
Marquette University
e-Publications@Marquette

Master's Theses (2009 -) Dissertations, Theses, and Professional Projects

Adaptive Real-Time Decoding of Brain Signals for
Long-Term Control of a Neuro-Prosthetic Device
Tushar Ashok Dharampal
Marquette University

Recommended Citation
Dharampal, Tushar Ashok, "Adaptive Real-Time Decoding of Brain Signals for Long-Term Control of a Neuro-Prosthetic Device"
(2011). Master's Theses (2009 -). Paper 99.
http://epublications.marquette.edu/theses_open/99

http://epublications.marquette.edu
http://epublications.marquette.edu/theses_open
http://epublications.marquette.edu/diss_theses

ADAPTIVE REAL-TIME DECODING OF BRAIN SIGNALS FOR LONG-TERM
CONTROL OF A NEURO-PROSTHETIC DEVICE

by

Tushar Dharampal, B.E.

A Thesis submitted to the Faculty of the Graduate School,
Marquette University,

in Partial Fulfillment of the Requirements for
the Degree of Master of Science

Milwaukee, Wisconsin

August 2011

ABSTRACT
ADAPTIVE REAL-TIME DECODING OF BRAIN SIGNALS FOR LONG-TERM

CONTROL OF A NEURO-PROSTHETIC DEVICE

Tushar Dharampal, B.E.

Marquette University, 2011

Changes in the statistical properties of neural signals recorded at the brain-
machine interface (BMI) pose significant challenges for accurate long-term control of
prostheses interfaced directly with the brain by continuously altering the relationship
between neural responses and desired action. In this thesis, we develop and test an
adaptive decoding algorithm that can recover from changes in the statistical properties of
neural signals within minutes. The adaptive decoding algorithm uses a Kalman filter as
part of a dual-filter design to continuously optimize the relationship between the observed
neural responses and the desired action of the prosthesis. Performance of the algorithm
was evaluated by simulating the encoding of arm movement by neurons in the primary
motor cortex under stationary conditions as well as nonstationary conditions depicting
loss and/or replacement of neurons in the population. The time taken for the system to
fully recover (3-12 minutes) was faster than other adaptive systems (Rotermund et al
2006) and resulted in errors that were well matched to the initial system performance.
The algorithm adapts to the instantaneous properties of the stimulus and is able to decode
movements with high accuracy outside the trained movement space. This implementation
lends itself favorably toward a portable long-term decoding approach at the brain-
machine interface capable of providing accurate real-time decoding of neural signals over
periods of weeks to months without outside intervention.

i

ACKNOWLEDGEMENTS

Tushar Dharampal, B.E.

I would like to thank my parents, my wife Priyanka, my brother and my friends. I

would like to thank my committee and my thesis director, Dr. Scott Beardsley. I would

like to thank the Graduate School and all of the Marquette University administration.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... i

LIST OF TABLES ... iv

LIST OF FIGURES .. v

CHAPTER

 1 INTRODUCTION AND SPECIFIC AIMS………………………………1

 2 BACKGROUND AND SIGNIFICANCE………………………………...3

 2.1 Neuromotor Prostheses……………………………………………3

2.2 Nonstationary Neural Responses………………………………….4

2.3 Improving Neuronal Recordings…………………………………..5

2.4 Neural Decoding…………………………………………………..6

2.5 Adaptive Decoding of Movement…………………………………7

2.6 Adaptive Decoding Algorithms in Literature……………………..8

2.7 Summary…………………………………………………………12

3 NEURON MODEL AND ADAPTIVE FILTER DESIGN……………...14

3.1 Neuronal Model………………………………………………….15

3.2 Compensating for the Effects of Nonstationary Signals at the
Neuronal-Electrode Interface…………………………………….20

3.2.1 Design Specifications…………………………………….21

3.2.2 Implementation…………………………………………..23

4 DECODING PERFORMANCE BEYOND THE TRAINED SPACE
 ……………………………………………………………………………33

4.1 Results ……………………………………………………………35

4.2 Discussion………………………………………………………..38

5 LOSS OF NEURONAL SIGNALS……………………………………...41

5.1 Results ……………………………………………………………43

iii

5.2 Discussion………………………………………………………..45

6 SIMULTANEOUS LOSS AND RECRUITMENT OF
NEURONS…………………………………………………………. ……51

6.1 Results and Discussion…………………………………………..53

7 ATTENTION…………………………………………………………….61

7.1 Attention Modulation…………………………………………….61

7.2 Results and Discussion…………………………………………..63

8 ADAPTATION..68

8.1 Neuronal Adaptation……………………………………………..68

8.2 Adaptive LIF Neurons…………………………………………...69

8.3 Simulation………………………………………………………..70

8.4 Results and Discussion…………………………………………..73

9 DISCUSSION AND CONCLUSION…………………………………...77

9.1 Decoding Beyond the Trained Movement Constraints…………..78

9.2 Nonstationary Conditions………………………………………..79

9.3 Computational Requirements…………………………………….82

9.4 Conclusion……………………………………………………….83

9.5 Future Directions………………………………………………...86

BIBLIOGRAPHY………………………………………………………………………..87

Appendix A………………………………………………………………………………91

Appendix B……………………………………………………………………………..137

iv

LIST OF TABLES

Table 3.1. Modeling nonstationary sources in the simulation.

Table 4.1. Decoding Errors for the Static Kalman filter, Re-optimizing Kalman filter, Re-
optimizing linear filter and the Adaptive Kalman filter as test stimulus
bandwidth is varied.

Table 4.2. Decoding Errors for the Static Kalman filter, Re-optimizing Kalman filter, Re-
optimizing linear filter and the Adaptive Kalman filter as test stimulus
bandwidth is varied.

Table 8.1. Adaptive Leaky Integrate and Fire (LIF) neuron parameters used in the
simulation.

v

LIST OF FIGURES

Figure 3.1. Direction tuning curves for a simulated population of 100 neurons in primary
motor cortex with varying tuning width and response rate.

Figure 3.2. Simulated Leaky Integrate and Fire Neuron

Figure 3.3. Block Diagram of the Adaptive Filter system.

Figure 3.4. Training signal for the adaptive filter system.

Figure 4.1. Normalized root mean square error (NRMSE) in response to changing
test stimulus bandwidth across five simulations (small error bars shown)
for the static Kalman (red), adaptive Kalman (blue), reoptimizing
Kalman (magenta) and reoptimizing linear (green) filters.

Figure 4.2. Normalized root mean square error (NRMSE) in response to changing
stimulus power. NRMSE is shown for the static Kalman (red), adaptive
Kalman (blue), reoptimizing Kalman (magenta) and reoptimizing linear
filters (green) across five simulations (small error bars shown).

Figure 5.1. (A). Effect of 50% neuron loss on non-adaptive decoding performance.
(B). Effect of 50% neuron loss on adaptive algorithm decoding
performance.

Figure 5.2. Normalized root mean square error (NRMSE) in response to an
instantaneous loss of 50% of the neural populations.

Figure 5.3. Population response as a function of movement direction (A) before and
(B) after loss of 50% of the neural population.

Figure 5.4. Change in decoding weights along one (X) dimension over time for (A)
50 unaltered neurons and (B) 50 neurons that were lost from a 100 unit
neuronal population..

Figure 6.1. (A) Effect of 100% neuron replacement on non-adaptive decoding
performance. (B). Effect of 100% neuron replacement on adaptive
algorithm decoding performance.

Figure 6.2. Normalized root mean square error (NRMSE) in response to an
instantaneous replacement of 100% of the neural population.

Figure 6.3. Population response profiles (A) before and (B) after complete
replacement of the neuronal population.

vi

Figure 6.4. Weight changes along the X-dimension for the adaptive decoding filter
for one simulation.

Figure 6.5. Decoding errors for one simulation with complete replacement of a 20-
neuron population at the rate of one neuron per minute.

Figure 7.1. Normalized root mean square error (NRMSE) in response to attentional
modulation of neuron firing rates. NRMSE is shown for the static
Kalman (red), adaptive Kalman (blue), reoptimizing Kalman (magenta)
and reoptimizing linear filters (light blue/green) averaged across 20 loss
simulations. Inset. A 100 second section illustrating the change in error
over each second.

Figure 7.2. Normalized root mean square error (NRMSE) in response to attentional
modulation of the neuronal responses.

Figure 7.3. Frequency spectrum of the normalized root mean square errors
(NRMSE). Peaks of the errors for all filters are seen at 0.2 Hz and 0.4
Hz. Inset (left). Errors at 0.2 Hz. Inset (right). Errors at 0.4 Hz.

Figure 8.1. Adaptive Leaky Integrate and Fire Neuron.

Figure 8.2 Effect of adaptation on the spike activity of a sample neuron.

Figure 8.3. Effect of neuronal adaptation on non-adaptive decoding performance

Figure 8.4. Normalized root mean square error (NRMSE) in response to adaptation
of the neurons to a 1400 second length, 0 – 1 Hz bandlimited white noise
movement stimulus with a RMS power of 1. NRMSE is shown for the
static Kalman (red), adaptive Kalman (blue), reoptimizing Kalman
(magenta) and reoptimizing linear filters (light blue/green) averaged
across 20 simulations.

Figure 8.5. Progression of changes to the individual weights associated with each
neuron for the movement along one (X) dimension for the population of
adaptive neurons.

1

1 INTRODUCTION AND SPECIFIC AIMS

Changes in the statistical properties of neural signals recorded at the brain-

machine interface (BMI) pose significant challenges for accurate long-term control of

prostheses interfaced directly with the brain by continuously altering the relationship

between neural responses and desired action (Schwartz et al, 2006, Rotermund et al,

2006). Prosthesis control algorithms rely on the accuracy of the information carried by

these neural signals and optimally use this information to generate motion of the

prosthesis as desired by the subject. Due to a variety of phenomenon including neuron

loss and/or recruitment, neuroplasticity, and modulation due to attention/adaptation, such

changes may manifest as ‘nonstationary’ signals whose statistical properties (including

mean, variance etc.) are not constant. Such changes impact the accuracy of the prosthesis

control algorithms (also referred to as ‘decoding algorithms’) thus requiring that the

decoding of neural activity be continuously re-optimized.

Current optimization procedures are typically performed intermittently and are

computationally intensive, resulting in degraded performance between sessions. For

algorithms that adapt continuously, recovery can take several hours (Rotermund et al,

2006) or may not be easily realized in a portable implementation with current

technologies (Rotermund et al, 2006, Srinivasan et al, 2007).

While different approaches to neuronal signal loss and/or changes in recorded

neurons over time scales of minutes to days have been investigated both with simulated

neural signals (Rotermund et al, 2006) and physiological recordings (Wu et al, 2008), the

algorithms have not been tested against the effects of neuro-physiological phenomenon

2

that occur over short timescales (seconds to minutes) such as attention modulation of

neuron responses, neuroplasticity, and neuronal adaptation that could also bring about

statistical changes in the neural signals. It is proposed that an adaptive decoding

algorithm that is resistant to changes in the statistical properties of the neural signals

across temporal scales will provide more accurate decoding of intended movement to

actively control prosthetic systems. Therefore the specific aims are:

Aim 1: Identify and characterize the effects of different sources of nonstationarity on

non-adaptive decoding of neuronal signals in a simulated population of neurons.

Aim 2: Design and implement an adaptive decoding algorithm that is resistant to

nonstationary changes in neural signals and validate its performance using simulated

datasets.

Aim 3: Compare the performance of the proposed algorithm against current approaches

and evaluate its potential implementation in a portable system.

3

2 BACKGROUND AND SIGNIFICANCE

2.1 Neuromotor Prostheses

Neuromotor prostheses are a subset of cortical neuroprostheses that replicate lost

limb function for patients with intact cortical areas but disabled motor pathways or end

effectors (Schwartz A. B. 2004). These may include amputees, patients with muscular

dystrophy and paralysis patients. Either invasive (cortical implants) or noninvasive

methods (Electroencephalography recordings) of recording neural data may be used in

such prostheses to establish desired limb movement.

Invasive neuromotor prostheses are made up of three essential components – the

artificial limb (end effector), cortical implant and neuronal decoding system. In an ideal

system, brain signals (single or multi-unit neuron recordings) from the relevant cortical

area (e.g., pre-motor or motor cortex) are collected using the cortical implant and passed

to the decoding system that estimates the intended movement parameters (e.g., velocity,

position) to control the artificial limb based on the recorded neuronal responses (Lebedev

M. A., et al. 2006; Schwartz A. B. 2004; Schwartz A. B., et al. 2006) .

The most commonly used electrode implant is the Utah Array (Maynard E. M., et

al. 1997). The implant contains 100 electrodes placed in a 10x10 grid (on a 4mm x 4mm

surface), with each electrode capable of recording action potentials from 1 – 3 neurons.

Through an invasive procedure, the electrode is placed directly on the surface of the

cerebral cortex in the cortical area considered most relevant to the task. Typically, wires

carrying data to the control system pass from the electrode and transcutaneously through

4

the skull to the control system. The control system is in turn connected to the actuators

that drive the prosthesis. The control system typically consists of a digital microprocessor

based system that runs a mathematical decoding algorithm to map movement-related

activity in the brain to the specific control signals used to drive the prosthesis. Parameters

(coefficients) of the decoding algorithm are trained/optimized over a training session(s)

involving repeated movements within a predetermined training space so that both the

patient and the algorithm learn the space and the use of the limb. Typically, such

coefficients are determined using an error minimization technique (e.g. Least Squares

Minimization) to associate the activity of a recorded neuron with a particular type of limb

movement. Each neuron typically has a higher response to a preferred movement

direction (or set of directions) and increases its activity when the desired limb movement

is in that direction. The learning or optimization technique associates a higher coefficient

with the neuron when the movement is in the neuron’s preferred direction. These

coefficients (weights) are then used by the decoding algorithm to decode intended

movement from the neuronal responses (Hochberg L. R., et al. 2006; Kalaska J. F. 2008;

Schwartz A. B., et al. 2006).

2.2 Nonstationary Neural Responses

For invasive neuromotor prosthesis, the electrode is designed to be implanted for

a prolonged period of time. During long term implantation of the electrode, a number of

different processes can occur at the neuron – electrode interface that can influence the

quality of the signals being recorded. These include biochemical processes (electrode

immunological response), mechanical (movement/migration of electrode) and cognitive

5

processes (attention and adaptation). Each of these processes introduces unwanted

changes in the neuron recordings that impact the statistics of the recorded data. Such

changes are referred to as nonstationary changes or nonstationarities.

In non-adaptive decoding algorithms, the weighting coefficients are optimized to

the statistics of the recorded neuronal ensemble so as to minimize the overall error in the

decoded movement. These weighting coefficients are used to obtain the movement

variables from the encoded neural responses. Any changes in these statistical properties

for a neuron population such as mean and variance result in non-optimal decoding and

create undesired errors in the decoded movement.

2.3 Improving Neuronal Recordings

Coating the electrode with materials that encourage neuron growth or reduce

inflammation at the site of implantation have been developed to improve recording

performance. MEMS (micro-electro-mechanical system) electrodes with changeable

depth and algorithms that position the electrode automatically have been shown to

facilitate neuron recordings. However, the desired recording performance (recording

from an adequate sample of neurons) is not typically sustained for the intended period (at

least two – three years) (Kalaska J. F. 2008; Lebedev M. A., et al. 2006). Due to

biological processes such as death of the neuron cells or dead tissue surrounding the

electrode, the number of suitable recorded units changes over time with neurons dropping

out and being replaced by other neurons. Physical and chemical solutions may alleviate

the errors in performance due to biochemical and mechanical nonstationarities (such as

scar tissue formation or electrode movement) but they do not correct for cognitive

6

processes that are intrinsic to the neuron or neuronal system. Additionally, they may

increase the complexity of the implant procedure and the size of the implant. Finally, a

specific method to deal with each nonstationarity-inducing process may be needed when

such solutions are employed. An algorithmic solution may be easier to implement using

current technology without increasing cost/size of the implant or taxing the implant

procedure. Once programmed, the algorithmic solution would run continuously in the

background, reducing movement error regardless of its source.

2.4 Neural Decoding

The decoding algorithm is a mathematical relationship that relates neuronal

response to the desired movement parameters (e.g. movement velocity or position). It is

based upon neuron responses that are parameterized in the movement space. For the

purposes of decoding, these neuron responses are computed over a small time interval

and are related to the decoding weights established during an initial optimization process.

The decoding weights or coefficients are used by the algorithm to obtain movement

information from the neuron responses (e.g. firing rates).

To obtain movement information from neural recordings, a wide variety of

decoding algorithms such as linear filters, Kalman filters (Wu et al, 2002, 2008; Gage et,

2004, 2005) and Bayesian decoders (Rotermund et al, 2006) among others have been

employed. For e.g, in a Kalman decoding approach, the movement parameters can be

modeled as the Kalman state variables that are estimated by the Kalman filter. The neural

responses can be modeled as the output of the system. An initial optimization process

establishes the decoding coefficients of the filter (Kalman weights). During decoding, the

7

Kalman weights are used by the filter to obtain estimates of the state variables

(movement variables). The Kalman filter does this in a two step process – by making a

prediction of the movement and then correcting its estimate to minimize error (Wu et al,

2002).

2.5 Adaptive Decoding of Movement

 When the source and/or quality of the neurons is affected by any undesirable

biological, physical or biochemical processes (growth of scar tissue, movement of

electrode, etc.) over the long term, the decoding parameters learnt by the algorithm may

no longer be valid. Thus, nonstationary changes in neuronal signals may manifest

themselves in the erroneous prediction of intended movement by the decoding algorithm.

For the algorithm to cope with changes in the statistics of neuronal signals, corresponding

changes to the decoding weights need to be made. This calls for an adaptive algorithm

that updates the weights when it detects the presence of a nonstationary change in the

neuronal signals.

Typically, the decoding system is re-optimized before a decoding session within a

laboratory or clinical environment. To achieve this, the subject with the implant may be

asked to perform a set of pre-determined movements in the training space while the

sampled neuron activity is recorded. Using a mathematical optimization procedure (as

described above), the decoding coefficients are determined to minimize error in the

decoded movement. These optimization procedures are intermittent and computationally

intensive, resulting in degraded performance between sessions and limited portability for

the patients (Rotermund D., et al. 2006) as they have to periodically revisit the

8

laboratories to maintain decoding accuracy. Since the long term goal is for the patient to

be unconstrained by the assistive device, it is important that the adaptive decoding system

be portable (Kalaska J. F. 2008).

2.6 Adaptive Decoding Algorithms in Literature

A number of decoding algorithms have been employed for estimating movement

– these include linear filters (Paninski et al., 2001), neural networks (Wessberg et al,

2000), classifier algorithms (Isaacs et al, 2000), Kalman filter algorithms (Wu et al, 2002,

2008; Gage et, 2004, 2005) and Bayesian decoders (Rotermund D., et al. 2006). Ideally, a

neural decoding algorithm would operate in real-time and be implemented in a portable

system (i.e. with low power, computing and memory requirements). Thus, speed and ease

of computation along with accurate prediction of movement are desired (Kalaska J. F.

2008; Lebedev M. A., et al. 2006; Schwartz A. B., et al. 2006).

Gage et al (Gage et al 2004; 2005) developed a ‘co-adaptive’ decoding filter

based on a Kalman filter design that adjusts to changes in the measured neuronal activity

as rats learn to control an auditory device during an auditory frequency-matching task.

Kalman filter weights were used to decode an auditory signal from the neuronal ensemble

that was matched to a test tone. The subject and the filter were naïve to the task and learnt

how to perform the task over time. A sliding window consisting of ten trials (900 ms)

was used to update the filter weights. Subsequent re-optimization of the weights was

achieved during adaptation, when the Kalman filter weights were intermittently re-

optimized using the past 45 seconds of auditory signal (frequency). Such re-optimization

is contingent on the space in which the errors driving the adaptation are defined and is not

9

easily extrapolated beyond this space. The estimate of auditory frequency made by the

Kalman filter was fed back to the rats and with rewards offered for correct trials, the rats

adopted a strategy to minimize the auditory errors.

While error signals may be derived from brain areas or using external sensors and

localizers, it may not always be possible to obtain errors represented in terms of the

decoded movement parameters. The temporal history used in re-optimizing the system

may place a lower bound on the speed at which the system can recover by requiring that

nonstationary changes in the signal move beyond the re-optimization window (e.g. 45

seconds). Also, the nature of the neuron ensemble encoding the task-relevant information

drives the selection of the time window over which adaptation occurs. For example,

responses from a small population of neurons responding to the task would result in

sparse data and consequently require a longer time window.

Eden et al (Eden et al 2004a; 2004b) have used a point process approach to

construct an adaptive decoding filter wherein the intended movement (two-dimensional

cursor movement on a video monitor) and the tuning of the individual neurons to

movement were simultaneously estimated by the filter. This allowed the filter to learn

and detect changes in the movements preferred by individual neurons thus making the

system more resistant to changes in the response properties of the recorded neurons. They

simulated a nonstationary population of 20 neurons from a set of physiological recordings

in which the neurons ”died” and were subsequently replaced by new neurons at the rate

of one per minute. The algorithm was trained for 20 minutes and allowed to estimate the

tuning parameters of the neurons given the movement signal and the spiking activity of

the neurons. After training the algorithm to obtain the tuning parameters, the algorithm

10

was used to reconstruct movement trajectory for 24 hours with a trial length of 10

seconds during which neurons dropped out of the population and were replaced at the rate

of one every minute. The algorithm was successfully able to estimate the tuning

parameters for movement direction for the novel neurons in the 20 neuron ensemble after

2 hours of decoding. Of the two point process filters, the receptive field parameter

responsible for speed modulation decreased thus degrading the estimate for the speed

over time.

This algorithm employed unsupervised feature extraction learning using two point

process filters in lock step and computed the neuronal parameters as estimates in a novel

approach. With a simulated nonstationary neuronal ensemble constructed from a

population of 20 neurons, the algorithm was able to accurately estimate the movement

direction but not the speed of movement – which may be a limiting factor of the

algorithm.

Rotermund et al. (Rotermund D., et al. 2006) have described a supervised

adaptive system using a Bayesian approach to combat abrupt changes in the sources of

neural signals used to decode movement. An error signal encoding differences between

actual and simulated movement signals (a horizontal figure of eight stimulus) was used as

an external teacher to drive the adaptation. A simulated population of 64 cosine tuned

neurons in motor cortex underwent abrupt complete replacement which drove the

accuracy in the reconstruction low. After a period of several hours (~17), the

reconstruction was able to adapt to the performance level observed before the change

occurred. While Bayesian estimators have been shown to approximate an optimal

solution (Wu W., et al. 2006), the Bayesian approach is computationally intensive since it

11

involves a high number of computations making it difficult to implement in a portable

system.

Srinivasan and colleagues (Srinivasan L., et al. 2007) have developed a general

purpose point–process lock-step adaptive filter based on Eden et al (2004) that refines the

filter parameter estimates over each timestep to compensate for changes in the neuronal-

electrode interface. A population of 25 neurons was simulated for the reconstruction of

movement in an arm reaching task. As with the Eden algorithm, neuron parameters were

estimated along with the movement using an unsupervised feature extraction learning

algorithm. When the population lost one neuron per minute for 10 minutes for a total of

10 neurons, the adaptive system was able to reliably decode the velocity of movement

with 10% error in the estimate.

With a loss of neurons, one might suspect that a loss in accuracy would result (as

was the case with Eden et al) since less information is available to the decoder (with

decoding error increasing in a 1/N2 fashion, N = number of available neurons). Their

framework calls for a parallel processing architecture to be realized as a real-time

decoding solution. With portable approaches, this may not always be possible.

Wu et al (Wu W., et al. 2008) describe an adaptive decoding filter approach that

reoptimizes the decoding weights in a fashion similar to Gage et al. A recursive adaptive

approach to the reoptimization was used to improve efficiency and performance was

evaluated using data recorded from monkeys. Adaptive linear filter and adaptive Kalman

filter implementations were compared with their respective non-adaptive counterparts in

terms of efficiency and accuracy. The adaptive Kalman filter was found to be most

efficient and accurate in decoding the neuronal ensemble.

12

For their experiments, Wu et al decoded two samples of electrical recordings

offline - 33 and 45 minutes in length respectively. The sparse nature of the data

influenced the length of the training stages. The speed of recovery was dependent on

when the nonstationary changes (variation in firing rate of about 50% of the population)

in the signal moved beyond the re-optimization window (between 350 and 500 seconds).

Similar to the Gage algorithm, the adaptive Kalman filter requires explicit error

information in the same dimensions as the movement parameters being estimated. Within

the comparatively small time scale described, average neuron firing rates of about 50 %

of the population varied over time with consistent hand positions thus exhibiting a

nonstationary effect within the population. Loss of neurons may increase the size of the

re-optimizing window because of the increase in sparsity of the data. While rate of

adaptive decoding was better due to the iterative nature of the reoptimization (as opposed

to the approach by Gage), the error levels described for the adaptive and non-adaptive

Kalman filters were 30% MSE and 35% MSE respectively which is higher than

comparable approaches (Srinivasan L., et al. 2007, 5 % MSE error in velocity (m/s)).

2.7 Summary

Accurate control of a neuromotor prosthetic system requires the development of

adaptive decoding algorithms that quickly adapt to changes in properties of the recorded

neural signals and are able to be implemented in a portable system. While other studies

have looked at simultaneous loss and replacement of neurons, the proposed adaptive

system performance was also tested in the presence of neuron loss, adaptation and

attention modulation of neuron responses in addition to neuron replacement.

13

The primary aim of the system proposed here is to develop an adaptive decoding

algorithm capable of compensating for the full range of nonstationary changes in the

neural signals recorded at the brain-machine interface. The adaptive decoding algorithm

proposed here is constrained computationally with the goal of ultimately implementing

the algorithm in real-time in a low power, minimally computationally constrained

microprocessor based environment. Finally, the algorithm is designed to facilitate system

recovery from catastrophic changes in the properties of the neural signals of a time frame

of seconds (as opposed to current algorithms that take minutes to hours (Rotermund et al

2006)).

14

3 NEURON MODEL AND ADAPTIVE FILTER DESIGN

An adaptive decoding algorithm was developed utilizing a Kalman filter

framework to continuously optimize the internal state of the decoding algorithm in

response to changes in the statistical properties of neural signals. In order to evaluate the

resistance of the algorithm to the changes in neural signals typically encountered in a

neuroprosthetic system, a population of spiking neurons was simulated with four different

neuro-physiological effects (loss and replacement of neurons, attention modulation and

adaptation) that together contribute to the recording of nonstationary neural signals at the

brain-machine interface. At each time step, simulated neural signals were input to the

Kalman filter to provide an estimate of the desired movement. The error between the

decoded and desired movement were in turn used to update the Kalman filter weights to

minimize movement error.

The population of spiking neurons in primary motor cortex was simulated to

evaluate the impact of external and physiologic nonstationary changes in the recorded

neural signals on the performance of three decoding algorithms – the proposed adaptive

Kalman filter, a reoptimizing linear filter and a reoptimizing Kalman filter (based on Wu

et al 2008). The performances of these adaptive decoding algorithms were compared to a

non-adaptive static Kalman filter to illustrate the impact of the nonstationary

phenomenon on decoding. Decoding performance was also compared to an optimal

decoding error corresponding to the best case non-adaptive Kalman filter decoding for a

given condition. The movement was setup as a bandlimited white noise signal in two-

dimensions.

15

3.1 Neuronal Model

Figure 3.1: Direction tuning curves for three example neurons in primary motor
cortex with varying tuning width and response rate. Neurons were von Mises tuned
for direction in the 2D task space with responses determined by the difference between
the intended movement direction and each neuron's preferred direction (corresponding to
the peak of each neuron’s tuning response).

