.4 Hz.

The reoptimizing linear filter suffers a small increase in error from 0.278 to 0.352
NRMSE. The reoptimizing Kalman filter shows an increase in error from 0.288 to 0.379

NRMSE. No discernable recovery for the reoptimizing Kalman and the reoptimizing

linear filter is seen. Both the reoptimizing linear filter and the reoptimizing Kalman filters
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modify their decoding weights at each timestep by minimizing the error over their
reoptimizing window, which is 550 seconds long for both filters. The rate of weight
modification is directly related to the overall movement error in this window. The
modulation of neural responses due to attention is periodic over 5 seconds which is a
smaller time scale when compared to the window length. Therefore, the attentional
modulation does not drive the error within this 550 second window high enough to
influence the weight reoptimization. The attentional modulation is symmetric (as
illustrated in Fig 7.1 and therefore the net signed error over this window length is small.
This results in an inherent uncertainty that is present and remains the same within each
successive 550 second window. When compared to an instantaneous 50% loss of the
population, since the attention modulation is 20% of the neuronal responses, the effect of
attention is not as catastrophic and more importantly, the reoptimizing filters see a large
error in their reoptimizing window that they try to minimize over successive iterations.
Due to attention modulation, the relation between the rate responses, weights and
stimulus location is no longer constant. Thus, it is difficult for a reoptimizing filter to

adjust to the attention induced neuron reponse changes and no recovery is seen.

The adaptive filter scheme, on the other hand, is based on a gradient descent
scheme that influences the Kalman decoding weights and it makes instantaneous updates
to the weights every 50 ms. This allows the weights to adjust to attention modulations
that occur over longer timescales (e.g., seconds). Therefore, the adaptive filter error trend
reduces after the introduction of attentional modulation. The adaptive filter continuously
reoptimizes its decoding weights to the instantaneous region of the movement space at

each 50 ms timestep (see Chapter 3). Its final error is the lowest of all the decoding filters



67

(as seen in Figure 7.2) and due to its ability to adjust to the instantaneous properties of the

stimulus, it outperforms the optimal decoding filter.
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8 ADAPTATION

8.1 Neuronal Adaptation

Neurons that are exposed to the same constant or time-varying stimulus over a
period of time adapt to the strength of the stimulus thus resulting in reduced neuron
spiking (Connors et al. 1990). During chronic implantation of an electrode at the brain
machine interface, neuronal adaptation may cause the neuron responses to decrease over
time, effectively changing the tuning characteristics of the neurons. Thus decoding
algorithms optimized with dynamic stimuli may no longer be optimal when faced with
repetitive or slowly time-varying stimuli. Because adaptation produces a change in the
neuron tuning characteristics (e.g. firing rate), the decoding performance of a non-

adaptive linear decoder would be inaccurate.

Spike frequency adaptation, commonly seen in ‘regular-spiking’ neurons
(Connors et al. 1990) defines the adaptive behavior of the neuron once a spike is
generated. In these neurons, after-hyperpolarization causes an increase in the membrane
conductance following each action potential. This causes an increased difference between
the threshold voltage and the resting potential thus increasing the time to reach threshold
and generate a subsequent spike. Thus a drop in the spiking frequency (firing rate in
spikes/sec) of the neuron is seen when constant stimuli are presented over a period of 50

— 600 ms.



8.2 Adaptive LIF Neurons

The properties of neuronal adaptation can be approximated using an Adaptive
Leaky Integrate and Fire (Adaptive LIF) neuron model (Eliasmith et al. 2002; Koch
1998). In the adaptive LIF neuron, a voltage dependant resistance is added to the normal
LIF neuron, which acts to increase the interval between successive action potentials.
Because this variable resistance is in parallel with the resistive — capacitive circuit of the

LIF model (Figure 8.1), it reduces the current available to the capacitor to integrate to the

threshold voltage Vth.
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Figure 8.1: Adaptive Leaky Integrate and Fire Neuron. The resistive-capacitive
circuit of the LIF neuron model, is placed in parallel with a variable shunt resistance,
Radapt, Whose value varies dynamically in response to a stimulus in the neuron’s preferred
direction that excites an action potential (Koch 1999; Eliasmith et al. 2002).
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The variation of the adaptive neuron resistance Rqqp 1s described as follows. On

the occurrence of an action potential (spike), Radap 1S decreased by a fixed value Ry, 1.¢.
Radapt = Radapt — Rgec

When there is no input (or no spike is generated), R,qqp¢ increases exponentially

towards its resting state, i.e.

Radapt = Radapt + dRadapt'

dRgdapt _ Radapt ... (7.1)
dt Tadapt

In Chapter 3 (equation (3.4)), we saw that the value of the threshold current Jy, is
set by the leakage resistance R. For an adaptive LIF neuron, this resistance is in parallel
with the adaptive resistance Ruqpr; therefore a change in R,q4 produces a change in the
RC time constant of the neuron thus impacting its ability to produce spikes at its

maximum response even when it encodes stimulus at its preferred direction.

8.3 Simulation

A 100-neuron population was simulated with the same properties as described in
Chapter 4 to investigate the effects of adaptation on the decoding accuracy. The decoding
of movement through a linear filter is directly related to the optimized weights and the
neural responses encoding that movement. The rates for the static Kalman decoding filter
were optimized for non-adapting neurons. The reduction in neuronal responses with

adaptation, can reduce the effective gain of the decoded response. This effect can be seen
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in Figure 8.3 (green). For the decoded movement shown, the parameters were set as

shown in Table 8.1 below:

Simulation parameter Symbol Value
Adaptive Resistance Radapt 20
Time constant for adaptation Tadapt 50 — 600 ms
Drop in resistance due to spiking Rjec 5

Table 8.1 Adaptive Leaky Integrate and Fire (LIF) neuron parameters used in the
simulation. The resistance R z..contributes to the adaptive response of the neuron when
encoding the stimulus at its preferred direction. The adaptive resistance and time constant
control the rate of recovery of the neuron from its adaptive response to its resting state.
The time constant for adaptation is described by Liu and Wang (Liu et al. 2001) to
be within the range 50 — 600 ms. Since the value of leakage resistance (in Chapter 3) is
set to 1, Radapt is set to a comparatively high value (20) for the simulation and the drop
in resistance is set to five to produce a noticeable change due to adaptation. These values
were chosen so as to see a significant change in the neuron responses due to adaptation

(as illustrated below in Figure 8.2) within the time course that was chosen for the

simulations.
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Figure 8.2: Effect of adaptation on the spike activity of a sample neuron. The firing

rate of a neuron with a maximum firing rate of 80 spikes/sec at its preferred stimulus

direction decreases when this preferred direction is present in the movement signal over a

period of 3 seconds.
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Figure 8.3 Effect of neuronal adaptation on non-adaptive decoding performance. A

five second long horizontal ‘Figure of eight’ movement was decoded from 100 neurons
responding to movement in a two-dimensional space. A loss in decoding accuracy was
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seen with neurons adapting to the movement signal (green) as compared to decoding
before adaptation (blue). Decoded signals were low-pass filtered at 5 Hz (4th order
Butterworth filter).

8.4 Results and Discussion

The normalized root mean square errors (NRMSE) for a simulation containing
100 LIF neuron responding to a 0 - 1 Hz bandlimited white noise movement with a RMS
power of 1 computed over the last 1450 seconds of the test stimulus length are shown in

Figure 8.4.

Normalized Root Mean Square Error Trend for Adaptation Simulation
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Figure 8.4: Normalized root mean square error (NRMSE) in response to adaptation
of the neurons to a bandlimited white noise stimulus with a RMS power of 1.
NRMSE is shown for the static Kalman (red), adaptive Kalman (blue), reoptimizing
Kalman (magenta) and reoptimizing linear filters (light blue/green) averaged across 20
simulations. Optimal filter errors were exactly the same as the static Kalman errors and
not shown here for clarity. Errors were computed over a 10 second non-overlapping
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window. The shaded regions illustrate the 95% confidence in the mean NRMSE across
20 simulations. One hundred seconds into the simulation all neurons began adapting to
the movement stimulus.

Neuron adaptation was introduced six hundred and fifty seconds into the
simulation by setting Radap to @ nonzero value. The static Kalman filter suffers an
increase in error from 0.277 to 0.437 NRMSE. As described in Chapter 3, in the Kalman
filter, the movement is decoded via the internal state variables using the product of the
neural firing rates with its optimized Kalman coefficients. During adaptation, neural
firing rates drop, such that the decoding weights are no longer optimal. This in turn

results in decreased amplitude of the decoded movement.

The reoptimizing Kalman filter approaches the same level of error as the static
Kalman filter following the onset of adaptation, but recovers to 0.247 NRMSE after 650
seconds. The effect of adaptation of the neural responses is not as catastrophic as the loss
of 50% of the population. As seen in Chapter 5, an instantaneous loss of 50% of the
population causes the decoding error to increase by approximately 200% while the
change seen here is approximately 50%. The rate of change of the weights depends on
the decoding error seen by the filter. Therefore, the rate of modification of the weights is

comparatively slower and we see a slower recovery in the case of neuronal adaptation.

The reoptimizing linear filter, on the other hand, starts with a low pre-
nonstationarity error of 0.210 NRMSE that increases to 0.329 NRMSE with the
introduction of adaptation and recovers to pre-adaptation levels at 0.215 NRMSE after
650 seconds. The reoptimizing linear filter has more weights per neuron than the
Kalman-based decoding filters. In order to minimize the error over its 550 second

reoptimizing window, it has to optimize multiple weights associated with each neuron. It
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is able to combat the effects of adaptation because it has more (20) weights optimized to
each neuron. The effect of the slow change in the neuronal response due to adaptation is
tempered by the multiple weights associated with that neuron since the estimated
movement is a matrix product of the weights and the neuron response. This has an
averaging effect on the computation of the predicted movement and thus, it shows low
overall error when compared to the other filters. It reaches its optimal error about 650
seconds into the simulation (like the reoptimizing Kalman) at which point its weights are

optimized to the adaptive responses.

Progression of adaptive filter weight changes during one adaptation simulation
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Figure 8.5: Progression of changes to the individual weights associated with each
neuron for the movement along one (X) dimension for the population of adaptive
neurons.

The adaptive filter has a pre-nonstationarity error at 0.268 NRMSE and is
resistant to the effects of neuronal adaptation and ends up at 0.26 NRMSE. The adaptive
filter optimizes its weights over each 50 ms time step and to the instantaneous properties

of the test stimulus and the neuronal responses. The adaptation effects modeled here had



76

a time scale of between 50 to 600 ms, as discussed earlier. Compared to a sudden loss of
50% of the population or replacement of the entire population over 50 ms, the effects of
the adaptation are not as drastic. The filter weights for the adaptive neurons see a small

decrease in the weights associated with them as shown in Figure 8.5.

Compared to the loss of neurons scenario, the adaptation does not impact the loss
of space being sampled (i.e. retains the same tuning widths), only the amplitudes of the
responses that the neurons generate. The adaptive filter operates over each 50 ms time bin
to change its weights to counter this small effect on the amplitudes brought about by
adaptation and thus, is able to maintain its level of optimal error. Thus, the errors for the
reoptimizing linear filter are the lowest among the adapting filters and the performance of

the adaptive filter is not affected by the neuronal adaptation.
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9 DISCUSSION AND CONCLUSION

This thesis presents an adaptive neural decoding system based on a Kalman filter
that was designed to be resistant to the occurrence of nonstationary neural signals. Filter
decoding performance was compared to a non-adaptive system and several alternative
adaptive decoding algorithms (reoptimizing linear filter and reoptimizing Kalman filter),

proposed in the literature.

The algorithm was implemented using simulated motor cortical neurons encoding
intended movement velocity. The decoded movement and therefore the performance
(NRMS errors) was described within the velocity space. Other approaches (Wu et al
2008) estimated movement from neuron responses as decoded velocity as well as
position. If intended position were to be included in the simulations here, it would not
impact the accuracy of velocity decoding as long as the number of neurons encoding for
velocity is retained. The decoded velocity information could be used toward estimating

intended position more accurately, potentially reducing errors in decoded position.

The white noise signals used for training the algorithms and for testing the
decoding performance were bandlimited to approximate the range of limb movement
frequencies (0 - 1.5Hz). In a real world scenario, the intended movement would likely not
have a uniform power distributed along all frequencies. A single bandlimited signal was
used here since it provides the most generalization across the space of possible
movements. We have shown the proposed algorithm to be resistant to changes in the
movement bandwidth (Chapter 4), therefore, its performance would be retained under

real world conditions.
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9.1 Decoding Beyond the Trained Movement Constraints

The adaptive filter performance was the best among all the filters implemented
under the trained RMS power (of 1) and bandwidth constraints (0 — 1.5 Hz) of the
optimizing signal. Also, although the performance of the adaptive filter was significantly
different (t-test for bandwidth 0-5 Hz, t(4) = -59.41, p<1E-6) when the frequency range
of decoded movements exceeded the optimized bandwidth, it represented the lowest
decoding errors. For decoding movements beyond the adaptive filter’s trained RMS
power, decoding accuracy remained high. This performance was better than comparable
adaptive algorithms such as the reoptimizing linear filter and reoptimizing Kalman filter
(both described in Wu. et al 2008). The decoding accuracy for the adaptive Kalman filter
was the highest for the RMS power variations of 0.5, 1, 2 and 5 in the test signal. For the
BW changes, the adaptive Kalman filter had the lowest decoding errors for the test
bandwidths of 0-1Hz, 0-1.5Hz, 0-2Hz and 0-5Hz. The reoptimizing linear filter had the

best decoding accuracy for the test bandwidth of 0 -0.5Hz.

In order to achieve low decoding errors in the case of a non-adaptive system, it
would be necessary to perform the initial optimization of the weights using all possible
movements with a wide range of frequencies and amplitudes. This would result in a
longer duration for the training sessions and greater inconvenience to the subjects. Even
with sufficient training, as seen during our simulations, the static filter decoding accuracy
may suffer when compared that of the adaptive filter since it is unable to optimize to the
instantaneous stimulus properties such as current amplitude and frequency of the

movement (velocity).
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9.2 Nonstationary Conditions

The simulation results for the nonstationary conditions show that the adaptive
decoding filter is capable of recovering from catastrophic changes in the neural signals to
maintain accurate decoding of the intended movement. With some approaches, full
recovery to events such as neuron replacement can require hours (Rotermund et al 2006).
The time taken for recovery was 12 minutes for a 50% loss of neural signals and 3

minutes for full replacement of neural signals.

For catastrophic nonstationary changes such as loss of 50% of the neurons and
replacement of 100% of the neuron population, the reoptimizing Kalman and the
reoptimizing linear filters show better decoding accuracy and faster recovery than the
proposed adaptive Kalman filter. Since these adaptive systems depend on minimizing
error in their reoptimizing window (550 seconds), their rate of recovery for a large error
change is better than the proposed adaptive filter. These adaptive approaches are better
suited to catastrophic nonstationary effects such as loss and replacement of neurons since

they are more sensitive to the large error that is produced.

However, for nonstationarities such as attention modulation and adaptation, the
induced error at each timestep is small. The time scale of the induced changes (~ 5
seconds for attention and 50-600 ms for adaptation) allows the adaptive Kalman filter to
modify its weights over each iteration to combat the nonstationary effects. This allows
the gradient descent approach of the adaptive Kalman algorithm to make changes to the
weights over each successive iteration and combat the increased error. The adaptive

Kalman filter decoding is resistant to both these nonstationarities and no increase in error
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is observed. For the reoptimizing Kalman filter and the reoptimizing linear filters, the
timescale of these nonstationarities is smaller than their reoptimizing window of 550
seconds. Those approaches make a change to the weights to reduce the error over a 550
second window and therefore, they are not able to achieve optimal decoding. The
proposed adaptive Kalman filter is thus better suited to combating nonstationarities of

attention and adaptation of neurons.

