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ABSTRACT

APPLYING BAYESIAN FORECASTING TO PREDICT NEW CUSTOMERS’

HEATING OIL DEMAND

Tsuginosuke Sakauchi, B.S.

Marquette University, 2011

This thesis presents a new forecasting technique that estimates energy

demand by applying a Bayesian approach to forecasting. We introduce our Bayesian

Heating Oil Forecaster (BHOF), which forecasts daily heating oil demand for

individual customers who are enrolled in an automatic delivery service provided by

a heating oil sales and distribution company. The existing forecasting method is

based on linear regression, and its performance diminishes for new customers who

lack historical delivery data. Bayesian methods, on the other hand, respond

effectively in the start-up situation where no prior data history is available.

Our Bayesian Heating Oil Forecaster uses forecasters’ past performances for

existing customers to adjust the current forecast for target customers. We adapted

a Bayesian approach to forecasting combined with domain knowledge and original

ideas to develop our Bayesian Heating Oil Forecaster, which forecasts demand for

target customers without relying on their historical deliveries.

Performance evaluation demonstrates that our Bayesian Heating Oil

Forecaster shows increased performance over the existing forecasting method when

the two techniques are combined. We used Root Mean Squared Error (RMSE) and

Mean Absolute Percent Error (MAPE) to compare the performance of the two

algorithms. Compared to the existing forecasting method alone, our Simple Average

model, which combines the forecasts from the existing forecasting method and our

Bayesian Heating Oil Forecaster, recorded an overall improvement of 2.4% in

RMSE, 5.0% in MAPE Actual, and 2.8% in MAPE Capacity for company A and

0.3%, 7.1%, and 2.8% for company B.
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CHAPTER 1

Thesis Introduction

This chapter introduces the context of this thesis and the problem being

addressed. First, the background knowledge required to understand the scope of the

problem is presented. Next, the project objectives and the evaluation criteria are

discussed. Finally, the organization of the remainder of the thesis is outlined.

1.1 Background of this Research Project

This thesis is written as a part of Marquette University College of

Engineering GasDay project. The GasDay project collaborates with natural gas

distributers, called the Local Distribution Companies, to produce mathematical

models that forecast natural gas demand. In addition, the project applies its

prediction techniques to provide other services, including automatic detection of

suspect natural gas meter readings and heating oil demand forecasting. Currently,

the GasDay project relies heavily on techniques such as Multiple Linear Regression,

Artificial Neural Network, and Dynamic Model Adaptation [48]. One of the

disadvantages shared by these techniques is that the forecasting accuracy diminishes

when there is a lack of historical data. The motivation of this thesis is to address
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this disadvantage by applying a forecasting technique that improves the prediction

of heating oil demand even when there is a lack of historical data.

1.2 Problem Background

Figure 1.1: Heating oil delivery company

Figure 1.1 depicts a typical heating oil sales and distribution company. The

company provides heating oil to residential and commercial customers using a fleet

of delivery trucks. To reduce the number of unnecessary deliveries, the company

estimates each of its customer’s heating oil demand between deliveries. An estimate

that is too large increases the operational cost because the company is delivering oil

more frequently than necessary. An estimate that is too small risks allowing the

customer to run out of fuel. This reduces the company’s revenue since customers

who run out of fuel typically switch suppliers. Therefore, an accurate estimate of
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each customer’s heating oil demand is crucial for a heating oil supplier to minimize

the operational cost without reducing the quality of service.

It is very common for a heating oil distribution company to have customers

that lack sufficient historical data: hundreds of new customers sign up for the

service every year. Customers are said to lack sufficient historical data when the

data does not capture the behavior of the customers throughout the year. It is

necessary to have historical data that extends throughout the year because of the

manner in which the heating oil is delivered as described below.

Figure 1.2: Heating oil delivery seasons

Figure 1.2 depicts a typical year with different seasons. Darker color

represents high demand for oil, while lighter color represents low demand for oil. As

shown in Figure 1.2, most of the heating oil demand is concentrated during the

winter. In contrast, heating oil delivery takes place throughout the year.

Summer deliveries are different from winter deliveries because the heating oil

demand tends to be very small. Hence, forecasting accuracy diminishes when the
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demand during the summer is forecast using the observations from the winter

months.

By the beginning of each heating season (typically late September), the

company delivers oil to all customers regardless of the estimated demand. This

ensures that customers enter the heating season with a full tank of oil. This delivery

is unusual since there is typically a gap of several months between this delivery and

the previous delivery. Partly due to this large time interval, this delivery behaves

differently from others.

To capture all of the customer’s behavior throughout the year, at least one

full winter, one full summer, and one fall delivery must be observed. Since some

customers sign up during the heating season, at least one and a half years (18

months) worth of data must be collected to ensure that at least one fall delivery and

one full winter is observed. In other words, new customers have insufficient

historical data for high-quality forecasts during the first 18 months. For the purpose

of this thesis, we define the period in which a new customer is considered to have

insufficient historical data during the following deliveries:

• First 10 deliveries starting from the second delivery, and

• first 18 months counting from the date of the second delivery.

This thesis concerns only the period in which a customer has insufficient
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historical data, so the term “customer” refers to customers during this initial

period, unless otherwise stated.

1.3 Types of Heating Oil Customers

In general, there are two types of residential and commercial heating oil

customers.

Space heating customers only use heating oil to heat enclosed areas such as

homes and storage facilities. These customers consume more heating oil as the

temperature decreases. During the summer time when the temperature is

high, these customers do not consume any heating oil.

Space and water heating customers use heating oil to heat rooms and to heat

water. These customers behave similar to space heating customers during

winter. However, these customers continue to consume a modest amount of

heating oil to heat water during summer.

Both types of customers are considered in this thesis.
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Figure 1.3: Visual representation of the existing model

1.4 Current Process

Currently, the heating oil demand is forecast using an ensemble model. As

seen in Figure 1.3, the ensemble model consists of three components: the Linear

Regression (LR) model, an expert’s estimated K-factor (measure of the response of

use to variations in temperature), and the tank size and K-factor relationship.

Additionally, the ensemble model contains other enhancements based on domain

knowledge. An estimated demand is calculated by combining the output from these

components.

1.4.1 Linear Regression Model

The Linear Regression (LR) model takes advantage of the primarily linear

relationship between the heating oil demand and heating degree days. This is

demonstrated in Figure 1.4, which plots the Cumulative Heating Degree Day

against the delivery amount. Since the LR model is a daily model, we divide the
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Cumulative Heating Degree Days and the delivery amount by the number of days

between deliveries. The plot clearly shows a linear trend where the delivery amount

increases as the weather becomes colder and the cumulative heating degree day

increases. The LR model is driven by weather inputs (actual and forecast wind and

temperature data) with the following variables:

• ŝk is the estimated heating oil demand on the kth day in gallons

• β̂0 is the estimated baseload (BL) in gallons

• β̂1 is the estimated heatload coefficient in gallons per Heating Degree Day

• K̂ is the estimated K-factor in Heating Degree Days per gallon

• x1,k or HDD60,k is the Heating Degree Day with reference temperature 60 ◦F

on the kth day

The model itself is expressed as

ŝk = β̂0 + β̂1x1,k = β̂0 + (1/K̂)HDD60,k. (1.1)

Baseload describes the portion of the demand that is not affected by the daily

average temperature. We expect that space heating does not occur when the

temperature is high (i.e. during the summer months). Therefore, baseload for



8

Figure 1.4: Heating Oil Consumption vs. Heating Degree Days

space heating customers theoretically should be zero. However, fitting a

regression model often causes the baseload coefficient to be a small non-zero

value for space heating customers. The baseload for space and water heating

customers is typically a positive value because water heating occurs regardless

of the temperature.