To evaluate the algorithm, we constructed a population of 100 leaky-integrate-

and-fire (LIF) neurons in MATLAB© (R2008a) whose spiking responses to movement

where modeled on neurons in motor cortex (Figure 3.1) (Amirikian et al. 2000; Swindale

1998; Moran et al. 1999). In the simulations, neuron responses increased linearly with the

amplitude of movement and were tuned to movement direction using a von Mises

function (Amirikian et al. 2000; Swindale 1998) of the form,

16

ሻࣂሺࢌ ൌ ࢈ ൅ ࣄࢋ࢑ ሻ, (3.1)ࣆିࣂሺܛܗ܋

where μ is the neuron's preferred direction of movement, θ is the intended

movement direction, and κ is related to the tuning half-width at half maximum (θଵ
ଶൗ) by

the expression,

૚ࣂ
૛ൗ ൌ ૚ିܛܗ܋ ቂ൫ܖܔ൫ࢋ૛ࣄା૚൯ିܖܔ ૛ିࣄ൯

ࣄ
ቃ, (3.2)

Preferred directions (μ) were uniformly distributed across the population from 0°

to 360° and θ1/2 was selected from a range of 30° to 89° (Amirikian et al. 2000) for each

neuron. Neuron responses (spikes/sec) were computed over 50 ms intervals (bins),

commonly used in neural electrode recordings (Moran et al. 1999). The maximum

response (k) of each neuron was drawn from a uniform distribution ranging from 10 to 40

spikes/sec (Moran et al. 1999) at a speed of 1, and the background firing rate (b) and

encoding error were set to 10% of the neuron's maximum response. The neuron responses

were linearly tuned to speed such that maximum responses between 20 to 80 spikes/sec

were observed for a speed of 2. For the simulated neural populations, approximately 40%

of neurons responded above background over each 50 ms interval.

The leaky integrate and fire (LIF) neuron model (as shown in Figure 3.2)

approximates the nonlinear spiking behavior of a physiological neuron using a Resistive

– Capacitive (RC) circuit that integrates the somatic current to a preset voltage threshold

voltage Vth (sub-threshold phase) and generates an action potential (spike) after the

somatic voltage crosses the threshold (super-threshold phase). After the formation of the

spike, the model resets for a time period τref (absolute refractory period) before

integrating the somatic current again.

17

Figure 3.2: Simulated Leaky Integrate and Fire Neuron. A resistive-capacitive circuit
simulating a LIF neuron model (based on Eliasmith et al. 2002). Gray area indicates the
super threshold behavior used to generate the action potentials (spikes).

The membrane current ࡹࡶሺ ሶ࢞ ሻ ൌ ሺࢊࡶ ሶ࢞ ሻ ൅ is used to drive the somatic ࢙ࢇ࢏࢈ࡶ

voltage above threshold to generate an action potential, after which the somatic voltage

resets to zero. The membrane current incorporates an input driving current (Jd) that

simulates the dendritic input to the soma which is a function of the input stimulus, x, such

that,

ሺࢊࡶ ሶ࢞ ሻࢊࢋࢊ࢔ࢋ࢚࢔࢏ ൌ ሺࢍࢻ ሶ࢞ ଙࢊࢋࢊ࢔ࢋ࢚࢔ሶ ሻ, (3.3)

where ሶ࢞ ଙࢊࢋࢊ࢔ࢋ࢚࢔ሶ defines the intended movement, α is a parameter that defines the

gain of the driving input, g(ሶ࢞ ଙࢊࢋࢊ࢔ࢋ࢚࢔ሶ) is the encoding function (e.g. von Mises tuning

function) and ሶ࢞ corresponds to the magnitude of the movement variable being ࢊࢋࢊ࢔ࢋ࢚࢔࢏

R C Vm,

Membrane

voltage

Jm, input

current

JR JC

Tref

Spike generator

V = Vth

18

encoded. The input bias current (Jbias) defines the ‘background’ current due to neuron

processes or constant current input from the nervous system.

The differential membrane voltage is given by the equation,

ࢂࢊ
࢚ࢊ ൌ െ

૚
࡯ࡾ࣎ ሺࢂ െ ,ሻࡾࡹࡶ

࡯ࡾ࣎ ൌ ࡯ࡾ

࡯ࡾ࣎ ൌ ࡾ כ is the time constant of the resistive capacitive circuit responsible for ࡯

the sub-threshold properties of the neuron, R represents the leakage resistance across the

cell membrane due to the presence of ion channels C represents the dielectric nature of

the membrane that separates the ionic charges across it.

Once the membrane voltage exceeds the threshold voltage (V ≥ Vth), an action

potential (spike) is generated. Thus, the membrane voltage V for a steady-state input is

given as,

ሺ࢚ሻࢂ ൌ ൫૚ࡾࡹࡶ െ ࢚ିࢋ ⁄࡯ࡾࢀ ൯

Under steady-state conditions, the firing rate is then given by,

ሻࢎሺ࢚࢚ࢇ ൌ
૚

ࢎ࢚࢚ ൅ ࢌࢋ࢘࣎

τ୰ୣ୤ is the absolute refractory time of the neuron which defines the period after the

occurrence of a spike when the somatic voltage is shunted to its resting potential (zero).

19

In the simulations, the number of spikes within a 50ms time bin is counted to

compute the firing rate for each neuron. The firing rate as a function of the encoded

variable for a constant input can be approximated by the expression,

ሺ࢞ሻࢇ ൌ ૚

࡯ࡾ࣎ିࢌࢋ࢘࣎ ࢎ࢚ࡶ ൬૚ିܖܔ
ሺ࢞ሻ൰ࡹࡶ

, (3.4)

where J୲୦ is the threshold current given by J୲୦ ൌ V౪౞
R

 that specifies the threshold

boundary.

The simulations were constructed with a leakage resistance (R) of 1, voltage

threshold (Vth) of 1, neuron refractory periods (τ୰ୣ୤) between 2-5 ms and sub-threshold

RC time constants (τRCሻ between 10-30 ms. Ranges for τ୰ୣ୤ and τRC are based on

neurophysiological data from Moran et al. 1999). A value of 1 was chosen for the leakage

resistance and the threshold voltage for convenience.

A von Mises tuning function allows for variable (especially narrower) tuning

widths, which closely approximate to the observed profiles of motor cortical cells.

Amirikian and Georgopoulos (2000) show that the commonly employed cosine tuning

function (Georgopoulos et al. 1982), which has a fixed tuning width = 90°, is not the

most appropriate model for a majority of motor cortex cells. The von Mises tuning

function is a circular function that approximates a normal distribution over angle and

permits different tuning widths among a population of neurons.

Nonstationarities (undesirable processes that impact the statistical properties of

the neural data) were induced into the neuronal population to simulate chronic implant

effects. The processes were designed to modify the mean and variance of the tuning

20

properties of the simulated neuron population thus influencing decoding performance.

The impact of removing neural signals, recruiting new neurons, neural adaptation, and

attention were simulated to evaluate the performance of the adaptive algorithm. Table 3.1

shows the nonstationary conditions that were simulated along with their effects:

Simulated changes in the neural
representation over time Physical effect

Loss of neurons Encapsulation of the electrode as an
immunological response

Simultaneous loss and recruitment of
neurons Movement of electrode

Increase / decrease in maximum neuronal
responses Modulation by attention

Changes in the tuning properties of neurons Modulation by adaptation

Table 3.1 Modeling nonstationary sources in the simulation. Four nonstationary
processes were simulated to model undesirable changes at the neuron-electrode interface.
Twenty simulations for each ‘nonstationary’ condition were created and the undesirable
effects as well as system recovery were characterized.

3.2 Compensating for the Effects of Nonstationary Signals at the Neuronal-
Electrode Interface

In the system developed here, we applied a supervised learning approach within

the context of Kalman filter architecture to continuously adapt to nonstationary changes

in the neural signals recorded at the brain-machine interface. The algorithm was designed

to facilitate system recovery from catastrophic changes in the neural interface within

minutes while minimizing the computational requirements of the system.

21

3.2.1 Design Specifications

The adaptive decoding system was developed to meet several design criteria –

 Accuracy

 Time to recovery

 Computational cost

 Real-time performance

3.2.1.a. Accuracy

The algorithm is required to produce accurate estimates of the stimulus properties

encoded by the neurons (i.e., velocity) as quantified using a Normalized Root Mean

Square Error (NRMSE) measure. The adaptive algorithm should achieve accuracy levels

that are comparable with current decoding algorithms (0.1 – 0.2 NRMSE) for a stationary

population of 100 neurons.

3.2.1.b. Time to Recovery

The performance of the proposed adaptive decoding system (which is based on a

Kalman filter formulation) was compared to that of an optimal Kalman decoding system,

given by movement decoded using optimal coefficients for the altered neuron population.

Time to recovery for the adaptive filter was defined as the time taken for its decoding

performance to achieve an accuracy level that approaches within 20% of the optimal

decoding, after the appearance of a nonstationary condition. In our simulations,

22

catastrophic nonstationarities were used to replicate worst-case scenarios. The algorithm

was designed to recover to the desired accuracy within minutes after a nonstationary

occurs.

3.2.1.c. Computational Cost

The number of computations for an algorithm is the count of mathematical

operations that the algorithm performs in a single iteration. It negates the effects of

hardware and allows for direct comparisons of performance between algorithms. It also

provides a means of estimating the hardware requirements for implementation of an

algorithm in the face of additional constraints. The number of computations is desired to

be less or equivalent to currently available adaptive schemes described in the literature.

The reoptimizing Kalman algorithm described by Wu et al 2008, for example, requires

the use of a number of discrete random variables with numerous possible values at each

timestep resulting in a computational cost given by O (N3), where N is the size of the

matrices (number of simulated neurons) and O denotes order of the operation. Typically,

the big-O notation describes the order of the largest term in the number of steps required

for computation. Within this document, the big-O notation illustrates the order of matrix

multiplications that dominate the computations. A lower computational cost would make

the algorithm amenable to a portable implementation in a microprocessor based

prosthetic control system.

23

3.2.1.d. Real-time Performance

The algorithm was designed to decode movement variables (such as velocity)

from neural signals (simulated or obtained from the motor cortex). In the rate based

decoding scheme, neuron responses were obtained as firing rates (spikes/sec) over 20-50

ms temporal intervals. The algorithm should be able to decode neural signals in real time

– i.e. within the bin width (50 ms) used for rate-based decoding. A real-time decoding

algorithm would allow the prosthetic control system to provide control signals to the

prosthesis within the movement duration and enable smooth movement.

3.2.2 Implementation

The adaptive decoding algorithm developed to achieve these design criteria is

composed of two parts – a Kalman decoding filter and a corrective filter (Figure 3.3).

3.2.2.a. Kalman Decoding Filter

A Kalman filter was used to decode intended movement based on the firing rates

(spikes/s) obtained from the sampled neural responses. As a linear control system, the

Kalman filter has been well studied in the literature, and is widely used in cases where

accurate estimation of the internal system properties is required from noisy measurements

(Maybeck 1979 – Chapter 1, Welch and Bishop – SIGGRAPH 2001). Moreover, the

Kalman filtering approach is computationally less intensive than other control strategies

and has a standard implementation, making it ideal for decoding neural signals at the

brain-machine interface.

24

Figure 3.3: Block Diagram of the Adaptive Filter system. The adaptive filter system
consists of the adaptive algorithm and the feedback of movement error. This error was
used by the adaptive decoding algorithm to dynamically adjust the Kalman decoding
weights for each neuron. A Kalman decoding filter was then used to estimate the
movement parameters from the motor neuron response input.

In the Kalman filter implementation described here, the neural responses formed

the measurement/observation matrix z while the state variable ሶ࢞ ଙࢊࢋࢊ࢔ࢋ࢚࢔ሶ represented the

velocity of the intended movement [vx; vy],

zi = H* ሶ࢞ N(0,R) (3.5) ك bi, b + ࢏ࢊࢋࢊ࢔ࢋ࢚࢔࢏

 ሶ࢞ *A = ࢏ࢊࢋࢊ࢔ࢋ࢚࢔࢏ ሶ࢞ N(0,Q) (3.6) ك ૚ + wi, wି࢏ࢊࢋࢊ࢔ࢋ࢚࢔࢏

where, for a population of N neurons encoding a p-dimensional stimulus space, A

is the state transition matrix (p x p), that relates the current iteration of the intended

25

movement velocity vector x, to the preceding velocity estimate, and w is Gaussian noise

sampled from a normal distribution N (0, Q), where Q is the process noise covariance (p

x p) estimated during the least squares optimization (Wu et al 2002). H is the

measurement matrix (N x p), that defines the relationship between the neural responses z,

and the estimated movement velocities ܠሶ , for the current time-step, and b is Gaussian

noise sampled from a normal distribution N (0, R), where R is the measurement noise

covariance (N X N) estimated during the least squares optimization.

The Kalman filter employs a two-step prediction-correction computation for

estimating its state variables. In eq. (3.6), a prediction for the state variable, i.e.

movement velocity, at the ith timestep is generated based on the velocity from the

previous (i-1) timestep. This estimate is then corrected for by using the following

relationship,

 ሶ࢞ ሶ࢞ = ࢏ࢊࢋࢊ࢔ࢋ࢚࢔࢏ ࡷ + ૚ି࢏ࢊࢋࢊ࢔ࢋ࢚࢔࢏ ሶ࢞ *(zi - H* ሶ࢞ ૚), (3.7)ି࢏ࢊࢋࢊ࢔ࢋ࢚࢔࢏

where ࡷ ሶ࢞ is the Kalman filter gain that serves to bring the error in the neuron

responses to the domain of the state variables (movement velocities). To facilitate

decoding, the Kalman filter weights (A, H, Q and R) were optimized (as described below

in Equation 3.8) using the firing rates from the population of neurons and the movement

amplitudes.

In the general Kalman formulation, (A, H, Q and R) may be time varying. Here,

for simplicity and so that they can be estimated during the optimization phase, the state,

measurement, and noise matrices were considered to be constant for the static Kalman

26

filter. During an initial optimization phase, the Kalman coefficients (A, H, Q and R) were

optimized for each neuron using a least squares error minimization algorithm as

described in Wu et al (2002). During this optimization process, the relationship that

minimizes the decoding error between the firing rates of the neurons and the movement

variable over the entire length of the training signal was established as described below in

equation 3.8.

A 250 second long band-limited white noise training signal sampled at 1 ms

(Figure 3.4), was used to optimize the Kalman filter weights. The white noise movement

with frequencies within the (0 – 1.5 Hz) range was chosen to span the movement space to

approximate the motion of a prosthetic system. Since the decoding weights were

determined so as to obtain the minimum decoding error over the entire length of the

training signal, choosing a signal that sufficiently samples the space was necessary to

ensure accurate decoded movements throughout the space.

(A)

27

Figure 3.4: (A) X-component and (B) Y-component of the (C) two-dimensional
training signal used to optimize the adaptive filter system. A two dimensional 0 – 1.5
Hz bandlimited white noise signal was used to optimize the decoding weights of the
Kalman filter using a least squares minimization process. The RMS power content of the
training signal was set to 1 for convenience.

(B)

(C)

28

A simulated 100 neuron population was set up using the von Mises neuronal

model described in section 3.1 with maximum response rates between 20 – 80 spikes/sec,

with preferred directions uniformly distributed from 0° to 360°.

The firing rates from this 100-neuron population to the white noise training

stimulus were computed over 50 ms bins and were fed to the least squares minimization

algorithm along with the actual movement amplitudes (in two dimensions), computed as

the average over each 50ms interval for each dimension. The optimization was performed

using the matrix equations detailed in eq. (3.8), which correspond to the least squares

minimization of the Kalman filter prediction-correction equations listed in eq. (3.5 and

3.6).

Signal length N = 250 sec / 50 ms = 5000 bins

A =
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
•⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
•⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
•⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−

−

−

−

−

T

N

N

N

N

T

N

N

N

N

xx
xx

xx
xx

xx
xx

xx
xx inv

1,21,2

1,11,1

1,21,2

1,11,1

1,21,2

1,11,1

,22,2

,12,1

L

L

L

L

L

L

L

L

H =
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
•⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
•⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
•
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ T

N

N

N

N

T

N

N

N

N

xx
xx

xx
xx

xx
xx

zz

zz
inv

,21,2

,11,1

,21,2

,11,1

,21,2

,11,1

.1001,100

,11,1

L

L

L

L

L

L

L

MOM

L

Q =
()1

1,21,2

1,11,1

,22,2

,12,1

1,21,2

1,11,1

,22,2

,12,1

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
•−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
•⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
•−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−

−

−

N

AA
T

N

N

N

N

N

N

N

N

xx
xx

xx
xx

xx
xx

xx
xx

L

L

L

L

L

L

L

L

29

R =
N

HH

T

N

N

N

N

N

N

N

N

xx
xx

zz

zz
xx
xx

zz

zz

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
•−

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

•
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
•−

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

,21,2

,11,1

.1001,100

,11,1

,21,2

,11,1

.1001,100

,11,1

L

L

L

MOM

L

L

L

L

MOM

L

… (3.8)

In the current implementation, the state transition matrix A was given by the

identity matrix since the state variables ሶ࢞ modeling movement [v1, v2] = ࢊࢋࢊ࢔ࢋ࢚࢔࢏

velocities were independent. (When the matrix A was computationally determined during

the training process, it approached a 2x2 Identity matrix.) More generally, however, the

state transition matrix defines the relationships between internal states spanning multiple

dimensions of movement, e.g., position and velocity, and can contain off-diagonal terms.

3.2.2.b. Corrective Filter

When the statistical properties of the signals at the neuronal-electrode interface

change, the Kalman filter weights H are no longer optimized for the sampled neuronal

population resulting in improper estimates of intended movement. Therefore, the weights

themselves must be adjusted to compensate for the alterations in the neural responses,

thereby re-optimizing the decoded movement. The corrective filter achieves this through

the use of an external error source (corresponding to a movement error in the same

dimensions as the decoded variables) to drive the weight correction. In a physically

realized system, the error signal may be derived from external systems that utilize visual

and/or sonic modalities to spatially localize the prosthesis or on error signals decoded

directly from the brain.

30

From equation (3.7), changes in the neural responses, z, must be compensated for

by error-driven changes in the measurement matrix, H, to optimize the mapping between

intended movement ሶ࢞ and neural responses z. Using the current predicted value ,ࢊࢋࢊ࢔ࢋ࢚࢔࢏

of the movement velocities ሶ࢞ and the error signal ሶ࢞ ࢊࢋࢊ࢔ࢋ࢚࢔࢏ e, H can be iteratively

adjusted such that,

 Hi = Hi-1 + η*KH*(zi - Hi-1* ሶ࢞ act) ,

ሶ࢞ act = (ሶ࢞ +ࢊࢋࢊ࢔ࢋ࢚࢔࢏ ሶ࢞ e) , … (3.9)

where Hi is the corrected weight for the current timestep, Hi-1 is the erroneous

weight from the previous timestep, η = 0.2 is a scaling factor determined empirically that

is applied to enable lower weight changes over each iteration and bound the filter

weights. While a faster value of η would help in improving the speed of recovery, a

smaller value could improve decoding accuracy. In order to select the value of η, a

gradient descent algorithm was implemented that modified the scale by ±5% over a 2.5

second non-overlapping window so that error within this window was reduced. The

initial value of η was set to a high value (20). It was observed that the value approached a

0.2 asymptote for these simulations. The scaling factor η does not apply to other adaptive

decoding filters implemented here (reoptimizing Kalman and reoptimizing linear filters

described in Wu et al 2008) since these filters perform a complete reoptimization of their

decoding weights over their 550 second reoptimizing window.

KH is an adaptive mapping of the error between the predicted versus actual neural

responses and therefore carries the dimensions of ሶ࢞ ࢊࢋࢊ࢔ࢋ࢚࢔࢏
T, ሶ࢞ e is the error signal given

31

by the signed difference between the intended (ሶ࢞ act) and predicted (ሶ࢞ i) movements. KH is

obtained over each timestep by computing the Kalman gain factor (Welch and Bishop –

SIGGRAPH 2001) as follows –

KH = PH, i-1*Hi-1
T* inv (Hi-1*PH, i-1*Hi-1

T + R), (3.10)

where PH, i-1 is a measure of the covariance of the estimate of H for each timestep

given by,

PH, i = PH, i-1 - η*KH* ሶ࢞ act* PH, i-1), (3.11)

In Eq. 3.9, the term (ሶ࢞ +ࢊࢋࢊ࢔ࢋ࢚࢔࢏ ሶ࢞ e) represents the actual movement ሶ࢞ act. This term

acts as an external teacher and modulates the changes in H to iteratively minimize the

difference term (zi - Hi-1* ሶ࢞ act), where zi is the altered neural responses in the current time-

step (see Section 2.3), which are compared with the internal estimate of the neural

responses ‘Hi-1* ሶ࢞ act’ to drive iterative changes in H.

The adaptive filter system was tested using stationary as well as nonstationary

responses from simulated neuron populations. A 100-neuron population was simulated in

most cases (unless otherwise specified). Each simulation initialized a new population of

neurons so that algorithm performance could be evaluated independent of neuron bias.

A non-recursive reoptimizing linear filter and a non-recursive reoptimizing

Kalman filter based on (Wu et al. 2008) were constructed with a reoptimizing window of

550 seconds. In addition, an optimal decoder that represented the optimal performance

32

for the altered neuron population was implemented by running the optimization on the

neuron population after the introduction of the nonstationarity.

For each simulation, the decoded movement was obtained for the adaptive

Kalman filter and compared against the movement obtained using the reoptimizing linear

filter, the reoptimizing Kalman filter, the optimal decoder and a non-adaptive static

Kalman filter. Four nonstationary conditions were simulated – loss of neurons,

replacement of neurons, attention modulation and adaptation. The following chapters

discuss each type of nonstationarity separately along with their implementation and

results.

33

4 DECODING PERFORMANCE BEYOND THE
TRAINED SPACE

As described in Chapter 3, an adaptive neural decoding system based on a

Kalman filter design was implemented with an aim to provide accurate decoding in the

presence of nonstationary neural signals. A simulated 100 neuron population was set up

using the von mises neuronal model described in section 3.1 with maximum response

rates between 10 to 40 spikes/sec at a speed of 1, with preferred directions uniformly

distributed from 0° to 360° and no connectivity between the units. Background responses

attributed to noise were limited to 10% of the spiking activity.

An initial training or optimization process was used to establish the decoding

coefficients (weights) of this filter using a two dimensional 0 - 1.5 Hz bandlimited white

noise signal with a RMS power of 1 (see Figure 3.4). In order to provide a reference for

comparison of decoding performance, a ‘static’ or non-adaptive Kalman filter based

decoder was also implemented with the same initial optimized decoding weights as the

adaptive filter. The decoding performance of the adaptive filter was also compared with a

re-optimizing linear filter and a re-optimizing Kalman filter as described by Wu et al

(2008). These adaptive filters were optimized over an initial 550 second time window

after which their decoding performance was tested.

Two types of bandlimited white noise movements (1450 seconds long each) were

chosen to test decoding performance under stationary conditions (i.e. with no

modification of the simulated neural population after optimization) as follows –

34

1. Bandlimited white noise movements with an RMS power of 1, but with differing

frequency bands of 0 - 0.5Hz, 0 - 1Hz, 0 - 1.5Hz, 0 - 2Hz and 0 - 5Hz.

2. Bandlimited white noise movements within a frequency band of 0 - 1 Hz, but with

differing RMS powers of 0.5, 1, 2 and 5.

The RMS power specifies the extent (range) of the motion of the prosthetic

device, while the frequency range illustrates the speed of the motion. During the

optimization process, the subject is asked to perform a series of typical movements while

the filter learns the association of this movement to the neuron responses by assigning

specific weights. This enables the filter to reliably decode similar movement using these

weights when provided with the neuron responses. However, it may or may not be able to

accurately decode beyond its trained (optimized) movement space.

The two sets of test signals in this case were designed to evaluate the performance

of the different filters in decoding motion beyond the range of movements provided

during their optimization phases. This would enable a decoding filter to independently

adapt to the novel movements without requiring the subjects to return to the labs for

significant re-training of the decoding filter.

For this experiment, a neuron population of 100 neurons was constructed as

described earlier in Chapter 3. The training signal was a 250 second two-dimensional 0 -

1.5 Hz bandlimited white noise signal with a RMS power of 1. With this neuron

population, five simulations each were run for a white noise test stimulus of 2000

seconds in length for each of the test signal conditions. Root Mean Square Errors

35

(RMSE) were computed over 10 second windows along the test stimulus length and

normalized to the test amplitude.

4.1 Results

Figure 4.1 shows a comparison of normalized root mean square error (NRMSE)

computed over the last 1450 seconds of the test stimulus for each of the four filters when

the test movement bandwidth was varied in order to allow the reoptimizing filters to

reach their optimal decoding state (after 550 seconds) before the advent of the

nonstationarity. Within the range of optimized movements (0 - 1 Hz and an RMS power

of 1), the decoding accuracy of the filters was good with the adaptive filter errors lowest

(0.171 NRMSE). Low decoding errors for movements characterized from 0 - 0.5 Hz were

obtained for all the decoding filters as shown in Table 4.1. Beyond the ranged of trained

movements, i.e. 0 - 1 Hz, the non-adaptive ‘static’ filter error increased significantly (t (4)

= -39.75, p<0.00001) with frequency range (bandwidth from 1.5-5 Hz). A similar trend

was observed for the re-optimizing linear and re-optimizing Kalman decoding filters with

all three filters approaching ~0.8 NRMSE for movements characterized from 0 - 5 Hz.

36

Figure 4.1: Normalized root mean square error (NRMSE) in response to changing
test stimulus bandwidth across five simulations. NRMSE is shown for the static
Kalman (red), adaptive Kalman (blue), reoptimizing Kalman (magenta) and reoptimizing
linear filters (green). Errors were computed over a 10 second sliding window. Filter
performance was initially optimized for pseudo-random movements with power from 0 -
1 Hz. Decoding performance for the adaptive Kalman filter remained the same beyond
the trained frequencies, while decoding errors rose significantly for the static Kalman,
reoptimizing Kalman and reoptimizing linear filters. Error bars correspond to ±2
Standard Errors and are within the symbols for all four plots

The decoding accuracy of the adaptive decoding filter did not deteriorate to the

extent seen for other decoding filters. The best performance of the adaptive filter

occurred for a stimulus bandwidth of 0 - 1 Hz (NRMSE = 0.171) while it’s maximum

decoding error for the 0 - 5 Hz stimulus (NRMSE = 0.245), is statistically different (t(4)

= -59.41, p<1E-6) but still lower than the other adaptive decoding approaches. The

decoding error for the adaptive filter was the lowest among the four filters for the

frequency ranges tested (Figure 4.1).

37

Test Stimulus
Bandwidth

Mean Normalized Root Mean Square Decoding Errors

Static filter Re-optimizing
Kalman filter

Re-optimizing
Linear filter

Adaptive
Filter

0 - 0.5 Hz 0.203±0.002 0.254±0.003 0.156±0.001 0.177±0.001

0 - 1 Hz 0.275±0.002 0.299±0.003 0.219±0.002 0.171±0.001
0 - 1.5 Hz 0.361±0.002 0.354±0.002 0.305±0.002 0.184±0.001
0 - 2 Hz 0.449±0.003 0.416±0.003 0.387±0.003 0.193±0.001
0 - 5 Hz 0.832±0.003 0.784±0.003 0.82±0.004 0.245±0.001

Table 4.1 Decoding errors for the static Kalman filter, re-optimizing Kalman filter,
re-optimizing linear filter and the adaptive Kalman filter as test stimulus bandwidth
is varied.