Gage et al. (2005) have previously proposed an adaptive Kalman filtering
approach that is similar to the reoptimizing Kalman filter approach outlined here. The key
difference between the two approaches lies in the method for re-optimization (windowed
vs. instantaneous) and the requirements on the type of error signal used by the system. In
the adaptive Kalman filter developed by Gage and colleagues, the system is intermittently
re-optimized using the standard least-square optimization over a sliding temporal
window. The temporal history used in re-optimizing the system places a lower bound on
the speed at which the system can recover by requiring that nonstationary changes in the
signal move beyond the re-optimization window. However, it was observed in that study
that the reoptimizing filters had error trends that did not conform to this idea (the
reoptimizing Kalman filter recovered ~100 seconds for a loss of 50% of the population).
The total error over the window that a reoptimizing filter tries to minimize determines the
rate of change of its weights. Higher error results in faster changes and thus faster
recovery to the minimum error. For catastrophic changes (neuron loss, replacement) that

induce a high error into this window, a quicker recovery is therefore observed.

Point process adaptive filters (Eden et al 2004a, 2004b; Srinivasan et al 2007)

have been shown to be resistant to slow changes in the neural response properties but it is
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unclear how such systems would perform under more extreme conditions. For neuron
replacement at a rate of one per minute, the adaptive filter proposed by Eden and
colleagues (2005), was able to reconstruct movement direction from a population of 20
neurons but was not able to consistently recover speed of movement. Srinivasan et al
(2007) showed similar trends in performance when neurons were replaced at a rate one
per minute. When an equivalent rate of replacement was simulated here, there was no

observable effect on performance using the adaptive filter proposed here (see Chapter 6).

Use of least-squares optimization for obtaining the decoding weights also requires
that the error signals be explicitly represented in units that define the movement space.
Such information is generally not available outside of a laboratory setting posing
challenges for real-world implementation. Error information could likely be extracted
from other cortical areas and neural populations, although the same issues inherent in

decoding non-stationary signals would affect the decoded estimates of error.

The adaptive decoding algorithm described here uses a gradient descent scheme
to update its weights. With this type of system it is possible to use more reliable
“qualitative” measures of error (e.g., signed/direction of error, relative error, quantized
‘levels’ error) to guide weight changes along with a gain adjustment to optimize the
speed of convergence based on the type of error information available. Thus, having an
exact error signal is not an explicit requirement of the adaptive decoding algorithm
described here. Future work will examine the ability of the system to adapt using more

generalized error signals that do not explicitly encode error within the movement space.
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9.3 Computational Requirements

In conjunction with good performance, the practical application of adaptive
decoding systems will ultimately require their implementation in a portable system.
Current adaptive algorithms have shown considerable promise for the reliable decoding
of neural signals at the brain machine interface; however, they often have high
computational demands (Rotermund et al 2006, Srinivasan et al, 2007) that may not be

suited to a portable implementation.

For the initial optimization, the computational cost associated with the Kalman-
based decoders is given by O (NV°), where N is the size of the matrices and O denotes
order of the operation. The cost is due to the estimation of the decoding weights during

the least squares optimization process using matrix sizes of

= NxN - (100 x 100), N is the number of neurons in the population
= NxNt = (100 x 5000), Nt is the number of 50 ms bins in the 250 second

movement stimulus

Since N denotes the number of neurons in the population, the least squares
optimization process yields a (N x N x N) size matrix multiplication operation that
dominates the order O of operations. The number of steps required for these
computations, would therefore, be dominated by a N° term. The big-O notation for these

operations, by definition, would be given by O (N°).

While the computational cost for the linear filter would also be given by O (NV°),

since it requires 20 additional decoding weights, its cost is 20 times higher than a Kalman
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based approach. This is not relevant in a computational system such as a desktop
computer, but for a portable implementation with more limited computational resources,
this could potentially impact real-time implementation. Since it reoptimizes at each
timestep using an optimization technique over a 550 second time window, the filter
carries a high computational cost during each operation (NxNtx20) = (100 x 11000 x 20)
at each iteration (11000 neuron response bins of 50ms each in a 550 second window).
Since the reoptimizing Kalman filter uses a window of length 550 seconds as well, the
computational cost associated with it operating at each timestep is given by (NxNt) =

(100 x 11000).

The adaptive Kalman filter proposed here requires information only from the
previous timestep to obtain the current estimate. After its initial optimization, the
computational cost per iteration is given by (N x N x N) for estimation of the corrected
decoding weight (see eq (3.8) and (3.9)). Thus, the maximum cost for a hundred neuron
population would be (100 x 100 x 100). Thus, it has lower computational requirements

that make it amenable to a portable implementation with current technology.

9.4 Conclusion

The aim of the project was to identify the sources of nonstationarity associated
with prostheses during the long term and create an algorithm that would combat any
errors in decoding attributable to these sources. In addition, the alogirthm was compared

to other approaches in literature in terms of decoding accuracy and recovery time.
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The proposed adaptive filter was able to reliably decode movement outside the
movement attributes such as movement range and speed that it was trained over. Its
performance was better than comparable approaches and thus, the algorithm can be
employed for decoding under non-stationary conditions without requiring frequent and

cumbersome retraining.

For catastrophic nonstationary effects such as loss of 50% of the population and
replacement of the entire population of sampled neurons, the filter recovery was slower
and did not recover to an optimal error when compared to other proposed approaches
such as the reoptimizing linear and Kalman filters. The catastrophic effects were
simulated as a worst case. When the rate of the impact of the nonstationarity was lessened
(for e.g. 1 neuron replaced per minute), the adaptive filter was able to retain its decoding

performance and approached an optimal error within 50 ms of the impact.

The filter recovered its performance for nonstationary changes that are not as
drastic, such as attention and adaptation and results were comparable to other approaches
or better. The smaller timescale over which these nonstationarities occur allow the filter

to recover to a lower error in its decoding.

This would suggest that in addition to a very good performance under stationary
conditions, the adaptive filter would be able to combat slow replacement, attention and
adaptation in a practical implementation. The filter was evaluated to meet certain design

criteria to achieve such an implementation:
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Real-time performance

As per the requirements, the algorithm was able to decode neuron response rates

computed over 50 ms time bins and provide movement estimates over each bin.

Accuracy

The algorithm reached the specified accuracy levels of 10-20% while decoding
movement stimuli using a stationary population of neurons. After nonstationary
impact, the algorithm was able to recover to decode with better accuracy than
comparable approaches for Attention (21.7%) and Adaptation (24.7%) while

worse for Loss (18.9%) and Replacement (25%).

Time to recovery

The algorithm had a quicker time to recovery for nonstationarities such as
Attention (130 seconds) and Adaptation (110 seconds), while for catastrophic
nonstationarities such as Loss (550 seconds) and Replacement of neurons (980

seconds), the time to recovery was much slower than comparable approaches.

Number of computations

The computations required by the proposed algorithm for adaptive decoding
resulted in a computational cost of (100 x 100 x 100) or O (N°), which is less than
comparable approaches such as the reoptimizing Kalman filter by a factor of 110
and the linear filter by a factor of 110x20 = 2200. This is more relevant in

portable implementations due to limited computational power and thus the
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proposed algorithm is amenable to a portable implantation than comparable

approaches.

9.5 Future Directions

A future implementation of this algorithm would be realized in an embedded
system producing the control signals for limb prostheses. Furture steps would include
identifying the specifications of such as computational system, and creating a prototype
implementation. Since the prototyping language used here in this case is MATLAB,
implementing the algorithm in a faster compiled environment (C, embedded C) would

lend itself well to a real-time portable implementation.

Also, the reliance on the absolute error signal used by the algorithm to adapt to
the nonstationarity could be investigated. An error signal analogue that carries direction
and not amplitude information could be potentially employed. The sources of movement
error that can be tapped into in order to get the desired error signal could also be

investigated.
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Appendix A

MATLAB® code for the neuron model, decoding algorithms and simulations follows.
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DecodingSimulation.m

close all; clear; clc
dbstop if error
tic

% Decoding simulation for the adaptive decoding filter

for NumberSim = 1:20
close all; clear;

[Sim, Stim] = InitializeNewSim;
newSim = 1;
validSim = 1;

ifT validSim %RUN THE SIMULATION
% Initialize Local Simulation Parameters
rand("state”,Sim.RSeed); %#Ok<RAND> %Set

seed for random number generator
nBins = Sim.FR.FiltLength/Sim.FR.tRatelnt; %Number of temporal
intervals comprising the linear filter

% START SIMULATION

for 1 = 1:length(Sim.nUnits) %For each population
for j = 1:Sim.nRuns
t0 = clock; %initialize timer

N = Sim.nUnits(i);
Sim.Pop(i).nUnits = N;

%Create neural population
switch(Sim.phiEnc_func)
case "GaussTuningResp”
if newSim
%lnitialize Gaussian tuned neurons
if Sim.nDim ==
Sim.Pop(i).Spref = (max(Stim.sRange)-
min(Stim.sRange))*rand(N,Sim.nDim) + min(Stim.sRange);
Sim.Pop(i).Ssig =
0.11*(2*rand(N,Sim_nDim)-1) + 0.16; %For linear rep.
Sim.Pop(i).SmaxLin = max(Stim.sRange);
else
Sim.Pop(i).Spref = (max(Stim.sRange)-
min(Stim.sRange))*rand(N,Sim.nDim-1) + min(Stim.sRange);
Sim.Pop(i).-Ssig =
0.34.*(2*rand(N,Sim.nDim-1)-1) + pi/4; %For 2D polar rep.
Sim.Pop(i).Tau = Sim.Tau;
Sim.Pop(i).SmaxLin =
Stim.Training.maxMag;



end
[Sim.Pop(i).LIFparams, Sim.Pop(i).noisevVar
Sim.Pop(i).-maxResp] = InitGaussLIFNeurons(Stim.sRange, N,
Sim.Pop(i).Spref, Sim.Pop(i).Ssig, Sim.maxRespRange, --.
Sim.tauRefRange, Sim.tauRCRange,
Sim.V_th, Sim.R_leak, Sim.error, 1);
end

case "LinearTuningResp*®
iT newSim
%lnitialize Linearly tuned neurons
Sim.Pop(i).Sint = (max(Stim.sRange)-
min(Stim.sRange))*rand(N,1) + min(Stim.sRange); %Randomly place x-
intercepts across input range

[Sim.Pop(i).LIFparams, Sim.Pop(i).noiseVar
Sim.Pop(i).maxResp] = InitLinearLIFNeurons(Sin, N, Sim.Pop(i).Sint,
Sim.maxRespRange, ...
Sim.tauRefRange, Sim.tauRCRange,
Sim.V_th, Sim.R_leak, Sim.error);
end

if Sim.nDim > 1
Sim.Pop(i).prefAngle = rand(1,N)*2*pi;
%Randomly select each neurons preferred direction (for multi-
dimensional stimulus representations)
phiEnc = [cos(Sim.Pop(i).prefAngle);
sin(Sim.Pop(i) .prefAngle)]; %Compute normalized encoding weights base
on the preferred direction
else
phiEnc = ones(1,N);
%For the 1D case the preferred direction is +-1 cand is already
incorporated into the neuron®s response.
end

case "CosineTuningResp*®
iT newSim
%Initialize Cosine tuned neurons
if Sim_.nDim ==
Sim.Pop(i).Spref = (max(Stim.sRange)-
min(Stim.sRange))*rand(N,Sim.nDim) + min(Stim.sRange);
Sim.Pop(i).SmaxLin = max(Stim.sRange);
else
Sim.Pop(i).Spref = (max(Stim.sRange)-
min(Stim.sRange))*rand(N,Sim.nDim-1) + min(Stim.sRange);
Sim.Pop(i).Tau = Sim.Tau;
Sim.Pop(i).SmaxLin =
Stim.Training.maxMag;
end
[Sim_Pop(i).LIFparams, Sim.Pop(i).noiseVar
Sim.Pop(i).maxResp] = InitCosineLlFNeurons(Stim.sRange, N,
Sim.Pop(i).Spref, Sim.maxRespRange, ...
Sim.tauRefRange, Sim.tauRCRange,
Sim.V_th, Sim_.R_leak, Sim.error, 1);
end
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case "vonMisesTuningResp”
iT newSim
%Initialize von Mises tuned neurons
if Sim.nDim == 1
Sim.Pop(i).-Spref = (max(Stim.sRange)-
min(Stim.sRange))*rand(N,Sim.nDim) + min(Stim.sRange);
Sim.Pop(i).SmaxLin = max(Stim.sRange);
else
Sim.Pop(i).Spref = (max(Stim.sRange)-
min(Stim.sRange))*rand(N,Sim.nDim-1) + min(Stim.sRange);
Sim.Pop(i).Spref =
round(Sim.Pop(i).-Spref.*(180/pi)); % Round off the preferred direction
to the nearest degree
Sim.Pop(i).Spref =
Sim._Pop(i) -Spref.*(pi/180);
Sim.Pop(i).SmaxLin =
Stim.Training.maxMag;
end
clear kappa
[Sim.Pop(i).LIFparams, Sim.Pop(i).noiseVar,
Sim.Pop(i).maxResp, a_ S, kappa, halfwidth] =
InitvonMisesLIFNeurons(Stim.sRange, N, Sim.Pop(i).Spref,
Sim.maxRespRange,
Sim.tauRefRange, Sim.tauRCRange,
Sim.V_th, Sim.R_leak, Sim.error, 1);
Sim.Pop(i).kappa = kappa;
Sim.Pop(i).-halfwidth = halfwidth;

end
otherwise
error("Invalid stimulus tuning profile
specified™);
end
% GENERATE THE TRAINING SIGNAL
tt = 0:Stim.FR.dt:Stim.Training.FR.T;
Amps_training = zeros(Sim.nDim, length(tt));
switch (Stim.Training.type)
case "Constant”
Sin_training = Stim.Test.mag*ones(2,
length(tt));

case “Figure 8"
theta = linspace(-pi/4, 3/4*pi, length(tt));
Sin_training = [1.5*cos(2*theta);
1*cos(2*theta) .*sin(2*theta)]; %(April 12, 2007 - shifted center back
to (0,0))
Sin_training =
repmat(Sin_training,1,Stim.Test.FR.tst_runs);
case “Circle”
thetaTemp = -
pi:Stim.Test.degreepert*(pi/180):pi;
Ntheta = length(thetaTemp);
theta = repmat(thetaTemp, 1,
floor(length(tt)/Ntheta));
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theta = cat(2, theta,
thetaTemp(1:mod(length(tt) ,Ntheta)));
Sin_training = [Stim.Test.radius*cos(theta);
Stim._Test.radius*sin(theta)];
case "White Noise~
for £ = 1:Sim.nDim
[Sin_training(Ff,:),Amps_training(f,:)] =
genSignal (Stim.Training.FR.T,Stim_.FR.dt,Stim.Training.rms,Stim.Training
-bandwidth,Sim_RSeed*pi*f); %#ok<AGROW> %Increment random seed in
deteministic way across multiple dimensions when RandomSeed >0
%pi multiple in randomSeed used to ensure
%different amplitude coeff in generaiton of
random training and test signals
end
end

Sin_mag_training = sqrt(sum(Sin_training.-"2,1));

Ind95pctrain = ceil(0.95*size(Sin_mag_training, 2));

Sin_mag_training_ascend = sort(Sin_mag_training,
"ascend");

Sim.Pop(i).SmaxLin =
Sin_mag_training_ascend(Ind95pctrain);

nRateStepsT =
floor(Stim.Training.FR.T/Sim.FR.tRatelnt);

ndtperBin = Sim.FR.tRatelnt/Sim.FR.dt;

LIFinit_training.V = zeros(1,Sim.nUnits);

LIFinit_training.EndRefPeriod = zeros(1,Sim.nUnits);

LIFinit_training.jitterSig = [];

SUrateResp_training=zeros(Sim.nUnits,nRateStepsT);
sSUCenters_training=zeros(2,nRateStepsT);

t A = 0:Sim.FR.tRatelnt:Stim.Training.FR.T;

ifT strcemp(Sim.Nonstatdecision, "Yes") &&
(strcmp(Sim_NonStatType, “Attention®) || strcmp(Sim.NonStatType,
"AttentionReplacement™))

AttnSig = sin(2*pi*(1/Sim_AttnPeriod)*t_A);
AttnSig = (AttnSig + abs(min(AttnSig)));
AttnSig = AttnSig./max(AttnSig);