Heatload coefficient describes how a customer is “sensitive” to temperature

change. Its unit is gallons per Heating Degree Day. A customer with a large

heatload coefficient is said to be sensitive to the daily average temperature

because a one degree increase in the Heating Degree Day greatly increases the

estimated demand.
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K-factor is the number of Heating Degree Days required to consume one gallon of

heating oil. Its unit is Heating Degree Days per gallon. One can think of this

factor as a miles-per-gallon equivalent for a heating oil customer. A large

MPG represents a fuel efficient car, and a large K-factor represents a fuel

efficient customer. K-factor and the heatload coefficient are inversely related

to each other.

Heating Degree Day (HDD) is defined as the reference temperature (Tref )

minus the average temperature on the kth day (Tk). If the subtraction results

in a negative number (i.e. if the average temperature is greater than the

reference temperature), then the HDD is set to 0:

HDDTref ,k = max(0, Tref − Tk).

The concept of Heating Degree Day was introduced because of the non-linear

relationship between the daily average temperature and the heating oil

demand. In other words, Heating Degree Day mathematically expresses the

fact that customers no longer consume heating oil when the temperature is

warmer than, say, 65 ◦F.
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1.4.2 Expert’s Estimated K-factor

A domain expert at the heating oil company provides his own K-factor

estimate for each delivery. This piece of information is especially valuable during

the initial deliveries when domain knowledge compensates for the lack of historical

data. The weight of this component is reduced as the number of deliveries (and the

amount of historical data available) increase.

1.4.3 Tank Size and K-factor Relationship

This component takes advantage of the domain knowledge that customers

have large fuel tanks because they tend to consume more fuel. This suggests that

the K-factor is inversely proportional to the tank size. Hence we fit a simple linear

regression model to the existing customers’ tank sizes and K-factor estimates. The

slope and intercept parameter estimates are used to estimate the target customer’s

K-factor based on the customer’s tank size. Similar to the expert’s estimated

K-factor, the weight of this component is reduced as the number of delivery

increases.
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1.5 Problem with the Current Process

The operation and performance of the ensemble model changes depending on

the amount of available historical data. Transient (Figure 1.5) refers to the

start-up period when there is limited historical data. Steady-state (Figure 1.6)

refers to a time period when there is enough historical data to perform reliable

forecasting.

Figure 1.5: Visual representation of the existing model in its transient state

Figure 1.6: Visual representation of the existing model in its steady state

During the transient period, the ensemble model combines all three

components to compensate for the lack of data. In the steady-state, the ensemble

model only uses the LR model. In general, the model’s performance improves as the
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amount of available historical data increases. Hence, this method performs well with

existing customers who reached steady-state by accumulating large numbers of past

deliveries. Since the current method heavily relies on historical data, the method’s

forecasting accuracy diminishes for new customers who lack historical data.

1.6 Problem Statement

This thesis addresses the following business and mathematical problem:

• Business statement: To lower the operating costs for a heating oil sales and

distribution company by improving new customers’ heating oil demand

forecast for initial deliveries.

• Mathematical statement: Develop a Bayesian forecasting method that

reduces the error between the new customers’ forecast and actual heating oil

demand during initial deliveries.

The preceding sections provided an overview of the problem and the context

of this project. The next two sections focus on the details of the project and the

solution: proposed solution, assumptions, and evaluation methods.
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1.7 Assumptions

This section outlines the key assumptions of this research project. The

summary of each assumption and the reasons why it is necessary are outlined below.

1.7.1 Availability of Historical Data

Target customer is a customer whose future heating oil consumption is

being forecast. Existing customer is a customer whose past forecast and delivery

amount are known to the forecaster at the time of the forecast. This project focuses

on cases where there are little to no historical data available for the target

customers. This project, however, assumes that sufficient historical data for

existing customers are available at the time of the forecast. This distinction is

important since this research is not about forecasting demand without any

historical data, but about forecasting demand of the target customer using historical

data from other existing customers.

It should be noted that this approach is similar to surrogate modeling, which

mimics or forecasts the behavior of an original system by constructing a surrogate

system using samples taken from the original system [12]. Hence, a surrogate

method can be used to predict the behavior of a surrogate system (target customers)

by taking samples (historical data) from the original system (“donor” customers) [7].
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1.7.2 Demand Forecast and Actual Use

Since the actual use cannot be measured directly, the actual use is assumed

to be the amount delivered during a delivery. This assumption holds well if the tank

is always filled to its capacity. However, there are cases when the amount delivered

does not equal the actual use. For example, the tank sometimes is not fully refilled

because the delivery truck ran out of oil or the shutoff valve prematurely triggered.

These special cases are handled by an underfill-overfill detection mechanism.

When the tank is not fully refilled, the amount delivered is likely to be

significantly less than the estimated demand. Hence, this is known as an underfill

condition. Typically, the company schedules another delivery to finish filling the

tank. The amount delivered during this followup delivery is likely to be significantly

more than the estimated demand. Hence, this is known as an overfill condition. The

detection mechanism detects this condition by checking previous deliveries for each

customer. If a customer has an underfill delivery immediately followed by an overfill

delivery, then the mechanism replaces the two deliveries with a single artificial

delivery computed by adding the delivery amount and heating degree days from the

two deliveries.
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1.7.3 Stationarity of the K-factor

K-factor describes how fuel efficient a customer is. Unless there is a major

change in the behavior of a customer (long vacation away from home, major house

renovations that improved insulation, installation of a new furnace, newborn infant

in the house, aging parents visiting, etc.), K-factor should remain relatively

constant. This is important for our Bayesian Heating Oil Forecaster because the

proposed method is trying to unbias the estimates to match the true K-factor. If

the customer’s true K-factor is changing frequently, then the adjustment becomes

non-trivial. Although the K-factor for a customer may change over a long period of

time (i.e., several years), it is very unlikely to change significantly over a short

period of time (i.e., during the first few deliveries). Hence, for the scope of the

thesis, the short-term K-factor is assumed to be stationary.

1.7.4 Positive and Negative Errors

In many forecasting applications, positive and negative errors carry different

meanings, consequences, and associated costs. In this thesis, errors are defined as

Estimated demand− Actual demand = ŝk − sk. Hence, a positive error is reported

when the estimated demand is larger than the actual demand. A negative error is

reported when the estimated demand is smaller than the actual demand. In the

area of heating oil forecasting, positive errors increase the number of unnecessary
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deliveries because tanks are considered to have less oil than they actually contain.

This can increase the overall operation cost for the company. Negative errors might

result in customers running out of oil because the tank is estimated to have more oil

than it actually contains. Customers who run out of fuel typically switch supplier,

which results in lost revenue for the heating oil company. Since costs associated with

loss of customers are much higher than expected increases in operational costs, the

negative errors are less desirable than positive errors.

The assumptions discussed in this section are applicable at a conceptual

level. Mathematical assumptions that apply to the estimation process are discussed

in later chapters. The next section discusses the evaluation method used to

determine the effectiveness of our Bayesian Heating Oil Forecaster.

1.8 Evaluation

This section briefly outlines the evaluation method and defines the criteria of

an acceptable solution. This project is successful if our Bayesian Heating Oil

Forecaster consistently produces better forecasts compared to the existing method

for the same set of initial customers.

The comparison of the current and proposed methods is performed using a

backtesting system. The backtesting system performs two sets of ex-post forecasts
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and compares the forecasting error of the existing forecasting method against the

error of our Bayesian Heating Oil Forecaster. The comparison involves the following

five steps as shown in Figure 1.7:

Figure 1.7: Steps of the evaluation method

1. The tester specifies a range of dates to use as a test data set. Simulated

forecasts that occur during this date range are used to evaluate and compare

the existing forecasting method and our Bayesian Heating Oil Forecaster.