Figure 4.2: Normalized root mean square error (NRMSE) in response to changing
stimulus power. NRMSE is shown for the static Kalman (red), adaptive Kalman (blue),
reoptimizing Kalman (magenta) and reoptimizing linear filters (green) computed over the
last 1450 seconds of the test stimulus across five simulations. Errors were computed over
a 10 second window. Filter performance was initially optimized for a white noise signal
(0 – 1.5 Hz) with an RMS power of 1. Decoding performance for the adaptive Kalman
filter across stimulus amplitudes increased for untrained RMS amplitudes (0.5, 2, 5), and

38

the errors were significantly different (RMS = 0.5: t(4)=-53.15, p<1E-6; 2: t(4)=5.74,
p<0.01; 5: t(4)=-16.79, p<1E-4) but still representing the best case decoding for these
RMS amplitudes. Error bars correspond to ±2 Standard Errors and are within the symbols
for all four plots.

As shown in Figure 4.2, decoding accuracy was also compared for the different

decoding filters with varying RMS power for a movement bandwidth of 0 - 1 Hz. The

decoding error for the static filter was at its lowest (NRMSE = 0.275) for the trained

range of movement amplitudes (RMS = 1). At RMS powers of 0.5, 2 and 5 decoding

error was significantly different (RMS = 0.5: t(4)=-79.73, p<1E-6; 2: t(4)=-11.71,

p<0.001; 5: t(4)=-48.5, p<1E-5) and increased as shown in the table below.

Test
Stimulus

RMS power

Mean Normalized Root Mean Square Decoding Errors

Static filter Re-optimizing
Kalman filter

Re-optimizing
Linear filter

Adaptive
Filter

0.5 0.413±0.001 0.35±0.003 0.236±0.002 0.229±0.001
1 0.275±0.002 0.299±0.003 0.219±0.002 0.171±0.001
2 0.307±0.004 0.267±0.002 0.209±0.002 0.163±0.001
5 0.444±0.005 0.249±0.002 0.205±0.002 0.2±0.002

Table 4.2 Decoding errors for the static Kalman filter, re-optimizing Kalman filter,
re-optimizing linear filter and the adaptive Kalman filter as test stimulus RMS
power is varied.

4.2 Discussion

The non-adaptive static Kalman filter and the adaptive filter were provided with

the same initial decoding weights associated with each neuron. However, the adaptive

filter performance was better than the optimized Kalman filter even under the best case

conditions that fall within the bounds of the training signal – bandwidth = 0 - 1 Hz,

movement amplitude RMS power = 1. We attribute this improvement in performance to

the continuous reoptimization of the adaptive filter to the instantaneous statistics of the

39

movement at each time-step. Since the initial optimization process is based on a least

squares minimization approach, the decoding weights associated with each neuron aim to

minimize movement error over the two-dimensional movement space (encompassed by

the training signal shown in Figure 3.3). The adaptive nature of the dual-Kalman

approach allows it to induce slight changes to the individual weights based on the

movement stimulus at each 50 ms timestep. Therefore, we see greater decoding accuracy

than the static filter within the space over which both algorithms were optimized.

For movements that fell outside the statistics of the training stimulus, the static

Kalman filter errors were significantly higher than those for the adaptive decoding

system. For movements beyond the trained bandwidth 0 - 1 Hz, the decoding accuracy of

the re-optimizing linear and the re-optimizing Kalman filters suffered. The re-optimizing

linear filter errors were 39.7%, 76.8% and 275% worse than its trained bandwidth error at

bandwidths of 0-1.5 Hz, 0-2 Hz and 0-5 Hz respectively, while the errors for the re-

optimzing Kalman filter were 18.2%, 38.7% and 161% worse for these bandwidths

respectively. Because the reoptimizing filters rely on a least squares minimization

technique over a long stimulus window (550 seconds) in order to update the decoding

weights, they are not able to update the weights in response to instantaneous variations in

the statistics of the movement stimulus. As a result, decoding errors increased with

increasing bandwidth of the white noise test signal since they are unable to compensate

due to their long adaptive windows.

This result may be significant for deciding the training parameters for a subject

with a prosthetic implant. Typically, the range of amplitudes and bandwidth would be

40

chosen so as to encompass the entire range of movements that would likely be

encountered with the device. This may entail longer training times, larger datasets and

result in more generalized performance for which errors within specific regions of the

movement space are not fully minimized. With the adaptive decoding system, a limited

training signal can be used to initialize the system and subsequently adapt to

instantaneous changes in the mapping between the input and output spaces while

remaining within the range of weights necessary for global optimization.

41

5 LOSS OF NEURONAL SIGNALS

In invasive neuroprosthetic systems, neural signals are collected from the cortex

using an electrode array implant. The aim of the electrode array is to be implanted

without significant degradation in the quality of the neuronal signals recorded over the

long term. However, a number of phenomena can occur that contribute to neuron signal

loss (Lebedev et al. 2006), (Schwartz et al. 2006). Trauma to the neural cells during the

implant procedure, resulting from the shape and size of electrode implant, type of

insulation material used and depth of insertion, may damage the surrounding neural tissue

(Bjornsson et al. 2006), (Polikov et al. 2005).

The region surrounding a chronically implanted electrode may see a rise in

activated microglia clusters (1 – 3 weeks post implantation) and macrophages that engulf

parts of the electrode during Phagocytosis. Glial scar formation is extremely common and

results in the electrode being surrounded by glial tissue that may increase the distance

between the electrode and the neuron population (Polikov et al. 2005). Both glial scar

formation and astrocyte growth (up to 6 – 8 weeks post implantation) may result in

displacement of neural tissue thus contributing to an increase in impedance and

consequently loss of neural signal recordings. In a study of neural tissue response to

chronically implanted electrode arrays, Biran et al. (2005) reported a 40% loss of neurons

surrounding the tissue implant within a period of two weeks post implantation.

To examine the impact of such signal loss on decoding performance, we

simulated an abrupt loss of 50% of the neuron population (as illustrated in Figure 5.1). A

100-neuron population was simulated with the same properties as described in Chapter 4.

42

Six hundred and fifty seconds into the simulation, 50 neurons were removed

instantaneously from the population, simulating a worst-case neuron loss. The loss was

simulated by zeroing out the responses of 50 neurons for all times (t >100 sec.):

௜݁ݐܴܽ ൌ ൜ 0, ݅ א ݊݋݅ݐ݈ܽݑ݌݋݌ ݐݏ݋ܮ
ܴ௜, ݅ א ݐ ݊݋݅ݐ݈ܽݑ݌݋݌ ݄ܷ݀݁݃݊ܽܿ݊ ൐ (5.1) … ݏ100

where Ri is the instantaneous rate response of the ith neuron. Performance for the

static Kalman filter (optimized prior to the loss) before and after nonstationarity is shown

in Fig. 5.1.

(A)

43

(B)

Figure 5.1 Effect of 50% neuron loss on non-adaptive decoding performance. (A):
Decoded movement from a 100 neuron population for a five second long horizontal
‘Figure of 8’ movement. The optimal decoded signal (blue) for the static Kalman filter
closely approximates the desired movement (red) with a 100-neuron population.
Accuracy suffers when half of the population is lost (green). (B): Effect of 50% neuron
loss on adaptive algorithm decoding performance. All decoded signals were low pass
filtered at 5 Hz for visibility (4th order zero-phase Butterworth filter).

5.1 Results

 Decoding accuracy was quantified by computing the root mean square errors

normalized to the RMS power of the test movement stimulus (RMS power = 1 in this

case). Figure 5.2 shows the normalized root mean square errors (NRMSE) averaged

across 20 simulations with a 100 LIF neurons computed over the last 1450 seconds of the

test stimulus.

44

Figure 5.2: Normalized root mean square error (NRMSE) in response to an
instantaneous loss of 50% of the neural populations. NRMSE is shown for the static
Kalman (red), adaptive Kalman (blue), reoptimizing Kalman (magenta) and reoptimizing
linear filters (green) averaged across 20 simulations. Errors were computed over a 10
second non-overlapping window. The shaded regions denote the 95% confidence interval
in the mean NRMSE across simulations. One hundred seconds into the simulation, 50%
of the neuronal population (50 of a 100 neurons) was lost, i.e. no responses were recorded
from these neurons. The final error for the reoptimizing linear filter is the lowest among
the adapting filters. The reoptimizing Kalman filter error recovers within 100 seconds to
the level of the optimal Kalman decoder. The adaptive filter error approaches the optimal
decoding but does not recover to that level (t(198) = 51.02, p<<0.01, t-test).

The adaptive filter had the lowest errors (NRMSE=0.189) under stationary

conditions (i.e., first 650 seconds of the simulation), consistent with the results in Chapter

4 with the test signal at RMS power of 1 and a bandwidth of 0 – 1 Hz. Since the decoding

errors were normalized to the RMS power of the test stimulus, an error of 0.189 signifies

18.9% error in the output movement. The reoptimizing linear filter performed slightly

worse at 0.221 NRMSE.

45

The errors for all decoding filters increased due to the abrupt loss of neurons with

the reoptimizing linear filter error the highest at 0.967 NRMSE. Over time the

repoptimizing linear filter recovered to 0.227 NRMSE after 580 seconds, which is near

its pre-loss level. The reoptimizing Kalman filter error increased to 0.594 NRMSE and

recovered very quickly (within 90 seconds) to the level of the optimal decoder (NRMSE

= 0.345). The adaptive filter error increased at the onset of neuron loss (NRMSE = 0.601)

and recovered to a level of 0.42 NRMSE after 550 seconds.

5.2 Discussion

The adaptive filter represented the best decoding case under stationary conditions.

After the onset of the non-stationarity which increases the decoding error for all decoding

filters, the reoptimizing linear filter slowly recovers (580 seconds) to the lowest decoding

error while the reoptimizing Kalman filter quicklyrecovers its performance to the level of

the optimal decoder. The adaptive filter performance recovered slowly to a better

accuracy after the loss, but did not reach the error level of the optimal decoding.

For any decoding system, loss of neurons translates into a loss of information

available for use in decoding. The initial optimization process is responsible for

determining which neuron firing rates are most useful for decoding the movement

space.The adaptive decoding system is based on a Kalman decoding scheme that attaches

a single optimal decoding weight to each stimulus dimension for each neuron in order to

determine its relative contribution to the overall stimulus. The optimal decoder, with

weights optimized to the residual 50 neurons, provides a benchmark for the best-case

performance of a Kalman filter. The linear filter, on the other hand, employs multiple

46

decoding weights for each stimulus dimension and neuron (20 weights/neuron/dimension

in this case of a one second filter) that are determined during the initial optimization

process. Therefore, the linear filter takes advantage of this history of the neuron

responses that is inherent in its’ decoding scheme to provide a better recovery

performance than the (best-case) optimal Kalman filter. The reoptimizing Kalman does

not have access to this history of neuron responses, but operates over the same 550

second reoptimizing time window to optimize the decoding weights and drive the error of

the decoding post-nonstationarity to approximate to that of the optimal Kalman decoder.

If the lost neurons were to encode a specific region of the space that may have no

(or sparse) representation in the residual 50 neuron population, less information about the

encoded movement stimulus would be available to the decoding algorithm. Since the

decoding algorithm uses the current neuron response in order to estimate movement, this

would increase the error in decoding. However, the remaining neuronal population

adequately sampled the movement space in these simulations. Figure 5.3 (A) shows the

sum of tuning response profiles for the entire population of neurons for a simulation

while Figure 5.3 (B) shows the sum of the tuning profiles for the same neurons after the

loss has occurred. No particular movement direction shows a drop in the firing rates

compared to the rest. This would indicate that the loss impacted all movement directions.

Also, the decoding errors plotted in Figure 5.2 were computed across 20 different

simulations with different neuron populations so that neurons lost would not specifically

encode for a particular movement space.

47

(A)

(B)

Figure 5.3: Population response as a function of movement direction (A) before and
(B) after loss of 50% of the neural population. The shape of the population response as a
whole is fairly uniform for (A) and (B). Thus, the lost neurons did not result in a loss of
direction information from the encoded movement.

48

The reoptimizing Kalman filter approximates to the optimal decoder performance

and does so quicker than expected due to the form of the re-optimization process. The re-

optimizing Kalman filter adjusts its decoding weights at each timestep by minimizing the

error over the preceding 550 second window. The rate of weight modification is directly

related to the overall error in this window. Since we simulated an abrupt catastrophic

nonstationarity that drives the overall error high, the weight reoptimization is influenced

very early in the reoptimizing window and therefore, a quick recovery is observed.

Since less information is available about the encoded movement, the decoding

performance of the adaptive filter is bound to suffer (see Eliasmith et al. 2002 – Chapter

2). The error increases with lower number of neurons available for decoding movement

thus describing an inverse (1/N) relation. It was not expected that the adaptive filter

would be able to recover to the level of its initial decoding performance with a 100

neurons since the information input to the system is reduced. The adaptive filter scheme

is based on a gradient descent that adjusts the Kalman decoding weights by making

instantaneous updates to the weights every 50 ms. The adaptive filter error reduces

systematically after the nonstationarity is registered, however, the speed of recovery is

slow due to the instantaneous properties of the stimulus when the nonstationarity occurs.

As was observed in Chapter 4, the adaptive filter seeks to continuously optimize the

decoding weights to the instantaneous region of the movement space at each 50 ms

timestep. If the nonstationarity occurs at a movement timestep with high decoding error,

the gradient descent scheme can be thrown off its path toward the global error minimum

for the system. However, no such weight change was observed in our simulations. The

adaptive filter acts to drive down the weights associated with the neurons that are lost

49

while preserving the weights of the neurons that are still present in the population as

shown below in Figure 5.4.

(A)

(B)

Figure 5.4: Change in decoding weights along one (X) dimension over time for (A)
50 unaltered neurons and (B) 50 neurons that were lost from a 100 unit neuronal
population. The filter weights for the 50 neurons that were lost see a decrease in the

50

weights associated with them. The adaptive filter retains the weights associated with the
remaining 50 neuron population.

The reoptimizing linear filter has more weights per neuron than the Kalman-based

decoding filters. In order to minimize the error over its 550-second reoptimizing window,

it has to optimize multiple weights associated with each neuron when compared with the

reoptimizing Kalman approach that only uses one weight per neuron. The reoptimizing

linear filter would not benefit from making large weight changes to individual weights

associated with each neuron. It makes incremental changes to each weight for each

neuron at every timstep and therefore, while it is able to recover from its high decoding

error, it takes ~570 seconds to do so as opposed to the ~100 second recovery shown by

the reoptimizing Kalman filter. It shows the largest increase in error due to the

nonstationarity but recovers to a lower error than an optimal decoding of 50 neurons with

a Kalman filter (which is not in agreement with (Wu et al. 2008) whose linear decoding

filters performed worse than comparable Kalman decoding filters).

51

6 SIMULTANEOUS LOSS AND RECRUITMENT
OF NEURONS

The decoding algorithm relies on a set of decoding weights that are specific and

optimized for the subset of the neuron population sampled by the electrode implant. Over

time, movement of the electrode array can result in some neural signals being lost, as the

array moves away from some neurons, and others being newly acquired with potentially

different tuning characteristics to the neurons that were lost. Since the decoding

optimization is specific to the decoded movement parameters and the tuning responses of

the population, such “drift” in the electrode array is computationally similar to changing

the tuning characteristics of the neurons in the sampled subset.

Changes in the shape (tuning characteristics) of recorded neurons have been

observed by (Xindong Liu et al. 1999) and more recently by (Suner et al. 2005). In the

Liu et al study, the stability of neural recordings was characterized over a number of

months. The authors reported that recorded neural activity was unstable up to 4 – 8 weeks

post implantation. While neural activity stabilized after this period, slow changes in the

recordings were omnipresent. The authors provided evidence for electrode movement

through the tissue, which resulted in previously active units being lost. Growth of

connective tissue may have contributed to the movement of the electrode array along the

cortical surface or into deeper layers of the cerebral cortex.

Suner et al (2005) reported similar results in Macaque motor cortex. Over time,

signals within individual recording channels disappeared while channels with low (or no)

signal strength sometimes started recording signals. The shape of the recorded waveforms

52

varied across days for the chronic implants. Over a period of 91 days, action potential

waveforms retained their shape 38% of the time. While this may suggest electrode

movement and/or changes in neuron tuning characteristics, the effects of both are similar

with respect to decoding algorithm performance.

For these simulations, a 100-neuron population was simulated with the same

properties as described in Chapter 4. To simulate simultaneous loss and recruitment

associated with a shift in the electrode array, a population of 100 neurons was abruptly

replaced with a 100 novel neurons. Both the original and the new populations had the

same aggregate response properties (Chapter 3). Figure 6.1 shows an example of the

effect on (static) Kalman filter decoding of replacing the entire population. Since the

weights were optimized to the original population, replacing each neuron with an

‘unknown’ neuron randomized the relative contributions of neurons’ responses,

significantly impairing performance.

(A)

53

(B)

Figure 6.1: Effect of 100% neuron replacement on non-adaptive decoding
performance. (A) Decoded movement from a 100 neuron population for a five second
long horizontal ‘Figure of 8’ movement. The optimal decoded signal (blue) closely
approximates the desired movement (red) with weights optimized for a 100-neuron
population. Following instantaneous replacement of the entire population (green),
accuracy of the decoded movement was poor. The reconstructed signal does not approach
the intended movement in either amplitude or direction. (B): Effect of 100% neuron
replacement on adaptive algorithm decoding performance. All decoded signals were low
pass filtered at 5 Hz for visibility (4th order Butterworth filter).

6.1 Results and Discussion

Figure 6.2 shows the normalized root mean square errors (NRMSE) averaged

across 20 simulations computed over the last 1450 seconds of the test stimulus length.

54

Figure 6.2: Normalized root mean square error (NRMSE) in response to an
instantaneous replacement of 100% of the neural population. NRMSE is shown for
the static Kalman (red), adaptive Kalman (blue), reoptimizing Kalman (magenta) and
reoptimizing linear filters (green) averaged across 20 simulations. Errors were computed
over a 10 second non-overlapping window. The shaded regions denote the 95%
confidence interval across simulations. The entire neuronal population was replaced with
novel neurons 100 seconds into the simulation. The reoptimizing linear filter shows the
lowest errors when compared with the adaptive and the reoptimizing Kalman filters. The
adaptive filter recovers to an error level lower than the reoptimizing Kalman filter. Pre-
nonstationary errors for the adaptive filter are similar to the reoptimizing linear filter but
better than the reoptimizing Kalman filter.

Following the switch in neuronal population characteristics Six hundred and fifty

seconds into the simulation, static Kalman filter errors increased to 1.05 from a pre-

nonstationary error of 0.3. This indicates extremely poor decoding accuracy (error >

100%) of the intended movement. During the initial Kalman filter optimization, the

optimal decoding weight for each neuron was computed. Since the entire population was

replaced, it is unlikely that any of the decoding weights remained optimal with respect to

its newly associated neuron. Hence, a catastrophic increase in error is to be expected.

55

The reoptimizing Kalman filter errors increased to 0.64 and recovered within 50

seconds to 0.36 (NRMSE) which is close to the optimal decoding error (NRMSE=0.32).

The error further decreased to match the optimal decoder performance after the switch in

population moved beyond the 550 second optimizing window. Total replacement of the

neuronal population is an abrupt catastrophic nonstationarity that dominates the overall

movement error within the 550 second optimization window. The filter then corrects for

the large error by making correspondingly large changes to the weights, which is why a

quick recovery to a low error is observed. Once the nonstationarity (at 100 sec) has

completely passed through the reoptimizing window, the system is once again optimal

and therefore behaves exactly like the optimal Kalman decoder.

The adaptive filter error increased to 0.8 immediately after the population

replacement and decreased to the level of the optimal decoder after approximately 500

seconds. The decrease in error was non-monotonic – an initial fast decrease in error to

0.45 after 40 seconds followed by a increase in error to 0.61 NRMSE at 200 seconds,

after which the error decreased systematically to its final value (NRMSE = 0.268) after

980 seconds. Following the population replacement, the rate of weight modification was

large due to the large initial error. The adaptive filter shows a recovery beyond that of the

optimal Kalman decoder, resulting in a NRMSE of 0.25, which is slightly higher than its

pre-nonstationarity error (~NRMSE = 0.2). As seen in Chapter 4, the adaptive filter is

able to make modifications to the weights based on the not just increased error

attributable to nonstationary changes but also that due to the instantaneous properties of

the stimulus, thus resulting in a lower error than the optimal decoder which has a set of

unaltered decoding weights. To investigate the non-monotonic change, the algorithm was

56

tested with a known set of sinusoids and predefined decoding weights. A monotonic

decrease in the RMS error was observed for this test case (see Appendix B).

The reoptimizing linear filter shows the best performance among the adaptive

filters for these simulations. It matches the adaptive filter before the introduction of

nonstationarity (NRMSE = 0.2) and recovers to this level following full replacement of

the population. The nonstationarity itself did not cause a high increase in error; and its

recovery occurred within approximately 200 seconds.

The reoptimizing linear filter has more weights per neuron (and hence more

degrees of freedom) than the Kalman-based decoding filters. In order to minimize the

error over its 550 second reoptimizing window, it has to optimize multiple (20) weights

associated with each neuron when compared with the reoptimizing Kalman approach that

only uses one weight per neuron. However, its decoding performance does not deteriorate

catastrophically. The reoptimization aims to correct the linear decoding weights so as to

minimize the decoding error within its reoptimizing time window (550 seconds) given the

overall distribution of the neuron firing rates in the encoded movement space. The

distribution of firing rates for the initial population is similar to that for the population

that replaced it as shown in Figure 6.3 below. Thus, no large loss in decoding accuracy is

seen for this filter.

57

(A)

(B)

Figure 6.3: Population response profiles (A) before and (B) after complete
replacement of the neuronal population. The shape of the population response profile
is largely uniform. Thus, the new neuron population adequately samples the movement
space and direction information of the encoded movement is retained.

The timecourse for the weight changes for the adaptive decoding filter for one of

the simulations is shown in Figure 6.4. The weight changes are consistent with that

58

expected for going from one 100 neuron population to an entirely new population of

neurons.

Figure 6.4: Weight changes along the X-dimension for the adaptive decoding filter
for one simulation.

The replacement of motor neurons may potentially not be as catastrophic as

neuron loss alone since the encoded stimulus is still represented by the same number of

neurons; therefore the overall information about the stimulus is retained. This affords the

opportunity to the adaptive filter to correct for the presence of the novel neurons by

changing the values of the decoding weights associated with each neuron.

Point process adaptive filters (Eden et al 2004, Srinivasan et al 2007) have been

shown to be resistant to slow changes in neural response properties but it is unclear how

such systems would perform under more extreme conditions. For neuron replacement at a

rate of one per minute, the adaptive filter proposed by Eden and colleagues (Eden et al

59

2004), was able to perform well when reconstructing movement direction from a

population of 20 neurons but was not able to consistently recover speed of movement.

Srinivasan et al 2007 showed similar trends in performance when neurons were replaced

at a rate one per minute. When an equivalent rate of replacement was simulated here,

there was no observable effect on performance using the adaptive Kalman filter (Figure

6.5). This performance is better than that of the proposed point process adaptive filters

described above. Thus, the adaptive Kalman filter is able to recover in the presence of a

catastrophic nonstationary replacement of the population instantaneously and shows good

performance in the presence of a slower real world (Wu et al 2008) neuron replacement.

Before the introduction of the nonstationarity at 100 seconds into the simulation,

the adaptive filter decoding errors are the lowest. The optimal decoding uses the weights

that were optimized for the new 100 neuron population and therefore, represents the best

case Kalman filter error for this new population. After approximately 950 seconds into

the simulation, the adaptive filter errors increase to match the optimal decoding errors

that are the best case error for the new 100 neuron population.

60

Figure 6.5: Decoding errors for one simulation with complete replacement of a 20-
neuron population at the rate of one neuron per minute. One hundred seconds into
the simulation, one neuron was replaced by a novel neuron every minute. The decoding
performance of the adaptive Kalman filter approaches the optimal Kalman decoder after
introduction of the nonstationarity.

61

7 ATTENTION

7.1 Attention Modulation

Attention has been shown to modulate neuron responses in cortical areas

including the primary motor cortex. Johansen-Berg et al (2002) showed differential

activation of primary motor cortex when subjects were asked to count backwards while

performing a movement (button press). The backward counting from a three-digit number

was intended to act as a distractor for the subject thus reducing attention to the movement

task. The experimenters observed decreased responses in the primary motor cortex when

both tasks were performed simultaneously as opposed to the condition when the subjects

performed just the movement task.

Attention has also been shown to modulate the tuning curves of neurons in

primary visual cortex (Chen et al. 2008), visual area V4 (McAdams et al. 1999), parietal

cortex (Quraishi et al. 2007) and motor areas (Binkofski et al. 2002). When attention is

allocated to tasks processed by these areas, changes in the amplitude, tuning width,

background rate and preferred orientation of neuron responses have been reported (see

McAdams et al. 1999). The decoding of movement depends on the neuronal responses

from the given population of neurons. Unaccounted for changes to the neuronal

parameters described above cause a loss of accuracy due to the decoding being no longer

optimized to the attention modulated neuronal responses.

For these simulations, a 100-neuron population was simulated with the same

properties as described in Chapter 4. To examine the effects of attention on decoding

62

performance we modulated the amplitude (i.e. firing rate) of neurons’ responses to

simulate the effects of attention. The instantaneous firing rates of the simulated neurons

were modulated by ±20% (via the driving current Jd), using a shifted sine wave signal

with a period of five seconds scaled to the range [0.8, 1.2], (McAdams et al 1999 report

26% change in neuron response amplitudes brought about by attention).

Figure 7.1: Effect of attention gain modulation of the neuron responses on non-
adaptive decoding performance. A five second long horizontal ‘Figure of 8’ movement
was decoded from 100 neurons responding to movement in a two-dimensional space.
Attention was modeled as a ±20% sinusoidal modulation of neuronal responses with a
period of five seconds. A corresponding increase in decoded velocity values is seen on
the right (with increased attention) and a decrease on the left (when attention is reduced).

Figure 7.1 compares the decoding performance of a non-adaptive optimal filter

with attention modulation of the neuron responses. The filter weights were optimized to

responses from the neurons when no attention modulation was present. Responses for the

first 2.5 seconds were enhanced (i.e. for the right half of the figure of eight). The

increased responses resulted in higher velocity estimates than intended. For the next 2.5

seconds, responses were suppressed (left half) and a corresponding drop in decoded

63

velocity estimates was obtained. It is important to note that since the weights of the filter

were optimized without attentional modulation, a loss in accuracy is seen when attention

is included. In either case, the decoded estimates incorporate higher errors than the

optimal decoding of the velocity from the neural responses.

7.2 Results and Discussion

The normalized root mean square errors (NRMSE) for a simulation containing

100 LIF neurons responding to a 0 - 1 Hz bandlimited white noise movement with a

RMS power of 1 computed over the last 1450 seconds of the test stimulus length are

shown in Figure 7.2.

Figure 7.2: Normalized root mean square error (NRMSE) in response to attentional
modulation of neuron firing rates. NRMSE is shown for the static Kalman (red),
adaptive Kalman (blue), reoptimizing Kalman (magenta) and reoptimizing linear filters
(light blue/green) averaged across 20 loss simulations. Inset: A 100 second section
illustrating the change in error over each second. Since the period of attentional

64

modulation was set to 5 seconds, errors were computed over a 1 second non-overlapping
window to capture the effect of attention on decoding error. The shaded regions illustrate
the 95% confidence in the mean NRMSE across 20 simulations. Attention modulation of
neuron responses began 100 seconds into the simulation. The optimal population
decoding represents the performance of a decoding filter with weights optimized to the
attention modulated responses. The adaptive filter performance is better than both the
reoptimizing Kalman filter and the reoptimizing linear filter.