AttnSig = Sim_AttentionMod(1) +
(Sim_AttentionMod(2)-Sim_AttentionMod(1)) .*AttnSig;
else
AttnSig = ones(l, length(t_A));
end

Gadapt_training = Sim.Gadapt;

for cnt=1:nRateStepsT
[SUrateResp_training(:,cnt),
sSUCenters_training(:,cnt), LIFinit training, Gadapt training,
spikeTimes_training, GadaptTemp_training] =
GetNeuronFiringRateslterative G(Sim, Stim, Sin_training(:, ((cnt-
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1)*ndtperBin)+1:cnt*(ndtperBin)), LIFinit_training, Sim.nUnits,
AttnSig(cnt), Gadapt training);
end

% PLOT TRAINING STIMULUS

figure, plot (Sin_training(l,:), Sin_training(2,:),
"LineWidth®, 2);

set(gca, "FontSize", 14), legend("Training stimulus™)

title ("Training Stimulus®, “"FontSize", 16);

xlabel ("X velocity V_x", "FontSize", 14)

ylabel (°Y velocity V_ y*, "FontSize", 14)

drawnow;

% OPTIMIZATION PROCESS
ifT stremp(Sim_Nonstatdecision, “Yes"™) &&
(strcmp(Sim.NonStatType, "Replacement™) || strcmp(Sim.NonStatType,
"AttentionReplacement™))
Nusable = N - Sim.nchangedpop; % NO OF UNCHANGED
UNITS IN THE POPULATION
else
Nusable
end

N3

[AdaptiveFilter.static.Asu, AdaptiveFilter.static.Hsu,
AdaptiveFilter.static.Wsu, AdaptiveFilter.static.Qsu] =
GetDecodingWeights(sSUCenters_training,
SUrateResp_training(1l:Nusable, :));

% Generate a new bandlimited white noise stimulus for
TESTING

t = 0:Stim.FR.dt:Stim.Test.FR.T; %Time at each
sample

Amps = zeros(Sim.nDim, length(t));

switch (Stim.Test.type)
case "Constant”
Sin_tst = Stim.Test.mag*ones(2, length(t));
case "Figure 8-
theta = linspace(-pi/4, 3/4*pi, length(t));
Sin_tst = [1.5*cos(2*theta);
1*cos(2*theta) . *sin(2*theta)];
Sin_tst =
repmat(Sin_tst,1,Stim.Test.FR.tst_runs);
case “Circle”
thetaTemp = -pi:Stim.Test.degreepert:pi;
Ntheta = length(thetaTemp);
theta = repmat(thetaTemp, 1,
floor(length(t)/Ntheta));
theta = cat(2, theta,
thetaTemp(1:mod(length(t) ,Ntheta)));
Sin_tst = [Stim.Test.radius*cos(theta);
Stim.Test.radius*sin(theta)];
case “White Noise-
for £ = 1:Sim.nDim
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[Sin_tst(F,:),Amps(F,:)] =
genSignal (Stim.Test.FR.T,Stim.FR.dt,Stim.Test.rms,Stim.Test.bandwidth,S
im_RSeed*pi*f); %lIncrement random seed in deteministic way across
multiple dimensions when RandomSeed >0

%pi multiple in randomSeed used to ensure
different amplitude coeff in generaiton of random training and test
signals

clear Amps

end
end

% PLOT TEST STIMULUS

figure, plot (Sin_tst(1,:), Sin_tst(2,:),"r",
"LineWidth®, 2);

title ("Test Stimulus®, "FontSize", 16);

set(gca, "FontSize®, 14), legend("Test like stimulus®)

xlabel ("X velocity V_x", "FontSize", 14)

ylabel (°Y velocity V_y", "FontSize", 14)

drawnow;

% GENERATE A OPTIMIZING SIGNAL WITH PROPERTIES SIMILAR

TO THE TEST
tt = 0:Stim.FR.dt:Stim.Training.FR.T;
Amps_tst_like = zeros(Sim.nDim, length(tt));
switch (Stim.Test.type)
case "Constant”
Sin_tst_like = Stim.Test.mag*ones(2,
length(tt));

case °“Figure 8"
theta = linspace(-pi/4, 3/4*pi, length(tt));
Sin_tst_like = [1.5*cos(2*theta);
1*cos(2*theta) .*sin(2*theta)];
Sin_tst_like =
repmat(Sin_tst_like,1,Stim.Test.FR.tst_runs);
case "Circle”
thetaTemp = -
pi:Stim.Test.degreepert*(pi/180):pi;
Ntheta = length(thetaTemp);
theta = repmat(thetaTemp, 1,
Ffloor(length(tt)/Ntheta));
theta = cat(2, theta,
thetaTemp(1:mod(length(tt) ,Ntheta)));
Sin_tst_like = [Stim.Test.radius*cos(theta);
Stim.Test.radius*sin(theta)];
case "White Noise*
for £ = 1:Sim.nDim
[Sin_tst_like(F,:),Amps_tst_like(f,:)] =
genSignal (Stim.Training.FR.T,Stim_FR.dt,Stim.Test.rms,Stim.Test_bandwid
th,Sim_RSeed*pi*f); %lIncrement random seed in deteministic way across
multiple dimensions when RandomSeed >0
%pi multiple in randomSeed used to ensure
different amplitude coeff in generaiton of random training and test
signals
clear Amps_tst like
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end
end

nRateStepsT =
floor(Stim.Training.FR.T/Sim.FR.tRatelnt);

ndtperBin = Sim.FR_tRatelnt/Sim_FR.dt;

LIFinit_tst _like.V = zeros(1,Sim.nUnits);

LIFinit_tst_like._EndRefPeriod = zeros(1,Sim.nUnits);

LIFinit_tst_like.jitterSig = [];

SUrateResp_tst like=zeros(Sim.nUnits,nRateStepsT);

sSUCenters_tst_like=zeros(2,nRateStepsT);

Radapt = Sim.Radapt;

t A = 0:Sim_FR.tRatelnt:Stim.Training-FR.T;

ifT stremp(Sim_Nonstatdecision, "Yes"™) &&
(strcmp(Sim.NonStatType, "Attention®) || strcmp(Sim.NonStatType,
"AttentionReplacement™))

AttnSig = sin(2*pi*(1/Sim.AttnPeriod)*t _A);
AttnSig = (AttnSig + abs(min(AttnSig)));
AttnSig = AttnSig./max(AttnSig);
AttnSig = Sim.AttentionMod(1l) +
(Sim.AttentionMod(2)-Sim.AttentionMod(1)) .*AttnSig;

else
AttnSig = ones(l, length(t_A));

end

Gadapt_tst_like = Sim.Gadapt;

for cnt=1:nRateStepsT
[SUrateResp_tst_like(:,cnt),

sSUCenters_tst_like(:,cnt), LIFinit_tst_like, Gadapt_tst_like,
spikeTimes_tst like, GadaptTemp_tst like] =
GetNeuronFiringRateslterative G(Sim, Stim, Sin_tst like(:, ((cnt-
1)*ndtperBin)+1:cnt*(ndtperBin)), LIFinit _tst like, Sim.nUnits,
AttnSig(cnt), Gadapt tst_like);

end

if stremp(Sim_Nonstatdecision, “Yes®)
ifT stremp(Sim_NonStatType, “Loss®)
[AsuTestLikeSig, HsuTestLikeSig,
WsuTestLikeSig, QsuTestLikeSig] =
GetDecodingWeights(sSUCenters_tst_like,
SUrateResp_tst _like(1:(Sim.nUnits-Sim.nchangedpop),:));
elseif strcmp(Sim.NonStatType, “Replacement®) ||
strcmp(Sim.NonStatType, “AttentionReplacement®)
[AsuTestLikeSig, HsuTestLikeSig,
WsuTestLikeSig, QsuTestLikeSig] =
GetDecodingWeights(sSUCenters_tst_like,
SUrateResp_tst_like(Sim.nchangedpop+1:Sim.nUnits,:));
else
[AsuTestLikeSig, HsuTestLikeSig,
WsuTestLikeSig, QsuTestLikeSig] =
GetDecodingWeights(sSUCenters_tst_like, SUrateResp_tst_like);
end
else
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[AsuTestLikeSig, HsuTestLikeSig, WsuTestLikeSig,
QsuTestLikeSig] = GetDecodingWeights(sSUCenters_tst_like,
SUrateResp_tst_like);
end

% PLOT TEST LIKE STIMULUS FOR TRAINING

figure, plot (Sin_tst_like(1,:), Sin_tst like(2,:), k",
"LineWidth®, 2);

title ("Test Like Stimulus®, "FontSize", 16);

set(gca, "FontSize", 14), legend("Test like stimulus®)

xlabel ("X velocity V_x", "FontSize", 14)

ylabel (°Y velocity V_y", "FontSize", 14)

drawnow;

nRateSteps =
Ffloor(Stim.Test.FR.tst_runs*Stim.Test.FR.T/Sim.FR.tRatelnt);

ndtperBin = Sim.FR.tRatelnt/Sim.FR.dt;

LIFinit.V = zeros(1,N);
LIFinit.EndRefPeriod = zeros(1,N);
LIFinit.jitterSig = [1;

LIFinitcat.V = [];
LIFinitcat.EndRefPeriod = [];
LIFinitcat.jitterSig = [1;

clear SUrateResp;

SUrateResp=zeros(N, nRateSteps);
SUrateRespTemp=zeros(N,nRateSteps);
sSUCenters=zeros(Sim.nDim,nRateSteps);

% STATIC FILTER INITIALIZATIONS

sx = repmat(struct(*A", 0, "B", 0, "HT,
zeros(size(AdaptiveFilter.static.Hsu(:,1))), "Q", 0, "R-",
zeros(size(AdaptiveFilter.static.Qsu)), “P", 0, "u", 0), 1,
nRateSteps);

sy = repmat(struct("A*, 0, "B", 0, “H-",
zeros(size(AdaptiveFilter._static.Hsu(:,2))), 0", 0, "R-",
zeros(size(AdaptiveFilter.static.Qsu)), “P", 0, "u", 0), 1,
nRateSteps);

sx(1).A = AdaptiveFilter.static.Asu(1,1);
sx(1).B = 0;

sx(1).H = AdaptiveFilter.static.Hsu(:,1);
sx(1).Q = AdaptiveFilter.static.Wsu(1,1);
sx(1)-R = AdaptiveFilter._static.Qsu;
sx(1).P =(sx(1) -H\sx(1) -R)/sx(1).H"; %P =

inv(H)*R*inv(H")
sx(1).u = 0;
sxscale = 1;

sy(1) =[]

sy(1).A = AdaptiveFilter.static.Asu(2,2);
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sy(1)-B = 0;

sy(1).H = AdaptiveFilter.static.Hsu(:,2);

sy(1).Q = AdaptiveFilter.static.Wsu(2,2);

sy(1).R = AdaptiveFilter.static.Qsu;

sy(1).P = (sy(1)-H\sy(1)-R)/sy(1)-H"; %P =
inv(H)*R*inv(H")

sy(1).u = 0O;

syscale = 1;

% STATIC FILTER INITIALIZATIONS FOR THE REMAINING
POPULATION OF
% NEURONS WITH TEST LIKE TRAINING SIGNAL

sxTstLk = repmat(struct("A*, 0, "B", 0, "H",
zeros(size(HsuTestLikeSig(:,1))), "Q", 0, °"R",
zeros(size(QsuTestLikeSig)), “P", 0, “u", 0), 1, nRateSteps);

syTstLk = repmat(struct(“A", 0, "B", 0, "HT,
zeros(size(HsuTestLikeSig(:,2))), "Q*, 0, "R",
zeros(size(QsuTestLikeSig)), "P", 0, “u", 0), 1, nRateSteps);

sxTstLk(1).A = AsuTestLikeSig(1,1);
sxTstLk(1).B = 0;

sxTstLk(1).H = HsuTestLikeSig(:,1);
sxTstLk(1).Q = WsuTestLikeSig(1,1);
sxTstLk(1).R = QsuTestLikeSig;

sxTstLk(1).P
=(sxTstLk(1) .H\sxTstLk(1) .R)/sxTstLk(1).H"; %P = inv(H)*R*inv(H")

sxTstLk(1).u = 0;

sxTstLkscale = 1;

syTstLk(1).A = AsuTestLikeSig(2,2);
syTstLk(1).B = 0;

syTstLk(1) .H = HsuTestLikeSig(:,2);
syTstLk(1).Q = WsuTestLikeSig(2,2);
syTstLk(1).R = QsuTestLikeSig;

syTstLk(1).P
(syTstLk(1) -H\syTstLk(1) -R)/syTstLk(1) .H"; %P = inv(H)*R*inv(H")

syTstLk(1).u 0;

syTstLkscale 1;

% ADAPTIVE FILTER INITIALIZATIONS
clear statex;
clear statey;

[AdaptiveFilter adaptiveKalman]=
InitAdaptiveFilter(AdaptiveFilter);

AdaptiveFilter_Hsaveoff =
zeros(size(AdaptiveFilter.static.Hsu,1),Sim.nDim*nRateSteps);

flag = O;
errstep = 1;
step = 1;
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xscalecat 1;
yscalecat = [];
changedpopcat = [];

Ksx = [1:

Ksy = [1;

Kallcat = [];

K2xycat = [1;

statex = zeros(1l,nRateSteps);
statey = zeros(1l,nRateSteps);

timecount = zeros(1l,nRateSteps);
normx = zeros(l,nRateSteps);
normy = zeros(l,nRateSteps);
times zeros(1,nRateSteps);

if stremp(Sim.NonStatType, "Loss™)
indchangedpoplLoss = Nusable -
Sim.neuronskEachTime+1;
indchangedpopReplace = zeros(1, Nusable);
end
if stremp(Sim.NonStatType, “Replacement®) ||
strcmp(Sim.NonStatType, “AttentionReplacement®)
indchangedpopReplace =
Nusable+1:Sim.neuronskEachTime:N;
indchangedpopLoss = zeros(l, Nusable);
end

indchangedpopNusable = 1:Sim.neuronsEachTime:Nusable;
replacelndex = 0;

errorx = zeros(1,
(AdaptiveFilter.errorwindow/Sim.FR.tRatelnt)+1);
errory = zeros(1,
(AdaptiveFilter_errorwindow/Sim.FR.tRatelnt)+1);
errorstatx = zeros(l,
(AdaptiveFilter.errorwindow/Sim.FR._tRatelnt)+1);
errorstaty = zeros(1l,
(AdaptiveFilter.errorwindow/Sim.FR.tRatelnt)+1);
errorxTstLk = zeros(1,
(AdaptiveFilter_errorwindow/Sim_.FR.tRatelnt)+1);
erroryTstLk = zeros(1,
(AdaptiveFilter.errorwindow/Sim.FR.tRatelnt)+1);

rmserrx = zeros(l,
nRateSteps/(AdaptiveFilter.errorwindow/Sim.FR.tRatelnt));
rmserry = zeros(l,
nRateSteps/(AdaptiveFilter._errorwindow/Sim.FR_tRatelnt));
rmserrstatx = zeros(1,
nRateSteps/(AdaptiveFilter._errorwindow/Sim.FR_tRatelnt));
rmserrstaty = zeros(l,
nRateSteps/(AdaptiveFilter.errorwindow/Sim.FR.tRatelnt));
rmserrxTstLk = zeros(l,
nRateSteps/(AdaptiveFilter.errorwindow/Sim.FR_tRatelnt));
rmserryTstLk = zeros(l,
nRateSteps/(AdaptiveFilter.errorwindow/Sim.FR.tRatelnt));
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% TAKE A SNAPSHOT OF PERFORMANCE AT THE BEGINNING

% ADAPTIVE

[snapStartx, snapStarty] = Kalmansnapshot(“Figure 87,
Sim, Stim, Nusable, [adaptiveKalman.adaptfilt3x.H
adaptiveKalman.adaptfilt3y_H], AdaptiveFilter,
adaptiveKalman.adaptfiltlix.P, [adaptiveKalman.adaptfiltlx.R
adaptiveKalman.adaptfiltly.R], flag, 0, 0, 0, 1);