2. The backtesting system identifies new customers that signed up during the

dates specified.

3. The backtesting system trains the existing forecasting method and our

Bayesian Heating Oil Forecaster using training data set that are available up

to the beginning of the test data set.
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4. The backtesting system performs ex-post forecast using the existing

forecasting method for the customers identified in the previous step. This

produces a set of forecasts from the existing method for each of the new

customers.

5. The backtesting system performs ex-post forecast using our Bayesian Heating

Oil Forecaster for the same set of customers. This produces a set of forecasts

from the proposed method for each of the new customers.

6. The backtesting system compares the two sets of forecasts with the actual

delivery amount, computes the errors between them, and reports the result. In

general, the method with a smaller forecasting error is considered the better

method. The error is measured in Root Mean Squared Error (RMSE) and

Mean Absolute Percentage Error (MAPE), as well as a weighted error measure

which assigns a larger weight to negative errors (potential loss of customers)

than positive errors (potential increase in operational costs).

A more thorough discussion of the evaluation process and the backtesting

system can be found in Chapter 3. The next section briefly reviews the structure of

the remainder of this thesis.
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1.9 Organization of this Thesis

This thesis consists of five chapters. Chapter 1 introduced the project

background, current process, and the details of the problem being addressed.

Chapter 2 provides an overview of the Bayesian forecasting techniques applied to

various real-world data sets. Chapter 3 introduces our Bayesian Heating Oil

Forecaster and how it applies to our test data set. Chapter 4 compares the results of

our Bayesian Heating Oil Forecaster with those of the existing forecasting method.

Finally, Chapter 5 offers conclusions and opportunities for further research.
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CHAPTER 2

Survey of Energy Forecasting Literature

Chapter 1 introduced and outlined the problem of forecasting new customers’

heating oil demand. Chapter 2 provides an overview of existing demand forecasting

techniques, such as Multiple Linear Regression, Artificial Neural Network, and

Ensemble forecasting. Examples of Bayesian forecasting techniques, such as

Bayesian Network and Dynamic Linear Model, are discussed. This chapter also

contains an overview of the mathematical concepts such as regression analysis and

Bayes’ Theorem. These are fundamental concepts used in our Bayesian Heating Oil

Forecaster presented in Chapter 3.

2.1 Existing Demand Forecasting Methods

Multiple Linear Regression, Artificial Neural Network, and Ensemble

forecasting are three forecasting methods that have been applied successfully to

demand forecasting, namely natural gas daily demand forecasting [48]. This section

presents an overview of these methods.
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2.1.1 Multiple Linear Regression

A multiple linear regression model expresses the dependent variable as a

function of one or more independent variables assuming a linear relationship [6; 48].

Suppose we want to forecast a daily demand S on a kth day in the future, using m

independent variables, xk,j, where j = 1, . . . ,m. Then the estimated daily demand

on the kth day is

sk ≈ ŝk = β0 +
m∑
j=1

βjxk,j ,

where βjs are parameters that describe how independent variables are related to the

estimated daily demand. The independent variable xk,1 may represent Heating

Degree Days, while β0 is the baseload, and β1 is the heatload coefficient.

Multiple linear regression extrapolates very predictably, adapting well to

situations where the inputs are different from past observations. However, multiple

linear regression performs poorly when the linearity assumption does not hold.

Since past observations are used to estimate the parameters, a multiple linear

regression model requires historical data. Generally, the more historical data is

available, the better the parameter estimates [48].

A more thorough discussion of the Multiple Linear Regression technique can

be found in introductory textbooks such as Forecasting, Time Series, and
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Regression: An Applied Approach [6] and Introduction to Linear Regression

Analysis [32].

2.1.2 Artificial Neural Network

Another tool commonly used for estimation and forecasting is an Artificial

Neural Network (ANN). An ANN maps an unknown nonlinear relationship between

the inputs and the output. This mapping is accomplished through a training

process during which the ANN learns from past observations. Because an ANN

handles nonlinear relationships, multiple related factors, such as temperature, wind

speed, and prior day temperatures can be used as inputs [48].

An ANN excels when the inputs are similar to, but not the same as, the

training data. However, an ANN does not perform as well in cases where the inputs

are beyond the domain of the training knowledge. For example, the accuracy of an

ANN diminishes when it forecasts natural gas demand for the coldest day on record.

Since an ANN must be trained using past observations to expand the domain of the

training knowledge, it is not suitable for situations where there is little historical

data [48].

A more thorough discussion of Artificial Neural Networks can be found in

introductory textbooks such as An Introduction to Neural Network [25] and
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Gateway to Memory: An Introduction to Neural Network Modeling of the

Hippocampus and Learning [23].

2.1.3 Ensemble and Combined Forecasts

Ensemble forecasting combines multiple forecasts produced by different

forecast methods to obtain a single forecast with variance smaller than the variance

of any of the components. Various factors influence dependent variables, and factors

that are captured by any one of the forecast methods might be incomplete and

limited. However, multiple forecast methods can better capture these factors when

combined together. The combined forecast tends to reduce the effects of faulty

assumptions, bias, or mistakes in data [2; 48]. As a result, combined forecasts

almost unanimously increases forecast accuracy, regardless of the nature of the

forecast [9]. Even simple averaging, the most simple combination method, is shown

to improve the performance of the forecast [2]. In general, forecasts are combined by

taking an weighted average of multiple independent forecasts, or according to a set

of rules. Weights are calculated according to a repeatable rule, such as equal

weighting, domain knowledge, and past forecast accuracy. Other methods include

voting, simulation, combiner, stacked generalization, principle component analysis,

singular value decomposition, and artificial neural networks [15]. As specific

examples of existing ensemble forecasting techniques, Dhillon cites Fan et al. [17],
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whose work introduces and compares combiner and stacked generalization, which

are meta-learning techniques that improves the performance of a single classifier by

combining multiple classifiers. Araújo and New [1] apply ensemble forecasting

frameworks, such as the bounding box, consensus, and probabilistic techniques, to

improve the robustness of bioclimatic modeling.

Readers who are interested in additional materials should also refer to an

annotated bibliography by Clemen [9]. Clemen offers a brief overview, historical

development, and an extensive list of over 200 applied and theoretical articles

covering various combined forecasting techniques.

This concludes the brief overview of the existing forecasting techniques used

in energy demand forecasting. The following section discusses the Bayesian

approach to probability and forecasting.

2.2 Bayes’ Theorem, Bayesian Probability, and Bayesian Inference

Various Bayesian techniques discussed in the remainder of this thesis,

including our Bayesian Heating Oil Forecaster, take advantage of the Bayesian

approach to forecasting. This section provides an introduction to Bayes’ Theorem to

gain a better understanding of the Bayesian approach to forecasting, and how

various Bayesian forecasting techniques are implemented. Materials and discussions
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contained in this and later sections are drawn from textbooks on Bayesian

forecasting such as Introduction to Bayesian Statistics [5] and Statistics: A Bayesian

Perspective [4]. Both are introductory statistics textbooks that extensively use

Bayesian inference. The latter book is recommended especially for readers interested

in a solid review of probability theory. Introduction to Bayesian Statistics [5] is for

upper level undergraduate students with a background in calculus and probability

theory. It offers in-depth discussions of Bayesian probability and statistics.

Bayes’ Theorem was proposed by Reverend Thomas Bayes in the 18th

century and was later extended by Laplace in the 19th century [36; 47]. From a

statistical inference perspective, the theorem is significant because it allows one to

infer the probability of a cause when its effect is observed [36]. In other words,

Bayes’ Theorem helps answer questions such as “I have a stiff neck (effect). How

likely am I to have a meningitis (cause)?”, see Figure 2.1.