As shown in Figure 7.3, the errors for all decoding filters show periodicity at 0.2

Hz and 0.4 Hz due to the 5-second long attention modulation. The reoptimizing Kalman

filter and the reoptimizing linear filter have the highest concentration of error at 0.2 Hz

and 0.4 Hz respectively. Adaptive Kalman filter errors also show the periodicity, but the

errors are the lowest of all the adapting filters.

The attentional modulation was initiated six hundred and fifty seconds into the

simulation. Attention modulation does not seem to have as large an effect as the other

nonstationarities. With an instantaneous 50% loss of the population (see Chapter 5), the

adaptive filter errors rose to 0.601 NRMSE while the reoptimizing linear filter errors and

the reoptimizing Kalman filter errors increased to 0.967 and 0.594 NRMSE respectively.

With attentional modulation, the errors were 0.072, 0.352, and 0.379 NRMSE for the

adaptive Kalman, reoptimizing linear filter and the reoptimizing Kalman filters

respectively.

65

Figure 7.3: Frequency spectrum of the normalized root mean square errors
(NRMSE). Peaks of the errors for all filters are seen at 0.2 Hz and 0.4 Hz. Inset (left):
Errors at 0.2 Hz. Inset (right): Errors at 0.4 Hz.

The reoptimizing linear filter suffers a small increase in error from 0.278 to 0.352

NRMSE. The reoptimizing Kalman filter shows an increase in error from 0.288 to 0.379

NRMSE. No discernable recovery for the reoptimizing Kalman and the reoptimizing

linear filter is seen. Both the reoptimizing linear filter and the reoptimizing Kalman filters

66

modify their decoding weights at each timestep by minimizing the error over their

reoptimizing window, which is 550 seconds long for both filters. The rate of weight

modification is directly related to the overall movement error in this window. The

modulation of neural responses due to attention is periodic over 5 seconds which is a

smaller time scale when compared to the window length. Therefore, the attentional

modulation does not drive the error within this 550 second window high enough to

influence the weight reoptimization. The attentional modulation is symmetric (as

illustrated in Fig 7.1 and therefore the net signed error over this window length is small.

This results in an inherent uncertainty that is present and remains the same within each

successive 550 second window. When compared to an instantaneous 50% loss of the

population, since the attention modulation is 20% of the neuronal responses, the effect of

attention is not as catastrophic and more importantly, the reoptimizing filters see a large

error in their reoptimizing window that they try to minimize over successive iterations.

Due to attention modulation, the relation between the rate responses, weights and

stimulus location is no longer constant. Thus, it is difficult for a reoptimizing filter to

adjust to the attention induced neuron reponse changes and no recovery is seen.

The adaptive filter scheme, on the other hand, is based on a gradient descent

scheme that influences the Kalman decoding weights and it makes instantaneous updates

to the weights every 50 ms. This allows the weights to adjust to attention modulations

that occur over longer timescales (e.g., seconds). Therefore, the adaptive filter error trend

reduces after the introduction of attentional modulation. The adaptive filter continuously

reoptimizes its decoding weights to the instantaneous region of the movement space at

each 50 ms timestep (see Chapter 3). Its final error is the lowest of all the decoding filters

67

(as seen in Figure 7.2) and due to its ability to adjust to the instantaneous properties of the

stimulus, it outperforms the optimal decoding filter.

68

8 ADAPTATION

8.1 Neuronal Adaptation

Neurons that are exposed to the same constant or time-varying stimulus over a

period of time adapt to the strength of the stimulus thus resulting in reduced neuron

spiking (Connors et al. 1990). During chronic implantation of an electrode at the brain

machine interface, neuronal adaptation may cause the neuron responses to decrease over

time, effectively changing the tuning characteristics of the neurons. Thus decoding

algorithms optimized with dynamic stimuli may no longer be optimal when faced with

repetitive or slowly time-varying stimuli. Because adaptation produces a change in the

neuron tuning characteristics (e.g. firing rate), the decoding performance of a non-

adaptive linear decoder would be inaccurate.

Spike frequency adaptation, commonly seen in ‘regular-spiking’ neurons

(Connors et al. 1990) defines the adaptive behavior of the neuron once a spike is

generated. In these neurons, after-hyperpolarization causes an increase in the membrane

conductance following each action potential. This causes an increased difference between

the threshold voltage and the resting potential thus increasing the time to reach threshold

and generate a subsequent spike. Thus a drop in the spiking frequency (firing rate in

spikes/sec) of the neuron is seen when constant stimuli are presented over a period of 50

– 600 ms.

69

8.2 Adaptive LIF Neurons

The properties of neuronal adaptation can be approximated using an Adaptive

Leaky Integrate and Fire (Adaptive LIF) neuron model (Eliasmith et al. 2002; Koch

1998). In the adaptive LIF neuron, a voltage dependant resistance is added to the normal

LIF neuron, which acts to increase the interval between successive action potentials.

Because this variable resistance is in parallel with the resistive – capacitive circuit of the

LIF model (Figure 8.1), it reduces the current available to the capacitor to integrate to the

threshold voltage Vth.

Figure 8.1: Adaptive Leaky Integrate and Fire Neuron. The resistive-capacitive
circuit of the LIF neuron model, is placed in parallel with a variable shunt resistance,
Radapt, whose value varies dynamically in response to a stimulus in the neuron’s preferred
direction that excites an action potential (Koch 1999; Eliasmith et al. 2002).

R C Vm,

Membrane

voltage

Jm, input

current

JR JC

Tref

Spike generator

V = Vth
JRadapt

Tadapt

Radapt

(variable)

70

The variation of the adaptive neuron resistance Radapt is described as follows. On

the occurrence of an action potential (spike), Radapt is decreased by a fixed value Rdec, i.e.

࢚࢖ࢇࢊࢇࡾ ൌ ࢚࢖ࢇࢊࢇࡾ െ ࢉࢋࢊࡾ

When there is no input (or no spike is generated), Radapt increases exponentially

towards its resting state, i.e.

࢚࢖ࢇࢊࢇࡾ ൌ ࢚࢖ࢇࢊࢇࡾ ൅ ,࢚࢖ࢇࢊࢇࡾࢊ

࢚࢖ࢇࢊࢇࡾࢊ

࢚ࢊ
ൌ ࢚࢖ࢇࢊࢇࡾ

࢚࢖ࢇࢊࢇ࣎
 … (7.1)

In Chapter 3 (equation (3.4)), we saw that the value of the threshold current Jth is

set by the leakage resistance R. For an adaptive LIF neuron, this resistance is in parallel

with the adaptive resistance Radapt; therefore a change in Radapt produces a change in the

RC time constant of the neuron thus impacting its ability to produce spikes at its

maximum response even when it encodes stimulus at its preferred direction.

8.3 Simulation

A 100-neuron population was simulated with the same properties as described in

Chapter 4 to investigate the effects of adaptation on the decoding accuracy. The decoding

of movement through a linear filter is directly related to the optimized weights and the

neural responses encoding that movement. The rates for the static Kalman decoding filter

were optimized for non-adapting neurons. The reduction in neuronal responses with

adaptation, can reduce the effective gain of the decoded response. This effect can be seen

71

in Figure 8.3 (green). For the decoded movement shown, the parameters were set as

shown in Table 8.1 below:

Simulation parameter Symbol Value

Adaptive Resistance 20 ࢚࢖ࢇࢊࢇࡾ

Time constant for adaptation ࣎600 – 50 ࢚࢖ࢇࢊࢇ ms

Drop in resistance due to spiking 5 ࢉࢋࢊࡾ

Table 8.1 Adaptive Leaky Integrate and Fire (LIF) neuron parameters used in the
simulation. The resistance ࢉࢋࢊࡾcontributes to the adaptive response of the neuron when
encoding the stimulus at its preferred direction. The adaptive resistance and time constant
control the rate of recovery of the neuron from its adaptive response to its resting state.

The time constant for adaptation is described by Liu and Wang (Liu et al. 2001) to

be within the range 50 – 600 ms. Since the value of leakage resistance (in Chapter 3) is

set to 1, Radapt is set to a comparatively high value (20) for the simulation and the drop

in resistance is set to five to produce a noticeable change due to adaptation. These values

were chosen so as to see a significant change in the neuron responses due to adaptation

(as illustrated below in Figure 8.2) within the time course that was chosen for the

simulations.

72

Figure 8.2: Effect of adaptation on the spike activity of a sample neuron. The firing
rate of a neuron with a maximum firing rate of 80 spikes/sec at its preferred stimulus
direction decreases when this preferred direction is present in the movement signal over a
period of 3 seconds.

Figure 8.3 Effect of neuronal adaptation on non-adaptive decoding performance. A
five second long horizontal ‘Figure of eight’ movement was decoded from 100 neurons
responding to movement in a two-dimensional space. A loss in decoding accuracy was

Before Adaptation

73

seen with neurons adapting to the movement signal (green) as compared to decoding
before adaptation (blue). Decoded signals were low-pass filtered at 5 Hz (4th order
Butterworth filter).

8.4 Results and Discussion

The normalized root mean square errors (NRMSE) for a simulation containing

100 LIF neuron responding to a 0 - 1 Hz bandlimited white noise movement with a RMS

power of 1 computed over the last 1450 seconds of the test stimulus length are shown in

Figure 8.4.

Figure 8.4: Normalized root mean square error (NRMSE) in response to adaptation
of the neurons to a bandlimited white noise stimulus with a RMS power of 1.
NRMSE is shown for the static Kalman (red), adaptive Kalman (blue), reoptimizing
Kalman (magenta) and reoptimizing linear filters (light blue/green) averaged across 20
simulations. Optimal filter errors were exactly the same as the static Kalman errors and
not shown here for clarity. Errors were computed over a 10 second non-overlapping

74

window. The shaded regions illustrate the 95% confidence in the mean NRMSE across
20 simulations. One hundred seconds into the simulation all neurons began adapting to
the movement stimulus.

Neuron adaptation was introduced six hundred and fifty seconds into the

simulation by setting Radapt to a nonzero value. The static Kalman filter suffers an

increase in error from 0.277 to 0.437 NRMSE. As described in Chapter 3, in the Kalman

filter, the movement is decoded via the internal state variables using the product of the

neural firing rates with its optimized Kalman coefficients. During adaptation, neural

firing rates drop, such that the decoding weights are no longer optimal. This in turn

results in decreased amplitude of the decoded movement.

The reoptimizing Kalman filter approaches the same level of error as the static

Kalman filter following the onset of adaptation, but recovers to 0.247 NRMSE after 650

seconds. The effect of adaptation of the neural responses is not as catastrophic as the loss

of 50% of the population. As seen in Chapter 5, an instantaneous loss of 50% of the

population causes the decoding error to increase by approximately 200% while the

change seen here is approximately 50%. The rate of change of the weights depends on

the decoding error seen by the filter. Therefore, the rate of modification of the weights is

comparatively slower and we see a slower recovery in the case of neuronal adaptation.

The reoptimizing linear filter, on the other hand, starts with a low pre-

nonstationarity error of 0.210 NRMSE that increases to 0.329 NRMSE with the

introduction of adaptation and recovers to pre-adaptation levels at 0.215 NRMSE after

650 seconds. The reoptimizing linear filter has more weights per neuron than the

Kalman-based decoding filters. In order to minimize the error over its 550 second

reoptimizing window, it has to optimize multiple weights associated with each neuron. It

75

is able to combat the effects of adaptation because it has more (20) weights optimized to

each neuron. The effect of the slow change in the neuronal response due to adaptation is

tempered by the multiple weights associated with that neuron since the estimated

movement is a matrix product of the weights and the neuron response. This has an

averaging effect on the computation of the predicted movement and thus, it shows low

overall error when compared to the other filters. It reaches its optimal error about 650

seconds into the simulation (like the reoptimizing Kalman) at which point its weights are

optimized to the adaptive responses.

Figure 8.5: Progression of changes to the individual weights associated with each
neuron for the movement along one (X) dimension for the population of adaptive
neurons.

The adaptive filter has a pre-nonstationarity error at 0.268 NRMSE and is

resistant to the effects of neuronal adaptation and ends up at 0.26 NRMSE. The adaptive

filter optimizes its weights over each 50 ms time step and to the instantaneous properties

of the test stimulus and the neuronal responses. The adaptation effects modeled here had

76

a time scale of between 50 to 600 ms, as discussed earlier. Compared to a sudden loss of

50% of the population or replacement of the entire population over 50 ms, the effects of

the adaptation are not as drastic. The filter weights for the adaptive neurons see a small

decrease in the weights associated with them as shown in Figure 8.5.

Compared to the loss of neurons scenario, the adaptation does not impact the loss

of space being sampled (i.e. retains the same tuning widths), only the amplitudes of the

responses that the neurons generate. The adaptive filter operates over each 50 ms time bin

to change its weights to counter this small effect on the amplitudes brought about by

adaptation and thus, is able to maintain its level of optimal error. Thus, the errors for the

reoptimizing linear filter are the lowest among the adapting filters and the performance of

the adaptive filter is not affected by the neuronal adaptation.

77

9 DISCUSSION AND CONCLUSION

This thesis presents an adaptive neural decoding system based on a Kalman filter

that was designed to be resistant to the occurrence of nonstationary neural signals. Filter

decoding performance was compared to a non-adaptive system and several alternative

adaptive decoding algorithms (reoptimizing linear filter and reoptimizing Kalman filter),

proposed in the literature.

The algorithm was implemented using simulated motor cortical neurons encoding

intended movement velocity. The decoded movement and therefore the performance

(NRMS errors) was described within the velocity space. Other approaches (Wu et al

2008) estimated movement from neuron responses as decoded velocity as well as

position. If intended position were to be included in the simulations here, it would not

impact the accuracy of velocity decoding as long as the number of neurons encoding for

velocity is retained. The decoded velocity information could be used toward estimating

intended position more accurately, potentially reducing errors in decoded position.

The white noise signals used for training the algorithms and for testing the

decoding performance were bandlimited to approximate the range of limb movement

frequencies (0 - 1.5Hz). In a real world scenario, the intended movement would likely not

have a uniform power distributed along all frequencies. A single bandlimited signal was

used here since it provides the most generalization across the space of possible

movements. We have shown the proposed algorithm to be resistant to changes in the

movement bandwidth (Chapter 4), therefore, its performance would be retained under

real world conditions.

78

9.1 Decoding Beyond the Trained Movement Constraints

The adaptive filter performance was the best among all the filters implemented

under the trained RMS power (of 1) and bandwidth constraints (0 – 1.5 Hz) of the

optimizing signal. Also, although the performance of the adaptive filter was significantly

different (t-test for bandwidth 0-5 Hz, t(4) = -59.41, p<1E-6) when the frequency range

of decoded movements exceeded the optimized bandwidth, it represented the lowest

decoding errors. For decoding movements beyond the adaptive filter’s trained RMS

power, decoding accuracy remained high. This performance was better than comparable

adaptive algorithms such as the reoptimizing linear filter and reoptimizing Kalman filter

(both described in Wu. et al 2008). The decoding accuracy for the adaptive Kalman filter

was the highest for the RMS power variations of 0.5, 1, 2 and 5 in the test signal. For the

BW changes, the adaptive Kalman filter had the lowest decoding errors for the test

bandwidths of 0-1Hz, 0-1.5Hz, 0-2Hz and 0-5Hz. The reoptimizing linear filter had the

best decoding accuracy for the test bandwidth of 0 -0.5Hz.

In order to achieve low decoding errors in the case of a non-adaptive system, it

would be necessary to perform the initial optimization of the weights using all possible

movements with a wide range of frequencies and amplitudes. This would result in a

longer duration for the training sessions and greater inconvenience to the subjects. Even

with sufficient training, as seen during our simulations, the static filter decoding accuracy

may suffer when compared that of the adaptive filter since it is unable to optimize to the

instantaneous stimulus properties such as current amplitude and frequency of the

movement (velocity).

79

9.2 Nonstationary Conditions

The simulation results for the nonstationary conditions show that the adaptive

decoding filter is capable of recovering from catastrophic changes in the neural signals to

maintain accurate decoding of the intended movement. With some approaches, full

recovery to events such as neuron replacement can require hours (Rotermund et al 2006).

The time taken for recovery was 12 minutes for a 50% loss of neural signals and 3

minutes for full replacement of neural signals.

For catastrophic nonstationary changes such as loss of 50% of the neurons and

replacement of 100% of the neuron population, the reoptimizing Kalman and the

reoptimizing linear filters show better decoding accuracy and faster recovery than the

proposed adaptive Kalman filter. Since these adaptive systems depend on minimizing

error in their reoptimizing window (550 seconds), their rate of recovery for a large error

change is better than the proposed adaptive filter. These adaptive approaches are better

suited to catastrophic nonstationary effects such as loss and replacement of neurons since

they are more sensitive to the large error that is produced.

However, for nonstationarities such as attention modulation and adaptation, the

induced error at each timestep is small. The time scale of the induced changes (~ 5

seconds for attention and 50-600 ms for adaptation) allows the adaptive Kalman filter to

modify its weights over each iteration to combat the nonstationary effects. This allows

the gradient descent approach of the adaptive Kalman algorithm to make changes to the

weights over each successive iteration and combat the increased error. The adaptive

Kalman filter decoding is resistant to both these nonstationarities and no increase in error

80

is observed. For the reoptimizing Kalman filter and the reoptimizing linear filters, the

timescale of these nonstationarities is smaller than their reoptimizing window of 550

seconds. Those approaches make a change to the weights to reduce the error over a 550

second window and therefore, they are not able to achieve optimal decoding. The

proposed adaptive Kalman filter is thus better suited to combating nonstationarities of

attention and adaptation of neurons.

Gage et al. (2005) have previously proposed an adaptive Kalman filtering

approach that is similar to the reoptimizing Kalman filter approach outlined here. The key

difference between the two approaches lies in the method for re-optimization (windowed

vs. instantaneous) and the requirements on the type of error signal used by the system. In

the adaptive Kalman filter developed by Gage and colleagues, the system is intermittently

re-optimized using the standard least-square optimization over a sliding temporal

window. The temporal history used in re-optimizing the system places a lower bound on

the speed at which the system can recover by requiring that nonstationary changes in the

signal move beyond the re-optimization window. However, it was observed in that study

that the reoptimizing filters had error trends that did not conform to this idea (the

reoptimizing Kalman filter recovered ~100 seconds for a loss of 50% of the population).

The total error over the window that a reoptimizing filter tries to minimize determines the

rate of change of its weights. Higher error results in faster changes and thus faster

recovery to the minimum error. For catastrophic changes (neuron loss, replacement) that

induce a high error into this window, a quicker recovery is therefore observed.

Point process adaptive filters (Eden et al 2004a, 2004b; Srinivasan et al 2007)

have been shown to be resistant to slow changes in the neural response properties but it is

81

unclear how such systems would perform under more extreme conditions. For neuron

replacement at a rate of one per minute, the adaptive filter proposed by Eden and

colleagues (2005), was able to reconstruct movement direction from a population of 20

neurons but was not able to consistently recover speed of movement. Srinivasan et al

(2007) showed similar trends in performance when neurons were replaced at a rate one

per minute. When an equivalent rate of replacement was simulated here, there was no

observable effect on performance using the adaptive filter proposed here (see Chapter 6).

Use of least-squares optimization for obtaining the decoding weights also requires

that the error signals be explicitly represented in units that define the movement space.

Such information is generally not available outside of a laboratory setting posing

challenges for real-world implementation. Error information could likely be extracted

from other cortical areas and neural populations, although the same issues inherent in

decoding non-stationary signals would affect the decoded estimates of error.

The adaptive decoding algorithm described here uses a gradient descent scheme

to update its weights. With this type of system it is possible to use more reliable

“qualitative” measures of error (e.g., signed/direction of error, relative error, quantized

‘levels’ error) to guide weight changes along with a gain adjustment to optimize the

speed of convergence based on the type of error information available. Thus, having an

exact error signal is not an explicit requirement of the adaptive decoding algorithm

described here. Future work will examine the ability of the system to adapt using more

generalized error signals that do not explicitly encode error within the movement space.

82

9.3 Computational Requirements

In conjunction with good performance, the practical application of adaptive

decoding systems will ultimately require their implementation in a portable system.

Current adaptive algorithms have shown considerable promise for the reliable decoding

of neural signals at the brain machine interface; however, they often have high

computational demands (Rotermund et al 2006, Srinivasan et al, 2007) that may not be

suited to a portable implementation.

For the initial optimization, the computational cost associated with the Kalman-

based decoders is given by O (N3), where N is the size of the matrices and O denotes

order of the operation. The cost is due to the estimation of the decoding weights during

the least squares optimization process using matrix sizes of

 NxN (100 x 100), N is the number of neurons in the population

 NxNt (100 x 5000), Nt is the number of 50 ms bins in the 250 second

movement stimulus

Since N denotes the number of neurons in the population, the least squares

optimization process yields a (N x N x N) size matrix multiplication operation that

dominates the order O of operations. The number of steps required for these

computations, would therefore, be dominated by a N3 term. The big-O notation for these

operations, by definition, would be given by O (N3).

While the computational cost for the linear filter would also be given by O (N3),

since it requires 20 additional decoding weights, its cost is 20 times higher than a Kalman

83

based approach. This is not relevant in a computational system such as a desktop

computer, but for a portable implementation with more limited computational resources,

this could potentially impact real-time implementation. Since it reoptimizes at each

timestep using an optimization technique over a 550 second time window, the filter

carries a high computational cost during each operation (NxNtx20) (100 x 11000 x 20)

at each iteration (11000 neuron response bins of 50ms each in a 550 second window).

Since the reoptimizing Kalman filter uses a window of length 550 seconds as well, the

computational cost associated with it operating at each timestep is given by (NxNt)

(100 x 11000).

The adaptive Kalman filter proposed here requires information only from the

previous timestep to obtain the current estimate. After its initial optimization, the

computational cost per iteration is given by (N x N x N) for estimation of the corrected

decoding weight (see eq (3.8) and (3.9)). Thus, the maximum cost for a hundred neuron

population would be (100 x 100 x 100). Thus, it has lower computational requirements

that make it amenable to a portable implementation with current technology.

9.4 Conclusion

The aim of the project was to identify the sources of nonstationarity associated

with prostheses during the long term and create an algorithm that would combat any

errors in decoding attributable to these sources. In addition, the alogirthm was compared

to other approaches in literature in terms of decoding accuracy and recovery time.

84

The proposed adaptive filter was able to reliably decode movement outside the

movement attributes such as movement range and speed that it was trained over. Its

performance was better than comparable approaches and thus, the algorithm can be

employed for decoding under non-stationary conditions without requiring frequent and

cumbersome retraining.

For catastrophic nonstationary effects such as loss of 50% of the population and

replacement of the entire population of sampled neurons, the filter recovery was slower

and did not recover to an optimal error when compared to other proposed approaches

such as the reoptimizing linear and Kalman filters. The catastrophic effects were

simulated as a worst case. When the rate of the impact of the nonstationarity was lessened

(for e.g. 1 neuron replaced per minute), the adaptive filter was able to retain its decoding

performance and approached an optimal error within 50 ms of the impact.

The filter recovered its performance for nonstationary changes that are not as

drastic, such as attention and adaptation and results were comparable to other approaches

or better. The smaller timescale over which these nonstationarities occur allow the filter

to recover to a lower error in its decoding.

This would suggest that in addition to a very good performance under stationary

conditions, the adaptive filter would be able to combat slow replacement, attention and

adaptation in a practical implementation. The filter was evaluated to meet certain design

criteria to achieve such an implementation:

85

• Real-time performance

As per the requirements, the algorithm was able to decode neuron response rates

computed over 50 ms time bins and provide movement estimates over each bin.

• Accuracy

The algorithm reached the specified accuracy levels of 10-20% while decoding

movement stimuli using a stationary population of neurons. After nonstationary

impact, the algorithm was able to recover to decode with better accuracy than

comparable approaches for Attention (21.7%) and Adaptation (24.7%) while

worse for Loss (18.9%) and Replacement (25%).

• Time to recovery

The algorithm had a quicker time to recovery for nonstationarities such as

Attention (130 seconds) and Adaptation (110 seconds), while for catastrophic

nonstationarities such as Loss (550 seconds) and Replacement of neurons (980

seconds), the time to recovery was much slower than comparable approaches.

• Number of computations

The computations required by the proposed algorithm for adaptive decoding

resulted in a computational cost of (100 x 100 x 100) or O (N3), which is less than

comparable approaches such as the reoptimizing Kalman filter by a factor of 110

and the linear filter by a factor of 110x20 = 2200. This is more relevant in

portable implementations due to limited computational power and thus the

86

proposed algorithm is amenable to a portable implantation than comparable

approaches.

9.5 Future Directions

A future implementation of this algorithm would be realized in an embedded

system producing the control signals for limb prostheses. Furture steps would include

identifying the specifications of such as computational system, and creating a prototype

implementation. Since the prototyping language used here in this case is MATLAB,

implementing the algorithm in a faster compiled environment (C, embedded C) would

lend itself well to a real-time portable implementation.

Also, the reliance on the absolute error signal used by the algorithm to adapt to

the nonstationarity could be investigated. An error signal analogue that carries direction

and not amplitude information could be potentially employed. The sources of movement

error that can be tapped into in order to get the desired error signal could also be

investigated.

87

BIBLIOGRAPHY

Amirikian B, Georgopoulos AP. Directional tuning profiles of motor cortical cells.
Neurosci Res. 2000;36:73-79.

Biran, R., Martin, D.C., and Tresco, P.A. (2005). Neuronal cell loss accompanies the
brain tissue response to chronically implanted silicon microelectrode arrays. Exp.
Neurol. 195, 115–126.

Bjornsson CS, Smith KL, Lin G, Abdul-Karim MA, LeBlanc D, Turner JN, Roysam B,
Shain W. Damage to the neurovascular unit during prosthetic device insertion:
vascular casting and quantitative analysis, 35th Annual Meeting of Society for
Neuroscience, Washington, DC, 2005

Connors BW, Gutnick MJ. Intrinsic firing patterns of diverse neocortical neurons. Trends
Neurosci. 1990 Mar;13(3):99-104.

Chen Y, Martinez-Conde S, Macknik SL, Bereshpolova Y, Swadlow HA, Alonso JM.
Task difficulty modulates the activity of specific neuronal populations in primary
visual cortex. Nat Neurosci. 2008 Aug;11(8):974-82. Epub 2008.

Eden U, Truccolo W, Fellows M, Donoghue J, Brown E. Reconstruction of hand
movement trajectories from a dynamic ensemble of spiking motor cortical neurons.
Conf Proc IEEE Eng Med Biol Soc. 2004;6:4017-4020.

Eden UT, Frank LM, Barbieri R, Solo V, Brown EN. Dynamic analysis of neural
encoding by point process adaptive filtering. Neural Comput. 2004 May;16(5):971-
98

Eliasmith C, Anderson CH. Neural Engineering: Computation, Representation, and
Dynamics in Neurobiological Systems. The MIT Press; 2002.

Gage, G.J.; Otto, K.J.; Ludwig, K.A.; Kipke, D.R. , Co-adaptive Kalman filtering in a
naive rat cortical control task, Engineering in Medicine and Biology Society, 2004.
IEMBS '04. 26th Annual International Conference of the IEEE , vol.2, no.,
pp.4367-4370

88

Gage GJ, Ludwig KA, Otto KJ, Ionides EL, Kipke DR. Naive coadaptive cortical control.
J Neural Eng. 2005;2:52-63.