Snapshotfigs(1)= gcfF;

% STATIC

[shapstatStartx, snapstatStarty] =
Kalmansnapshot("Figure 8", Sim, Stim, Nusable,
AdaptiveFilter._static.Hsu, AdaptiveFilter, sx(1).P,
[AdaptiveFilter.static.Qsu AdaptiveFilter.static.Qsu], flag, 0, 0, O,
1;

Snapshotfigs(2)= gcf;

t A = 0:Sim.FR.tRatelnt:Stim.Test.FR.T;

if stremp(Sim_Nonstatdecision, “Yes®) &&
(strcmp(Sim_NonStatType, “Attention®) || strcmp(Sim.NonStatType,
"AttentionReplacement™))

AttnSig = sin(@2*pi*(1/Sim.AttnPeriod)*t_A);
AttnSig = (AttnSig + abs(min(AttnSig)));
AttnSig = AttnSig./max(AttnSig);

AttnSig = Sim.AttentionMod(1) +

(Sim.AttentionMod(2)-Sim.AttentionMod(1)) . *AttnSig;
else AttnSig = ones(l, length(t _A));
end

Gadapt = Sim.Gadapt;

for cnt=1:nRateSteps
[SUrateResp(:,cnt), sSUCenters(:,cnt), LIFinit,
Gadapt, spikeTimes, GadaptTemp] = GetNeuronFiringRateslterative G(Sim,
Stim, Sin_tst(:,((cnt-1)*ndtperBin)+1l:cnt*(ndtperBin)), LIFinit,
Sim.nUnits, AttnSig(cnt), Gadapt);
SUrateRespTemp(:,cnt) = SUrateResp(:,cnt);
end

for cnt=1:nRateSteps
% INTRODUCTION OF NONSTATIONARITY
if stremp(Sim_Nonstatdecision, “Yes®)
if sum(cnt == Sim_NonStatTime/Sim_FR.tRatelnt)
replacelndex = replacelndex + 1;
ifT stremp(Sim.NonStatType, "Replacement®)
|| strecmp(Sim_NonStatType, °"AttentionReplacement”)
if Sim_nchangedpop ==
Sim.neuronsEachTime
SUrateResp(1:Sim.neuronsEachTime ,
cnt:end) = SUrateResp(Sim.neuronsEachTime+l:end, cnt:end);
else

SUrateResp(indchangedpopNusable(replacelndex), cnt:end) =
SUrateResp(indchangedpopReplace(replacelndex), cnt:end);
end
flag = 2;
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elseif strcmp(Sim.NonStatType, "Loss")
flag = 1;
SUrateResp(Nusable:-
1:indchangedpopLoss,cnt:end) = 0O;
Nleft = indchangedpoplLoss - 1;
end
ifT sum(size(Sim.NonStatTime)) ~=2
indchangedpoplLoss = indchangedpoplLoss -
Sim.neuronsEachTime;
end
end
% TAKE A SNAPSHOT OF PERFORMANCE AT THE
INTRODUCTION OF NONSTATIONARITY
if stremp(Sim_NonStatType, “Replacement®) ||
strcmp(Sim_NonStatType, “Loss®) || strcmp(Sim.NonStatType,
"AttentionReplacement®)
if cnt ==
(Sim_NonStatTime(end))/Sim.FR.tRatelnt
% ADAPTIVE
[shapNonstatx, snapNonstaty] =
Kalmansnapshot("Figure 8", Sim, Stim, Nusable,
[adaptiveKalman.adaptfilt3x.H adaptiveKalman.adaptfilt3y.H],
AdaptiveFilter, adaptiveKalman.adaptfiltlix.P,
[adaptiveKalman.adaptfiltlx.R adaptiveKalman.adaptfiltly.R], flag,
indchangedpopNusable(replacelndex), indchangedpopReplace(replacelndex),
indchangedpoplLoss, cnt);
Snapshotfigs(3)= gcf;
% STATIC
[snhapstatNonstatx, snapstatNonstaty] =
Kalmansnapshot("Figure 8", Sim, Stim, Nusable,
AdaptiveFilter.static.Hsu, AdaptiveFilter, sx(cnt).P,
[AdaptiveFilter.static.Qsu AdaptiveFilter.static.Qsu], flag,
indchangedpopNusable(replacelndex), indchangedpopReplace(replacelndex),
indchangedpoplLoss, cnt);
Snapshotfigs(4)= gcf;
end
end
end
end

% save LongLongSim

for cnt=1:nRateSteps
% STATIC FILTER
sx(cnt).z = SUrateResp(1:Nusable,cnt);
sy(cnt).z = SUrateResp(1:Nusable,cnt);

if(ent == 1) % PROVIDE INITIAL BEST ESTIMATES FOR
THE KALMAN FILTER

sx(1).-x
sy(1).x
end

[sx(cnt+l), Kx] = kalmanf(sx(cnt),sxscale);
[sy(cnt+1l), Ky] = kalmanf(sy(cnt),syscale);

sx(1) -H\sx(1).z;
sy(1) .H\sx(1).z;

% STATIC FILTER - Test for optimal pop
ifT strcmp(Sim.Nonstatdecision, "Yes"®)
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if stremp(Sim.NonStatType, "Loss")
sxTstLk(cnt) .z = SUrateResp(1:(Sim.nUnits-
Sim.nchangedpop),cnt);
syTstLk(cnt).z = SUrateResp(1:(Sim.nUnits-
Sim.nchangedpop),cnt);
elseif strcmp(Sim.NonStatType, "Replacement®)
|| strecmp(Sim_NonStatType, °“AttentionReplacement®)
sxTstLk(cnt) .z =
SUrateResp(Sim.nchangedpop+1:Sim.nUnits,cnt);
syTstLk(cnt).z =
SUrateResp(Sim.nchangedpop+1:Sim.nUnits,cnt);
else
sxTstLk(cnt) .z
syTstLk(cnt) .z

= SUrateResp(1:Nusable,cnt);

= SUrateResp(1:Nusable,cnt);
end

else
sxTstLk(cnt).z

syTstLk(cnt) .z

SUrateResp(1:Nusable,cnt);
SUrateResp(1:Nusable,cnt);

end

if(cnt == 1) % PROVIDE INITIAL BEST ESTIMATES FOR

THE KALMAN FILTER
sxTstLk(1) -x
syTstLk(1).x

sxTstLk(1) -H\sxTstLk(1).z;
syTstLk(1) .H\syTstLk(1).z;

end

[sxTstLk(cnt+1l), KxT] =
kalmanf(sxTstLk(cnt) ,sxTstLkscale);

[syTstLk(cnt+1), KyT]
kalmanf(syTstLk(cnt),syTstLkscale);

% ADAPTIVE FILTER
if (cnt == 1) % PROVIDE INITIAL BEST ESTIMATES FOR
THE KALMAN FILTER
adaptiveKalman._adaptfiltlx.x =
adaptiveKalman._adaptfiltlx.H\SUrateResp(1:Nusable,1);
adaptiveKalman.adaptfiltly.x
adaptiveKalman.adaptfiltly.H\SUrateResp(1:Nusable,1);
end

[adaptiveKalman, AdaptiveFilter, statex(cnt),
statey(cnt), Kall, K2xy] =
adaptKalmanlterate(adaptiveKalman,AdaptiveFilter,sSUCenters(:,cnt),SUra
teResp(1:Nusable,cnt),cnt);

AdaptiveFilter._Hsaveoff(:,2*cnt-1:2*cnt) =
[adaptiveKalman.adaptfilt3x.H adaptiveKalman.adaptfilt3y.H];

xscalecat = cat(2,xscalecat,AdaptiveFilter.xscale);
yscalecat = cat(2,yscalecat,AdaptiveFilter.yscale);

% ERROR CALCULATIONS - relative errors

% Normalized Mean Square Errors

errorx(step) = (sSUCenters(l,cnt) - statex(cnt));

errory(step) = (sSUCenters(2,cnt) - statey(cnt));

errorstatx(step) = (sSUCenters(l,cnt) - sx(cnt).x);

errorstaty(step) = (sSUCenters(2,cnt) - sy(cnt).x);

errorxTstLk(step) = (sSUCenters(l,cnt) -
sxTstLk(cnt).x);
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erroryTstLk(step) = (sSUCenters(2,cnt) -
syTstLk(cnt) .x);

if
mod(cnt, (AdaptiveFilter.errorwindow/Sim.FR.tRatelnt)) == 0 % CALCULATE
THE NRMS ERROR FOR EACH ERROR WINDOW
rmserrx(errstep) = sqrt(mean((errorx)."2));
rmserry(errstep) = sqrt(mean((errory)."2));

rmserrstatx(errstep)
sgrt(mean((errorstatx) .”"2));

rmserrstaty(errstep)
sgrt(mean((errorstaty) .~2));

rmserrxTstLk(errstep)
sgrt(mean((errorxTstLk) .”2));

rmserryTstLk(errstep)
sgrt(mean((erroryTstLk) .~2));

errstep = errstep+l;

step = 1
end
if
mod(cnt, ((AdaptiveFilter.errorwindow*10)/Sim.FR.tRatelnt)) ==

sprintf("%d of %d seconds done !!l (Simulation
Time) ", round(cnt*Sim._FR.tRatelnt),
round(Stim.Test.FR.T*Stim.Test.FR.tst_runs))
sprintf("Sim running for %d seconds !!! (Real
Time) ", round(toc))
end
step = step +1;
end

% TAKE A SNAPSHOT OF PERFORMANCE AT THE END

iT stremp(Sim_Nonstatdecision, “Yes"™) &&

strcmp(Sim_NonStatType, °"Loss®)

% ADAPTIVE

[snapEndx, snapEndy] = Kalmansnapshot("Figure 87,
Sim, Stim, Nusable, [adaptiveKalman._adaptfilt3x.H
adaptiveKalman.adaptfilt3y._.H], AdaptiveFilter,
adaptiveKalman.adaptfiltlix.P, [adaptiveKalman.adaptfiltlx.R
adaptiveKalman.adaptfiltly.R], flag,
indchangedpopNusable(replacelndex), indchangedpopReplace(replacelndex),
indchangedpoplLoss, cnt);

Snapshotfigs(5)= gcfF;

% STATIC

[shapstatEndx, snapstatEndy] =
Kalmansnapshot("Figure 8", Sim, Stim, Nusable,
AdaptiveFilter._static._Hsu, AdaptiveFilter, sx(cnt).P,
[AdaptiveFilter.static.Qsu AdaptiveFilter._static.Qsu], flag,
indchangedpopNusable(replacelndex), indchangedpopReplace(replacelndex),
indchangedpoplLoss, cnt);

Snapshotfigs(6)= gcf;

else
% ADAPTIVE
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[snapEndx, snapEndy] = Kalmansnapshot("Figure 87,
Sim, Stim, Nusable, [adaptiveKalman.adaptfilt3x.H
adaptiveKalman.adaptfilt3y_H], AdaptiveFilter,
adaptiveKalman._adaptfiltlx.P, [adaptiveKalman.adaptfiltlix.R
adaptiveKalman.adaptfiltly.R], flag, 0, 0, 0, cnt);

Snapshotfigs(5)= gcfF;

% STATIC

[shapstatEndx, snapstatEndy] =
Kalmansnapshot("Figure 8%, Sim, Stim, Nusable,
AdaptiveFilter._.static.Hsu, AdaptiveFilter, sx(cnt).P,
[AdaptiveFilter.static.Qsu AdaptiveFilter.static.Qsu], flag, 0, 0, O,
cnt);

Snapshotfigs(6)= gcf;

end

AdaptiveFilter._statex = statex;
AdaptiveFilter._statey = statey;
AdaptiveFilter_Kall = Kall;

sxplot
syplot
sxTstLkplot = zeros(l,nRateSteps-1);
syTstLkplot = zeros(1l,nRateSteps-1);

zeros(1l,nRateSteps-1);
zeros(1l,nRateSteps-1);

for cnt=1:nRateSteps % for extracting the array from
the struct
sxplot(cnt)=sx(cnt) .x;
syplot(cnt)=sy(cnt) .Xx;
sxTstLkplot(cnt)=sxTstLk(cnt).x;
syTstLkplot(cnt)=syTstLk(cnt).x;
end

AdaptiveFilter.sxplot = sxplot;
AdaptiveFilter._syplot = syplot;
AdaptiveFilter._sxTstLkplot = sxTstLkplot;
AdaptiveFilter._.syTstLkplot = syTstLkplot;

%Scale the errors with the RMS power of the TEST signal

AdaptiveFilter_nrmserrx =
rmserrx./sgrt(mean((sSUCenters(1,:)).-"2));

AdaptiveFilter.nrmserry =
rmserry./sqrt(mean((sSUCenters(2,:))-"2));

AdaptiveFilter.nrmserrstatx =
rmserrstatx./sqrt(mean((sSUCenters(1,:))-"2));

AdaptiveFilter_nrmserrstaty =
rmserrstaty./sgrt(mean((sSUCenters(2,:)).72));

AdaptiveFilter.nrmserrxTstLk =
rmserrxTstLk./sqrt(mean((sSUCenters(1,:))-"2));

AdaptiveFilter_nrmserryTstLk =
rmserryTstLk./sqrt(mean((sSUCenters(2,:))-"2));

AdaptiveFilter.nrmsError = sqgrt((rmserrx) .2 +
(rmserry) .~2) ./sgrt(mean(sSUCenters(1,:).-"2 + sSUCenters(2,:)-"2));

AdaptiveFilter.nrmsErrorStat = sgrt((rmserrstatx).”2 +
(rmserrstaty) ."2) . /sqrt(mean(sSUCenters(1,:).-"2 + sSUCenters(2,:)-"2));
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AdaptiveFilter.nrmsErrorTstLk = sqrt((rmserrxTstLk)."2
+ (rmserryTstLk) ."2)./sgrt(mean(sSUCenters(l1,:)."2 +
sSUCenters(2,:)-"2));

% CONSTRUCT ALL THE PLOTS

figure

hold on

grid on

plot
(sSUCenters(1,1:Stim.Test.FR.T/Sim.FR.tRatelnt),sSUCenters(2,1:Stim.Tes
t.FR.T/Sim.FR_tRatelnt),"r-", "LineWidth", 2);

plot (sxplot(l:Stim.Test.FR.T/Sim.FR.tRatelnt-
1),syplot(l:Stim.Test.FR.T/Sim.FR.tRatelnt-1),"m-_.", “LineWidth", 2);

plot
(statex(1:Stim.Test.FR.T/Sim.FR.tRatelnt),statey(1:Stim.Test.FR.T/Sim.F
R.tRatelnt),"--", "“LineWidth®, 2);

title (["Reconstruction of the static and adaptive
Ffilters without nonstationarity - signal length = =,
num2str(Stim.Test.FR.T), " seconds"], "FontSize", 16)

set(gca, "FontSize", 14), legend("Original Signal”,
"Static Filter Reconstruction®, "Adaptive Filter Reconstruction®);

xlabel ("X velocity V_x", "FontSize", 14)

ylabel (°Y velocity V_y", "FontSize", 14)

drawnow;

FigHandle(1)=gcf;

figure

hold on

grid on

plot (sSUCenters(l,:),sSUCenters(2,:),"r-",
"LineWidth®, 2);

plot (sxplot,syplot,"m-_", “LineWidth", 2);

plot (statex,statey,"--", "LineWidth®, 2);

title (["Reconstruction of the static and adaptive
filters with induced nonstationarity - signal length = *
num2str(Stim.Test.FR.T), " seconds"], "FontSize", 16)

set(gca, "FontSize®, 14), legend("Original Signal”,
"Static Filter Reconstruction®, "Adaptive Filter Reconstruction®);

xlabel ("X velocity V_x", "FontSize", 14)

ylabel("Y velocity V y", "FontSize", 14)

drawnow;