Figure 2.1: How likely is a cause given the effect? [33]

Bayes’ Theorem can also be viewed as a thought process. It dictates the way
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in which the probabilities change in the light of evidence [4]. In other words, Bayes’

Theorem describes mathematically the process by which forecasters update their

knowledge in response to an observed event, as suggested by Figure 2.2.

Figure 2.2: A model of how Bayes’ Theorem updates forecaster knowledge

The knowledge of the forecaster is represented mathematically using

probability distributions. The update process can be described using three distinct

probability distributions:

Prior represents our knowledge before we observe evidence. The prior probability

of an event A is expressed as P (A).

Likelihood represents a factor that is used to update our prior knowledge. The

likelihood for an event A and an evidence B is expressed in terms of a

conditional probability P (B|A).

Posterior represents our knowledge after we observe evidence. The posterior
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probability of an event A given the evidence B is expressed in terms of a

conditional probability P (A|B).

In summary, Bayes’ Theorem says

P (A|B) =
P (B|A)P (A)

P (B)
.

It states that the posterior is proportional to the product of the prior and the

likelihood. In other words, we can obtain our posterior knowledge by 1) multiplying

our prior and the likelihood and 2) scaling the product.

Figure 2.2 graphically represents how the forecasters update their knowledge

using the prior, likelihood, and posterior distributions. As seen in the diagram, the

update process is iterative: The current posterior becomes the prior of the next

step. The process iterates when a new event is observed.

The following two sections further describe Bayes’ Theorem using simple

examples. The first section describes the theorem using discrete probability

distributions. The second section describes the theorem using continuous

probability distributions.
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2.2.1 Discrete Bayesian Analysis

This section applies Bayes’ Theorem using two separate examples. The first

example is a very simple balls-in-an-urn example drawn from Bolstad [5]. This

example illustrates how the prior, likelihood, and posterior distributions interact to

update the forecaster’s knowledge about a model. The second example involves

forecasting the relative strength of two basketball teams. The basketball example,

drawn from Berry [4], illustrates how to apply Bayes’ Theorem to perform forecasts.

Later, the second example is extended to illustrate the difference between discrete

and continuous Bayesian forecasting.

Example: Balls-in-an-urn

Suppose there is an urn with five balls inside. The balls are colored either

red or blue, but we cannot see the contents of the urn. The objective is to estimate

the number of red balls in the urn by drawing a ball out of the urn one by one

without replacement. Since we are interested in the number of red balls, let the

random variable X be the number of red balls in the urn. If we draw a ball from the

urn, the color of the ball is either red or blue. To represent this mathematically, let

the random variable Y = 1 if the draw is red, and Y = 0 if the draw is blue.

Figure 2.3 summarizes this setup.
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Figure 2.3: The balls-in-an-urn example

Prior and posterior beliefs

As stated above, our objective is to estimate the number of red balls in the

urn. Hence, our belief is our estimate of the number of red balls in the urn. Our

prior belief is our estimate of the number of red balls in the urn before we draw a

ball. Our posterior belief is our estimate of the number of red balls in the urn after

we draw a ball. Note that our prior and posterior beliefs change as we continue to

draw the balls out of the urn. For example, our first prior belief (denoted Prior(1))

is our estimate of the number of red balls in the urn before we draw the first

ball out of the urn. Our first posterior belief (denoted Posterior(1)) is our estimate

of the number of red balls in the urn after we draw the first ball out of the urn.

Posterior(1) is also our Prior(2) because Posterior(1) is our estimate before we draw

the second ball. If we define n to be the observation number, then this relationship
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can be summarized as

Posterior(n) = Prior(n+ 1) for n ≥ 1.

First prior belief

Although Prior(n) for n ≥ 2 are computed iteratively, we have to present our

own estimate for Prior(1). Initially, we know that the total number of balls in the

urn is five, but we have no idea how many of them are red. What we know for sure

is that the number of red balls can be only 0, 1, 2, 3, 4, or 5. In this case, we might

assume that all possible outcomes are equally likely. Translating this prior

knowledge into probability gives

P (X = 0) = P (X = 1) = ... = P (X = 5) = 1/6, and

P (X < 0) = P (X > 5) = 0.

Likelihood

Likelihood is the probability of observing an evidence given the truth. The

“evidence” is the color of the ball we draw from the urn. The “truth” is the actual

number of red balls in the urn. In other words, it describes how “likely” it is to

draw a ball with a certain color if the number of red balls in the urn is either 0, 1, 2,

3, 4, or 5. For instance, P (Y = 1|X = 2) represents the likelihood (probability) of
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drawing a red ball from the urn if the number of red balls in the urn is 2. Since

there are 5 balls in the urn, the likelihood of drawing a red ball from the urn when

there are 2 red balls in the urn is 2 out of 5. Using the notation for conditional

probability, this can be written as

P ( draw red ball | number of red ball in the urn = 2) = P (Y = 1|X = 2) = 2/5.

The likelihood changes as the observation (the color of the ball drawn) changes. For

example, P (Y = 0|X = 2) represents the likelihood (probability) of drawing a blue

ball from the urn if the number of red balls in the urn is 2. Since there are a total of

5 balls, if there are 2 red balls, then the remaining 3 would be blue. Hence,

P ( draw blue ball | number of red ball in the urn = 2) = P (Y = 0|X = 2) = 3/5.

Update Using Joint Probability

In this example, we have two different random variables,

X = number of red balls in the urn, and Y = color of the ball. The probability that

X = xi and Y = yi occur simultaneously is called the joint probability,

f(xi, yi) = P (X = xi, Y = yi).

Using this notation, the probability that the number of red balls in the urn = 2 and
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draw a red ball occurring simultaneously is expressed as f(2, 1) = P (X = 2, Y = 1).

Since we have a total of 5 balls and 2 colors, there are 10 possible joint probabilities.

The 10 joint probabilities together form a joint probability distribution of the

random variables X and Y . A joint probability distribution represents the

probability of all possible combinations of the joint random variables, and can be

expressed in a table form as shown in Table 2.1.

Color of ball drawn (Y )

0 (Blue) 1 (Red)

N
o
of

re
d
b
al
ls
in

u
rn

(X
)

0 f(0, 0) f(0, 1)

1 f(1, 0) f(1, 1)

2 f(2, 0) f(2, 1)

3 f(3, 0) f(3, 1)

4 f(4, 0) f(4, 1)

5 f(5, 0) f(5, 1)

Table 2.1: Joint probability distribution for the balls-in-an-urn example

Individual joint probability can be computed using the following relationship:

f(xi, yi) = g(xi)× f(yi|xi), and (2.1)

P (X = xi ∧ Y = yi) = P (X = xi)× P (Y = yi|X = xi). (2.2)

Since we update our prior belief by multiplying our prior belief and an appropriate

likelihood, calculating the joint probability is equivalent to updating our prior belief
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using an appropriate likelihood. The joint probabilities for the case when the first

ball picked is red can be computed as follows:

f(0, 1) = P (X = 0)× P (Y = 1|X = 0) = 1/6× 0/5 = 0

f(1, 1) = P (X = 1)× P (Y = 1|X = 1) = 1/6× 1/5 = 1/30

f(2, 1) = P (X = 2)× P (Y = 1|X = 2) = 1/6× 2/5 = 2/30

f(3, 1) = P (X = 3)× P (Y = 1|X = 3) = 1/6× 3/5 = 3/30

f(4, 1) = P (X = 4)× P (Y = 1|X = 4) = 1/6× 4/5 = 4/30

f(5, 1) = P (X = 5)× P (Y = 1|X = 5) = 1/6× 5/5 = 5/30.