Hochberg LR, Serruya MD, Friehs GM, et al. Neuronal ensemble control of prosthetic
devices by a human with tetraplegia. Nature. 2006;442:164-171.

Issacs RE, Weber DJ, Schwartz AB, Work toward realtime control of a cortical neural
prosthesis, IEEE Trans. On Rehab. Eng. 8, pp 196-198, 2000

Johansen-Berg H, Matthews PM, Attention to movement modulates activity in sensori-
motor areas, including primary motor cortex. Exp Brain Res. 2002 Jan;142(1):13-
24. Epub 2001 Nov 13.

Kalaska JF, Neuroscience: Brain control of a helping hand, Nature 453, 994-995 (19 June
2008)

Lebedev MA, Nicolelis MAL, Brain-machine interfaces: past, present and future, Trends
in Neurosciences, Volume 29, Issue 9, September 2006, Pages 536-546

Liu YH, Wang XJ. Spike-frequency adaptation of a generalized leaky integrate-and-fire
model neuron. J Comput Neurosci. 2001 Jan-Feb;10(1):25-45.

Maybeck PS. Stochastic Models, Estimation and Control. New York : Academic Press;
1979.

Maynard EM, Nordhausen CT, Normann RA, The Utah Intracortical Electrode Array: A
recording structure for potential brain-computer interfaces, Electroencephalography
and Clinical Neurophysiology, Volume 102, Issue 3, March 1997, Pages 228-239

McAdams CJ, Maunsell JH. Effects of attention on the reliability of individual neurons in
monkey visual cortex. Neuron 1999;23:765–773.

Moran DW, Schwartz AB. Motor Cortical Activity During Drawing Movements:
Population Representation During Spiral Tracing, J Neurophysiol. 1999
Nov;82(5):2693-704

89

Paninski, L., Fellows, M., Hatsopoulos, N., and Donoghue, J. P. (2001). Temporal tuning
properties for hand position and velocity in motor cortical neurons, J. of
Neurophysiology.

Polikov, V.S., Tresco, P.A., and Reichart, W.M. (2005). Response of brain tissue to
chronically implanted neural electrodes. J. Neurosci. Methods 148, 1–18.

Quraishi S, Heider B, Siegel RM. Attentional modulation of receptive field structure in
area 7a of the behaving monkey. Cereb Cortex. 2007 Aug;17(8):1841-57. Epub
2006 Oct 31.

Rotermund D, Ernst UA, Pawelzik KR. Towards on-line adaptation of neuro-prostheses
with neuronal evaluation signals. Biol Cybern. 2006;95:243-257.

Schwartz AB. Cortical neural prosthetics. Annu Rev Neurosci. 2004;27:487-507.

Schwartz AB, Cui XT, Weber DJ, Moran DW. Brain-controlled interfaces: Movement
restoration with neural prosthetics. Neuron. 2006;52:205-220.

Srinivasan L, Eden UT, Mitter SK, Brown EN. General-purpose filter design for neural
prosthetic devices. J Neurophysiol. 2007;98:2456-2475.

Suner, S.; Fellows, M.R.; Vargas-Irwin, C.; Nakata, G.K.; Donoghue, J.P, Reliability of
signals from a chronically implanted, silicon-based electrode array in non-human
primate primary motor cortex, Neural Systems and Rehabilitation Engineering,
IEEE Transactions on , vol.13, no.4, pp.524-541, Dec. 2005

Swindale NV. Orientation tuning curves: Empirical description and estimation of
parameters. Biol Cybern. 1998;78:45-56.

Welch G, Bishop G. An Introduction to the Kalman Filter; 2006.

Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M, Chapin JK, Kim J, Biggs
SJ, Srinivasan MA, Nicolelis MA: Real-time prediction of hand trajectory by
ensembles of cortical neurons in primates. Nature 2000, 408:361-365.

Wu W, Inferring hand motion from multi-cell recordings in motor cortex using a Kalman
filter”, presented at SAB’02-Workshop on Motor Control in Humans and Robots:

90

On the Interplay of Real Brains and Artificial Devices, Edinburgh, Scotland (UK),
August 10, 2002.

Wu W, Gao Y, Bienenstock E, Donoghue JP, Black MJ. Bayesian population decoding of
motor cortical activity using a Kalman filter. Neural Comput. 2006;18:80-118.

Wu W, Hatsopoulos, N.G, Real-Time Decoding of Nonstationary Neural Activity in
Motor Cortex, Neural Systems and Rehabilitation Engineering, IEEE Transactions
on , vol.16, no.3, pp.213-222, June 2008.

Xindong Liu; McCreery, D.B.; Carter, R.R.; Bullara, L.A.; Yuen, T.G.H.; Agnew, W.F.; ,
Stability of the interface between neural tissue and chronically implanted
intracortical microelectrodes, Rehabilitation Engineering, IEEE Transactions on ,
vol.7, no.3, pp.315-326, Sep 1999.

91

Appendix A

MATLAB® code for the neuron model, decoding algorithms and simulations follows.

92

DecodingSimulation.m

close all; clear; clc
dbstop if error
tic

% Decoding simulation for the adaptive decoding filter

for NumberSim = 1:20
 close all; clear;

 [Sim, Stim] = InitializeNewSim;
 newSim = 1;
 validSim = 1;

 if validSim %RUN THE SIMULATION

 % Initialize Local Simulation Parameters
 rand('state',Sim.RSeed); %#ok<RAND> %Set
seed for random number generator
 nBins = Sim.FR.FiltLength/Sim.FR.tRateInt; %Number of temporal
intervals comprising the linear filter

 % START SIMULATION

 for i = 1:length(Sim.nUnits) %for each population
 for j = 1:Sim.nRuns
 t0 = clock; %Initialize timer

 N = Sim.nUnits(i);
 Sim.Pop(i).nUnits = N;

 %Create neural population
 switch(Sim.phiEnc_func)
 case 'GaussTuningResp'
 if newSim
 %Initialize Gaussian tuned neurons
 if Sim.nDim == 1
 Sim.Pop(i).Spref = (max(Stim.sRange)-
min(Stim.sRange))*rand(N,Sim.nDim) + min(Stim.sRange);
 Sim.Pop(i).Ssig =
0.11*(2*rand(N,Sim.nDim)-1) + 0.16; %for linear rep.
 Sim.Pop(i).SmaxLin = max(Stim.sRange);
 else
 Sim.Pop(i).Spref = (max(Stim.sRange)-
min(Stim.sRange))*rand(N,Sim.nDim-1) + min(Stim.sRange);
 Sim.Pop(i).Ssig =
0.34.*(2*rand(N,Sim.nDim-1)-1) + pi/4; %for 2D polar rep.
 Sim.Pop(i).Tau = Sim.Tau;
 Sim.Pop(i).SmaxLin =
Stim.Training.maxMag;

93

 end
 [Sim.Pop(i).LIFparams, Sim.Pop(i).noiseVar,
Sim.Pop(i).maxResp] = InitGaussLIFNeurons(Stim.sRange, N,
Sim.Pop(i).Spref, Sim.Pop(i).Ssig, Sim.maxRespRange, ...
 Sim.tauRefRange, Sim.tauRCRange,
Sim.V_th, Sim.R_leak, Sim.error, 1);
 end

 case 'LinearTuningResp'
 if newSim
 %Initialize Linearly tuned neurons
 Sim.Pop(i).Sint = (max(Stim.sRange)-
min(Stim.sRange))*rand(N,1) + min(Stim.sRange); %Randomly place x-
intercepts across input range

 [Sim.Pop(i).LIFparams, Sim.Pop(i).noiseVar,
Sim.Pop(i).maxResp] = InitLinearLIFNeurons(Sin, N, Sim.Pop(i).Sint,
Sim.maxRespRange, ...
 Sim.tauRefRange, Sim.tauRCRange,
Sim.V_th, Sim.R_leak, Sim.error);
 end

 if Sim.nDim > 1
 Sim.Pop(i).prefAngle = rand(1,N)*2*pi;
%Randomly select each neurons preferred direction (for multi-
dimensional stimulus representations)
 phiEnc = [cos(Sim.Pop(i).prefAngle);
sin(Sim.Pop(i).prefAngle)]; %Compute normalized encoding weights based
on the preferred direction
 else
 phiEnc = ones(1,N);
%For the 1D case the preferred direction is +-1 cand is already
incorporated into the neuron's response.
 end

 case 'CosineTuningResp'
 if newSim
 %Initialize Cosine tuned neurons
 if Sim.nDim == 1
 Sim.Pop(i).Spref = (max(Stim.sRange)-
min(Stim.sRange))*rand(N,Sim.nDim) + min(Stim.sRange);
 Sim.Pop(i).SmaxLin = max(Stim.sRange);
 else
 Sim.Pop(i).Spref = (max(Stim.sRange)-
min(Stim.sRange))*rand(N,Sim.nDim-1) + min(Stim.sRange);
 Sim.Pop(i).Tau = Sim.Tau;
 Sim.Pop(i).SmaxLin =
Stim.Training.maxMag;
 end
 [Sim.Pop(i).LIFparams, Sim.Pop(i).noiseVar,
Sim.Pop(i).maxResp] = InitCosineLIFNeurons(Stim.sRange, N,
Sim.Pop(i).Spref, Sim.maxRespRange, ...
 Sim.tauRefRange, Sim.tauRCRange,
Sim.V_th, Sim.R_leak, Sim.error, 1);
 end

94

 case 'vonMisesTuningResp'
 if newSim
 %Initialize von Mises tuned neurons
 if Sim.nDim == 1
 Sim.Pop(i).Spref = (max(Stim.sRange)-
min(Stim.sRange))*rand(N,Sim.nDim) + min(Stim.sRange);
 Sim.Pop(i).SmaxLin = max(Stim.sRange);
 else
 Sim.Pop(i).Spref = (max(Stim.sRange)-
min(Stim.sRange))*rand(N,Sim.nDim-1) + min(Stim.sRange);
 Sim.Pop(i).Spref =
round(Sim.Pop(i).Spref.*(180/pi)); % Round off the preferred direction
to the nearest degree
 Sim.Pop(i).Spref =
Sim.Pop(i).Spref.*(pi/180);
 Sim.Pop(i).SmaxLin =
Stim.Training.maxMag;
 end
 clear kappa
 [Sim.Pop(i).LIFparams, Sim.Pop(i).noiseVar,
Sim.Pop(i).maxResp, a_S, kappa, halfwidth] =
InitvonMisesLIFNeurons(Stim.sRange, N, Sim.Pop(i).Spref,
Sim.maxRespRange, ...
 Sim.tauRefRange, Sim.tauRCRange,
Sim.V_th, Sim.R_leak, Sim.error, 1);
 Sim.Pop(i).kappa = kappa;
 Sim.Pop(i).halfwidth = halfwidth;
 end
 otherwise
 error('Invalid stimulus tuning profile
specified');
 end

 % GENERATE THE TRAINING SIGNAL
 tt = 0:Stim.FR.dt:Stim.Training.FR.T;

 Amps_training = zeros(Sim.nDim, length(tt));

 switch (Stim.Training.type)
 case 'Constant'
 Sin_training = Stim.Test.mag*ones(2,
length(tt));
 case 'Figure 8'
 theta = linspace(-pi/4, 3/4*pi, length(tt));
 Sin_training = [1.5*cos(2*theta);
1*cos(2*theta).*sin(2*theta)]; %(April 12, 2007 - shifted center back
to (0,0))
 Sin_training =
repmat(Sin_training,1,Stim.Test.FR.tst_runs);
 case 'Circle'
 thetaTemp = -
pi:Stim.Test.degreepert*(pi/180):pi;
 Ntheta = length(thetaTemp);
 theta = repmat(thetaTemp, 1,
floor(length(tt)/Ntheta));

95

 theta = cat(2, theta,
thetaTemp(1:mod(length(tt),Ntheta)));
 Sin_training = [Stim.Test.radius*cos(theta);
Stim.Test.radius*sin(theta)];
 case 'White Noise'
 for f = 1:Sim.nDim
 [Sin_training(f,:),Amps_training(f,:)] =
genSignal(Stim.Training.FR.T,Stim.FR.dt,Stim.Training.rms,Stim.Training
.bandwidth,Sim.RSeed*pi*f); %#ok<AGROW> %Increment random seed in
deteministic way across multiple dimensions when RandomSeed >0
 %pi multiple in randomSeed used to ensure
 %different amplitude coeff in generaiton of
random training and test signals
 end
 end

 Sin_mag_training = sqrt(sum(Sin_training.^2,1));
 Ind95pctrain = ceil(0.95*size(Sin_mag_training, 2));
 Sin_mag_training_ascend = sort(Sin_mag_training,
'ascend');
 Sim.Pop(i).SmaxLin =
Sin_mag_training_ascend(Ind95pctrain);

 nRateStepsT =
floor(Stim.Training.FR.T/Sim.FR.tRateInt);
 ndtperBin = Sim.FR.tRateInt/Sim.FR.dt;
 LIFinit_training.V = zeros(1,Sim.nUnits);
 LIFinit_training.EndRefPeriod = zeros(1,Sim.nUnits);
 LIFinit_training.jitterSig = [];

 SUrateResp_training=zeros(Sim.nUnits,nRateStepsT);
 sSUCenters_training=zeros(2,nRateStepsT);

 t_A = 0:Sim.FR.tRateInt:Stim.Training.FR.T;
 if strcmp(Sim.Nonstatdecision, 'Yes') &&
(strcmp(Sim.NonStatType, 'Attention') || strcmp(Sim.NonStatType,
'AttentionReplacement'))
 AttnSig = sin(2*pi*(1/Sim.AttnPeriod)*t_A);
 AttnSig = (AttnSig + abs(min(AttnSig)));
 AttnSig = AttnSig./max(AttnSig);
 AttnSig = Sim.AttentionMod(1) +
(Sim.AttentionMod(2)-Sim.AttentionMod(1)).*AttnSig;
 else
 AttnSig = ones(1, length(t_A));
 end

 Gadapt_training = Sim.Gadapt;

 for cnt=1:nRateStepsT
 [SUrateResp_training(:,cnt),
sSUCenters_training(:,cnt), LIFinit_training, Gadapt_training,
spikeTimes_training, GadaptTemp_training] =
GetNeuronFiringRatesIterative_G(Sim, Stim, Sin_training(:,((cnt-

96

1)*ndtperBin)+1:cnt*(ndtperBin)), LIFinit_training, Sim.nUnits,
AttnSig(cnt), Gadapt_training);
 end

 % PLOT TRAINING STIMULUS
 figure, plot (Sin_training(1,:), Sin_training(2,:),
'LineWidth', 2);
 set(gca, 'FontSize', 14), legend('Training stimulus')
 title ('Training Stimulus', 'FontSize', 16);
 xlabel('X velocity V_x', 'FontSize', 14)
 ylabel('Y velocity V_y', 'FontSize', 14)
 drawnow;

 % OPTIMIZATION PROCESS
 if strcmp(Sim.Nonstatdecision, 'Yes') &&
(strcmp(Sim.NonStatType, 'Replacement') || strcmp(Sim.NonStatType,
'AttentionReplacement'))
 Nusable = N - Sim.nchangedpop; % NO OF UNCHANGED
UNITS IN THE POPULATION
 else
 Nusable = N;
 end

 [AdaptiveFilter.static.Asu, AdaptiveFilter.static.Hsu,
AdaptiveFilter.static.Wsu, AdaptiveFilter.static.Qsu] =
GetDecodingWeights(sSUCenters_training,
SUrateResp_training(1:Nusable,:));

 % Generate a new bandlimited white noise stimulus for
TESTING
 t = 0:Stim.FR.dt:Stim.Test.FR.T; %Time at each
sample

 Amps = zeros(Sim.nDim, length(t));

 switch (Stim.Test.type)
 case 'Constant'
 Sin_tst = Stim.Test.mag*ones(2, length(t));
 case 'Figure 8'
 theta = linspace(-pi/4, 3/4*pi, length(t));
 Sin_tst = [1.5*cos(2*theta);
1*cos(2*theta).*sin(2*theta)];
 Sin_tst =
repmat(Sin_tst,1,Stim.Test.FR.tst_runs);
 case 'Circle'
 thetaTemp = -pi:Stim.Test.degreepert:pi;
 Ntheta = length(thetaTemp);
 theta = repmat(thetaTemp, 1,
floor(length(t)/Ntheta));
 theta = cat(2, theta,
thetaTemp(1:mod(length(t),Ntheta)));
 Sin_tst = [Stim.Test.radius*cos(theta);
Stim.Test.radius*sin(theta)];
 case 'White Noise'
 for f = 1:Sim.nDim

97

 [Sin_tst(f,:),Amps(f,:)] =
genSignal(Stim.Test.FR.T,Stim.FR.dt,Stim.Test.rms,Stim.Test.bandwidth,S
im.RSeed*pi*f); %Increment random seed in deteministic way across
multiple dimensions when RandomSeed >0
 %pi multiple in randomSeed used to ensure
different amplitude coeff in generaiton of random training and test
signals
 clear Amps
 end
 end

 % PLOT TEST STIMULUS
 figure, plot (Sin_tst(1,:), Sin_tst(2,:),'r',
'LineWidth', 2);
 title ('Test Stimulus', 'FontSize', 16);
 set(gca, 'FontSize', 14), legend('Test like stimulus')
 xlabel('X velocity V_x', 'FontSize', 14)
 ylabel('Y velocity V_y', 'FontSize', 14)
 drawnow;

 % GENERATE A OPTIMIZING SIGNAL WITH PROPERTIES SIMILAR
TO THE TEST
 tt = 0:Stim.FR.dt:Stim.Training.FR.T;

 Amps_tst_like = zeros(Sim.nDim, length(tt));

 switch (Stim.Test.type)
 case 'Constant'
 Sin_tst_like = Stim.Test.mag*ones(2,
length(tt));
 case 'Figure 8'
 theta = linspace(-pi/4, 3/4*pi, length(tt));
 Sin_tst_like = [1.5*cos(2*theta);
1*cos(2*theta).*sin(2*theta)];
 Sin_tst_like =
repmat(Sin_tst_like,1,Stim.Test.FR.tst_runs);
 case 'Circle'
 thetaTemp = -
pi:Stim.Test.degreepert*(pi/180):pi;
 Ntheta = length(thetaTemp);
 theta = repmat(thetaTemp, 1,
floor(length(tt)/Ntheta));
 theta = cat(2, theta,
thetaTemp(1:mod(length(tt),Ntheta)));
 Sin_tst_like = [Stim.Test.radius*cos(theta);
Stim.Test.radius*sin(theta)];
 case 'White Noise'
 for f = 1:Sim.nDim
 [Sin_tst_like(f,:),Amps_tst_like(f,:)] =
genSignal(Stim.Training.FR.T,Stim.FR.dt,Stim.Test.rms,Stim.Test.bandwid
th,Sim.RSeed*pi*f); %Increment random seed in deteministic way across
multiple dimensions when RandomSeed >0
 %pi multiple in randomSeed used to ensure
different amplitude coeff in generaiton of random training and test
signals
 clear Amps_tst_like

98

 end
 end

 nRateStepsT =
floor(Stim.Training.FR.T/Sim.FR.tRateInt);
 ndtperBin = Sim.FR.tRateInt/Sim.FR.dt;
 LIFinit_tst_like.V = zeros(1,Sim.nUnits);
 LIFinit_tst_like.EndRefPeriod = zeros(1,Sim.nUnits);
 LIFinit_tst_like.jitterSig = [];
 SUrateResp_tst_like=zeros(Sim.nUnits,nRateStepsT);
 sSUCenters_tst_like=zeros(2,nRateStepsT);
 Radapt = Sim.Radapt;

 t_A = 0:Sim.FR.tRateInt:Stim.Training.FR.T;
 if strcmp(Sim.Nonstatdecision, 'Yes') &&
(strcmp(Sim.NonStatType, 'Attention') || strcmp(Sim.NonStatType,
'AttentionReplacement'))
 AttnSig = sin(2*pi*(1/Sim.AttnPeriod)*t_A);
 AttnSig = (AttnSig + abs(min(AttnSig)));
 AttnSig = AttnSig./max(AttnSig);
 AttnSig = Sim.AttentionMod(1) +
(Sim.AttentionMod(2)-Sim.AttentionMod(1)).*AttnSig;
 else
 AttnSig = ones(1, length(t_A));
 end

 Gadapt_tst_like = Sim.Gadapt;

 for cnt=1:nRateStepsT
 [SUrateResp_tst_like(:,cnt),
sSUCenters_tst_like(:,cnt), LIFinit_tst_like, Gadapt_tst_like,
spikeTimes_tst_like, GadaptTemp_tst_like] =
GetNeuronFiringRatesIterative_G(Sim, Stim, Sin_tst_like(:,((cnt-
1)*ndtperBin)+1:cnt*(ndtperBin)), LIFinit_tst_like, Sim.nUnits,
AttnSig(cnt), Gadapt_tst_like);
 end

 if strcmp(Sim.Nonstatdecision, 'Yes')
 if strcmp(Sim.NonStatType, 'Loss')
 [AsuTestLikeSig, HsuTestLikeSig,
WsuTestLikeSig, QsuTestLikeSig] =
GetDecodingWeights(sSUCenters_tst_like,
SUrateResp_tst_like(1:(Sim.nUnits-Sim.nchangedpop),:));
 elseif strcmp(Sim.NonStatType, 'Replacement') ||
strcmp(Sim.NonStatType, 'AttentionReplacement')
 [AsuTestLikeSig, HsuTestLikeSig,
WsuTestLikeSig, QsuTestLikeSig] =
GetDecodingWeights(sSUCenters_tst_like,
SUrateResp_tst_like(Sim.nchangedpop+1:Sim.nUnits,:));
 else
 [AsuTestLikeSig, HsuTestLikeSig,
WsuTestLikeSig, QsuTestLikeSig] =
GetDecodingWeights(sSUCenters_tst_like, SUrateResp_tst_like);
 end
 else

99

 [AsuTestLikeSig, HsuTestLikeSig, WsuTestLikeSig,
QsuTestLikeSig] = GetDecodingWeights(sSUCenters_tst_like,
SUrateResp_tst_like);
 end

 % PLOT TEST LIKE STIMULUS FOR TRAINING
 figure, plot (Sin_tst_like(1,:), Sin_tst_like(2,:),'k',
'LineWidth', 2);
 title ('Test Like Stimulus', 'FontSize', 16);
 set(gca, 'FontSize', 14), legend('Test like stimulus')
 xlabel('X velocity V_x', 'FontSize', 14)
 ylabel('Y velocity V_y', 'FontSize', 14)
 drawnow;

 nRateSteps =
floor(Stim.Test.FR.tst_runs*Stim.Test.FR.T/Sim.FR.tRateInt);

 ndtperBin = Sim.FR.tRateInt/Sim.FR.dt;

 LIFinit.V = zeros(1,N);
 LIFinit.EndRefPeriod = zeros(1,N);
 LIFinit.jitterSig = [];

 LIFinitcat.V = [];
 LIFinitcat.EndRefPeriod = [];
 LIFinitcat.jitterSig = [];

 clear SUrateResp;
 SUrateResp=zeros(N,nRateSteps);
 SUrateRespTemp=zeros(N,nRateSteps);
 sSUCenters=zeros(Sim.nDim,nRateSteps);

 % STATIC FILTER INITIALIZATIONS
 sx = repmat(struct('A', 0, 'B', 0, 'H',
zeros(size(AdaptiveFilter.static.Hsu(:,1))), 'Q', 0, 'R',
zeros(size(AdaptiveFilter.static.Qsu)), 'P', 0, 'u', 0), 1,
nRateSteps);
 sy = repmat(struct('A', 0, 'B', 0, 'H',
zeros(size(AdaptiveFilter.static.Hsu(:,2))), 'Q', 0, 'R',
zeros(size(AdaptiveFilter.static.Qsu)), 'P', 0, 'u', 0), 1,
nRateSteps);

 sx(1).A = AdaptiveFilter.static.Asu(1,1);
 sx(1).B = 0;
 sx(1).H = AdaptiveFilter.static.Hsu(:,1);
 sx(1).Q = AdaptiveFilter.static.Wsu(1,1);
 sx(1).R = AdaptiveFilter.static.Qsu;

 sx(1).P =(sx(1).H\sx(1).R)/sx(1).H'; %P =
inv(H)*R*inv(H')
 sx(1).u = 0;
 sxscale = 1;

 sy(1) = [];
 sy(1).A = AdaptiveFilter.static.Asu(2,2);

100

 sy(1).B = 0;
 sy(1).H = AdaptiveFilter.static.Hsu(:,2);
 sy(1).Q = AdaptiveFilter.static.Wsu(2,2);
 sy(1).R = AdaptiveFilter.static.Qsu;

 sy(1).P = (sy(1).H\sy(1).R)/sy(1).H'; %P =
inv(H)*R*inv(H')
 sy(1).u = 0;
 syscale = 1;

 % STATIC FILTER INITIALIZATIONS FOR THE REMAINING
POPULATION OF
 % NEURONS WITH TEST LIKE TRAINING SIGNAL

 sxTstLk = repmat(struct('A', 0, 'B', 0, 'H',
zeros(size(HsuTestLikeSig(:,1))), 'Q', 0, 'R',
zeros(size(QsuTestLikeSig)), 'P', 0, 'u', 0), 1, nRateSteps);
 syTstLk = repmat(struct('A', 0, 'B', 0, 'H',
zeros(size(HsuTestLikeSig(:,2))), 'Q', 0, 'R',
zeros(size(QsuTestLikeSig)), 'P', 0, 'u', 0), 1, nRateSteps);

 sxTstLk(1).A = AsuTestLikeSig(1,1);
 sxTstLk(1).B = 0;
 sxTstLk(1).H = HsuTestLikeSig(:,1);
 sxTstLk(1).Q = WsuTestLikeSig(1,1);
 sxTstLk(1).R = QsuTestLikeSig;
 sxTstLk(1).P
=(sxTstLk(1).H\sxTstLk(1).R)/sxTstLk(1).H'; %P = inv(H)*R*inv(H')
 sxTstLk(1).u = 0;
 sxTstLkscale = 1;

 syTstLk(1).A = AsuTestLikeSig(2,2);
 syTstLk(1).B = 0;
 syTstLk(1).H = HsuTestLikeSig(:,2);
 syTstLk(1).Q = WsuTestLikeSig(2,2);
 syTstLk(1).R = QsuTestLikeSig;
 syTstLk(1).P =
(syTstLk(1).H\syTstLk(1).R)/syTstLk(1).H'; %P = inv(H)*R*inv(H')
 syTstLk(1).u = 0;
 syTstLkscale = 1;

 % ADAPTIVE FILTER INITIALIZATIONS
 clear statex;
 clear statey;

 [AdaptiveFilter adaptiveKalman]=
InitAdaptiveFilter(AdaptiveFilter);

 AdaptiveFilter.Hsaveoff =
zeros(size(AdaptiveFilter.static.Hsu,1),Sim.nDim*nRateSteps);

 flag = 0;
 errstep = 1;
 step = 1;

101

 xscalecat = [];
 yscalecat = [];
 changedpopcat = [];