FigHandle(2)=gcfT;

timeRecon = (1:length(sxplot))*Sim.FR._tRatelnt;

timeReconPlus = (1:length(sxplot)+1)*Sim.FR.tRatelnt;

figure, hold on, grid on,
plot(timeRecon,sSUCenters(1,:),"r", “"LineWidth", 2), plot
(timeRecon,sxplot,"m", “LineWidth®, 2), plot(timeRecon,statex,
"LineWidth®, 2)

title ("Reconstruction of the static and adaptive
filters along x with induced nonstationarity”, "FontSize", 16);

set(gca, "FontSize", 14), legend("Original Signal”,
"Static Filter Reconstruction®, "Adaptive Filter Reconstruction®);

xlabel("Time (seconds)”, "FontSize", 14)

ylabel ("X velocity V_x", "FontSize", 14)

drawnow;

FigHandle(3)=gcf;

figure, hold on, grid on, plot
(timeRecon,sSUCenters(2,:),"r", “LineWidth", 2), plot
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(timeRecon,syplot,"m", “LineWidth", 2), plot(timeRecon,statey,
"LineWidth®, 2)

title ("Reconstruction of the static and adaptive
filters along y with induced nonstationarity®, “FontSize®, 16);

set(gca, "FontSize®, 14), legend("Original Signal”,
"Static Filter Reconstruction®, “Adaptive Filter Reconstruction®);

xlabel ("Time (seconds)®, "FontSize", 14)

ylabel(°Y velocity V_ y*, "FontSize", 14)

drawnow;

FigHandle(4)=gcfT;

timenrmserr =
(1:length(AdaptiveFilter.nrmserrstatx))*AdaptiveFilter.errorwindow;

figure, hold on, grid on, plot (timenrmserr,
AdaptiveFilter_nrmserrstatx, "r°, “LineWidth®, 2), plot (timenrmserr,
AdaptiveFilter_.nrmserrx, "--°, “LineWidth", 2), plot (timenrmserr,
AdaptiveFilter.nrmserrxTstLk, "k-.", "LineWidth®, 2); % plot
(timenrmserr, AdaptiveFilter.nrmserrRemPopx, "g:", “LineWidth", 2),

title (["NRMS errors along X Test RMS power = *,
num2str(Stim.Test.rms)], “FontSize", 16)

set(gca, "FontSize®", 14), legend("Static Filter”®,
"Adaptive Filter®, "Optimal Population®);

xlabel ("Time (seconds)®, "FontSize", 14)

ylabel (*NRMSE_x", “FontSize®, 14)

drawnow;

FigHandle(5)=gcf¥;

figure, hold on, grid on, plot (timenrmserr,
AdaptiveFilter.nrmserrstaty, "r", “LineWidth", 2), plot (timenrmserr,
AdaptiveFilter_nrmserry, "--°, “LineWidth®", 2), plot (timenrmserr,
AdaptiveFilter_nrmserryTstLk, “k-_", "LineWidth®, 2); % plot
(timenrmserr, AdaptiveFilter.nrmserrRemPopy, "g:", "LineWidth®, 2),

title (["NRMS errors along Y Test RMS power = ",
num2str(Stim.Test.rms)], "FontSize", 16)

set(gca, "FontSize®, 14), legend("Static Filter”®,
"Adaptive Filter®, "Optimal Population®);

xlabel ("Time (seconds)®, "FontSize", 14)

ylabel ("NRMSE_y*, "FontSize", 14)

drawnow;

FigHandle(6)=gcfT;

figure, hold on, grid on, plot (timenrmserr,
AdaptiveFilter_nrmsErrorStat, “r", "LineWidth®, 2), plot (timenrmserr,
AdaptiveFilter.nrmsError, "--", "LineWidth®, 2), plot (timenrmserr,
AdaptiveFilter.nrmsErrorTstLk, "k-.", “LineWidth", 2), % plot
(timenrmserr, AdaptiveFilter_nrmsErrorRemPop, "g:", “LineWidth®, 2),
plot (timenrmserr, AdaptiveFilter._nrmsErrorvalue, “LineWidth®, 4);

title (["Total NRMS errors Test RMS power = ",
num2str(Stim.Test.rms)], "FontSize", 16)

set(gca, "FontSize", 14), legend("Static Filter",
"Adaptive Filter®, "Optimal Population®);

xlabel ("Time (seconds)®, "FontSize", 14)

ylabel ("NRMSE_t_o_t", "FontSize", 14)

drawnow;

FigHandle(7)=gcf;

figure, plot(timenrmserr,
xscalecat(l:AdaptiveFilter._errorwindow/Sim.FR._tRatelnt:nRateSteps),
"LineWidth", 2) % Downsampled to match AdaptiveFilter.errorwindow

title ("Scale changes along X", "FontSize", 16)

set(gca, "FontSize", 14), legend("Scale variation®);
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xlabel ("Time (seconds)®, "FontSize", 14)
ylabel("Scale x", "FontSize", 14)
FigHandle(8)=gcfT;
figure, plot(timenrmserr,
yscalecat(l:AdaptiveFilter_errorwindow/Sim.FR.tRatelnt:nRateSteps),
"LineWidth", 2) % Downsampled to match AdaptiveFilter._errorwindow
set(gca, "FontSize", 14), legend("Scale variation®);
title ("Scale changes along Y", "FontSize", 16)
xlabel ("Time (seconds)®, "FontSize", 14)
ylabel ("Scale_y", "FontSize", 14)
FigHandle(9)=gcf¥;
if strcemp(Stim.Test.type, "Figure 87)
figure
hold on
grid on
plot (sSUCenters(1,end+1-
(Stim.Test.FR.T/Sim.FR.tRatelnt):end),sSUCenters(2,end+1-
(Stim.Test.FR.T/Sim_FR._tRatelnt):end),"r-", “LineWidth", 2);
plot(sxplot, syplot,"m-_", “LineWidth", 2);
plot (statex(end+1-
(Stim.Test.FR.T/Sim.FR.tRatelnt):end),statey(end+1-
(Stim.Test.FR.T/Sim.FR.tRatelnt):end), "g--", "LineWidth", 2);
title (["Final Reconstruction of the static and
adaptive filters with induced nonstationarity - signal length = =,
num2str(Stim.Test.FR.T), " seconds"], “FontSize", 16)
set(gca, "FontSize", 14), legend("Original Signal”,
"Static Filter", "Adaptive Filter");
xlabel (*X velocity V_x", "FontSize", 14)
ylabel (°Y velocity V_ y*, "FontSize", 14)
drawnow;
FigHandle(10)=gcT;
end
end %]
end %I

% TIME TAKEN BY THE SIMULATION

totalTime = toc;

TotalTime = sprintf("%d seconds®, round(totalTime));
display(TotalTime)

% SAVE SIMULATION DATA
a = date;
load("runcount.mat");
runcount = runcount+1;
if strcmp(Sim.Nonstatdecision, "Yes"®)
foldernameFig = ([a(1:6), ° °, Sim.NonStatType, ° Run =,
num2str(runcount)]);
else
foldernameFig = ([a(1:6), ° ", "“Stationary®, " Run ",
num2str(runcount)]);
end
save runcount runcount
mkdir(foldernameFig);
chdir(foldernameFig);
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"sSUCenters_training®, "Sim®, "Stim", "SUrateResp®, "sSUCenters-”,

"AdaptiveFilter®, "xscalecat®, "yscalecat®, "TotalTime"); %,

"zdiffall”, "ZstatdiffxX", "Zstatdiffy", "ZTstLkdiffY", "ZTstLkdiffx",

"ZRemPopdiffY", “"ZRemPopdiffX"); %, "spikeTrains®); "phiSu-

% SAVE FIGURES

saveas(FigHandle(1), [foldernameFig ° - Static and adaptive
filter reconstruction without nonstationarity"], "fig");
saveas(FigHandle(2), [foldernameFig " - Static and adaptive
filter reconstruction with nonstationarity induced at
" ,num2str(Sim.begofnonstat),” seconds®], "fig");
saveas(FigHandle(3), [foldernameFig ° - X recon®"], "fig");
saveas(FigHandle(4), [foldernameFig " - Y recon"], "fig");
saveas(FigHandle(5), [foldernameFig * - X nrms error”], "fig");
saveas(FigHandle(6), [foldernameFig * - Y nrms error®], “fig");
saveas(FigHandle(7), [foldernameFig ° - Total nrms error®"],
"figT);
saveas(FigHandle(8), [foldernameFig " - X Scale"], "fig");
saveas(FigHandle(9), [foldernameFig " - Y Scale"], "fig");

if stremp(Stim.Test.type, “Figure 8%)
saveas(FigHandle(10), [foldernameFig
adaptive filter reconstruction®], "fig");
end
for 1 = 1:length(Snapshotfigs)
if Snapshotfigs(i)~=0
saveas(Snapshotfigs(i), [foldernameFig ° -
num2str(i)], "fig");
end
end
cd __;

- Final

end
end

static and

Snhapshot
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InitializeNewSim.m

function [Sim, Stim] = InitializeNewSim(Q)
Sim.RSeed = sum(100*clock); %162 %Set Random Seed

%6%9%%%%6%6%6%%%%%%6%6%6%%%% % %6%6%6%% %% % %%6%6%% %% % %%6%6%% %% % % %6%6%% %% % % %6%6%% %% % % %%%%
%%% Initialize simulation parameters

Sim.nDim = 2; %Number of stimulus dimensions
represented across the population

Sim.nUnits = 200; %Specify number of units for the simulated
populations - FOR ENTIRE POP CHANGE --> Sim.nUnits = 2* Sim.nchangedpop
Sim.nRuns = 1; %Number of simulation to run for each
population size

Sim.tAvgWindow = 0.1; %Temporal averaging window (sec) for
Error statistics

Sim.neuronsPerElect = 3; %Number of neurons per electrode

Sim.errorwindow = 10; % seconds

Sim.ReOptTimeWindow = 550; % seconds
Sim.LinReOptTimeWindow = 550;

% NONSTATIONARITY INITIALIZATIONS

Sim.Nonstatdecision = "Yes"; % "Yes" or "No~"

Sim.begofnonstat = 650; % TIME AT WHICH THE CHANGE BEGINS IN SECONDS
Sim.periodofnonstat = 1;% PERIOD BETWEEN TWO SUCCESSIVE ALTERATIONS
Sim.neuronsEachTime = 100; % NUMBER OF NEURONS ALTERED AT EACH TIME
INSTANT

Sim.nchangedpop = 100; % NUMBER OF NEURONS THAT ARE ALTERED
Sim.endofnonstat = Sim.begofnonstat +
(Sim.periodofnonstat*(Sim.nchangedpop/Sim.neuronskEachTime-1)); % TIME
AT WHICH THE CHANGE ENDS IN SECONDS

Sim_NonStatType = "Replacement™; % TYPE OF NONSTATIONARITY - "Loss" OR
"Replacement®"OR "Adaptation® OR "Attention® OR "AttentionReplacement”
Sim.NonStatTime =
Sim.begofnonstat:Sim.periodofnonstat:Sim.endofnonstat;

% Adaptation

Sim.TauAdapt = 0.49*(0.05 + round((0.6-0.05)*rand(Sim.nUnits,
1)*1000)/1000); % 0.055*ones(Sim.nUnits, 1); % 50 - 600 ms --> F_adap =
0.51, T _adap = (1 - F_adap)*T _ca... T_ca = 50 - 600 ms

Sim.Radapt = 20*ones(Sim.nUnits, 1); % Larger than R_leak

Sim.Gadapt = zeros(Sim.nUnits, 1);

Sim.Rdec = ones(Sim.nUnits, 1); % 5*R leak

%Population Temporal-specific parameters

Sim.PT.dt = 0.00025; %Time step (sec)

%Define PSC linear filter for decoding

Sim.PT_tauPSC = 0.02*rand(1,Sim.nUnits)+0.01; %Heterogeneous taus
[10,30]ms - 10-19-06

%Sim.PT.tauPSC = 0.015;%0.005; %PSC time constant (sec)
Sim_PT._fOrderPSC = 0O; %Filter Order

%Firing Rate-specific parameters
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Sim.FR.dt = 0.001;%0.00025; %Time step (sec)
Sim.FR_FiltLength = 1; %length of linear rate filter
(s)

Sim.FR.tRatelnt = 0.05; %Temporal window used to est

firing rate from spike train

% Attention
Sim.AttnPeriod =
Sim.AttentionMod
attention

5; Y%seconds
= [0.8 1.2]; % range of modulation produced by

%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6%%%6%6% % %6%6% % %6%% % %6%6% % %6%6% % %6%% % %6%% % %% %% %% %% %% %% %
%%% Initialize neuron population parameters

Sim.phiEnc_func ="vonMisesTuningResp”; %"LinearTuningResp”
"GaussTuningResp® "CosineTuningResp” "vonMisesTuningResp”

Sim.error = 0.1; %Percentage error in neuron
response due to noise

Sim.maxRespRange = [20 80]; %[100 300]; %Range of max. responses
(spikes/s)

Sim.V_th = 1;

Sim.R_leak = 1;

Sim.tauRefRange = [0.002 0.005]; %Set range for refactory periods
across the neural population
Sim.tauRCRange = [0.01 0.03]; %Set range for RC-time constants

across the neural population
Sim.Tau = 1;

%Specify phase shift in signal representation (in time steps)
introduced by

%convolution with the PSC filter in the reconstruction. Used to adjust
time

%series for computation on MSE.

Y%phShift = uint32(round(Sim.tauPSC/Sim.dt));

%6%9%%%%6%6%6%%%%%%%6%6%%% %% %%6%6%% %% % % %6%6%% %% % % %6%6%% %% % % %6%6%6%% %% % % %6%6%%% % % % %%6%%
%%% Initialize signal parameters

Stim.PT.dt = Sim.PT.dt;

Stim.FR.dt = Sim.FR.dt;

%TRAINING
Stim.Training.type = "White Noise"; %"White Noise"; % "2D Plane”;
%"Spiral Sampling”;
switch (Stim.Training.type)
case “Spiral Sampling~
Stim.sRange = (-2:0.001:2)*pi/2; %Signal Range

Stim.Training.maxRad = 200*pi;
Stim.Training.minRad = 0O;
Stim.Training.maxMag = 2;

Stim.Training.FR.T = 200;
case "White Noise~
Stim.sRange = -1:1/180:1; %Signal Range - sampling
per degree = 360 samples
if Sim.nDim == 2
Stim.sRange = Stim.sRange.*pi./max(Stim.sRange);
end
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Stim.Training.randomSeed = Sim.RSeed;%0;%99; %RandomSeed>0
resets the random number generator, =0 selects new state, <0 uses
existing state

Stim.Training.PT.T = 10; %Length of PT training
signal in seconds

Stim.Training.FR.T = 2.5*Sim.nUnits; %
(ceil(Sim.nUnits*Sim.nDIim/100))*100; %Length of FR training signal in
seconds = %120 of df (p180 = 450, pl20 = 300, pl00 = 250, p80 = 200,
p40 = 100, p20 = 50)

Stim.Training.upperBandLimit = 1.5;%5; %High frequency
cutoff for white noise signal

Stim.Training. lowerBandLimit
white noise signal

Stim_Training.rms = 1;%1; %RMS signal level

Stim.Training.maxMag = sqrt(2); % Changed to 2 - Aug 13 2008
Y%max(abs(Stim.sRange));

Stim.Training.bandwidth = [Stim.Training.lowerBandLimit
Stim._Training.upperBandLimit]*2*pi;

otherwise
error("Invalid type for training stimulus®);

0; %Low frequency cutoff for

end

WTEST
Stim.Test.type = "White Noise"; % "Figure 8", "White Noise", "Circle”,
"Constant”
Stim_Test.PT.T
seconds
Stim.Test.FR.T
seconds
Stim.Test.FR.tst _runs = 1; % Runs of replicating test
stimulus
switch (Stim.Test.type)

case "Figure 8°

1.0; %Length of PT test signal in

2000.0; %Length of FR test signal in

Stim.Test.maxRad = 40*pi;
Stim.Test.minRad = 0;
Stim._Test.maxMag = 2;
case "White Noise”
Stim.Test.randomSeed = 0;%6546546; %RandomSeed>0 resets
the random number generator
Stim.Test.upperBandLimit = 1; %High frequency cutoff for

white noise signal
Stim._Test.lowerBandLimit
white noise signal
Stim.Test.rms = 1; %RMS signal level
Stim.Test.bandwidth = [Stim.Test.lowerBandLimit
Stim._Test._upperBandLimit]*2*pi;
case "Circle”
Stim.Test.rms = Stim.Training.rms; % Set the radius of the
Stim.Test.radius = Stim.Test.rms; % circle
Stim.Test.degreepert = 1/200; % Aribitary step along the
circumference
case "Constant”
Stim.Test.theta = [-pi/2 pi/2];
Stim.Test.mag 1/sqrt(2);
Stim.Test.rms 1;

0; %Low frequency cutoff for

end
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InitvonMisesLIFNeurons.m

function [LIFparams, noiseVar, maxResp, a_S, kappa, halfwidth] =
InitvonMisesLIFNeurons(S, N, Spref, maxRespRange, tauRefRange,
tauRCRange, V_th, R _leak, error, FigNum)

% [LIFparams, noiseVar, maxResp, a_S, kappa, halfwidth] =
InitvonMisesLIFNeurons(S, N, Spref, maxRespRange, tauRefRange,
tauRCRange, V_th, R _leak, error, figNum);

%

% Initializes the LIF parameters for a population of Gaussian tuned
neurons.