If we repeat the calculation for the case when the ball is blue, then we can obtain a

full joint probability distribution as shown in Table 2.2.

Color of ball drawn (Y )

0 (Blue) 1 (Red)

N
o
of

re
d
b
al
ls
in

u
rn

(X
)

0 5
30

0
30

1 4
30

1
30

2 3
30

2
30

3 2
30

3
30

4 1
30

4
30

5 0
30

5
30

Table 2.2: Joint probability distribution for the balls-in-an-urn example with joint

probabilities calculated
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If the first ball was red, then the column in the joint probability distribution

with Y = 1 is our posterior knowledge, except that the sum of the products of the

priors and the likelihoods equal to 1/2. Since our knowledge must be expressed in

terms of probability, the sum must equal to 1. This can be accomplished by dividing

(scaling) the products by the sum of the products.

Repeat

As we repeat the drawings, we also repeat the calculations. For the second

draw, the posterior we obtained after the first draw becomes our new prior. The

update process continues as we draw more balls from the urn. The actual

calculations are shown in Tables 2.3 and 2.4. The posterior probability in Table 2.3

replicates the above calculation and shows the case when the first ball drawn is red.

The posterior probability in Table 2.3 is when the second ball drawn is blue.

xi (No. of red) Prior Likelihood Prior × Likelihood Posterior

0 1
6

0
5

1
6
× 0

5
= 0 0/1

2
= 0

1 1
6

1
5

1
6
× 1

5
= 1

30
1
30
/1
2
= 1

15

2 1
6

2
5

1
6
× 2

5
= 2

30
2
30
/1
2
= 2

15

3 1
6

3
5

1
6
× 3

5
= 3

30
3
30
/1
2
= 3

15

4 1
6

4
5

1
6
× 4

5
= 4

30
4
30
/1
2
= 4

15

5 1
6

5
5

1
6
× 5

5
= 5

30
5
30
/1
2
= 5

15

Sum 1 1
2

1

Table 2.3: Posterior probability distribution after the first observation

This example introduced the concept and the relationships of prior belief,
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xi (No. of red) Prior Likelihood Prior × Likelihood Posterior

0 0 0

1 1
15

4
4

1
15

× 4
4
= 1

15
1
15
/1
3
= 2

10

2 2
15

3
4

2
15

× 3
4
= 1

10
1
10
/1
3
= 3

10

3 3
15

2
4

3
15

× 2
4
= 1

10
1
10
/1
3
= 3

10

4 4
15

1
4

4
15

× 1
4
= 1

15
1
15
/1
3
= 2

10

5 5
15

0 5
15

× 0 = 0 0/1
3
= 0

Sum 1 1
3

1

Table 2.4: Posterior probability distribution after the second observation

likelihood, and posterior belief. The update process illustrates how Bayesian

inference is applied to estimate the probability of an unknown and unobservable

quantity (number of red balls in the urn) in light of evidence (the color of the ball

that is drawn from the urn). The next example focuses more on how to apply

Bayesian inference in the context of forecasting.

Example: Relative strength of two basketball teams

This example is adapted from a similar example presented by Berry [4].

Consider two basketball teams: MU and UC. The two teams belong to the same

conference, and have several games each season. Our objective is to estimate the

relative strength of MU, and forecast the probability of MU winning the next game

against UC. A relative strength of 0 means MU can never win over UC. A relative

strength of 1 means MU can always win over UC. If the relative strength is 0.8, then
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MU is expected to win over UC for 80 percent of the time. Suppose the season just

started so that the two teams have not met this season. Since we are interested in

the relative strength of MU, let the random variable X be the relative strength of

MU. To simplify the problem, let us also assume that the teams will either win or

lose and will never end a game with a tie. To represent this mathematically, let the

random variable Y = 1 if MU wins, and Y = 0 if UC wins. Figure 2.4 summarizes

this setup.

Figure 2.4: Relative strength of basketball teams example

Prior and posterior beliefs

Our objective in this example is to estimate the relative strength of MU by

observing games between MU and UC so that we can forecast the winner of the

next game. Hence, our belief is our estimate of the relative strength of MU. Using

the same notation presented in the balls-in-an-urn example, our prior belief,
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Prior(n), is our estimate of the relative strength of MU before we observe the nth

game of the current season. Our posterior belief, Posterior(n), is our estimate of the

relative strength of MU after we observe the nth game.

First prior belief

Next, we have to present our own estimate for Prior(1). Initially we know

that the relative strength can range between 0 and 1. To simplify the example, we

discretize the range by 0.1 increments so that the only possible relative strengths

are 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. Additionally, say we are

informed that MU was stronger than UC during last year’s season, but both teams

won at least once during the same period. It seems reasonable to assume that

relative strengths of 0.0 and 1.0 are unlikely, and relative strengths greater than 0.5

are more probable than relative strengths less than 0.5. Translating this prior

knowledge into probability might look like Table 2.5:

Strength of MU 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Sum

Probability 0% 2% 3% 5% 8% 12% 22% 26% 17% 5% 0% 100%

Strength × Probability 0.00 0.00 0.01 0.02 0.03 0.06 0.13 0.18 0.14 0.05 0.00 0.61

Table 2.5: An example of a possible Prior(1) for the basketball example

Notice that unlike our first example, we have assigned unequal probabilities

to different strengths. These probabilities can be our best guess, since the update

process adjusts these estimates based on future observations. Our objective is to

forecast the winner of the next game. This can be accomplished by computing the
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predicted relative strength of MU. The predicted relative strength of MU is

computed by multiplying each of the possible relative strengths of MU by its

probability and adding the products. The figure shows that the predicted relative

strength of MU is 0.61. This matches our expectation since we assumed that MU

might continue to be stronger than UC during the current season.

Likelihood

Likelihood is the probability of observing an evidence given the truth. The

“evidence” is the result of the game. The “truth” is the actual relative strength of

MU. In other words, it describes how “likely” it is for MU to win if the actual

relative strength of MU is either 0, 0.1, 0.2, ..., 0.9, or 1.0. For instance,

P (Y = 1|X = 0.2) represents the likelihood (probability) of MU winning the game if

the relative strength of MU is 0.2. If the relative strength of MU is 0.2, then the

likelihood of MU winning the game is also 0.2. Using the notation for conditional

probability, this can be written as

Likelihood = P ( MU wins | actual relative strength of MU = 0.2)

= P (Y = 1|X = 0.2)

= 0.2.

The likelihood changes when the outcome is different. For example, the likelihood of
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MU losing the game if its actual relative strength is 0.2 is

Likelihood = P ( MU loses | actual relative strength of MU = 0.2)

= P (Y = 0|X = 0.2)

= 1− 0.2

= 0.8.

Table 2.6 shows two different likelihoods for all possible relative strengths (0.0, 0.1,

..., 1.0; columns in the figure) and for all possible outcomes (MU wins, MU loses;

rows in the figure).

Strength of MU 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Likelihood of MU winning 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Likelihood of MU losing 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0

Table 2.6: Likelihood for the basketball example

Update

Suppose MU won the first game against UC. We update our prior belief by
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multiplying our prior belief and the likelihood:

P (X = 0.0)× P (Y = 1|X = 0.0) = 0.0× 0.0 = 0

P (X = 0.1)× P (Y = 1|X = 0.1) = 0.02× 0.1 = 0.002

...

P (X = 0.9)× P (Y = 1|X = 0.9) = 0.05× 0.9 = 0.045

P (X = 1.0)× P (Y = 1|X = 1.0) = 0.0× 1.0 = 0.

Table 2.7 shows the update calculation for all possible relative strengths (0.0, 0.1,

..., 1.0; columns in the figure). The posterior row is computed by dividing (scaling)

the products by the sum.