 Ksx = [];
 Ksy = [];
 Kallcat = [];
 K2xycat = [];
 statex = zeros(1,nRateSteps);
 statey = zeros(1,nRateSteps);
 timecount = zeros(1,nRateSteps);
 normx = zeros(1,nRateSteps);
 normy = zeros(1,nRateSteps);
 times = zeros(1,nRateSteps);

 if strcmp(Sim.NonStatType, 'Loss')
 indchangedpopLoss = Nusable -
Sim.neuronsEachTime+1;
 indchangedpopReplace = zeros(1, Nusable);
 end
 if strcmp(Sim.NonStatType, 'Replacement') ||
strcmp(Sim.NonStatType, 'AttentionReplacement')
 indchangedpopReplace =
Nusable+1:Sim.neuronsEachTime:N;
 indchangedpopLoss = zeros(1, Nusable);
 end

 indchangedpopNusable = 1:Sim.neuronsEachTime:Nusable;
 replaceIndex = 0;

 errorx = zeros(1,
(AdaptiveFilter.errorwindow/Sim.FR.tRateInt)+1);
 errory = zeros(1,
(AdaptiveFilter.errorwindow/Sim.FR.tRateInt)+1);
 errorstatx = zeros(1,
(AdaptiveFilter.errorwindow/Sim.FR.tRateInt)+1);
 errorstaty = zeros(1,
(AdaptiveFilter.errorwindow/Sim.FR.tRateInt)+1);
 errorxTstLk = zeros(1,
(AdaptiveFilter.errorwindow/Sim.FR.tRateInt)+1);
 erroryTstLk = zeros(1,
(AdaptiveFilter.errorwindow/Sim.FR.tRateInt)+1);

 rmserrx = zeros(1,
nRateSteps/(AdaptiveFilter.errorwindow/Sim.FR.tRateInt));
 rmserry = zeros(1,
nRateSteps/(AdaptiveFilter.errorwindow/Sim.FR.tRateInt));
 rmserrstatx = zeros(1,
nRateSteps/(AdaptiveFilter.errorwindow/Sim.FR.tRateInt));
 rmserrstaty = zeros(1,
nRateSteps/(AdaptiveFilter.errorwindow/Sim.FR.tRateInt));
 rmserrxTstLk = zeros(1,
nRateSteps/(AdaptiveFilter.errorwindow/Sim.FR.tRateInt));
 rmserryTstLk = zeros(1,
nRateSteps/(AdaptiveFilter.errorwindow/Sim.FR.tRateInt));

102

 % TAKE A SNAPSHOT OF PERFORMANCE AT THE BEGINNING
 % ADAPTIVE
 [snapStartx, snapStarty] = Kalmansnapshot('Figure 8',
Sim, Stim, Nusable, [adaptiveKalman.adaptfilt3x.H
adaptiveKalman.adaptfilt3y.H], AdaptiveFilter,
adaptiveKalman.adaptfilt1x.P, [adaptiveKalman.adaptfilt1x.R
adaptiveKalman.adaptfilt1y.R], flag, 0, 0, 0, 1);
 Snapshotfigs(1)= gcf;
 % STATIC
 [snapstatStartx, snapstatStarty] =
Kalmansnapshot('Figure 8', Sim, Stim, Nusable,
AdaptiveFilter.static.Hsu, AdaptiveFilter, sx(1).P,
[AdaptiveFilter.static.Qsu AdaptiveFilter.static.Qsu], flag, 0, 0, 0,
1);
 Snapshotfigs(2)= gcf;

 t_A = 0:Sim.FR.tRateInt:Stim.Test.FR.T;
 if strcmp(Sim.Nonstatdecision, 'Yes') &&
(strcmp(Sim.NonStatType, 'Attention') || strcmp(Sim.NonStatType,
'AttentionReplacement'))
 AttnSig = sin(2*pi*(1/Sim.AttnPeriod)*t_A);
 AttnSig = (AttnSig + abs(min(AttnSig)));
 AttnSig = AttnSig./max(AttnSig);
 AttnSig = Sim.AttentionMod(1) +
(Sim.AttentionMod(2)-Sim.AttentionMod(1)).*AttnSig;
 else AttnSig = ones(1, length(t_A));
 end

 Gadapt = Sim.Gadapt;

 for cnt=1:nRateSteps
 [SUrateResp(:,cnt), sSUCenters(:,cnt), LIFinit,
Gadapt, spikeTimes, GadaptTemp] = GetNeuronFiringRatesIterative_G(Sim,
Stim, Sin_tst(:,((cnt-1)*ndtperBin)+1:cnt*(ndtperBin)), LIFinit,
Sim.nUnits, AttnSig(cnt), Gadapt);
 SUrateRespTemp(:,cnt) = SUrateResp(:,cnt);
 end

 for cnt=1:nRateSteps
 % INTRODUCTION OF NONSTATIONARITY
 if strcmp(Sim.Nonstatdecision, 'Yes')
 if sum(cnt == Sim.NonStatTime/Sim.FR.tRateInt)
 replaceIndex = replaceIndex + 1;
 if strcmp(Sim.NonStatType, 'Replacement')
|| strcmp(Sim.NonStatType, 'AttentionReplacement')
 if Sim.nchangedpop ==
Sim.neuronsEachTime
 SUrateResp(1:Sim.neuronsEachTime ,
cnt:end) = SUrateResp(Sim.neuronsEachTime+1:end, cnt:end);
 else

SUrateResp(indchangedpopNusable(replaceIndex), cnt:end) =
SUrateResp(indchangedpopReplace(replaceIndex), cnt:end);
 end
 flag = 2;

103

 elseif strcmp(Sim.NonStatType, 'Loss')
 flag = 1;
 SUrateResp(Nusable:-
1:indchangedpopLoss,cnt:end) = 0;
 Nleft = indchangedpopLoss - 1;
 end
 if sum(size(Sim.NonStatTime)) ~=2
 indchangedpopLoss = indchangedpopLoss -
Sim.neuronsEachTime;
 end
 end
 % TAKE A SNAPSHOT OF PERFORMANCE AT THE
INTRODUCTION OF NONSTATIONARITY
 if strcmp(Sim.NonStatType, 'Replacement') ||
strcmp(Sim.NonStatType, 'Loss') || strcmp(Sim.NonStatType,
'AttentionReplacement')
 if cnt ==
(Sim.NonStatTime(end))/Sim.FR.tRateInt
 % ADAPTIVE
 [snapNonstatx, snapNonstaty] =
Kalmansnapshot('Figure 8', Sim, Stim, Nusable,
[adaptiveKalman.adaptfilt3x.H adaptiveKalman.adaptfilt3y.H],
AdaptiveFilter, adaptiveKalman.adaptfilt1x.P,
[adaptiveKalman.adaptfilt1x.R adaptiveKalman.adaptfilt1y.R], flag,
indchangedpopNusable(replaceIndex), indchangedpopReplace(replaceIndex),
indchangedpopLoss, cnt);
 Snapshotfigs(3)= gcf;
 % STATIC
 [snapstatNonstatx, snapstatNonstaty] =
Kalmansnapshot('Figure 8', Sim, Stim, Nusable,
AdaptiveFilter.static.Hsu, AdaptiveFilter, sx(cnt).P,
[AdaptiveFilter.static.Qsu AdaptiveFilter.static.Qsu], flag,
indchangedpopNusable(replaceIndex), indchangedpopReplace(replaceIndex),
indchangedpopLoss, cnt);
 Snapshotfigs(4)= gcf;
 end
 end
 end
 end

 % save LongLongSim

 for cnt=1:nRateSteps
 % STATIC FILTER
 sx(cnt).z = SUrateResp(1:Nusable,cnt);
 sy(cnt).z = SUrateResp(1:Nusable,cnt);
 if(cnt == 1) % PROVIDE INITIAL BEST ESTIMATES FOR
THE KALMAN FILTER
 sx(1).x = sx(1).H\sx(1).z;
 sy(1).x = sy(1).H\sx(1).z;
 end
 [sx(cnt+1), Kx] = kalmanf(sx(cnt),sxscale);
 [sy(cnt+1), Ky] = kalmanf(sy(cnt),syscale);

 % STATIC FILTER - Test for optimal pop
 if strcmp(Sim.Nonstatdecision, 'Yes')

104

 if strcmp(Sim.NonStatType, 'Loss')
 sxTstLk(cnt).z = SUrateResp(1:(Sim.nUnits-
Sim.nchangedpop),cnt);
 syTstLk(cnt).z = SUrateResp(1:(Sim.nUnits-
Sim.nchangedpop),cnt);
 elseif strcmp(Sim.NonStatType, 'Replacement')
|| strcmp(Sim.NonStatType, 'AttentionReplacement')
 sxTstLk(cnt).z =
SUrateResp(Sim.nchangedpop+1:Sim.nUnits,cnt);
 syTstLk(cnt).z =
SUrateResp(Sim.nchangedpop+1:Sim.nUnits,cnt);
 else
 sxTstLk(cnt).z = SUrateResp(1:Nusable,cnt);
 syTstLk(cnt).z = SUrateResp(1:Nusable,cnt);
 end
 else
 sxTstLk(cnt).z = SUrateResp(1:Nusable,cnt);
 syTstLk(cnt).z = SUrateResp(1:Nusable,cnt);
 end

 if(cnt == 1) % PROVIDE INITIAL BEST ESTIMATES FOR
THE KALMAN FILTER
 sxTstLk(1).x = sxTstLk(1).H\sxTstLk(1).z;
 syTstLk(1).x = syTstLk(1).H\syTstLk(1).z;
 end
 [sxTstLk(cnt+1), KxT] =
kalmanf(sxTstLk(cnt),sxTstLkscale);
 [syTstLk(cnt+1), KyT] =
kalmanf(syTstLk(cnt),syTstLkscale);

 % ADAPTIVE FILTER
 if (cnt == 1) % PROVIDE INITIAL BEST ESTIMATES FOR
THE KALMAN FILTER
 adaptiveKalman.adaptfilt1x.x =
adaptiveKalman.adaptfilt1x.H\SUrateResp(1:Nusable,1);
 adaptiveKalman.adaptfilt1y.x =
adaptiveKalman.adaptfilt1y.H\SUrateResp(1:Nusable,1);
 end

 [adaptiveKalman, AdaptiveFilter, statex(cnt),
statey(cnt), Kall, K2xy] =
adaptKalmanIterate(adaptiveKalman,AdaptiveFilter,sSUCenters(:,cnt),SUra
teResp(1:Nusable,cnt),cnt);
 AdaptiveFilter.Hsaveoff(:,2*cnt-1:2*cnt) =
[adaptiveKalman.adaptfilt3x.H adaptiveKalman.adaptfilt3y.H];
 xscalecat = cat(2,xscalecat,AdaptiveFilter.xscale);
 yscalecat = cat(2,yscalecat,AdaptiveFilter.yscale);

 % ERROR CALCULATIONS - relative errors
 % Normalized Mean Square Errors
 errorx(step) = (sSUCenters(1,cnt) - statex(cnt));
 errory(step) = (sSUCenters(2,cnt) - statey(cnt));
 errorstatx(step) = (sSUCenters(1,cnt) - sx(cnt).x);
 errorstaty(step) = (sSUCenters(2,cnt) - sy(cnt).x);
 errorxTstLk(step) = (sSUCenters(1,cnt) -
sxTstLk(cnt).x);

105

 erroryTstLk(step) = (sSUCenters(2,cnt) -
syTstLk(cnt).x);

 if
mod(cnt,(AdaptiveFilter.errorwindow/Sim.FR.tRateInt)) == 0 % CALCULATE
THE NRMS ERROR FOR EACH ERROR WINDOW
 rmserrx(errstep) = sqrt(mean((errorx).^2));
 rmserry(errstep) = sqrt(mean((errory).^2));

 rmserrstatx(errstep) =
sqrt(mean((errorstatx).^2));
 rmserrstaty(errstep) =
sqrt(mean((errorstaty).^2));

 rmserrxTstLk(errstep) =
sqrt(mean((errorxTstLk).^2));
 rmserryTstLk(errstep) =
sqrt(mean((erroryTstLk).^2));

 errstep = errstep+1;
 step = 1;
 end
 if
mod(cnt,((AdaptiveFilter.errorwindow*10)/Sim.FR.tRateInt)) == 0
 sprintf('%d of %d seconds done !!! (Simulation
Time)', round(cnt*Sim.FR.tRateInt),
round(Stim.Test.FR.T*Stim.Test.FR.tst_runs))
 sprintf('Sim running for %d seconds !!! (Real
Time)', round(toc))
 end
 step = step +1;
 end

 % TAKE A SNAPSHOT OF PERFORMANCE AT THE END

 if strcmp(Sim.Nonstatdecision, 'Yes') &&
strcmp(Sim.NonStatType, 'Loss')
 % ADAPTIVE
 [snapEndx, snapEndy] = Kalmansnapshot('Figure 8',
Sim, Stim, Nusable, [adaptiveKalman.adaptfilt3x.H
adaptiveKalman.adaptfilt3y.H], AdaptiveFilter,
adaptiveKalman.adaptfilt1x.P, [adaptiveKalman.adaptfilt1x.R
adaptiveKalman.adaptfilt1y.R], flag,
indchangedpopNusable(replaceIndex), indchangedpopReplace(replaceIndex),
indchangedpopLoss, cnt);
 Snapshotfigs(5)= gcf;
 % STATIC
 [snapstatEndx, snapstatEndy] =
Kalmansnapshot('Figure 8', Sim, Stim, Nusable,
AdaptiveFilter.static.Hsu, AdaptiveFilter, sx(cnt).P,
[AdaptiveFilter.static.Qsu AdaptiveFilter.static.Qsu], flag,
indchangedpopNusable(replaceIndex), indchangedpopReplace(replaceIndex),
indchangedpopLoss, cnt);
 Snapshotfigs(6)= gcf;
 else
 % ADAPTIVE

106

 [snapEndx, snapEndy] = Kalmansnapshot('Figure 8',
Sim, Stim, Nusable, [adaptiveKalman.adaptfilt3x.H
adaptiveKalman.adaptfilt3y.H], AdaptiveFilter,
adaptiveKalman.adaptfilt1x.P, [adaptiveKalman.adaptfilt1x.R
adaptiveKalman.adaptfilt1y.R], flag, 0, 0, 0, cnt);
 Snapshotfigs(5)= gcf;
 % STATIC
 [snapstatEndx, snapstatEndy] =
Kalmansnapshot('Figure 8', Sim, Stim, Nusable,
AdaptiveFilter.static.Hsu, AdaptiveFilter, sx(cnt).P,
[AdaptiveFilter.static.Qsu AdaptiveFilter.static.Qsu], flag, 0, 0, 0,
cnt);
 Snapshotfigs(6)= gcf;
 end

 AdaptiveFilter.statex = statex;
 AdaptiveFilter.statey = statey;
 AdaptiveFilter.Kall = Kall;

 sxplot = zeros(1,nRateSteps-1);
 syplot = zeros(1,nRateSteps-1);
 sxTstLkplot = zeros(1,nRateSteps-1);
 syTstLkplot = zeros(1,nRateSteps-1);

 for cnt=1:nRateSteps % for extracting the array from
the struct
 sxplot(cnt)=sx(cnt).x;
 syplot(cnt)=sy(cnt).x;
 sxTstLkplot(cnt)=sxTstLk(cnt).x;
 syTstLkplot(cnt)=syTstLk(cnt).x;
 end

 AdaptiveFilter.sxplot = sxplot;
 AdaptiveFilter.syplot = syplot;
 AdaptiveFilter.sxTstLkplot = sxTstLkplot;
 AdaptiveFilter.syTstLkplot = syTstLkplot;

 %Scale the errors with the RMS power of the TEST signal

 AdaptiveFilter.nrmserrx =
rmserrx./sqrt(mean((sSUCenters(1,:)).^2));
 AdaptiveFilter.nrmserry =
rmserry./sqrt(mean((sSUCenters(2,:)).^2));
 AdaptiveFilter.nrmserrstatx =
rmserrstatx./sqrt(mean((sSUCenters(1,:)).^2));
 AdaptiveFilter.nrmserrstaty =
rmserrstaty./sqrt(mean((sSUCenters(2,:)).^2));
 AdaptiveFilter.nrmserrxTstLk =
rmserrxTstLk./sqrt(mean((sSUCenters(1,:)).^2));
 AdaptiveFilter.nrmserryTstLk =
rmserryTstLk./sqrt(mean((sSUCenters(2,:)).^2));
 AdaptiveFilter.nrmsError = sqrt((rmserrx).^2 +
(rmserry).^2)./sqrt(mean(sSUCenters(1,:).^2 + sSUCenters(2,:).^2));
 AdaptiveFilter.nrmsErrorStat = sqrt((rmserrstatx).^2 +
(rmserrstaty).^2)./sqrt(mean(sSUCenters(1,:).^2 + sSUCenters(2,:).^2));

107

 AdaptiveFilter.nrmsErrorTstLk = sqrt((rmserrxTstLk).^2
+ (rmserryTstLk).^2)./sqrt(mean(sSUCenters(1,:).^2 +
sSUCenters(2,:).^2));

 % CONSTRUCT ALL THE PLOTS
 figure
 hold on
 grid on
 plot
(sSUCenters(1,1:Stim.Test.FR.T/Sim.FR.tRateInt),sSUCenters(2,1:Stim.Tes
t.FR.T/Sim.FR.tRateInt),'r-', 'LineWidth', 2);
 plot (sxplot(1:Stim.Test.FR.T/Sim.FR.tRateInt-
1),syplot(1:Stim.Test.FR.T/Sim.FR.tRateInt-1),'m-.', 'LineWidth', 2);
 plot
(statex(1:Stim.Test.FR.T/Sim.FR.tRateInt),statey(1:Stim.Test.FR.T/Sim.F
R.tRateInt),'--', 'LineWidth', 2);
 title (['Reconstruction of the static and adaptive
filters without nonstationarity - signal length = ',
num2str(Stim.Test.FR.T), ' seconds'], 'FontSize', 16)
 set(gca, 'FontSize', 14), legend('Original Signal',
'Static Filter Reconstruction', 'Adaptive Filter Reconstruction');
 xlabel('X velocity V_x', 'FontSize', 14)
 ylabel('Y velocity V_y', 'FontSize', 14)
 drawnow;
 FigHandle(1)=gcf;
 figure
 hold on
 grid on
 plot (sSUCenters(1,:),sSUCenters(2,:),'r-',
'LineWidth', 2);
 plot (sxplot,syplot,'m-.', 'LineWidth', 2);
 plot (statex,statey,'--', 'LineWidth', 2);
 title (['Reconstruction of the static and adaptive
filters with induced nonstationarity - signal length = ',
num2str(Stim.Test.FR.T), ' seconds'], 'FontSize', 16)
 set(gca, 'FontSize', 14), legend('Original Signal',
'Static Filter Reconstruction', 'Adaptive Filter Reconstruction');
 xlabel('X velocity V_x', 'FontSize', 14)
 ylabel('Y velocity V_y', 'FontSize', 14)
 drawnow;
 FigHandle(2)=gcf;
 timeRecon = (1:length(sxplot))*Sim.FR.tRateInt;
 timeReconPlus = (1:length(sxplot)+1)*Sim.FR.tRateInt;
 figure, hold on, grid on,
plot(timeRecon,sSUCenters(1,:),'r', 'LineWidth', 2), plot
(timeRecon,sxplot,'m', 'LineWidth', 2), plot(timeRecon,statex,
'LineWidth', 2)
 title ('Reconstruction of the static and adaptive
filters along x with induced nonstationarity', 'FontSize', 16);
 set(gca, 'FontSize', 14), legend('Original Signal',
'Static Filter Reconstruction', 'Adaptive Filter Reconstruction');
 xlabel('Time (seconds)', 'FontSize', 14)
 ylabel('X velocity V_x', 'FontSize', 14)
 drawnow;
 FigHandle(3)=gcf;
 figure, hold on, grid on, plot
(timeRecon,sSUCenters(2,:),'r', 'LineWidth', 2), plot

108

(timeRecon,syplot,'m', 'LineWidth', 2), plot(timeRecon,statey,
'LineWidth', 2)
 title ('Reconstruction of the static and adaptive
filters along y with induced nonstationarity', 'FontSize', 16);
 set(gca, 'FontSize', 14), legend('Original Signal',
'Static Filter Reconstruction', 'Adaptive Filter Reconstruction');
 xlabel('Time (seconds)', 'FontSize', 14)
 ylabel('Y velocity V_y', 'FontSize', 14)
 drawnow;
 FigHandle(4)=gcf;
 timenrmserr =
(1:length(AdaptiveFilter.nrmserrstatx))*AdaptiveFilter.errorwindow;
 figure, hold on, grid on, plot (timenrmserr,
AdaptiveFilter.nrmserrstatx, 'r', 'LineWidth', 2), plot (timenrmserr,
AdaptiveFilter.nrmserrx, '--', 'LineWidth', 2), plot (timenrmserr,
AdaptiveFilter.nrmserrxTstLk, 'k-.', 'LineWidth', 2); % plot
(timenrmserr, AdaptiveFilter.nrmserrRemPopx, 'g:', 'LineWidth', 2),
 title (['NRMS errors along X Test RMS power = ',
num2str(Stim.Test.rms)], 'FontSize', 16)
 set(gca, 'FontSize', 14), legend('Static Filter',
'Adaptive Filter', 'Optimal Population');
 xlabel('Time (seconds)', 'FontSize', 14)
 ylabel('NRMSE_x', 'FontSize', 14)
 drawnow;
 FigHandle(5)=gcf;
 figure, hold on, grid on, plot (timenrmserr,
AdaptiveFilter.nrmserrstaty, 'r', 'LineWidth', 2), plot (timenrmserr,
AdaptiveFilter.nrmserry, '--', 'LineWidth', 2), plot (timenrmserr,
AdaptiveFilter.nrmserryTstLk, 'k-.', 'LineWidth', 2); % plot
(timenrmserr, AdaptiveFilter.nrmserrRemPopy, 'g:', 'LineWidth', 2),
 title (['NRMS errors along Y Test RMS power = ',
num2str(Stim.Test.rms)], 'FontSize', 16)
 set(gca, 'FontSize', 14), legend('Static Filter',
'Adaptive Filter', 'Optimal Population');
 xlabel('Time (seconds)', 'FontSize', 14)
 ylabel('NRMSE_y', 'FontSize', 14)
 drawnow;
 FigHandle(6)=gcf;
 figure, hold on, grid on, plot (timenrmserr,
AdaptiveFilter.nrmsErrorStat, 'r', 'LineWidth', 2), plot (timenrmserr,
AdaptiveFilter.nrmsError, '--', 'LineWidth', 2), plot (timenrmserr,
AdaptiveFilter.nrmsErrorTstLk, 'k-.', 'LineWidth', 2), % plot
(timenrmserr, AdaptiveFilter.nrmsErrorRemPop, 'g:', 'LineWidth', 2),
plot (timenrmserr, AdaptiveFilter.nrmsErrorvalue, 'LineWidth', 4);
 title (['Total NRMS errors Test RMS power = ',
num2str(Stim.Test.rms)], 'FontSize', 16)
 set(gca, 'FontSize', 14), legend('Static Filter',
'Adaptive Filter', 'Optimal Population');
 xlabel('Time (seconds)', 'FontSize', 14)
 ylabel('NRMSE_t_o_t', 'FontSize', 14)
 drawnow;
 FigHandle(7)=gcf;
 figure, plot(timenrmserr,
xscalecat(1:AdaptiveFilter.errorwindow/Sim.FR.tRateInt:nRateSteps),
'LineWidth', 2) % Downsampled to match AdaptiveFilter.errorwindow
 title ('Scale changes along X', 'FontSize', 16)
 set(gca, 'FontSize', 14), legend('Scale variation');

109

 xlabel('Time (seconds)', 'FontSize', 14)
 ylabel('Scale_x', 'FontSize', 14)
 FigHandle(8)=gcf;
 figure, plot(timenrmserr,
yscalecat(1:AdaptiveFilter.errorwindow/Sim.FR.tRateInt:nRateSteps),
'LineWidth', 2) % Downsampled to match AdaptiveFilter.errorwindow
 set(gca, 'FontSize', 14), legend('Scale variation');
 title ('Scale changes along Y', 'FontSize', 16)
 xlabel('Time (seconds)', 'FontSize', 14)
 ylabel('Scale_y', 'FontSize', 14)
 FigHandle(9)=gcf;
 if strcmp(Stim.Test.type, 'Figure 8')
 figure
 hold on
 grid on
 plot (sSUCenters(1,end+1-
(Stim.Test.FR.T/Sim.FR.tRateInt):end),sSUCenters(2,end+1-
(Stim.Test.FR.T/Sim.FR.tRateInt):end),'r-', 'LineWidth', 2);
 plot(sxplot, syplot,'m-.', 'LineWidth', 2);
 plot (statex(end+1-
(Stim.Test.FR.T/Sim.FR.tRateInt):end),statey(end+1-
(Stim.Test.FR.T/Sim.FR.tRateInt):end),'g--', 'LineWidth', 2);
 title (['Final Reconstruction of the static and
adaptive filters with induced nonstationarity - signal length = ',
num2str(Stim.Test.FR.T), ' seconds'], 'FontSize', 16)
 set(gca, 'FontSize', 14), legend('Original Signal',
'Static Filter', 'Adaptive Filter');
 xlabel('X velocity V_x', 'FontSize', 14)
 ylabel('Y velocity V_y', 'FontSize', 14)
 drawnow;
 FigHandle(10)=gcf;
 end
 end %j
 end %i

 % TIME TAKEN BY THE SIMULATION
 totalTime = toc;
 TotalTime = sprintf('%d seconds', round(totalTime));
 display(TotalTime)

 % SAVE SIMULATION DATA
 a = date;
 load('runcount.mat');
 runcount = runcount+1;
 if strcmp(Sim.Nonstatdecision, 'Yes')
 foldernameFig = ([a(1:6), ' ', Sim.NonStatType, ' Run ',
num2str(runcount)]);
 else
 foldernameFig = ([a(1:6), ' ', 'Stationary', ' Run ',
num2str(runcount)]);
 end
 save runcount runcount
 mkdir(foldernameFig);
 chdir(foldernameFig);

110

 save(foldernameFig, 'SUrateResp_training',
'sSUCenters_training', 'Sim', 'Stim', 'SUrateResp', 'sSUCenters',
'AdaptiveFilter', 'xscalecat', 'yscalecat', 'TotalTime'); %,
'Zdiffall', 'ZstatdiffX', 'ZstatdiffY', 'ZTstLkdiffY', 'ZTstLkdiffX',
'ZRemPopdiffY', 'ZRemPopdiffX'); %, 'spikeTrains'); 'phiSU'

 % SAVE FIGURES
 saveas(FigHandle(1), [foldernameFig ' - Static and adaptive
filter reconstruction without nonstationarity'], 'fig');
 saveas(FigHandle(2), [foldernameFig ' - Static and adaptive
filter reconstruction with nonstationarity induced at
',num2str(Sim.begofnonstat),' seconds'], 'fig');
 saveas(FigHandle(3), [foldernameFig ' - X recon'], 'fig');
 saveas(FigHandle(4), [foldernameFig ' - Y recon'], 'fig');
 saveas(FigHandle(5), [foldernameFig ' - X nrms error'], 'fig');
 saveas(FigHandle(6), [foldernameFig ' - Y nrms error'], 'fig');
 saveas(FigHandle(7), [foldernameFig ' - Total nrms error'],
'fig');
 saveas(FigHandle(8), [foldernameFig ' - X Scale'], 'fig');
 saveas(FigHandle(9), [foldernameFig ' - Y Scale'], 'fig');
 if strcmp(Stim.Test.type, 'Figure 8')
 saveas(FigHandle(10), [foldernameFig ' - Final static and
adaptive filter reconstruction'], 'fig');
 end
 for i = 1:length(Snapshotfigs)
 if Snapshotfigs(i)~=0
 saveas(Snapshotfigs(i), [foldernameFig ' - Snapshot '
num2str(i)], 'fig');
 end
 end
 cd ..;

 end
end

111

InitializeNewSim.m

function [Sim, Stim] = InitializeNewSim()