%

Yp——————— INPUTS-——————-

% S is an 1xNt vector containing the range of representative values
over

% which the neurons should encode a signal (e.g., -2:0.1:2).

% "N specifies the number of neurons to initialize.

% "Spref" is a MxN matrix specifying the location of the M-dimensional
mean

%  for each neuron®s tuning curve within the range specified by S. For
%  Cosine tuned neurons the mean corresponds to the neuron®s preferred
%  stimulus.

% ""'maxRespRange’ is a 1x2 vector specifying the range of maximum
responses (spikes/s)

%  for the population of neurons [maxresp_low maxresp_high]. Each
neuron”s

% maximum response is selected randomly from the range.

% ""tauRefRange'™ is a 1x2 vector specifying the range of refractory
times (sec)

%  for the population of neurons. Each neuron®s refractory time is
selected

% randomly from the range.

% ""tauRCRange'" is a 1x2 vector specifying the range of RC time
constants (sec)

%  for the population of neurons. Each neuron®s RC time constant is
selected

% randomly from the range.

% "V_th" specifies the voltage threshold used to determine when an
action

% potential occurs. Curently this value is applied to all neurons.

% ""R_leak' specifies the leakage resistance across the neurons® cell
membrane.

%  Curently this value is applied to all neurons.

% "error' specifies the percentage error in neuron response due to
noise

%  Ffor preferred stimulus. The value is specified as a ratio relative
to the

% neuron®s maximum response.

% *"FigNum' specifies the figure number to display a plot of the tuning
% curves for the population of neurons. If figNum = 0, no Ffigure is
displayed.

% "LIFparams™ is a MxN matrix containing the LIF parameters specific to
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% each neuron. Each row specifies values for a specifi LIF
parameter

% (1,1:N) -> Refractory periods (sec)

% (2,1:N) -> RC time-constants (sec)

% (3,1:N) -> Gains of driving input

% (4,1:N) -> Bias currents (amps)

% (5,1:N) -> Threshold voltages (volts)

% (6,1:N) -> Leakage resistances (ohms)

% (7;9;11;etc,1:N) -> Preferred stimulus (mean of Cosine tuning).
% One row per dimension

% ""noiseVar"™ is a 1xN vector of noise variances (spikes/s) for the
initialized neurons.

% ""maxResp’™ of maximum responses (spikes/s) for the initialized
neurons.

% "a_S' represents the tuning curves for the entire population of
neurons.

% "kappa™ is a 1xN vector of constants related to the tuning half-width
of the neuron

% "halfwidth” is a 1xN vector of tuning halfwidths for the entire

% population of neurons.

% vonMises tuning width - consistent with Amirikian and Georgopulos
(2000)

% Jan 24, 2008

% Tushar Dharampal

% Integrative Neural Systems Lab

halfwidth = zeros(N,1);

kappa = zeros(N,1);

kappaRange = 0.01:0.01:5; % Empirical range
deltaRange = acosd((log(exp(2.*kappaRange)+1)-log(2)-
kappaRange) . /kappaRange) ;

vl = find(deltaRange >= 30 & deltaRange < 45);
v2 = find(deltaRange >= 45 & deltaRange < 60);
v3 = find(deltaRange >= 60 & deltaRange < 75);
v4 = find(deltaRange >= 75 & deltaRange < 90);
popl = round((6/30)*N); % 30 - 45 degrees
pop2 = round((11/30)*N); % 46 - 60

pop3 = round((8/30)*N); % 61 - 75

pop4 = N-(popl+pop2+pop3); % 76 - 89

for i = 1:popl
index = ceil(rand(Q*length(vl));
kappa(i) = kappaRange(vl(index));
halfwidth(i) = deltaRange(vl(index));
end

for i1 = popl+l:popl+pop2
index = ceil(rand()*length(v2));
kappa(i) = kappaRange(v2(index));
halfwidth(i) = deltaRange(v2(index));
end
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for i = popl+pop2+1:popl+pop2+pop3
index = ceil(rand(Q*length(v3));
kappa(i) = kappaRange(v3(index));
halfwidth(i) = deltaRange(v3(index));
end

for i = popl+pop2+pop3+1:popl+pop2+pop3+pops
index = ceil(rand()*length(v4));
kappa(i) = kappaRange(v4(index));
halfwidth(i) = deltaRange(v4(index));
end

clear i;

nDim = size(Spref,2);

Nt = length(S);

J th = V_th/R_leak;

tauRef = (tauRefRange(2) - tauRefRange(l))*rand(N,1) + tauRefRange(l);
%Set refactory period randomly for each neuron

tauRC = (tauRCRange(2) - tauRCRange(1))*rand(N,1) + tauRCRange(l);
%Set RC-time constant randomly for each neuron

maxResp = (maxRespRange(2) - maxRespRange(1))*rand(N,1) +
maxRespRange (1) ;

noiseVar = maxResp.*error; %Compute noise variance for
each neurons (spikes/s)

v = find(maxResp > 1./tauRef); %Look for max resp. values that violate
the absolute refractory period
while ~isempty(Vv)

maxResp(v) = (maxRespRange(2) - maxRespRange(l))*rand(length(v),1)
+ maxRespRange(1);

v = find(maxResp > 1./tauRef);
end

%Compute alpha and Jbias for von Mises tuning response based on
%the neuron®s preferred stimulus, tuning variance, maximum response,
and baseline noise (expressed as % of max response).

minResp = noisevVar;

J_bias = J_th*(1./(1-exp((tauRef_*minResp-1)./(tauRC.*minResp))));

J bias_sigma = abs(J_bias - (J_th*(1./7(1-
exp((tauRef.*(minResp+sgrt(noisevVar))-

1) ./(tauRC.*(minResp+sqrt(noisevVar))))))));

alpha = J _ th*(1./(1-exp((tauRef.*maxResp-1) ./ (tauRC.*maxResp)))) -
J_bias;

LIFparams(1,:) tauRef"; %Refractory period

LIFparams(2,:) tauRC"; %RC time-constant

LIFparams(3,:)= alpha”; %Gain of driving input

LIFparams(4,:) J_bias®; %Bias current

LIFparams(5,:) V_th*ones(1,N); %Threshold voltage
LIFparams(6,:) R_leak*ones(1,N); %lLeakage resistance
LIFparams(7:7+nDim-1,:) = Spref~; %preferred direction of neuron
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LIFparams(end+1,:) = J bias_sigma; % S.D of variation in the J bias
values

if figNum > O
figure(figNum);
clf;
offset = 1./exp(kappa);
scale = (exp(kappa)-offset)*ones(1,Nt);
Jin =
alpha*ones(1,Nt) .*((exp(kappa*ones(1,Nt).*cos(angle_mod(ones(N,1)*S(1,:
).,Spref(:,1)*ones(1,Nt)))) - offset*ones(1,Nt))./scale);
Jin = Jin + J bias*ones(1,Nt);
a S = 1./((tauRef*ones(1, length(S)))-
(tauRC*ones(1, length(S))).-*log(1-J _th./Jin));
plot(S(1,:)*180/pi,a S)
title ("Tuning curves for the entire population of neurons-®,
"FontSize", 16);
xlabel ("Preferred Direction (Degrees)®, "FontSize", 16);
ylabel ("Firing rate (spikes/second)®, "FontSize", 16);
drawnow;
figure
plot(S(1,:)*180/pi,sum(a_S))
title ("Sum of tuning profiles for the entire population of
neurons®, "FontSize", 16);
xlabel ("Preferred Direction (Degrees)®, "FontSize", 16);
ylabel ("Firing rate (spikes/second)®, "FontSize®, 16);
if(N<=100)
axis([-200 200 0 4000])
else
axis([-200 200 0 8000]1)
end
drawnow;
if(find(~isfinite(sum(a_S, 2))))
error("a_S has a NaN")
end
end
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GetNeuronFiringRateslterative G.m

function [SUrateResp, sSUCenters, LIFinit, Gadapt, spikeTimes,
GadaptTemp] = GetNeuronFiringRateslterative G(Sim, Stim, Sin, LIFinit,
NumNeurons, AttnSig, Gadapt)

% [SUrateResp, sSUCenters, LIFinit, Gadapt, spikeTimes, GadaptTemp] =
GetNeuronFiringRateslterative G(Sim, Stim, Sin, LIFinit, NumNeurons,
AttnSig, Gadapt)

Generate the firing rates for the provided stimulus for the given
neuron population

Yp——————— INPUTS-——————-

% ""Sim"™ is the structure that holds the simulation specific parameters.
% "Stim" is the structure that holds the stimulus specific parameters.
% "Sin"™ is the provided stimulus along two-dimensions.

% "LIFinit" is a structure that carries over the current state of each
neuron for the next

% call to genLIFSpikes iterate. It contains the fields:

% V" is a 1xN vector containing the final voltage for each
neuron

% ""_EndRefPeriod"” is a 1xN vector containing the ending time for
each neuron®s refractory

% period relative to the local time for the next function
call.

% "_jitterSig" is a 1xN vector containing the standard deviations
of the random temporal jitters

% applied to the timing of each neuron®s spikes.

% ""NumNeurons' is the number of neurons in the population.

% "AttnSig" is a vector that represents the attention signal over the
% length of the stimulus

% '""Gadapt' is a vector representing the current adaptive conductance

for
% each neuron.
Y%

% “SUrateResp™ is a vector that holds the binned rates for each neuron
over the

% current timestep.

% ""sSUCenters' is a 2x1 vector tjat holds the averaged stimulus along
two

% dimensions for each timestep.

% “LIFinit" is a structure that carries over the current state of each
neuron for the next

% call to genLIFSpikes_iterate. It contains the fields:

% V" is a 1xN vector containing the final voltage for each
neuron

% "_EndRefPeriod" is a 1xN vector containing the ending time for
each neuron®s refractory

% period relative to the local time for the next function
call.

% "_jitterSig" is a 1xN vector containing the standard deviations
of the random temporal jitters

% applied to the timing of each neuron®s spikes.

% ""Gadapt' is a vector representing the current adaptive conductance
for
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% each neuron.

% "spikeTimes™ Is a NxP matrix containing the times for each action
potential.

%  The dimension P is specified by the neurons with the most spikes
=max(spikeCount).

% For neurons with fewer spikes (Q; Q<P) the row of spike times is
padded

% with P-Q zeros to complete the matrix.

% ""GadaptTemp' is a matrix used to hold the Gadapt values between
function

% calls.

i=1; % ONE POPULATION
Nt = length(Sin);

%Parse Global Stuctures

LIFparams = Sim.Pop(i).LIFparams(:,1:NumNeurons);
noiseVar = Sim.Pop(i).noiseVar(1l:NumNeurons);
maxResp = Sim.Pop(i).maxResp(1l:NumNeurons);

scale = Sim.Pop(i).SmaxLin;

% Incorporate attention responses
if strcmp(Sim._Nonstatdecision, "Yes") && (strcmp(Sim_.NonStatType,
"Attention”) || strcmp(Sim.NonStatType, “AttentionReplacement”))% &&
strcmp(SigType, "Test®)

scale = scale./AttnSig;
end

%Convert signal to polar form for Gaussian tuned neurons
switch(Sim.phiEnc_func)
case "GaussTuningResp”
if Sim.nDim ==
Sin_mag = max(Stim.sRange)*ones(1,Nt);
Sin_angle = Sin;
else
Sin_mag = sgrt(sum(Sin."2,1));
Sin_angle = atan2(Sin(2,:), Sin(1,:));
end
Sin_plr = {Sin_mag, Sin_angle};
respParam = {Sim.Pop(1).Spref(1:NumNeurons),
Sim.Pop(i).-Ssig(1:NumNeurons), scale};

case “LinearTuningResp*®
Sin_plr = {Sin_temp};
respParam = {phiEnc"};

case "CosineTuningResp*®
if Sim.nDim ==
Sin_mag = max(Stim.sRange)*ones(1,Nt);
Sin_angle = Sin;
else
Sin_mag = sgrt(sum(Sin."2,1));
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Sin_angle = atan2(Sin(2,:), Sin(1,:));
end
Sin_plr = {Sin_mag, Sin_angle};
respParam = {Sim.Pop(i1).Spref(1:NumNeurons), scale};

case "vonMisesTuningResp*®
if Sim.nDim ==
Sin_mag = max(Stim.sRange)*ones(1,Nt);
Sin_angle = Sin;
else
Sin_mag = sqrt(sum(Sin."2,1));
Sin_angle = atan2(Sin(2,:), Sin(1,:));
end
Sin_plr = {Sin_mag, Sin_angle};
respParam = {Sim.Pop(i).Spref(1:NumNeurons),
Sim.Pop(i).kappa(l:NumNeurons), scale};
otherwise
error("Invalid stimulus tuning profile specified");
end
clear Sin_temp;

%Compute alpha and Jbias for rectified linear tuning response based on
%the neuron®s Xx-intercept and maximum response.

alpha = LIFparams(3,1:NumNeurons)”;

J_bias = LIFparams(4,1:NumNeurons)"®;

J_bias_sigma = LIFparams(end,l1:NumNeurons)*®;

%Compute driving current and corresponding neuron reponses for the
input signal

J_d = CalcDrivingCurrent(alpha, Nt, Sim.phiEnc_func, respParam,
Sin_plr);%, expa);

J in = J d + (J_bias*ones(1,Nt)+J bias_sigma*randn(1,Nt)); % Add
variability to the J bias values with a S.D. of J bias_sigma - August
24 2007

[spikeCount, spikeTimes, LIFinit, Gadapt, GadaptTemp] =
genLIFSpikes_iterate_G(J_in, Stim.FR.dt, LIFparams, noiseVar, maxResp,
LIFinit, Gadapt, Sim.TauAdapt, Sim);

SUrateResp spikeCount/Sim.FR.tRatelnt;

sSUCenters = (mean(Sin,2))";
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genLIFSpikes iterate G.m

function [spikeCount,spikeTimes,LIFinit,Gadapt,GadaptTemp] =
genLIFSpikes_iterate_G(J_in, dt, LIFparams, noiseVar, maxResp, LIFinit,
Gadapt, TauAdapt, Sim)

% [spikeCount,spikeTimes,LIFinit,Gadapt,GadaptTemp] =
genLIFSpikes_iterate_G(J_in, dt, LIFparams, noiseVar, maxResp, LIFinit,
Gadapt, TauAdapt, Sim)

%

% Compute timing of action potentials for a population of Leaky
Integrate and Fire (LIF)

% neurons based on the integrated input current received by each neuron
% Iincluding optional adaptation of neuron responses.

%

Yp——————— INPUTS-——————-

% "J_In" is an NxXNt matrix containig the input current received by N
neurons

% for each of Nt time points.

% "dt" is the interval between time points expressed in sec.

% "LIFparams' is a MxN matrix containing the LIF parameters specific to

XX

% each neuron. The parameters matrix is generated automatically
using

% the functions InitGaussLIFNeurons or InitLinearLIFNeurons to
% generate neurons with Gaussian or linear tuning curves
respectively.