Model 1 2 3 4 5 6 7 8 9 10 11 Sum

Strength 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -

Prior 0% 2% 3% 5% 8% 12% 22% 26% 17% 5% 0% 100%

Likelihood (MU wins) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 -

Prior × Likelihood 0.000 0.002 0.006 0.015 0.032 0.060 0.132 0.182 0.136 0.045 0.000 0.61

Posterior 0.0% 0.3% 1.0% 2.5% 5.2% 9.8% 21.6% 29.8% 22.3% 7.4% 0.0% 100%

Strength × Posterior 0.000 0.000 0.002 0.007 0.021 0.049 0.130 0.209 0.178 0.066 0.000 0.66

Table 2.7: Update for the basketball example

The posterior belief is our estimate of the relative strength of MU after the

first game. The predicted relative strength of MU after the first game is computed

by multiplying each of the possible relative strengths of MU by its probability and

adding the products. Table 2.7 shows that the predicted relative strength of MU is
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0.66, which is larger than the initial estimate of 0.61. This matches our expectation

since MU just won the first game.

This example illustrates the application of Bayesian inference to estimate the

probability of an unknown and unobservable quantity (relative strength of MU) in

light of evidence (results of the game). If we generalize this to energy (heating oil)

demand forecasting, Bayesian inference can be used to estimate the probability of

an unknown and unobservable quantity (K-factor) in light of evidence (K-factor

that is observed between deliveries). Once the K-factor is known, the heating oil

demand can be computed using a regression model.

Since the K-factor is a continuous quantity, the next section discusses the

difference between the discrete and continuous approaches to Bayesian inference.

2.2.2 Continuous Bayes Inference

The logical steps of computing the continuous Bayesian inference is identical

to its discrete counterpart: we start with a prior belief, observe an event, update our

belief, and compute the posterior belief. What differs between the two are the use of

continuous random variables and probability distributions.

The balls-in-an-urn example is a discrete example since the quantity (number

of balls; 1, 2, 3, 4, 5) as well as the possible outcomes (red/blue) are discrete. The
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basketball example has a continuous quantity (relative strength; ranging from

(0...1)) and discrete outcomes (win/lose). Any continuous probability distribution

can be used to describe the continues random variable, including but are not limited

to uniform, beta, gamma, normal, and empirical distributions [5].

Empirical Distribution

An empirical distribution is a probability distribution that is generated

directly from the observed (sample) data. It represents the estimated probability of

a certain observation occurring in the population. A histogram is a scaled version of

the empirical probability density function. An empirical PDF is computed by

scaling the histogram: count
sample size×bin width

.

Beta Distribution

A beta distribution frequently is used in the context of Bayesian estimation

because it drastically simplifies the update process [4; 5]. A beta distribution is

parameterized by two parameters, often denoted by a and b. The distribution itself

is sometimes denoted as β(a, b). The probability function of the beta distribution
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β(a, b) is

P (x) = f(x; a, b)

=
1

B(a, b)
xa−1(1− x)b−1

=
(a+ b− 1)!

(a− 1)!(b− 1)!
xa−1(1− x)b−1.

Beta distributions have the following properties that help simplify the update

process [4; 5]:

• The product of two beta distributions is a beta distribution, and

• Multiplication of two beta distributions can be accomplished by adding their

parameter values.

The above properties are demonstrated below:

f(x; a1, b1)× f(x; a2, b2) =
1

B(a1, b1)B(a2, b2)
x(a1−1)(1− x)(b1−1)x(a2−1)(1− x)(b2−1)

=
1

B(a1 + a2 − 2, b1 + b2 − 2)
x(a1+a2−2)(1− x)(b1+b2−2)

= f(x; a1 + a2 − 2, b1 + b2 − 2).

The expected value of a beta distribution is computed from the parameter values,

E(X) =
a

a+ b
. (2.3)
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Maximum Likelihood Estimation

We use distribution fitting techniques, such as maximum likelihood

estimation (MLE), to fit a continuous distribution to a set of data. Maximum

likelihood estimation is a statistical technique that identifies a probability

distribution that makes the observed data most likely. In other words, it maximizes

the likelihood P ( observed data | parameters ) for a set of probability distribution

parameters and observed data. Since each probability distribution is different, the

maximum likelihood estimation for each distribution is also different.

The maximum likelihood estimates for the Beta distribution are computed

numerically based on the equation given by Johnson, Kotz, and Balakrishnan [29].

Others, such as Beckman and Tietjen [3] have developed a numerical technique in

which the maximum likelihood estimates for the Beta parameters are computed.

Readers who are interested in an introduction to maximum likelihood

estimates may read an article by Myung for a quick introduction [35]. Moore [34]

uses a Gaussian distribution to step through the calculation process of maximum

likelihood estimation. The NIST handbook also has an entry about likelihood

estimation for Beta distributions [19].
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2.3 Existing Bayesian Forecasting Methods

Bayesian forecasting methods have unique advantages over traditional

forecasting methods. One advantage is their effectiveness during the initial transient

period when little or no prior data is available [28]. This section provides an

overview of Bayesian forecasting techniques that have been applied in areas

including engineering, business, meteorology, and energy. This should help us see

how the Bayesian forecasting algorithm, presented in Chapter 3, is related to other

techniques that are already in use.

2.3.1 Bayesian Networks

A Bayesian Network is a probabilistic graphical model that often drastically

reduces the computational complexity of the original problem [33]. The network is a

graphical representation of the probabilistic relationships among many variables

with cause-effect relationships [36]. The nodes in the network represent random

variables, and edges represent dependence among the variables. A network as a

whole represents a joint probability distribution over a set of random variables. In

other words, the network represents all possible combinations of the joint random

variables and their probabilities. It is a directed acyclic graph: each node is

guaranteed not to be its own child or its own parent (Figure 2.5).



46

Figure 2.5: Example Bayesian network modeling causes of wet grass [45]

Each variable is only dependent on its parents, which means that they are

independent from all other non-parent variables. This independence frequently

enables the model to reduce the number of parameters compared to the model that

does not account for such independence. It also drastically simplifies the joint

probability distribution. Simplifying the joint probability distributions reduces the

cost of computing the posterior probabilities. For cases where the joint probability

distribution is large, the calculation becomes impractical without simplifying the

joint probability distribution using a Bayesian Network [36; 43].

To illustrate how a Bayesian Network can be constructed and used, let us

consider the following simple example adopted from a lecture by Moore [33]. You

are at a small regional airport interested in estimating the probability of delays

under various conditions. Suppose we have the following five events:
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• S: It is sunny.

• M: The airline is Delta. (If not, then it is United.)

• R: The airplane is Boeing. (If not, it is Airbus.)

• L: The airplane arrives late.

• T: The airplane leaves on time.

Figure 2.6: Example joint probability distribution [33]

Figure 2.6 is an example of a joint probability distribution that expresses the

uncertainty involved in this problem. The joint probability distribution can be used

to calculate various probabilities such as

• the probability that the airplane leaves on time, when it is raining (S = 0),

the airline is Delta (M = 1), the airplane is Boeing (R = 1), and the airplane
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arrives on time (L = 0):

P (T |¬S ∧M ∧R ∧ ¬L);

• the probability that the airplane leaves on time, when the airline is United

and it is sunny:

P (T |¬M ∧ S);

• the probability that the airplane arrives late, when the airplane is Airbus:

P (L|¬R).

Specifying the entire joint probability distribution with five binary random

variables requires 32 different probabilities. The following example uses the

Bayesian Network to reduce the number of probabilities required to calculate the

joint probability distribution from 32 to 10.