Sim.RSeed = sum(100*clock); %162 %Set Random Seed

%%
%%% Initialize simulation parameters
Sim.nDim = 2; %Number of stimulus dimensions
represented across the population
Sim.nUnits = 200; %Specify number of units for the simulated
populations - FOR ENTIRE POP CHANGE --> Sim.nUnits = 2* Sim.nchangedpop
Sim.nRuns = 1; %Number of simulation to run for each
population size
Sim.tAvgWindow = 0.1; %Temporal averaging window (sec) for
Error statistics
Sim.neuronsPerElect = 3; %Number of neurons per electrode
Sim.errorwindow = 10; % seconds

Sim.ReOptTimeWindow = 550; % seconds
Sim.LinReOptTimeWindow = 550;

% NONSTATIONARITY INITIALIZATIONS
Sim.Nonstatdecision = 'Yes'; % 'Yes' or 'No'
Sim.begofnonstat = 650; % TIME AT WHICH THE CHANGE BEGINS IN SECONDS
Sim.periodofnonstat = 1;% PERIOD BETWEEN TWO SUCCESSIVE ALTERATIONS
Sim.neuronsEachTime = 100; % NUMBER OF NEURONS ALTERED AT EACH TIME
INSTANT
Sim.nchangedpop = 100; % NUMBER OF NEURONS THAT ARE ALTERED
Sim.endofnonstat = Sim.begofnonstat +
(Sim.periodofnonstat*(Sim.nchangedpop/Sim.neuronsEachTime-1)); % TIME
AT WHICH THE CHANGE ENDS IN SECONDS
Sim.NonStatType = 'Replacement'; % TYPE OF NONSTATIONARITY - 'Loss' OR
'Replacement'OR 'Adaptation' OR 'Attention' OR 'AttentionReplacement'
Sim.NonStatTime =
Sim.begofnonstat:Sim.periodofnonstat:Sim.endofnonstat;

% Adaptation
Sim.TauAdapt = 0.49*(0.05 + round((0.6-0.05)*rand(Sim.nUnits,
1)*1000)/1000); % 0.055*ones(Sim.nUnits, 1); % 50 - 600 ms --> F_adap =
0.51, T_adap = (1 - F_adap)*T_ca... T_ca = 50 - 600 ms
Sim.Radapt = 20*ones(Sim.nUnits, 1); % Larger than R_leak
Sim.Gadapt = zeros(Sim.nUnits, 1);
Sim.Rdec = ones(Sim.nUnits, 1); % 5*R_leak

%Population Temporal-specific parameters
Sim.PT.dt = 0.00025; %Time step (sec)
%Define PSC linear filter for decoding
Sim.PT.tauPSC = 0.02*rand(1,Sim.nUnits)+0.01; %Heterogeneous taus
[10,30]ms - 10-19-06
%Sim.PT.tauPSC = 0.015;%0.005; %PSC time constant (sec)
Sim.PT.fOrderPSC = 0; %Filter Order

%Firing Rate-specific parameters

112

Sim.FR.dt = 0.001;%0.00025; %Time step (sec)
Sim.FR.FiltLength = 1; %length of linear rate filter
(s)
Sim.FR.tRateInt = 0.05; %Temporal window used to est
firing rate from spike train

% Attention
Sim.AttnPeriod = 5; %seconds
Sim.AttentionMod = [0.8 1.2]; % range of modulation produced by
attention

%%%
%%% Initialize neuron population parameters
Sim.phiEnc_func ='vonMisesTuningResp'; %'LinearTuningResp'
'GaussTuningResp' 'CosineTuningResp' 'vonMisesTuningResp'
Sim.error = 0.1; %Percentage error in neuron
response due to noise
Sim.maxRespRange = [20 80]; %[100 300]; %Range of max. responses
(spikes/s)
Sim.V_th = 1;
Sim.R_leak = 1;
Sim.tauRefRange = [0.002 0.005]; %Set range for refactory periods
across the neural population
Sim.tauRCRange = [0.01 0.03]; %Set range for RC-time constants
across the neural population
Sim.Tau = 1;

%Specify phase shift in signal representation (in time steps)
introduced by
%convolution with the PSC filter in the reconstruction. Used to adjust
time
%series for computation on MSE.
%phShift = uint32(round(Sim.tauPSC/Sim.dt));

%%%
%%% Initialize signal parameters
Stim.PT.dt = Sim.PT.dt;
Stim.FR.dt = Sim.FR.dt;

%TRAINING
Stim.Training.type = 'White Noise'; %'White Noise'; % '2D Plane';
%'Spiral Sampling';
switch (Stim.Training.type)
 case 'Spiral Sampling'
 Stim.sRange = (-2:0.001:2)*pi/2; %Signal Range
 Stim.Training.maxRad = 200*pi;
 Stim.Training.minRad = 0;
 Stim.Training.maxMag = 2;
 Stim.Training.FR.T = 200;
 case 'White Noise'
 Stim.sRange = -1:1/180:1; %Signal Range - sampling
per degree = 360 samples
 if Sim.nDim == 2
 Stim.sRange = Stim.sRange.*pi./max(Stim.sRange);
 end

113

 Stim.Training.randomSeed = Sim.RSeed;%0;%99; %RandomSeed>0
resets the random number generator, =0 selects new state, <0 uses
existing state
 Stim.Training.PT.T = 10; %Length of PT training
signal in seconds
 Stim.Training.FR.T = 2.5*Sim.nUnits; %
(ceil(Sim.nUnits*Sim.nDim/100))*100; %Length of FR training signal in
seconds = %120 of df (p180 = 450, p120 = 300, p100 = 250, p80 = 200,
p40 = 100, p20 = 50)
 Stim.Training.upperBandLimit = 1.5;%5; %High frequency
cutoff for white noise signal
 Stim.Training.lowerBandLimit = 0; %Low frequency cutoff for
white noise signal
 Stim.Training.rms = 1;%1; %RMS signal level
 Stim.Training.maxMag = sqrt(2); % Changed to 2 - Aug 13 2008
%max(abs(Stim.sRange));
 Stim.Training.bandwidth = [Stim.Training.lowerBandLimit
Stim.Training.upperBandLimit]*2*pi;
 otherwise
 error('Invalid type for training stimulus');
end

%TEST
Stim.Test.type = 'White Noise'; % 'Figure 8', 'White Noise', 'Circle',
'Constant'
Stim.Test.PT.T = 1.0; %Length of PT test signal in
seconds
Stim.Test.FR.T = 2000.0; %Length of FR test signal in
seconds
Stim.Test.FR.tst_runs = 1; % Runs of replicating test
stimulus
switch (Stim.Test.type)
 case 'Figure 8'
 Stim.Test.maxRad = 40*pi;
 Stim.Test.minRad = 0;
 Stim.Test.maxMag = 2;
 case 'White Noise'
 Stim.Test.randomSeed = 0;%6546546; %RandomSeed>0 resets
the random number generator
 Stim.Test.upperBandLimit = 1; %High frequency cutoff for
white noise signal
 Stim.Test.lowerBandLimit = 0; %Low frequency cutoff for
white noise signal
 Stim.Test.rms = 1; %RMS signal level
 Stim.Test.bandwidth = [Stim.Test.lowerBandLimit
Stim.Test.upperBandLimit]*2*pi;
 case 'Circle'
 Stim.Test.rms = Stim.Training.rms; % Set the radius of the
 Stim.Test.radius = Stim.Test.rms; % circle
 Stim.Test.degreepert = 1/200; % Aribitary step along the
circumference
 case 'Constant'
 Stim.Test.theta = [-pi/2 pi/2];
 Stim.Test.mag = 1/sqrt(2);
 Stim.Test.rms = 1;
end

114

InitvonMisesLIFNeurons.m

function [LIFparams, noiseVar, maxResp, a_S, kappa, halfwidth] =
InitvonMisesLIFNeurons(S, N, Spref, maxRespRange, tauRefRange,
tauRCRange, V_th, R_leak, error, figNum)

% [LIFparams, noiseVar, maxResp, a_S, kappa, halfwidth] =
InitvonMisesLIFNeurons(S, N, Spref, maxRespRange, tauRefRange,
tauRCRange, V_th, R_leak, error, figNum);
%
% Initializes the LIF parameters for a population of Gaussian tuned
neurons.
%
%-------INPUTS--------
% "S" is an 1xNt vector containing the range of representative values
over
% which the neurons should encode a signal (e.g., -2:0.1:2).
% "N" specifies the number of neurons to initialize.
% "Spref" is a MxN matrix specifying the location of the M-dimensional
mean
% for each neuron's tuning curve within the range specified by S. For
% Cosine tuned neurons the mean corresponds to the neuron's preferred
% stimulus.
% "maxRespRange" is a 1x2 vector specifying the range of maximum
responses (spikes/s)
% for the population of neurons [maxresp_low maxresp_high]. Each
neuron's
% maximum response is selected randomly from the range.
% "tauRefRange" is a 1x2 vector specifying the range of refractory
times (sec)
% for the population of neurons. Each neuron's refractory time is
selected
% randomly from the range.
% "tauRCRange" is a 1x2 vector specifying the range of RC time
constants (sec)
% for the population of neurons. Each neuron's RC time constant is
selected
% randomly from the range.
% "V_th" specifies the voltage threshold used to determine when an
action
% potential occurs. Curently this value is applied to all neurons.
% "R_leak" specifies the leakage resistance across the neurons' cell
membrane.
% Curently this value is applied to all neurons.
% "error" specifies the percentage error in neuron response due to
noise
% for preferred stimulus. The value is specified as a ratio relative
to the
% neuron's maximum response.
% "figNum" specifies the figure number to display a plot of the tuning
% curves for the population of neurons. If figNum = 0, no figure is
displayed.
%
%-------OUTPUTS--------
% "LIFparams" is a MxN matrix containing the LIF parameters specific to

115

% each neuron. Each row specifies values for a specifi LIF
parameter
% (1,1:N) -> Refractory periods (sec)
% (2,1:N) -> RC time-constants (sec)
% (3,1:N) -> Gains of driving input
% (4,1:N) -> Bias currents (amps)
% (5,1:N) -> Threshold voltages (volts)
% (6,1:N) -> Leakage resistances (ohms)
% (7;9;11;etc,1:N) -> Preferred stimulus (mean of Cosine tuning).
% One row per dimension
% "noiseVar" is a 1xN vector of noise variances (spikes/s) for the
initialized neurons.
% "maxResp" of maximum responses (spikes/s) for the initialized
neurons.
% "a_S" represents the tuning curves for the entire population of
neurons.
% "kappa" is a 1xN vector of constants related to the tuning half-width
of the neuron
% "halfwidth" is a 1xN vector of tuning halfwidths for the entire
% population of neurons.

% vonMises tuning width - consistent with Amirikian and Georgopulos
(2000)
% Jan 24, 2008
% Tushar Dharampal
% Integrative Neural Systems Lab
halfwidth = zeros(N,1);
kappa = zeros(N,1);

kappaRange = 0.01:0.01:5; % Empirical range
deltaRange = acosd((log(exp(2.*kappaRange)+1)-log(2)-
kappaRange)./kappaRange);

v1 = find(deltaRange >= 30 & deltaRange < 45);
v2 = find(deltaRange >= 45 & deltaRange < 60);
v3 = find(deltaRange >= 60 & deltaRange < 75);
v4 = find(deltaRange >= 75 & deltaRange < 90);

pop1 = round((6/30)*N); % 30 - 45 degrees
pop2 = round((11/30)*N); % 46 - 60
pop3 = round((8/30)*N); % 61 - 75
pop4 = N-(pop1+pop2+pop3); % 76 - 89

for i = 1:pop1
 index = ceil(rand()*length(v1));
 kappa(i) = kappaRange(v1(index));
 halfwidth(i) = deltaRange(v1(index));
end

for i = pop1+1:pop1+pop2
 index = ceil(rand()*length(v2));
 kappa(i) = kappaRange(v2(index));
 halfwidth(i) = deltaRange(v2(index));
end

116

for i = pop1+pop2+1:pop1+pop2+pop3
 index = ceil(rand()*length(v3));
 kappa(i) = kappaRange(v3(index));
 halfwidth(i) = deltaRange(v3(index));
end

for i = pop1+pop2+pop3+1:pop1+pop2+pop3+pop4
 index = ceil(rand()*length(v4));
 kappa(i) = kappaRange(v4(index));
 halfwidth(i) = deltaRange(v4(index));
end

clear i;

nDim = size(Spref,2);
Nt = length(S);
J_th = V_th/R_leak;
tauRef = (tauRefRange(2) - tauRefRange(1))*rand(N,1) + tauRefRange(1);
%Set refactory period randomly for each neuron
tauRC = (tauRCRange(2) - tauRCRange(1))*rand(N,1) + tauRCRange(1);
%Set RC-time constant randomly for each neuron

maxResp = (maxRespRange(2) - maxRespRange(1))*rand(N,1) +
maxRespRange(1);
noiseVar = maxResp.*error; %Compute noise variance for
each neurons (spikes/s)

v = find(maxResp > 1./tauRef); %Look for max resp. values that violate
the absolute refractory period
while ~isempty(v)
 maxResp(v) = (maxRespRange(2) - maxRespRange(1))*rand(length(v),1)
+ maxRespRange(1);
 v = find(maxResp > 1./tauRef);
end

%Compute alpha and Jbias for von Mises tuning response based on
%the neuron's preferred stimulus, tuning variance, maximum response,
and baseline noise (expressed as % of max response).
minResp = noiseVar;
J_bias = J_th*(1./(1-exp((tauRef.*minResp-1)./(tauRC.*minResp))));
J_bias_sigma = abs(J_bias - (J_th*(1./(1-
exp((tauRef.*(minResp+sqrt(noiseVar))-
1)./(tauRC.*(minResp+sqrt(noiseVar))))))));
alpha = J_th*(1./(1-exp((tauRef.*maxResp-1)./(tauRC.*maxResp)))) -
J_bias;

LIFparams(1,:) = tauRef'; %Refractory period
LIFparams(2,:) = tauRC'; %RC time-constant
LIFparams(3,:)= alpha'; %Gain of driving input
LIFparams(4,:) = J_bias'; %Bias current
LIFparams(5,:) = V_th*ones(1,N); %Threshold voltage
LIFparams(6,:) = R_leak*ones(1,N); %Leakage resistance
LIFparams(7:7+nDim-1,:) = Spref'; %preferred direction of neuron

117

LIFparams(end+1,:) = J_bias_sigma; % S.D of variation in the J_bias
values

if figNum > 0
 figure(figNum);
 clf;
 offset = 1./exp(kappa);
 scale = (exp(kappa)-offset)*ones(1,Nt);
 Jin =
alpha*ones(1,Nt).*((exp(kappa*ones(1,Nt).*cos(angle_mod(ones(N,1)*S(1,:
),Spref(:,1)*ones(1,Nt)))) - offset*ones(1,Nt))./scale);
 Jin = Jin + J_bias*ones(1,Nt);
 a_S = 1./((tauRef*ones(1,length(S)))-
(tauRC*ones(1,length(S))).*log(1-J_th./Jin));
 plot(S(1,:)*180/pi,a_S)
 title ('Tuning curves for the entire population of neurons',
'FontSize', 16);
 xlabel ('Preferred Direction (Degrees)', 'FontSize', 16);
 ylabel ('Firing rate (spikes/second)', 'FontSize', 16);
 drawnow;
 figure
 plot(S(1,:)*180/pi,sum(a_S))
 title ('Sum of tuning profiles for the entire population of
neurons', 'FontSize', 16);
 xlabel ('Preferred Direction (Degrees)', 'FontSize', 16);
 ylabel ('Firing rate (spikes/second)', 'FontSize', 16);
 if(N<=100)
 axis([-200 200 0 4000])
 else
 axis([-200 200 0 8000])
 end
 drawnow;
 if(find(~isfinite(sum(a_S, 2))))
 error('a_S has a NaN')
 end
end

118

GetNeuronFiringRatesIterative_G.m

function [SUrateResp, sSUCenters, LIFinit, Gadapt, spikeTimes,
GadaptTemp] = GetNeuronFiringRatesIterative_G(Sim, Stim, Sin, LIFinit,
NumNeurons, AttnSig, Gadapt)
% [SUrateResp, sSUCenters, LIFinit, Gadapt, spikeTimes, GadaptTemp] =
GetNeuronFiringRatesIterative_G(Sim, Stim, Sin, LIFinit, NumNeurons,
AttnSig, Gadapt)

Generate the firing rates for the provided stimulus for the given
neuron population

%-------INPUTS--------
% "Sim" is the structure that holds the simulation specific parameters.
% "Stim" is the structure that holds the stimulus specific parameters.
% "Sin" is the provided stimulus along two-dimensions.
% "LIFinit" is a structure that carries over the current state of each
neuron for the next
% call to genLIFSpikes_iterate. It contains the fields:
% ".V" is a 1xN vector containing the final voltage for each
neuron
% ".EndRefPeriod" is a 1xN vector containing the ending time for
each neuron's refractory
% period relative to the local time for the next function
call.
% ".jitterSig" is a 1xN vector containing the standard deviations
of the random temporal jitters
% applied to the timing of each neuron's spikes.
% "NumNeurons" is the number of neurons in the population.
% "AttnSig" is a vector that represents the attention signal over the
% length of the stimulus
% "Gadapt" is a vector representing the current adaptive conductance
for
% each neuron.
%
%-------OUTPUTS--------
% "SUrateResp" is a vector that holds the binned rates for each neuron
over the
% current timestep.
% "sSUCenters" is a 2x1 vector tjat holds the averaged stimulus along
two
% dimensions for each timestep.
% "LIFinit" is a structure that carries over the current state of each
neuron for the next
% call to genLIFSpikes_iterate. It contains the fields:
% ".V" is a 1xN vector containing the final voltage for each
neuron
% ".EndRefPeriod" is a 1xN vector containing the ending time for
each neuron's refractory
% period relative to the local time for the next function
call.
% ".jitterSig" is a 1xN vector containing the standard deviations
of the random temporal jitters
% applied to the timing of each neuron's spikes.
% "Gadapt" is a vector representing the current adaptive conductance
for

119

% each neuron.
% "spikeTimes" is a NxP matrix containing the times for each action
potential.
% The dimension P is specified by the neurons with the most spikes
=max(spikeCount).
% For neurons with fewer spikes (Q; Q<P) the row of spike times is
padded
% with P-Q zeros to complete the matrix.
% "GadaptTemp" is a matrix used to hold the Gadapt values between
function
% calls.

i=1; % ONE POPULATION

Nt = length(Sin);

%Parse Global Stuctures
LIFparams = Sim.Pop(i).LIFparams(:,1:NumNeurons);
noiseVar = Sim.Pop(i).noiseVar(1:NumNeurons);
maxResp = Sim.Pop(i).maxResp(1:NumNeurons);

scale = Sim.Pop(i).SmaxLin;

% Incorporate attention responses
if strcmp(Sim.Nonstatdecision, 'Yes') && (strcmp(Sim.NonStatType,
'Attention') || strcmp(Sim.NonStatType, 'AttentionReplacement'))% &&
strcmp(SigType, 'Test')
 scale = scale./AttnSig;
end

%Convert signal to polar form for Gaussian tuned neurons
switch(Sim.phiEnc_func)
 case 'GaussTuningResp'
 if Sim.nDim == 1
 Sin_mag = max(Stim.sRange)*ones(1,Nt);
 Sin_angle = Sin;
 else
 Sin_mag = sqrt(sum(Sin.^2,1));
 Sin_angle = atan2(Sin(2,:), Sin(1,:));
 end
 Sin_plr = {Sin_mag, Sin_angle};
 respParam = {Sim.Pop(i).Spref(1:NumNeurons),
Sim.Pop(i).Ssig(1:NumNeurons), scale};

 case 'LinearTuningResp'
 Sin_plr = {Sin_temp};
 respParam = {phiEnc'};

 case 'CosineTuningResp'
 if Sim.nDim == 1
 Sin_mag = max(Stim.sRange)*ones(1,Nt);
 Sin_angle = Sin;
 else
 Sin_mag = sqrt(sum(Sin.^2,1));

120

 Sin_angle = atan2(Sin(2,:), Sin(1,:));
 end
 Sin_plr = {Sin_mag, Sin_angle};
 respParam = {Sim.Pop(i).Spref(1:NumNeurons), scale};

 case 'vonMisesTuningResp'
 if Sim.nDim == 1
 Sin_mag = max(Stim.sRange)*ones(1,Nt);
 Sin_angle = Sin;
 else
 Sin_mag = sqrt(sum(Sin.^2,1));
 Sin_angle = atan2(Sin(2,:), Sin(1,:));
 end
 Sin_plr = {Sin_mag, Sin_angle};
 respParam = {Sim.Pop(i).Spref(1:NumNeurons),
Sim.Pop(i).kappa(1:NumNeurons), scale};
 otherwise
 error('Invalid stimulus tuning profile specified');
end
clear Sin_temp;

%Compute alpha and Jbias for rectified linear tuning response based on
%the neuron's x-intercept and maximum response.
alpha = LIFparams(3,1:NumNeurons)';
J_bias = LIFparams(4,1:NumNeurons)';

J_bias_sigma = LIFparams(end,1:NumNeurons)';

%Compute driving current and corresponding neuron reponses for the
input signal
J_d = CalcDrivingCurrent(alpha, Nt, Sim.phiEnc_func, respParam,
Sin_plr);%, expa);

J_in = J_d + (J_bias*ones(1,Nt)+J_bias_sigma*randn(1,Nt)); % Add
variability to the J_bias values with a S.D. of J_bias_sigma - August
24 2007

[spikeCount, spikeTimes, LIFinit, Gadapt, GadaptTemp] =
genLIFSpikes_iterate_G(J_in, Stim.FR.dt, LIFparams, noiseVar, maxResp,
LIFinit, Gadapt, Sim.TauAdapt, Sim);

SUrateResp = spikeCount/Sim.FR.tRateInt;

sSUCenters = (mean(Sin,2))';

121

genLIFSpikes_iterate_G.m

function [spikeCount,spikeTimes,LIFinit,Gadapt,GadaptTemp] =
genLIFSpikes_iterate_G(J_in, dt, LIFparams, noiseVar, maxResp, LIFinit,
Gadapt, TauAdapt, Sim)
% [spikeCount,spikeTimes,LIFinit,Gadapt,GadaptTemp] =
genLIFSpikes_iterate_G(J_in, dt, LIFparams, noiseVar, maxResp, LIFinit,
Gadapt, TauAdapt, Sim)
%
% Compute timing of action potentials for a population of Leaky
Integrate and Fire (LIF)
% neurons based on the integrated input current received by each neuron
% including optional adaptation of neuron responses.
%
%-------INPUTS--------
% "J_in" is an NxNt matrix containig the input current received by N
neurons
% for each of Nt time points.
% "dt" is the interval between time points expressed in sec.
% "LIFparams" is a MxN matrix containing the LIF parameters specific to
% each neuron. The parameters matrix is generated automatically
using
% the functions InitGaussLIFNeurons or InitLinearLIFNeurons to
% generate neurons with Gaussian or linear tuning curves
respectively.
% The parameters specific to each row are
% (1,1:N) -> Refractory periods (sec)
% (2,1:N) -> RC time-constants (sec)
% (3,1:N) -> Gains of driving input
% (4,1:N) -> Bias currents (amps)
% (5,1:N) -> Threshold voltages (volts)
% (6,1:N) -> Leakage resistances (ohms)
% "noiseVar" is a 1xN vector of noise variances (spikes/s). This vector
is
% generated automatically together with LIFparams as part of the
neuron
% initialization.
% "maxResp" is a 1xN vector of maximum responses (spikes/s). his vector
is
% generated automatically together with LIFparams as part of the
neuron
% initialization.
% "LIFinit" is a structure that carries over the current state of each
neuron for the next
% call to genLIFSpikes_iterate. It contains the fields
% ".V" is a 1xN vector containing the final voltage for each
neuron
% ".EndRefPeriod" is a 1xN vector containing the ending time for
each neuron's refractory
% period relative to the local time for the next function
call.
% ".jitterSig" is a 1xN vector containing the standard deviations
of the random temporal jitters
% applied to the timing of each neuron's spikes.

122

% "Gadapt" is a vector representing the current adaptive conductance
for
% each neuron.
% "TauAdapt" is a vector representing the time period of adaptation for
% each neuron.
% "Sim" is the structure that holds the simulation specific parameters.
%
%-------OUTPUTS--------
% "spikeCount" is a 1xN vector containing the total number of spikes
generated
% during the input sequence for each neuron.
% "spikeTimes" is a NxP matrix containing the times for each action
potential.
% The dimension P is specified by the neurons with the most spikes
=max(spikeCount).
% For neurons with fewer spikes (Q; Q<P) the row of spike times is
padded
% with P-Q zeros to complete the matrix.
% "LIFinit" is a structure that carries over the current state of each
neuron for the next
% call to genLIFSpikes_iterate. It contains the fields
% ".V" is a 1xN vector containing the final voltage for each
neuron
% ".EndRefPeriod" is a 1xN vector containing the ending time for
each neuron's refractory
% period relative to the local time for the next function
call.
% ".jitterSig" is a 1xN vector containing the standard deviations
of the random temporal jitters
% applied to the timing of each neuron's spikes.
% "Gadapt" is a vector representing the current adaptive conductance
for
% each neuron.
% "GadaptTemp" is a matrix used to hold the Gadapt values between
function
% calls.