% The parameters specific to each row are

% (1,1:N) -> Refractory periods (sec)

% (2,1:N) -> RC time-constants (sec)

% (3,1:N) -> Gains of driving input

% (4,1:N) -> Bias currents (amps)

% (5,1:N) -> Threshold voltages (volts)

% (6,1:N) -> Leakage resistances (ohms)

% ""noiseVar™ is a 1xN vector of noise variances (spikes/s). This vector
is

% generated automatically together with LIlFparams as part of the
neuron

% initialization.

% ""maxResp’ is a 1xN vector of maximum responses (spikes/s). his vector
is

% generated automatically together with LlFparams as part of the
neuron

% initialization.

% "LIFinit" is a structure that carries over the current state of each
neuron for the next

% call to genLIFSpikes iterate. It contains the fields

% ".V" is a 1xN vector containing the final voltage for each
neuron

% " _EndRefPeriod"” is a 1xN vector containing the ending time for
each neuron®s refractory

% period relative to the local time for the next function
call.

% "_jitterSig” is a 1xN vector containing the standard deviations

of the random temporal jitters
% applied to the timing of each neuron®s spikes.
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% '""Gadapt' is a vector representing the current adaptive conductance
for

% each neuron.

% "TauAdapt™ is a vector representing the time period of adaptation for
% each neuron.

% '""Sim" is the structure that holds the simulation specific parameters.
%

Yp——————— OUTPUTS---———--
% *""spikeCount”™ is a 1xN vector containing the total number of spikes
generated

% during the input sequence for each neuron.
% "spikeTimes™ iIs a NxP matrix containing the times for each action

potential.

%  The dimension P is specified by the neurons with the most spikes
=max(spikeCount) .

% For neurons with fewer spikes (Q; Q<P) the row of spike times is
padded

% with P-Q zeros to complete the matrix.

% "LIFInit" Is a structure that carries over the current state of each
neuron for the next

% call to genLIFSpikes_iterate. It contains the fields

% V" is a 1xN vector containing the final voltage for each
neuron

% " _EndRefPeriod” is a 1xN vector containing the ending time for
each neuron®s refractory

% period relative to the local time for the next function
call.

% "_jitterSig” is a 1xN vector containing the standard deviations
of the random temporal jitters

% applied to the timing of each neuron®s spikes.

% '"Gadapt' is a vector representing the current adaptive conductance
for

% each neuron.

% ""GadaptTemp' is a matrix used to hold the Gadapt values between
function

% calls.

<

% Created 4-1-06 (Scott Beardsley)
%

% Modification History:

%

%lnitialize LIF paramters

N = size(LlFparams,?2);

tauRef = LIFparams(1,:)"; %Refractory period
tauRC LIFparams(2,:)"; %RC time-constant
alpha = LIFparams(3,:)"; %Gain of driving input
J_bias = LIFparams(4,:)"; %Bias current

V_th = LIFparams(5,:)"~; %Threshold voltage

R _leak = LlFparams(6,:)"; %lLeakage resistance

spikeCount = zeros(1,N);
spikeTimes = zeros(N, ceil(Sim.FR_.tRatelnt/Sim.FR.dt));

T = (size(J_in, 2)-1)*dt; %Total Time
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RateSS = 0.49*Sim.Pop.maxResp;
B = ((1./tauRC).*(tauRef - 1./RateSS));
Jm = alpha + J_bias;

Q =1./3m;
As = (B."2)/2;
Bs = (B + (Q-/exp(B)));

Cs = (1 - ((1-Q)-7/exp(B)));
Gad = (-Bs + sgrt(Bs.”2 - 4.*As.*Cs))./(2.*As);

Ginc = (1 - ((1 - dt./TauAdapt) -~(1./(dt.*RateSS))))-*CGad;

it isempty(LIFinit.jitterSig)

resJitter = dt/4; %Jitter in spike timing due to
resolution of the time step

maxJitterSig = (1./maxResp - 1./(maxResp+sqrt(noiseVar)))/4;

jJitterSig = resJitter.*ones(1,N); % Changed to increase variability
in the Inter Spike Intervals

z = find(maxJitterSig>resJitter); %Find neurons whose temporal
Jitter due to noise exceeds the time step resolution

it ~isempty(2)

JitterSig(z) = maxJitterSig(z); %Use the larger source of

jitter (i.e., jitter due to noise) for the above neurons

end

LIFinit.jitterSig = jitterSig;
end

GadaptTemp = zeros(N, size(J_in,2)-1);

for j = 1:N
V(1) = LIFinit.vV(g);
endRefPeriod = LIFinit.EndRefPeriod(j);

for i = 2:size(Jd_in,2) %Loop over the length of the signal J in(t)
if i*dt > endRefPeriod
ifT strcmp(Sim.Nonstatdecision, "Yes") &&
strcmp(Sim_NonStatType, “Adaptation®)
V(i) = V@-1)-v(i-1)+ V(i-1)*(R_leak(j)*Gadapt(j)) -
J in(g, 1-1)*R_leak(j))/tauRC(j)*dt; % Adaptive LIF neuron Voltage
else
v(@a) = va-1)-(v@a-1) - J_ing, i1-
1)*R_leak(j))/tauRC(@)*dt; % Normal LIF neuron Voltage
end
if V(i)>=V_th()
tJitter = (randn*LIFinit.jitterSig(j)); %Ilncorporate
noise as variability in spike timing
tSpike = (i-1)*dt + tJitter;
ifT (spikeCount(j) ~= 0 && tSpike <=
(spikeTimes(j,spikeCount(j)) + tauRef(j)))
tSpike = (spikeTimes(j,spikeCount(j)) + tauRef(j));
end
if tSpike <= T && tSpike >= dt
spikeCount(j) = spikeCount(j) + 1;
spikeTimes(j,spikeCount(j)) = tSpike;
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endRefPeriod = spikeTimes(j,spikeCount(j)) +
tauRef(g);
end
V(i) = 0;
ifT strcmp(Sim_Nonstatdecision, “Yes") &&
strcmp(Sim.NonStatType, "Adaptation®) %&& (Radapt(j) > Sim.R_leak)

Gadapt(jJ) = Gadapt(j) + Ginc();
end
else
if strcmp(Sim.Nonstatdecision, "Yes") &&
strcmp(Sim.NonStatType, “Adaptation™) %&& (Radapt(j) < Sim.Radapt(j))

Gadapt(jJ) = Gadapt(j) -
(Gadapt(j)/(TauAdapt(j)/dt));
if Gadapt(j) <=0
Gadapt(j) = O;
end
end
end
else
V(i) = 0;
end

GadaptTemp(j,i) = Gadapt(j);

end

LIFinit. V@) = V(i); %Carry over each
neuron®s final voltage for next function call

LIFinit.EndRefPeriod(jJj) = endRefPeriod-T; %Adjust each
neuron®s endRefPeriod to the local time for the next function call

%Reset V

V = V*0;

end



125

vonMisesTuningResp.m
function resp = vonMisesTuningResp(S, p)

% resp = vonMisesTuningResp(S, p);

%

% Calculates the response (spikes/s) of von Mises tuned neurons to a 1D
or 2D

% signal expressed in polar coordinates.

Yp——————— INPUTS-——————-
% "S™ i1s a {1xM} cell array of 1xNt vectors containing the M-
dimensional input signal

% over Nt time steps.

% [s{1}]1 is an optional input containing the magnitude of a
2D stimulus.

% When present it scales the amplitude of the Cosine

% response.

% s{2} is the polar angle of the 2D stimulus.

% "p'" is a {1x3} cell array of 1xN vectors containing the Cosine tuning
parameters for

% N neurons.

% p{1} contains the preferred stimulus angle

% p{2} contains the kappa value - the scale in the
exponential

% of the von Mises tuning

% [p{3}] is an optional parameter that normalizes stimulus
magnitude.

% It is used to incorporate linear tuning as a function
of radius.

%

Yp——————— OUTPUTS--—-———-

% "resp"™ is a NxNt matrix containing the responses (spikes/s) of N
neurons at Nt

% time steps.

%

% Created 11 - 6 - 07 (Tushar Dharampal)

%

% Modification History:

%11 - 6 - 07 Initializing resp variable (Tushar Dharampal)

N = length(p{1});
Nt =length(S5{1});
resp = zeros(N,Nt);
kappa = p{2}-;
for j = 1:N
% Jan 24 2008
% Tushar Dharampal
4 Subtract from and scale the tuning function in order to conform
it to the
v Alpha-Jbias format i.e be able to use the same Alpha and Jbias
equations
% as before
resp(J,:) =
S{1}./p{3}-*((exp(kappa(j)*ones(1,Nt) .*cos(angle_mod(S{2},p{1}((,:)"*on

SN

<
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es(1,Nt))))-(1./exp(kappa(j)))*ones(1,Nt))./((exp(kappa(d))-
(1.7/exp(kappa(d))))*ones(1,Nt)));
end
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GetDecodingWeights.m
function [A,H,W,Q] = GetDecodingWeights(S, a_S)

% [phi] = GetDecodingWeights(S, a_S, noiseVar);

% Computes the optimal decoding weights for a fixed temporal filter.

Y——————-— INPUTS-———————-

% '"S" is a 1xNt vector containing the signal amplitudes at Nt time
points

% "a_S™ @Is a NxNt matrix containing the convolution of the temporal
decoding

% with the spike trains of N neurons. The result approximates the
instantaneous

% firing rate of each neuron at each time point.

%

Ypm—————— OUTPUTS--—--——-

% "phi™ Is a 1xN vector containing the optimal decoding weights used to
% perform the signal decoding and reconstruction.

% Created 8-16-06 (Scott Beardsley)

% Modification History:

%

%Estimate decoding weights w/ noise

gamma = S*S*; %+ (noiseVar*ones(1,N).*eye(N, N));
upsilon = a_S*S*~;

phi = upsilon*inv(gamma);

X1 = S(:,1:size(S,2)-1);

X2 = S(:,2:s1ze(S,2));

A = X2*X1® * inv(X1*X1");

H = phi;

Z = as;

X =S;

W= (X2 - A*X1)*(X2 - A*X1)"/size(X1,2);
Q = (Z - H*X)*(Z - H*X)"/size(X,2);
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InitAdaptiveFilter.m

function [AdaptiveFilter adaptiveKalman] =
InitAdaptiveFilter(AdaptiveFilter)
% [AdaptiveFilter adaptiveKalman] = InitAdaptiveFilter(AdaptiveFilter)

% The "InitAdaptiveFilter®™ function initializes the components of the
adaptive filter.

% For the adaptive Kalman filter there are three filters to be
initialized.

%

% INPUTS

0 ——————

% AdaptiveFilter = Struct variable with variables specific to the
adaptive Filter
%

% OUTPUTS

0 ———————

% adaptiveKalman
initializations

Struct variable with Kalman filter specific

AdaptiveFilter._type = "Kalman Filter"®;

Px =
(AdaptiveFilter.static.Hsu(:,1)\AdaptiveFilter.static.Qsu)/AdaptiveFilt
er.static.Hsu(:,1)"; %P = inv(H)*R*inv(H")

Py =
(AdaptiveFilter._static.Hsu(:,2)\AdaptiveFilter._.static.Qsu)/AdaptiveFilt
er._static.Hsu(:,2)"; %P = inv(H)*R*inv(H")

% FILTER 1
adaptiveKalman.adaptfiltlix=[];
adaptiveKalman.adaptfiltlx.A
adaptiveKalman.adaptfiltlx.B
adaptiveKalman.adaptfiltix._H
adaptiveKalman.adaptfiltlx.Q
adaptiveKalman.adaptfiltlix.R
adaptiveKalman.adaptfiltlix.u
adaptiveKalman.adaptfiltlix.P

AdaptiveFilter.static.Asu(1,1);
0;
AdaptiveFilter._static.Hsu(:,1);
AdaptiveFilter._static.Wsu(l1,1);
AdaptiveFilter.static.Qsu;

0;

Px;

adaptiveKalman.adaptfiltly=[]
adaptiveKalman.adaptfiltly.A
adaptiveKalman.adaptfiltly.B
adaptiveKalman.adaptfiltly.H
adaptiveKalman.adaptfiltly.Q
adaptiveKalman.adaptfiltly.R

AdaptiveFilter.static.Asu(2,2);
0;
AdaptiveFilter._static.Hsu(:,2);
AdaptiveFilter.static.Wsu(2,2);
AdaptiveFilter.static.Qsu;

adaptiveKalman.adaptfiltly.u 0;
adaptiveKalman.adaptfiltly._P Py;

% FILTER 2
adaptiveKalman_adaptfilt2x=[];

% adaptiveKalman.adaptfilt2x.P = 0.1;
adaptiveKalman.adaptfilt2x.A = eye(l);
adaptiveKalman.adaptfilt2x.B = 0O;
adaptiveKalman.adaptfilt2x.Q = zeros(1);

adaptiveKalman._adaptfilt2x_.R = AdaptiveFilter.static.Qsu(1,1);



adaptiveKalman.adaptfilt2x.u
adaptiveKalman.adaptfilt2x.x

adaptiveKalman.adaptfilt2y=[]
% adaptiveKalman.adaptfilt2y.
adaptiveKalman._adaptfilt2y_A
adaptiveKalman.adaptfilt2y.B
adaptiveKalman._adaptfilt2y.Q
adaptiveKalman.adaptfilt2y.R
adaptiveKalman.adaptfilt2y.u
adaptiveKalman._adaptfilt2y._x

% FILTER 3

adaptiveKalman.adaptfilt3x =
adaptiveKalman._adaptfilt3x_A
adaptiveKalman.adaptfilt3x.B
adaptiveKalman.adaptfilt3x.Q
adaptiveKalman.adaptfilt3x.R
adaptiveKalman.adaptfilt3x._P
adaptiveKalman.adaptfilt3x.u
adaptiveKalman.adaptfilt3x.H

adaptiveKalman.adaptfilt3y =
adaptiveKalman.adaptfilt3y.A
adaptiveKalman.adaptfilt3y.B
adaptiveKalman.adaptfilt3y.Q
adaptiveKalman.adaptfilt3y.R
adaptiveKalman._adaptfilt3y._P
adaptiveKalman.adaptfilt3y.u
adaptiveKalman.adaptfilt3y.H

AdaptiveFilter.xest=0;
AdaptiveFilter.yest=0;

AdaptiveFilter.zest = zeros(size(AdaptiveFilter._static.Hsu,1),1);

AdaptiveFilter._xtrue=0;
AdaptiveFilter.ytrue=0;

AdaptiveFilter._window_size fi
AdaptiveFilter.window_size_sc
AdaptiveFilter.xscale = 0.2;
AdaptiveFilter.yscale = 0.2;

0;
AdaptiveFilter.static.Hsu(:,1)";

= 0.1;

eye(1);

0;

zeros(1l);
AdaptiveFilter.static.Qsu(1,1);
0;
AdaptiveFilter._static_Hsu(:,2)";

[ T I A VA | R @ AU

™

1;
AdaptiveFilter._static.Asu(l1,1);
0;
AdaptiveFilter.static.Wsu(l1,1);
AdaptiveFilter.static.Qsu;

Px;

0;
AdaptiveFilter.static.Hsu(:,1);

1:
AdaptiveFilter.static.Asu(2,2);
0;
AdaptiveFilter.static.Wsu(2,2);
AdaptiveFilter._static.Qsu;

Py;

0;
AdaptiveFilter.static.Hsu(:,2);

1 O A R A VI |

Iter = 1; % lterations
ale = 50; % lterations
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AdaptiveFilter._errorwindow = 10; % TIME WIDTH FOR RMS ERROR CALCULATION

IN SECONDS

AdaptiveFilter.true_avgerrorx
AdaptiveFilter.true_avgerrory
AdaptiveFilter.prev_avgerrorx
AdaptiveFilter._prev_avgerrory
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Kalmansnapshot.m

function [sxplot, syplot] = Kalmansnapshot(TestType, Sim, Stim,
Nusable, H, AdaptiveFilter, P, R, flag, indchangedpopNusable,
indchangedpopReplace, indchangedpoplLoss, cntt)

% The Kalmansnapshot function is used to measure the performance of the
algorithm as a snapshot during various points in the simulation.