A Bayesian Network requires knowledge of the cause-effect relationships

among the five variables. For this example, the following assumptions are made:

• Weather condition does not depend on and does not influence which airline is

flying the aircraft.
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• Weather condition does not depend on and does not influence the

manufacturer of the aircraft.

• Once we know which airline is flying the aircraft, then whether it arrives late

does not affect the manufacturer of the aircraft.

• Regardless of the airline, flights are frequently delayed due to bad weather.

• United is more likely to arrive late than Delta.

• United is more likely to use Boeing aircraft than Delta.

• Airplanes are more likely to leave on time if the airplanes arrived on time.

The first assumption describes the independence between weather condition

and the airline. This is specified by the statement P (S|M) = P (S). Similarly, the

second assumption describes the independence between the weather condition and

the aircraft manufacturer. This is specified by the statement P (S|R) = P (S). The

third assumption is a conditional independence between airplane manufacturer and

the lateness of the flight given the airline. In other words, L and R are conditionally

independent given M. This is specified by the statement P (L|M,R) = P (L|M) and

P (R|M,L) = P (R|M). The fourth assumption indicates that weather condition

influences the lateness of the flight. The fifth assumption indicates that the airline

influences the lateness of the flight. Similarly, the sixth assumption indicates that

the airline influences which manufacturer built the aircraft. The last assumption
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indicates that arriving late influences the probability of leaving on time. Expressing

these assumptions using a Bayesian Network, we obtain Figure 2.7.

Figure 2.7: An example Bayesian Network that describes flight delays [33]

We used known relationships among variables to construct the Bayesian

Network. The next step is to assign probabilities that describe each node. In

general, the table for node A must list P (a|Parent values) for each possible

combination of parent values. For example, node L is dependent on parents S and

M . Hence, possible combinations are:

• P (L|M ∧ S) = P (Airplane arrives late|Airline is Delta ∧ Sunny)

• P (L|M ∧ ¬S) = P (Airplane arrives late|Airline is Delta ∧ Rainy)

• P (L|¬M ∧ S) = P (Airplane arrives late|Airline is United ∧ Sunny)

• P (L|¬M ∧ ¬S) = P (Airplane arrives late|Airline is United ∧ Rainy)

The probabilities for these values come from domain knowledge,
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observations, or experiments. Suppose we reviewed the on-time performance log

published by the airport and empirically determined the probabilities:

• When the airline was Delta and it was sunny, the flight arrived late 5% of the

time = P (L|M ∧ S) = 0.05.

• When the airline was Delta and it was rainy, the flight arrived late 10% of the

time = P (L|M ∧ ¬S) = 0.1.

• When the airline was United and it was sunny, the flight arrived late 10% of

the time = P (L|¬M ∧ S) = 0.1.

• When the airline was United and it was rainy, the flight arrived late 20% of

the time = P (L|¬M ∧ ¬S) = 0.2.

Hence,

• P (¬L|M ∧ S) = 1− 0.05 = 0.95,

• P (¬L|M ∧ ¬S) = 1− 0.1 = 0.9,

• P (¬L|¬M ∧ S) = 1− 0.1 = 0.9, and

• P (¬L|¬M ∧ ¬S) = 1− 0.2 = 0.8.

Repeating this for all nodes in the graph, we obtain Figure 2.8 with 10

probabilities:
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Figure 2.8: An example Bayesian Network with probabilities [33]

The Bayesian Network in Figure 2.8 only contains 10 probabilities. However,

the full joint probability distribution is expressed using 32 probabilities (Figure 2.6).

Using boolean arithmetic, we can compute any entry in the joint probability

distribution using the 10 probabilities from the Bayesian Network. For example, to

compute a table entry P (S ∧ ¬M ∧ L ∧ ¬R ∧ T ), we use Equations 2.1 and 2.2:

P (T ∧ ¬R ∧ L ∧ ¬M ∧ S)

= P (T |¬R ∧ L ∧ ¬M ∧ S)× P (¬R ∧ L ∧ ¬M ∧ S).

Since the network indicates that L is the only immediate parent of T,

P (T |¬R ∧ L ∧ ¬M ∧ S)× P (¬R ∧ L ∧ ¬M ∧ S)

= P (T |L)× P (¬R ∧ L ∧ ¬M ∧ S)

= P (T |L)× P (¬R|L ∧ ¬M ∧ S)× P (L ∧ ¬M ∧ S).
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Since the network indicates that M is the only immediate parent of R,

P (T |L)× P (¬R|L ∧ ¬M ∧ S)× P (L ∧ ¬M ∧ S)

= P (T |L)× P (¬R|¬M)× P (L ∧ ¬M ∧ S)

= P (T |L)× P (¬R|¬M)× P (L|¬M ∧ S)× P (¬M ∧ S)

= P (T |L)× P (¬R|¬M)× P (L|¬M ∧ S)× P (¬M |S)× P (S)

= P (T |L)× P (¬R|¬M)× P (L|¬M ∧ S)× P (¬M)× P (S).

Inserting probabilities from the network yields

P (T ∧ ¬R ∧ L ∧ ¬M ∧ S)

= P (T |L)× P (¬R|¬M)× P (L|¬M ∧ S)× P (¬M)× P (S)

= (0.3)× (1− 0.6)× (0.1)× (1− 0.6)× (0.3)

= 0.00144.

Following the same process, any entry in the joint probability distribution can be

calculated using the Bayesian Network.

Bayesian Networks have been applied to a variety of time-series forecasting

scenarios. For instance, Cofiño et al. [10] applied Bayesian Networks to forecast

meteorological time series; rainfall in the Iberian peninsula. The researchers chose

Bayesian Networks because existing techniques, such as regression, hidden Markov
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models, and neural networks, rely on past evidence collected from each of the

individual weather stations. Bayesian Networks, on the other hand, are capable of

modeling both temporal and spatial dependencies among weather stations. Zhang

et al. [51] applied Bayesian Networks to forecast short-term time series; traffic flow

in Beijing road links recorded every 15 minutes. The authors observed that existing

time series models, such as ARIMA, seasonal ARIMA, Kalman filter, neural

networks, non-parametric, simulation, local regression, ATHENA, and KARIMA, do

not incorporate information from adjacent road links. Using the intuition that

vehicles travel from one road link to another, the researchers use Bayesian Networks

to model the temporal and spatial dependencies among the interconnected road

links.

A common theme between both groups is that the Bayesian Networks

leverage on the temporal and spatial relationships that were unaccounted by the

existing methods. Heating oil forecasting faces similar issues with existing methods.

Existing methods rely heavily on historical data and do not fully incorporate all of

the information that is available. In addition to the historical data, Bayesian

Networks take advantage of the temporal and spatial relationships among the

observations. Unfortunately, such relationships are very weak among heating oil

customers. Unlike weather or traffic flow, neither demand nor heatload sensitivity

(K-factor) “travel” between individual customers over time across geographic
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regions. Lacking clear temporal and spatial relationships, Bayesian Networks do not

seem to apply well for forecasting heating oil demand. The next section discusses

another Bayesian forecasting technique called Bayesian pooling, which also takes

into account information that is overlooked by the existing methods.

2.3.2 Bayesian Pooling / Empirical Bayes

Bayesian pooling (also known as Bayesian shrinkage, empirical Bayes, or

Stein estimation) is a forecasting technique that is designed to adapt rapidly to

pattern changes. This rapid and accurate adaptation is accomplished by

incorporating analogous time series when forecasting a single target time series [2].