% Created 4-1-06 (Scott Beardsley)
%
% Modification History:
%

%Initialize LIF paramters
N = size(LIFparams,2);
tauRef = LIFparams(1,:)'; %Refractory period
tauRC = LIFparams(2,:)'; %RC time-constant
alpha = LIFparams(3,:)'; %Gain of driving input
J_bias = LIFparams(4,:)'; %Bias current
V_th = LIFparams(5,:)'; %Threshold voltage
R_leak = LIFparams(6,:)'; %Leakage resistance

spikeCount = zeros(1,N);

spikeTimes = zeros(N, ceil(Sim.FR.tRateInt/Sim.FR.dt));

T = (size(J_in, 2)-1)*dt; %Total Time

123

RateSS = 0.49*Sim.Pop.maxResp;
B = ((1./tauRC).*(tauRef - 1./RateSS));
Jm = alpha + J_bias;
Q = 1./Jm;

As = (B.^2)/2;
Bs = (B + (Q./exp(B)));
Cs = (1 - ((1-Q)./exp(B)));
Gad = (-Bs + sqrt(Bs.^2 - 4.*As.*Cs))./(2.*As);

Ginc = (1 - ((1 - dt./TauAdapt).^(1./(dt.*RateSS)))).*Gad;

if isempty(LIFinit.jitterSig)
 resJitter = dt/4; %Jitter in spike timing due to
resolution of the time step
 maxJitterSig = (1./maxResp - 1./(maxResp+sqrt(noiseVar)))/4;
 jitterSig = resJitter.*ones(1,N); % Changed to increase variability
in the Inter Spike Intervals
 z = find(maxJitterSig>resJitter); %Find neurons whose temporal
jitter due to noise exceeds the time step resolution
 if ~isempty(z)
 jitterSig(z) = maxJitterSig(z); %Use the larger source of
jitter (i.e., jitter due to noise) for the above neurons
 end
 LIFinit.jitterSig = jitterSig;
end

GadaptTemp = zeros(N, size(J_in,2)-1);

for j = 1:N
 V(1) = LIFinit.V(j);
 endRefPeriod = LIFinit.EndRefPeriod(j);

 for i = 2:size(J_in,2) %Loop over the length of the signal J_in(t)
 if i*dt > endRefPeriod
 if strcmp(Sim.Nonstatdecision, 'Yes') &&
strcmp(Sim.NonStatType, 'Adaptation')
 V(i) = V(i-1)-(V(i-1)+ V(i-1)*(R_leak(j)*Gadapt(j)) -
J_in(j, i-1)*R_leak(j))/tauRC(j)*dt; % Adaptive LIF neuron Voltage
 else
 V(i) = V(i-1)-(V(i-1) - J_in(j, i-
1)*R_leak(j))/tauRC(j)*dt; % Normal LIF neuron Voltage
 end
 if V(i)>=V_th(j)
 tJitter = (randn*LIFinit.jitterSig(j)); %Incorporate
noise as variability in spike timing
 tSpike = (i-1)*dt + tJitter;
 if (spikeCount(j) ~= 0 && tSpike <=
(spikeTimes(j,spikeCount(j)) + tauRef(j)))
 tSpike = (spikeTimes(j,spikeCount(j)) + tauRef(j));
 end
 if tSpike <= T && tSpike >= dt
 spikeCount(j) = spikeCount(j) + 1;
 spikeTimes(j,spikeCount(j)) = tSpike;

124

 endRefPeriod = spikeTimes(j,spikeCount(j)) +
tauRef(j);
 end
 V(i) = 0;
 if strcmp(Sim.Nonstatdecision, 'Yes') &&
strcmp(Sim.NonStatType, 'Adaptation') %&& (Radapt(j) > Sim.R_leak)

 Gadapt(j) = Gadapt(j) + Ginc(j);
 end
 else
 if strcmp(Sim.Nonstatdecision, 'Yes') &&
strcmp(Sim.NonStatType, 'Adaptation') %&& (Radapt(j) < Sim.Radapt(j))

 Gadapt(j) = Gadapt(j) -
(Gadapt(j)/(TauAdapt(j)/dt));
 if Gadapt(j) <= 0
 Gadapt(j) = 0;
 end
 end
 end
 else
 V(i) = 0;
 end

 GadaptTemp(j,i) = Gadapt(j);
 end

 LIFinit.V(j) = V(i); %Carry over each
neuron's final voltage for next function call
 LIFinit.EndRefPeriod(j) = endRefPeriod-T; %Adjust each
neuron's endRefPeriod to the local time for the next function call
 %Reset V
 V = V*0;

end

125

vonMisesTuningResp.m

function resp = vonMisesTuningResp(S, p)

% resp = vonMisesTuningResp(S, p);
%
% Calculates the response (spikes/s) of von Mises tuned neurons to a 1D
or 2D
% signal expressed in polar coordinates.
%
%-------INPUTS--------
% "S" is a {1xM} cell array of 1xNt vectors containing the M-
dimensional input signal
% over Nt time steps.
% [s{1}] is an optional input containing the magnitude of a
2D stimulus.
% When present it scales the amplitude of the Cosine
% response.
% s{2} is the polar angle of the 2D stimulus.
% "p" is a {1x3} cell array of 1xN vectors containing the Cosine tuning
parameters for
% N neurons.
% p{1} contains the preferred stimulus angle
% p{2} contains the kappa value - the scale in the
exponential
% of the von Mises tuning
% [p{3}] is an optional parameter that normalizes stimulus
magnitude.
% It is used to incorporate linear tuning as a function
of radius.
%
%-------OUTPUTS--------
% "resp" is a NxNt matrix containing the responses (spikes/s) of N
neurons at Nt
% time steps.
%

% Created 11 - 6 - 07 (Tushar Dharampal)
%
% Modification History:
%11 - 6 - 07 Initializing resp variable (Tushar Dharampal)

N = length(p{1});
Nt =length(S{1});
resp = zeros(N,Nt);
kappa = p{2}';
for j = 1:N
 % Jan 24 2008
 % Tushar Dharampal
 % Subtract from and scale the tuning function in order to conform
it to the
 % Alpha-Jbias format i.e be able to use the same Alpha and Jbias
equations
 % as before
 resp(j,:) =
S{1}./p{3}.*((exp(kappa(j)*ones(1,Nt).*cos(angle_mod(S{2},p{1}(j,:)'*on

126

es(1,Nt))))-(1./exp(kappa(j)))*ones(1,Nt))./((exp(kappa(j))-
(1./exp(kappa(j))))*ones(1,Nt)));
end

127

GetDecodingWeights.m

function [A,H,W,Q] = GetDecodingWeights(S, a_S)

% [phi] = GetDecodingWeights(S, a_S, noiseVar);
%
% Computes the optimal decoding weights for a fixed temporal filter.
%
%-------INPUTS--------
% "S" is a 1xNt vector containing the signal amplitudes at Nt time
points
% "a_S" is a NxNt matrix containing the convolution of the temporal
decoding
% with the spike trains of N neurons. The result approximates the
instantaneous
% firing rate of each neuron at each time point.
%
%-------OUTPUTS--------
% "phi" is a 1xN vector containing the optimal decoding weights used to
% perform the signal decoding and reconstruction.
%
% Created 8-16-06 (Scott Beardsley)
%
% Modification History:
%
%Estimate decoding weights w/ noise
gamma = S*S'; %+ (noiseVar*ones(1,N).*eye(N, N));
upsilon = a_S*S';
phi = upsilon*inv(gamma);

X1 = S(:,1:size(S,2)-1);
X2 = S(:,2:size(S,2));

A = X2*X1' * inv(X1*X1');
H = phi;
Z = a_S;
X = S;
W = (X2 - A*X1)*(X2 - A*X1)'/size(X1,2);

Q = (Z - H*X)*(Z - H*X)'/size(X,2);

128

InitAdaptiveFilter.m

function [AdaptiveFilter adaptiveKalman] =
InitAdaptiveFilter(AdaptiveFilter)
% [AdaptiveFilter adaptiveKalman] = InitAdaptiveFilter(AdaptiveFilter)

% The 'InitAdaptiveFilter' function initializes the components of the
adaptive filter.
% For the adaptive Kalman filter there are three filters to be
initialized.
%
% INPUTS
% -------
% AdaptiveFilter = Struct variable with variables specific to the
adaptive filter
%
% OUTPUTS
% --------
% adaptiveKalman = Struct variable with Kalman filter specific
initializations

AdaptiveFilter.type = 'Kalman Filter';
Px =
(AdaptiveFilter.static.Hsu(:,1)\AdaptiveFilter.static.Qsu)/AdaptiveFilt
er.static.Hsu(:,1)'; %P = inv(H)*R*inv(H')
Py =
(AdaptiveFilter.static.Hsu(:,2)\AdaptiveFilter.static.Qsu)/AdaptiveFilt
er.static.Hsu(:,2)'; %P = inv(H)*R*inv(H')

% FILTER 1
adaptiveKalman.adaptfilt1x=[];
adaptiveKalman.adaptfilt1x.A = AdaptiveFilter.static.Asu(1,1);
adaptiveKalman.adaptfilt1x.B = 0;
adaptiveKalman.adaptfilt1x.H = AdaptiveFilter.static.Hsu(:,1);
adaptiveKalman.adaptfilt1x.Q = AdaptiveFilter.static.Wsu(1,1);
adaptiveKalman.adaptfilt1x.R = AdaptiveFilter.static.Qsu;
adaptiveKalman.adaptfilt1x.u = 0;
adaptiveKalman.adaptfilt1x.P = Px;

adaptiveKalman.adaptfilt1y=[];
adaptiveKalman.adaptfilt1y.A = AdaptiveFilter.static.Asu(2,2);
adaptiveKalman.adaptfilt1y.B = 0;
adaptiveKalman.adaptfilt1y.H = AdaptiveFilter.static.Hsu(:,2);
adaptiveKalman.adaptfilt1y.Q = AdaptiveFilter.static.Wsu(2,2);
adaptiveKalman.adaptfilt1y.R = AdaptiveFilter.static.Qsu;
adaptiveKalman.adaptfilt1y.u = 0;
adaptiveKalman.adaptfilt1y.P = Py;

% FILTER 2
adaptiveKalman.adaptfilt2x=[];
% adaptiveKalman.adaptfilt2x.P = 0.1;
adaptiveKalman.adaptfilt2x.A = eye(1);
adaptiveKalman.adaptfilt2x.B = 0;
adaptiveKalman.adaptfilt2x.Q = zeros(1);
adaptiveKalman.adaptfilt2x.R = AdaptiveFilter.static.Qsu(1,1);

129

adaptiveKalman.adaptfilt2x.u = 0;
adaptiveKalman.adaptfilt2x.x = AdaptiveFilter.static.Hsu(:,1)';

adaptiveKalman.adaptfilt2y=[];
% adaptiveKalman.adaptfilt2y.P = 0.1;
adaptiveKalman.adaptfilt2y.A = eye(1);
adaptiveKalman.adaptfilt2y.B = 0;
adaptiveKalman.adaptfilt2y.Q = zeros(1);
adaptiveKalman.adaptfilt2y.R = AdaptiveFilter.static.Qsu(1,1);
adaptiveKalman.adaptfilt2y.u = 0;
adaptiveKalman.adaptfilt2y.x = AdaptiveFilter.static.Hsu(:,2)';

% FILTER 3
adaptiveKalman.adaptfilt3x = [];
adaptiveKalman.adaptfilt3x.A = AdaptiveFilter.static.Asu(1,1);
adaptiveKalman.adaptfilt3x.B = 0;
adaptiveKalman.adaptfilt3x.Q = AdaptiveFilter.static.Wsu(1,1);
adaptiveKalman.adaptfilt3x.R = AdaptiveFilter.static.Qsu;
adaptiveKalman.adaptfilt3x.P = Px;
adaptiveKalman.adaptfilt3x.u = 0;
adaptiveKalman.adaptfilt3x.H = AdaptiveFilter.static.Hsu(:,1);

adaptiveKalman.adaptfilt3y = [];
adaptiveKalman.adaptfilt3y.A = AdaptiveFilter.static.Asu(2,2);
adaptiveKalman.adaptfilt3y.B = 0;
adaptiveKalman.adaptfilt3y.Q = AdaptiveFilter.static.Wsu(2,2);
adaptiveKalman.adaptfilt3y.R = AdaptiveFilter.static.Qsu;
adaptiveKalman.adaptfilt3y.P = Py;
adaptiveKalman.adaptfilt3y.u = 0;
adaptiveKalman.adaptfilt3y.H = AdaptiveFilter.static.Hsu(:,2);

AdaptiveFilter.xest=0;
AdaptiveFilter.yest=0;
AdaptiveFilter.zest = zeros(size(AdaptiveFilter.static.Hsu,1),1);
AdaptiveFilter.xtrue=0;
AdaptiveFilter.ytrue=0;

AdaptiveFilter.window_size_filter = 1; % Iterations
AdaptiveFilter.window_size_scale = 50; % Iterations
AdaptiveFilter.xscale = 0.2;
AdaptiveFilter.yscale = 0.2;
AdaptiveFilter.errorwindow = 10; % TIME WIDTH FOR RMS ERROR CALCULATION
IN SECONDS
AdaptiveFilter.true_avgerrorx = 0;
AdaptiveFilter.true_avgerrory = 0;
AdaptiveFilter.prev_avgerrorx = 0;
AdaptiveFilter.prev_avgerrory = 0;

130

Kalmansnapshot.m

function [sxplot, syplot] = Kalmansnapshot(TestType, Sim, Stim,
Nusable, H, AdaptiveFilter, P, R, flag, indchangedpopNusable,
indchangedpopReplace, indchangedpopLoss, cntt)

% The Kalmansnapshot function is used to measure the performance of the
algorithm as a snapshot during various points in the simulation.
% It gives a reconstruction of the desired stimulus as if it were the
current TEST stimulus (at this point in the simulation).
% {The 'Figure of 8' stimulus is chosen because the response is easily
assessed qualitatively}
% It does not alter the state / weights of the system in any way.
%
% INPUTS
% -------
% TestType = Stimulus used for the snapshot test
% Sim = Simulation parameters.
% Stim = Stimulus parameters.
% Nusable = The number of neurons that are used for the reconstruction.
% H = Current H matrix (hence, the snapshot).
% AdaptiveFilter = Adaptive filter parameters.
% changedpopcat = The indices for the neurons that are altered.
% flag = Variable that indicates the type of nonstationarity.
%
% OUTPUTS
% --------
% sxplot = Reconstruction along the X dimension.
% syplot = Reconstruction along the Y dimension.

TestLength = 5;
t = 0:Stim.FR.dt:TestLength;
N = Sim.nUnits;

switch (TestType)
 case 'Constant'
 theta = Stim.Test.theta.*ones(1,length(t));
 Sin_tst = Stim.Test.mag.*[cos(theta); sin(theta)];
 case 'Figure 8'
 theta = linspace(-pi/4, 3/4*pi, length(t));
 Sin_tst = [1.5*cos(2*theta); 1*cos(2*theta).*sin(2*theta)];
 case 'White Noise'
 for f = 1:Sim.nDim
 [Sin_tst(f,:),Amps(f,:)] =
genSignal(Stim.Test.FR.T,Stim.FR.dt,Stim.Test.rms,Stim.Test.bandwidth,S
tim.Training.randomSeed*pi*f); %Increment random seed in deteministic
way across multiple dimensions when RandomSeed >0
 %pi multiple in randomSeed used to ensure different
amplitude coeff in generaiton of random training and test signals
 clear Amps
 end
end

LIFinit.V = zeros(1,N);
LIFinit.EndRefPeriod = zeros(1,N);

131

LIFinit.jitterSig = [];
LIFinit.Radapt = Sim.Radapt;

ndtperBin = Sim.FR.tRateInt/Sim.FR.dt;

% STATIC FILTER INITIALIZATIONS
sx = [];
sx.A = AdaptiveFilter.static.Asu(1,1);
sx.B = 0;
sx.H = H(:,1);
sx.Q = AdaptiveFilter.static.Wsu(1,1);
sx.R = R(:,1:Nusable);

sx.P = P;
sx.u = 0;
sxscale = 1;

sy = [];
sy.A = AdaptiveFilter.static.Asu(2,2);
sy.B = 0;
sy.H = H(:,2);
sy.Q = AdaptiveFilter.static.Wsu(2,2);
sy.R = R(:,Nusable+1:end);

sy.P = P;
sy.u = 0;
syscale = 1;

SUrateResp = zeros(N, TestLength/Sim.FR.tRateInt);
sSUCenters = zeros(2, TestLength/Sim.FR.tRateInt);

Radapt = Sim.Radapt;

for cnt=1:TestLength/Sim.FR.tRateInt
 % GENERATE THE FIRING RATES FOR THE TEST SIGNAL

 [SUrateResp(:,cnt), sSUCenters(:,cnt), LIFinit, Radapt] =
GetNeuronFiringRatesIterative(Sim, Stim, Sin_tst(:,((cnt-
1)*ndtperBin)+1:cnt*(ndtperBin)), LIFinit, N, 1, Radapt);

 % INTRODUCTION OF NONSTATIONARITY
 if flag == 1
 SUrateResp(Nusable:-1:indchangedpopLoss,cnt) = 0;
 elseif flag == 2
 if Sim.nchangedpop == Sim.neuronsEachTime
 SUrateResp(1:Sim.neuronsEachTime, cnt:end) =
SUrateResp(Sim.neuronsEachTime+1:end, cnt:end);
 else
 SUrateResp(1:indchangedpopNusable, cnt:end) =
SUrateResp(Nusable+1:indchangedpopReplace, cnt:end);
 end
 end

132

 % STATIC FILTER
 sx(end).z = SUrateResp(1:Nusable,cnt);
 if(cnt == 1) % PROVIDE INITIAL BEST ESTIMATES FOR THE KALMAN FILTER
 sx.x = sSUCenters(1,1);
 sy.x = sSUCenters(2,1);
 end
 [sx(end+1), K] = kalmanf(sx(end),sxscale);
 sy(end).z = SUrateResp(1:Nusable,cnt);
 [sy(end+1), K] = kalmanf(sy(end),syscale);

end

for cnt=1:TestLength/Sim.FR.tRateInt-1 % for extracting the array from
the struct
 sxplot(cnt)=sx(cnt+1).x;
 syplot(cnt)=sy(cnt+1).x;
end

% PLOTS

figure
hold on
grid on
plot
(sSUCenters(1,1:TestLength/Sim.FR.tRateInt),sSUCenters(2,1:TestLength/S
im.FR.tRateInt),'r', 'LineWidth', 2);
plot (sxplot(1:TestLength/Sim.FR.tRateInt-
1),syplot(1:TestLength/Sim.FR.tRateInt-1),'m--', 'LineWidth', 2);
axis([-2 2 -1 1])
set(gca, 'FontSize', 14), legend('Snapshot Test Signal', 'Filter
Reconstruction');
xlabel('X velocity V_x', 'FontSize', 14)
ylabel('Y velocity V_y', 'FontSize', 14)
if(flag == 0)
 title (['Snapshot of performance - ',
num2str((cntt*Sim.FR.tRateInt)), ' seconds'], 'FontSize', 16)
else
 title (['Snapshot of performance with nonstationarity - ',
num2str(round(cntt*Sim.FR.tRateInt)), ' seconds'], 'FontSize', 16)
end
drawnow;

133

kalmanf.m

function [s, K] = kalmanf(s,scale)
% Modified from KALMANF VERSION 1.0, JUNE 30, 2004 BY Michael C. Kleder
% http://www.mathworks.com/matlabcentral/fileexchange/5377-learning-
the-kalman-filter
%
% [s, K] = kalmanf(s,scale)
% ---INPUTS---
% s is a struct that holds the state variables
% scale is the factor influencing the progression of the Kalman gain
%
% ---OUTPUTS---
% s is a struct that holds the state variables
% K holds the Kalman gain between function calls

% set defaults for absent fields:
if ~isfield(s,'x'); s.x=nan*z; end
if ~isfield(s,'P'); s.P=nan; end
if ~isfield(s,'z'); error('Observation vector missing'); end
if ~isfield(s,'u'); s.u=0; end
if ~isfield(s,'A'); s.A=eye(length(x)); end
if ~isfield(s,'B'); s.B=0; end
if ~isfield(s,'Q'); s.Q=zeros(length(x)); end
if ~isfield(s,'R'); error('Observation covariance missing'); end
if ~isfield(s,'H'); s.H=eye(length(x)); end

if isnan(s.x)
 s.x = s.H\s.z;
 s.P = (s.H\s.R)/s.H';
end

% Discrete Kalman filter:

% Prediction for state vector and covariance:
s.x = s.A*s.x + s.B*s.u;
s.P = s.A * s.P * s.A' + s.Q;

% Compute Kalman gain factor:
K = s.P*s.H'*inv(s.H*s.P*s.H'+s.R);

% Correction based on observation:
s.x = s.x + scale*K*(s.z-s.H*s.x);%//a factor of 0.2 is introduced into
the gain -- Jan 02, 2007
s.P = s.P - scale*K*s.H*s.P;

134

adaptKalmanIterate.m

function [adaptiveKalman,AdaptiveFilter,statex,statey,Kall, K2xy] =
adaptKalmanIterate(adaptiveKalman,AdaptiveFilter,sSUCenters,SUrateResp,
cnt)

% An adaptive filter based on a cascaded Kalman filtering scheme
%
% [adaptiveKalman,AdaptiveFilter,statex,statey,Kall, K2xy] =
adaptKalmanIterate(adaptiveKalman,AdaptiveFilter,sSUCenters,SUrateResp,
cnt)
% ---INPUTS---
% adaptiveKalman is a struct that holds the state variables for each
Kalman
% filter.
% AdaptiveFilter is a Struct variable with variables specific to the
% adaptive filter.
% sSUCenters is a 2x1 vector that holds the averaged stimulus along two
% dimensions for each timestep.
% SUrateResp is a vector that holds the binned rates for each neuron
over the
% current timestep.
% cnt holds the value of the current bin timestep
%
% ---OUTPUTS---
% adaptiveKalman is a struct that holds the state variables for each
Kalman
% filter.
% AdaptiveFilter is a Struct variable with variables specific to the
% adaptive filter.
% statex holds the value of the decoded movement along the X-axis at
the current timestep
% statey holds the value of the decoded movement along the X-axis at
the current timestep
% Kall is a struct that holds the Kalman gains for the first and third
Kalman
% filters.
% K2xy is a struct that holds the Kalman gains for the second Kalman
% filter.

xscale = AdaptiveFilter.xscale;
yscale = AdaptiveFilter.yscale;

temp_x = adaptiveKalman.adaptfilt1x.x; % X AND Y VALUES FOR THE CURRENT
TIMESTEP TO BE FED INTO THE THIRD KALMAN
temp_y = adaptiveKalman.adaptfilt1y.x;

%################################
%For "window_size" timesteps...

adaptiveKalman.adaptfilt1x.z = SUrateResp;
[adaptiveKalman.adaptfilt1x, K1x] =
kalmanf(adaptiveKalman.adaptfilt1x,1);

adaptiveKalman.adaptfilt1y.z = SUrateResp;

135

[adaptiveKalman.adaptfilt1y, K1y] =
kalmanf(adaptiveKalman.adaptfilt1y,1);

AdaptiveFilter.xtrue = AdaptiveFilter.xtrue + sSUCenters(1,:);
AdaptiveFilter.ytrue = AdaptiveFilter.ytrue + sSUCenters(2,:);

AdaptiveFilter.xest=AdaptiveFilter.xest+adaptiveKalman.adaptfilt1x.x;
AdaptiveFilter.yest=AdaptiveFilter.yest+adaptiveKalman.adaptfilt1y.x;
AdaptiveFilter.zest=AdaptiveFilter.zest+adaptiveKalman.adaptfilt1x.z;

true_errorx = AdaptiveFilter.xtrue - AdaptiveFilter.xest;
true_errory = AdaptiveFilter.ytrue - AdaptiveFilter.yest;

%################################
%For calculating Q and H for the next time step
if (AdaptiveFilter.window_size_filter == 1 ||
mod(cnt,AdaptiveFilter.window_size_filter)==1)
 % FOR P
 if (cnt == 1 || (cnt-1)/AdaptiveFilter.window_size_filter == 1) %
INITIALIZE THE P VALUE THE VERY FIRST TIME
 adaptiveKalman.adaptfilt2x.P
=(adaptiveKalman.adaptfilt1x.x\adaptiveKalman.adaptfilt2x.R)/adaptiveKa
lman.adaptfilt1x.x'; %P = inv(H)*R*inv(H')
 adaptiveKalman.adaptfilt2y.P
=(adaptiveKalman.adaptfilt1y.x\adaptiveKalman.adaptfilt2y.R)/adaptiveKa
lman.adaptfilt1y.x'; %P = inv(H)*R*inv(H')
 end

 true_errorx = true_errorx/AdaptiveFilter.window_size_filter;
 true_errory = true_errory/AdaptiveFilter.window_size_filter;

 AdaptiveFilter.xest =
AdaptiveFilter.xest/AdaptiveFilter.window_size_filter;
 AdaptiveFilter.yest =
AdaptiveFilter.yest/AdaptiveFilter.window_size_filter;
 AdaptiveFilter.zest =
AdaptiveFilter.zest/AdaptiveFilter.window_size_filter;

 % INCORPORATING THE TRUE ERROR INTO THE SIMULATION

 adaptiveKalman.adaptfilt2x.H = (AdaptiveFilter.xest +
true_errorx)';
 adaptiveKalman.adaptfilt2x.x = adaptiveKalman.adaptfilt1x.H';
 adaptiveKalman.adaptfilt2x.z = AdaptiveFilter.zest';

 [adaptiveKalman.adaptfilt2x, K2x] =
kalmanf(adaptiveKalman.adaptfilt2x,xscale);

 adaptiveKalman.adaptfilt2y.H = (AdaptiveFilter.yest +
true_errory)';
 adaptiveKalman.adaptfilt2y.x = adaptiveKalman.adaptfilt1y.H';
 adaptiveKalman.adaptfilt2y.z = AdaptiveFilter.zest';

 [adaptiveKalman.adaptfilt2y, K2y] =
kalmanf(adaptiveKalman.adaptfilt2y,yscale);

136

 AdaptiveFilter.xest=0;
 AdaptiveFilter.yest=0;
 AdaptiveFilter.zest=zeros(size(AdaptiveFilter.static.Hsu,1),1);
 AdaptiveFilter.xtrue=0;
 AdaptiveFilter.ytrue=0;
end

adaptiveKalman.adaptfilt3x.H = adaptiveKalman.adaptfilt2x.x';
adaptiveKalman.adaptfilt1x.H = adaptiveKalman.adaptfilt3x.H;

adaptiveKalman.adaptfilt3x.x = temp_x; % TO MAKE AN ESTIMATE FOR THE
SAME TIMESTEP USING THE NEWLY ADAPTED WEIGHTS
adaptiveKalman.adaptfilt3x.z = SUrateResp;

adaptiveKalman.adaptfilt3y.H = adaptiveKalman.adaptfilt2y.x';
adaptiveKalman.adaptfilt1y.H = adaptiveKalman.adaptfilt3y.H;
adaptiveKalman.adaptfilt3y.x = temp_y;
adaptiveKalman.adaptfilt3y.z = SUrateResp;

[adaptiveKalman.adaptfilt3x, K3x] =
kalmanf(adaptiveKalman.adaptfilt3x,1);

[adaptiveKalman.adaptfilt3y, K3y] =
kalmanf(adaptiveKalman.adaptfilt3y,1);

statex=adaptiveKalman.adaptfilt3x.x;
statey=adaptiveKalman.adaptfilt3y.x;

adaptiveKalman.adaptfilt1x.x=adaptiveKalman.adaptfilt3x.x;
adaptiveKalman.adaptfilt1y.x=adaptiveKalman.adaptfilt3y.x;

adaptiveKalman.adaptfilt1x.R=adaptiveKalman.adaptfilt3x.R;
adaptiveKalman.adaptfilt1y.R=adaptiveKalman.adaptfilt3y.R;

AdaptiveFilter.xscale = xscale;
AdaptiveFilter.yscale = yscale;

Kall = [K1x; K1y; K3x; K3y];
K2x = 1; K2y = 1; % Temporary place holder for K values
K2xy = [K2x; K2y];

137

Appendix B

To investigate the performance of the adaptive algorithm, a set of ten 400 second

long sinusoid signals at frequencies every 0.1 Hz between 0.1 and 1 Hz was sampled at

every 50 ms. A hundred randomized weights were assigned to each sinusoid and the

composite signal obtained by the product of the weight matrix (100 x 10) with the

sinusoid matrix (10 x 12000) was used to optimize the weights of the Kalman filter.

To simulate an effect similar to that observed in Chapter 6 for replacement of

neurons, the order of the sinusoids was randomized and the resulting composite signal on

multiplying the weights was used as the test signal input (measurement matrix z, see

Chapter 3) to the Kalman filter. The adaptive filter showed a monotonic decrease in RMS

errors when compared to a static Kalman filter that used the pre-optimized weight matrix

as seen in the figure below.

138

Figure A2.1: Normalized root mean square error (NRMSE) for a 400 second long
composite of sinusoids. NRMSE is shown for the static Kalman (red) and adaptive
Kalman (blue). Errors were computed over a 10 second non-overlapping window. The
static Kalman filter was optimized to the initial order of the sinusoid waveforms. The
order of the sinusoids was randomized at zero seconds in the plot shown above.

N
R

M
SE

Time (sec)

	Marquette University
	e-Publications@Marquette
	Adaptive Real-Time Decoding of Brain Signals for Long-Term Control of a Neuro-Prosthetic Device
	Tushar Ashok Dharampal
	Recommended Citation

	Microsoft Word - TusharDharampal_Thesis_Final_Formatted.docx