% It gives a reconstruction of the desired stimulus as if it were the
current TEST stimulus (at this point in the simulation).

% {The "Figure of 8" stimulus is chosen because the response is easily
assessed qualitatively}

% It does not alter the state / weights of the system in any way.

%

% INPUTS

% ——————

% TestType = Stimulus used for the snapshot test

% Sim = Simulation parameters.

% Stim = Stimulus parameters.

% Nusable = The number of neurons that are used for the reconstruction.
% H = Current H matrix (hence, the snapshot).

% AdaptiveFilter = Adaptive fTilter parameters.

% changedpopcat = The indices for the neurons that are altered.

% flag = Variable that indicates the type of nonstationarity.

%

% OUTPUTS
% ———————
% sxplot
%

Reconstruction along the X dimension.
Reconstruction along the Y dimension.

%))
<
o
(e}
=+
I

TestlLength = 5;
t = 0:Stim.FR.dt:TestLength;
N = Sim.nUnits;

switch (TestType)
case "Constant”
theta = Stim.Test.theta.*ones(1, length(t));
Sin_tst = Stim.Test.mag.*[cos(theta); sin(theta)];
case "Figure 8°
theta = linspace(-pi/4, 3/4*pi, length(t));
Sin_tst = [1.5*cos(2*theta); 1*cos(2*theta).*sin(2*theta)];
case “White Noise~
for £ = 1:Sim.nDim
[Sin_tst(f,:),Amps(F,:)] =
genSignal (Stim.Test.FR.T,Stim.FR.dt,Stim.Test.rms,Stim.Test._bandwidth,S
tim.Training.randomSeed*pi*f); %Increment random seed in deteministic
way across multiple dimensions when RandomSeed >0
%pi multiple in randomSeed used to ensure different
amplitude coeff in generaiton of random training and test signals
clear Amps
end
end

LIFinit.V = zeros(1,N);
LIFinit.EndRefPeriod = zeros(1,N);



LIFinit.jitterSig = [];
LIFinit.Radapt = Sim.Radapt;

ndtperBin = Sim.FR.tRatelnt/Sim.FR.dt;

% STATIC FILTER INITIALIZATIONS

sx = [1;

sx.A = AdaptiveFilter.static.Asu(l1,1);
sx.B = 0;

sx.H = H(:,1);

sx.Q = AdaptiveFilter.static.Wsu(l1,1);
sx.R = R(:,1:Nusable);

sx.P = P;

sx.u = 0;

sxscale = 1;

sy = [1:

sy.A = AdaptiveFilter.static.Asu(2,2);

sy.B = 0;

sy-H = H(z,2);

sy.Q = AdaptiveFilter.static.Wsu(2,2);

sy.R = R(:,Nusable+l:end);

sy.P = P;

sy.u = 0;

syscale = 1;

SUrateResp = zeros(N, TestlLength/Sim.FR.tRatelnt);
sSUCenters = zeros(2, TestlLength/Sim.FR.tRatelnt);

Radapt = Sim.Radapt;

for cnt=1:TestlLength/Sim.FR.tRatelnt
% GENERATE THE FIRING RATES FOR THE TEST SIGNAL

[SUrateResp(:,cnt), sSUCenters(:,cnt), LIFinit, Radapt] =

GetNeuronFiringRateslterative(Sim, Stim, Sin_tst(:,((cnt-
1)*ndtperBin)+1:cnt*(ndtperBin)), LIFinit, N, 1, Radapt);

% INTRODUCTION OF NONSTATIONARITY
it flag ==
SUrateResp(Nusable:-1:indchangedpopLoss,cnt) = O;
elseif flag ==
ifT Sim.nchangedpop == Sim.neuronsEachTime
SUrateResp(1:Sim.neuronseEachTime, cnt:end) =
SUrateResp(Sim.neuronsEachTime+1:end, cnt:end);
else
SUrateResp(1:indchangedpopNusable, cnt:end) =
SUrateResp(Nusable+1: indchangedpopReplace, cnt:end);
end
end
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% STATIC FILTER

sx(end) .z = SUrateResp(1:Nusable,cnt);

if(cnt == 1) % PROVIDE INITIAL BEST ESTIMATES FOR THE KALMAN FILTER
sx.x = sSUCenters(1,1);
Sy .X sSUCenters(2,1);

end

[sx(end+1), K] = kalmanf(sx(end),sxscale);
sy(end) .z = SUrateResp(1:Nusable,cnt);
[sy(end+1), K] = kalmanf(sy(end),syscale);

end

for cnt=1:TestLength/Sim.FR.tRatelnt-1 % for extracting the array from
the struct

sxplot(cnt)=sx(cnt+1) .x;

syplot(cnt)=sy(cnt+l).x;
end

% PLOTS

figure
hold on
grid on
plot
(sSUCenters(1,1:TestLength/Sim.FR.tRatelnt),sSUCenters(2,1:TestLength/S
im_FR_tRatelnt),"r", "LineWidth®, 2);
plot (sxplot(l:TestLength/Sim.FR.tRatelnt-
1),syplot(1l:TestLength/Sim.FR.tRatelnt-1),"m--", “LineWidth", 2);
axis([-2 2 -1 1]
set(gca, “FontSize®, 14), legend("Snapshot Test Signal®, "Filter
Reconstruction®);
xlabel ("X velocity V_x", "FontSize", 14)
ylabel("Y velocity V_ y", "FontSize", 14)
if(flag == 0)

title (["Snapshot of performance - *,
num2str((cntt*Sim.FR.tRatelnt)), " seconds”"], "FontSize", 16)
else

title (["Snapshot of performance with nonstationarity - *,
num2str(round(cntt*Sim.FR.tRatelnt)), " seconds"], “FontSize", 16)
end
drawnow;



kalmanf.m

function [s, K] = kalmanf(s,scale)
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% Modified from KALMANF VERSION 1.0, JUNE 30, 2004 BY Michael C. Kleder
% http://www._mathworks.com/matlabcentral/fileexchange/5377-1earning-

the-kalman-filter

%

% [s, K] = kalmanf(s,scale)

% —-——INPUTS---

% s is a struct that holds the state variables

% scale is the factor influencing the progression of the Kalman gain

%

% ---OUTPUTS---

% s Is a struct that holds the state variables

% K holds the Kalman gain between function calls

% set defaults for absent fields:
if ~isfield(s,"x"); s.x=nan*z; end
if ~isfield(s,"P"); s.P=nan; end
if ~isfield(s,"z"); error("Observation vector missing”);
if ~isfield(s,"u"); s.u=0; end
if ~isfield(s,"A"); s.A=eye(length(x)); end
it ~isfield(s,"B"); s.B=0; end
ifT ~isfield(s,"Q"); s.Q=zeros(length(x)); end
if ~isfield(s,"R");
if ~isfield(s, "H"); s.H=eye(length(x)); end
if isnan(s.x)

s.X = s.H\s.z;

s.P (s-H\s.R)/s_.H";
end

% Discrete Kalman filter:

% Prediction for state vector and covariance:
S.X = S.A*s_.X + s.B*s.u;
s.P s.A* s.P * s.A" + s.Q;

% Compute Kalman gain factor:
K = s.P*s_H"*inv(s.H*s.P*s_.H"+s_.R);

% Correction based on observation:

s.X = s.X + scale*K*(s.z-s.H*s.x);%//a factor of 0.2 is introduced

the gain -- Jan 02, 2007
s.P = s.P - scale*K*s_H*s.P;

error("Observation covariance missing”); end

into
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adaptKalmanlterate.m

function [adaptiveKalman,AdaptiveFilter,statex,statey,Kall, K2xy] =
adaptKalmanlterate(adaptiveKalman,AdaptiveFilter,sSUCenters, SUrateResp,
cnt)

% An adaptive Tilter based on a cascaded Kalman filtering scheme

%

% [adaptiveKalman,AdaptiveFilter,statex,statey,Kall, K2xy] =
adaptKalmanlterate(adaptiveKalman,AdaptiveFilter,sSUCenters,SUrateResp,
cnt)

% —---INPUTS---

% adaptiveKalman is a struct that holds the state variables for each
Kalman

% fFilter.

% AdaptiveFilter is a Struct variable with variables specific to the
v adaptive Ffilter.

» sSUCenters is a 2x1 vector that holds the averaged stimulus along two
% dimensions for each timestep.

% SUrateResp is a vector that holds the binned rates for each neuron
over the

b current timestep.

% cnt holds the value of the current bin timestep

%

% ---OUTPUTS---

% adaptiveKalman is a struct that holds the state variables for each
Kalman

% filter.

% AdaptiveFilter is a Struct variable with variables specific to the
% adaptive filter.

% statex holds the value of the decoded movement along the X-axis at
the current timestep

% statey holds the value of the decoded movement along the X-axis at
the current timestep

% Kall is a struct that holds the Kalman gains for the first and third
Kalman

% Filters.

% K2xy is a struct that holds the Kalman gains for the second Kalman
% fFilter.

XX

XX

xscale
yscale

AdaptiveFilter._xscale;
AdaptiveFilter._yscale;

temp_x = adaptiveKalman.adaptfiltlx.x; % X AND Y VALUES FOR THE CURRENT
TIMESTEP TO BE FED INTO THE THIRD KALMAN
temp_y = adaptiveKalman.adaptFfiltly.x;

o e e
%For "window_size"™ timesteps...

adaptiveKalman.adaptfiltlx.z = SUrateResp;
[adaptiveKalman.adaptfiltlx, Kix] =
kalmanf(adaptiveKalman.adaptfiltlx,1);

adaptiveKalman.adaptfiltly.z = SUrateResp;
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[adaptiveKalman.adaptfiltly, Kly] =
kalmanf(adaptiveKalman.adaptfiltly,1);

AdaptiveFilter.xtrue = AdaptiveFilter.xtrue + sSUCenters(l,:);
AdaptiveFilter.ytrue = AdaptiveFilter.ytrue + sSUCenters(2,:);

AdaptiveFilter.xest=AdaptiveFilter._xest+adaptiveKalman.adaptfiltlx.x;
AdaptiveFilter.yest=AdaptiveFilter.yest+adaptiveKalman.adaptfiltly.x;
AdaptiveFilter.zest=AdaptiveFilter._zest+adaptiveKalman.adaptfiltlx.z;

true_errorx = AdaptiveFilter._xtrue - AdaptiveFilter.xest;
true_errory = AdaptiveFilter._ytrue - AdaptiveFilter._yest;

SO HHIH A
%For calculating Q and H for the next time step
iT (AdaptiveFilter.window_size filter == 1 ||
mod(cnt,AdaptiveFilter._window_size Ffilter)==1)
% FOR P
ifT (ent == 1 || (cnt-1)/AdaptiveFilter.window_size filter == 1) %
INITIALIZE THE P VALUE THE VERY FIRST TIME
adaptiveKalman.adaptfilt2x_P
=(adaptiveKalman.adaptfiltlix.x\adaptiveKalman.adaptfilt2x.R)/adaptiveKa
Iman.adaptfiltix.x"; %P = inv(H)*R*inv(H")
adaptiveKalman.adaptfilt2y.P
=(adaptiveKalman.adaptfiltly.x\adaptiveKalman.adaptfilt2y._.R)/adaptiveKa
Iman.adaptfiltly.x"; %P = inv(H)*R*inv(H")
end

true_errorx = true_errorx/AdaptiveFilter_window_size Ffilter;
true_errory = true_errory/AdaptiveFilter._.window_size Ffilter;

AdaptiveFilter._xest =
AdaptiveFilter.xest/AdaptiveFilter._window_size filter;

AdaptiveFilter.yest =
AdaptiveFilter._yest/AdaptiveFilter_window_size Ffilter;

AdaptiveFilter.zest =
AdaptiveFilter.zest/AdaptiveFilter_window_size Filter;

% INCORPORATING THE TRUE ERROR INTO THE SIMULATION

adaptiveKalman.adaptfilt2x_H
true_errorx)”;

adaptiveKalman.adaptfilt2x.x

adaptiveKalman.adaptfilt2x.z

(AdaptiveFilter.xest +

adaptiveKalman.adaptfiltlx.H";
AdaptiveFilter.zest";

[adaptiveKalman.adaptfilt2x, K2x] =
kalmanf(adaptiveKalman.adaptfilt2x,xscale);

(AdaptiveFilter.yest +

adaptiveKalman.adaptfilt2y.H
true_errory)”;

adaptiveKalman._adaptfilt2y.x = adaptiveKalman.adaptfiltly._ H";

adaptiveKalman.adaptfilt2y.z = AdaptiveFilter.zest";

[adaptiveKalman.adaptfilt2y, K2y] =
kalmanf(adaptiveKalman.adaptfilt2y,yscale);
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AdaptiveFilter.xest=0;
AdaptiveFilter.yest=0;
AdaptiveFilter.zest=zeros(size(AdaptiveFilter.static.Hsu,1),1);
AdaptiveFilter.xtrue=0;
AdaptiveFilter._ytrue=0;

end

adaptiveKalman.adaptfilt3x._H
adaptiveKalman.adaptfiltlix.H

adaptiveKalman.adaptfilt2x._x";
adaptiveKalman.adaptfilt3x_.H;

adaptiveKalman.adaptfilt3x.x = temp_x; % TO MAKE AN ESTIMATE FOR THE
SAME TIMESTEP USING THE NEWLY ADAPTED WEIGHTS
adaptiveKalman.adaptfilt3x.z SUrateResp;

adaptiveKalman.adaptfilt3y.H
adaptiveKalman.adaptfiltly.H
adaptiveKalman.adaptfilt3y.x
adaptiveKalman.adaptfilt3y.z

adaptiveKalman.adaptfilt2y.x";
adaptiveKalman.adaptfilt3y.H;
temp_y;

SUrateResp;

[adaptiveKalman.adaptfilt3x, K3x] =
kalmanf(adaptiveKalman.adaptfilt3x,1);

[adaptiveKalman.adaptfilt3y, K3y] =
kalmanf(adaptiveKalman.adaptfilt3y,1);

statex=adaptiveKalman.adaptfilt3x.Xx;
statey=adaptiveKalman._adaptfilt3y.x;

adaptiveKalman.adaptfiltlx.x=adaptiveKalman.adaptfilt3x.x;
adaptiveKalman.adaptfiltly.x=adaptiveKalman.adaptfilt3y.x;

adaptiveKalman.adaptfiltlx_.R=adaptiveKalman._.adaptfilt3x.R;
adaptiveKalman.adaptfiltly._R=adaptiveKalman.adaptfilt3y.R;

AdaptiveFilter._xscale
AdaptiveFilter._yscale

= xscale;

= yscale;

Kall = [K1x; Kly; K3x; K3y];

K2x = 1; K2y = 1; % Temporary place holder for K values
K2xy = [K2x; K2y];
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Appendix B

To investigate the performance of the adaptive algorithm, a set of ten 400 second
long sinusoid signals at frequencies every 0.1 Hz between 0.1 and 1 Hz was sampled at
every 50 ms. A hundred randomized weights were assigned to each sinusoid and the
composite signal obtained by the product of the weight matrix (100 x 10) with the

sinusoid matrix (10 x 12000) was used to optimize the weights of the Kalman filter.

To simulate an effect similar to that observed in Chapter 6 for replacement of
neurons, the order of the sinusoids was randomized and the resulting composite signal on
multiplying the weights was used as the test signal input (measurement matrix z, see
Chapter 3) to the Kalman filter. The adaptive filter showed a monotonic decrease in RMS
errors when compared to a static Kalman filter that used the pre-optimized weight matrix

as seen in the figure below.
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Figure A2.1: Normalized root mean square error (NRMSE) for a 400 second long
composite of sinusoids. NRMSE is shown for the static Kalman (red) and adaptive
Kalman (blue). Errors were computed over a 10 second non-overlapping window. The
static Kalman filter was optimized to the initial order of the sinusoid waveforms. The
order of the sinusoids was randomized at zero seconds in the plot shown above.