Analogous time series are time series that are closely related (correlated) to each

other. A set of analogous time series that follow a similar pattern is called the

equivalence group. Analogous time series are incorporated to a forecast by

combining local and group models. A local model is estimated for the target time

series being forecast. A group model is estimated using the equivalence group’s

pooled data. The two models are combined using weights. The weights are inversely

proportional to the variance of the parameter estimates. In other words, estimates

that are more precise are emphasized, and estimates that are less precise are

deemphasized. A summary of the calculation steps is:

1. Select an equivalence group and extract time series data,
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2. Scale each time series,

3. Construct local and group models,

4. Combine two models using Bayesian shrinkage weights,

5. Forecast using the combined (pooled) model, and

6. Rescale the forecasts to match the raw data.

Figure 2.9 is a graphical summary of the calculation steps. First, an

equivalence group is selected from a set of analogous time series. Time series in the

equivalence groups must be scaled so that the magnitude is standardized. An

equivalence group that is scaled is called pooled data. The target time series is used

to construct the local model, while the pooled data is used to construct the group

model.

Figure 2.9: Overview of Bayesian pooling [2]

Examples of analogous time series include a set of time series that describe

the sales of similar products in the same geographic area, or a single product sold in
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different geographic areas. In econometrics, Garcia-Ferrer [21] used output growth

rate, real stock returns, and growth rate of real money supply from nine countries

between 1954 and 1981 as analogous time series. In energy forecasting, temperature

and energy consumption are analogous time series.

When a pattern change (Figure 2.10) occurs, the parameter estimates of the

local model become imprecise. The parameter estimates of the group model, on the

other hand, remain precise if the analogous time series in the equivalence group

continue to co-move with the target time series. Using weights that are inversely

proportional to the variance, the parameter estimates of the group model is given a

larger weight. This, in turn, improves the precision of the combined model. Hence,

Bayesian pooling is most useful when the target time series is highly volatile or is

characterized by multiple distinct time-based patterns such as the ones shown in

Figure 2.10 [2].

An example illustrates how to combine nonseasonal univariate local and

group models. If we let

• i be the target series index (i.e. target series i = 1 might refer to output

growth rate in the United States, while target series i = 2 might refer to

output growth rate in England),
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Figure 2.10: Illustration of nonstationary time series with four pattern regimes [2]

• k be a forecast origin (the most recent historical period for which data is used

to build a forecasting model. For example, if the model was trained using data

up to 1973, then k = 1973),

• l̂i,k be a combined final intercept term estimate for target series i at forecast

origin k,

• ŝi,k be a combined final slope term estimate for target series i at forecast

origin k,

• li,k be an estimated intercept term from the local model for target series i at

forecast origin k,

• si,k be an estimated slope term from the local model for target series i at

forecast origin k,

• x̄k be a sample mean of group pooled data at forecast origin t,
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• δ̄k be a sample mean of group first differences at forecast origin k,

• u1 be a shrinkage weight that is inversely proportional to the estimated

variance of l, the estimated intercept term from the local model,

• u2 be a shrinkage weight that is inversely proportional to the estimated

variance of x̄k,

• w1 be a shrinkage weight that is inversely proportional to the estimated

variance of s, the estimated slope term from the local model, and

• w2 be a shrinkage weight that is inversely proportional to the estimated

variance of δ̄k.

Then the local and group model parameters can be combined as follows:

l̂i,k = u1li,k + u2x̄k, and

ŝi,k = w1si,k + w2δ̄k.

Using the intercept and slope calculated for the combined model, the n-step ahead

forecast is:

ŷk+n = l̂i,k + nŝi,k.

The Bayesian pooling technique frequently is used in financial and economic

forecasting since business cycles and processes often cause pattern changes in time

series. Duncan et al. [16] applied a Bayesian pooling technique refereed to as
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C-MSKF (Multi-State Kalman Filter with Conditionally Independent Hierarchical

method). The researchers forecast income tax revenue for each of 40 school districts

in Allegheny County, Pennsylvania, based on fifteen years of data. The study uses a

Dynamic Linear Model to perform the actual forecast, but uses a Bayesian pooling

technique to identify and group districts that behave similarly based on the

sensitivity of their revenue collections to economic cycles.

The researchers chose a Bayesian pooling technique as their forecast method

because existing methods did not incorporate all of the information that is

available. This reasoning is very similar to the theoretical justifications for using

Bayesian Networks: both methods try to incorporate information that previously

was unaccounted for. The two methods differ in the sense that Bayesian Networks

rely on the spatial and temporal relationships among observations. Bayesian

pooling, on the other hand, relies on analogous time series that move together.

These time series are not required to have a cause-and-effect or spatial-temporal

relationship among them. Hence, Bayesian pooling is most useful when numerous

time series are available with parallel observations that co-move (i.e. economic and

business indicators) [16]. Aside from temperature, individual customer’s heating oil

demand does not strongly co-move with other time series. Additionally, it is

unlikely to observe a clear change in heating oil demand patterns during the first

few initial deliveries. Hence, Bayesian pooling techniques do not seem to help
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improve short-term heating oil forecasts on a per-customer basis. The next section

discusses a technique called a Dynamic Linear Model, which is also a technique that

accounts for nonstationary behaviors in time series.

2.3.3 Dynamic Linear Models

A Dynamic Linear Model (DLM) is a structure that is used to model time

series with nonstationary components [41]. DLM is a sequential parametric model

consisting of two equations that describe how the parameters change over time as a

result of systematic effects and random shocks. The observation equation

specifies the stochastic relationship between the independent and dependent

variables using parameters at time t. The system equation describes how the

parameters change stochastically over time [28].

A Dynamic Linear Model is a framework that one can use to model complex

time series that are difficult to model otherwise. Complex time series are easier to

model with this framework because the framework allows the forecaster to describe

how parameters change over time. The framework also allows the forecaster to

include explicitly both systematic and random effects that cause the parameters to

change. By explicitly accounting for the random effects, the framework is able to

express parameters using probability. In contrast, traditional forecasting techniques,

such as Multiple Linear Regression, do not explicitly describe how parameters
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change over time or express parameters using probability. Due to these flexibilities,

DLM can be applied to various forecasting problems that saw limited success with

traditional methods. DLM is a framework in a sense that many traditional

forecasting models can be expressed as special cases of DLM.

Let

• yt be a (m× 1) vector of observations (dependent variable) at time t,

• θt is a (n× 1) vector of parameters at time t,

• Ft be a (m× n) matrix of independent variables at time t,

• G is a (n× n) system matrix that is known,

• vt be a (m× 1) random normal vector with zero means and variances known

at time t, and

• wt be a (n× 1) random normal vector with zero means and variances known

at time t.

Then a DLM consists of observation and system equations

yt = Ftθt + vt, vt ∼ N(0, Vt), and (2.4)

θt = Gθt−1 + wt, wt ∼ N(0,Wt), (2.5)

where Equation 2.4 is the observation equation, and Equation 2.5 is the system
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equation. Of these components, G and wt are the most significant. The matrix G

defines how parameters change over time, and wt is the component that adds

randomness when parameters change over time, allowing the parameters to be

expressed in terms of probability.

As it was mentioned earlier, traditional forecasting models can be expressed

as special cases of DLM. For instance, a DLM with the following components

express a simple regression model. Set G = I and Wt = 0 so that the system

equation is θt = θt−1 + wt, wt ∼ N(0, 0). Since wt has zero mean and zero variance,

wt is no longer a random variable. Instead, it is a constant with a value of zero.

Hence, the system equation is θt = θt−1, which simply states that the parameters do

not change over time.

A Dynamic Linear Model is frequently referred to as the Bayesian forecasting

technique due to its use of the Kalman filter, which recursively computes the

parameter distributions. Recall that Bayes’ Theorem describes how we obtain

posterior knowledge by updating our prior knowledge. Similarly, if the prior

distribution of the parameters has a normal distribution with mean m0 and variance

C0, then updating the prior distribution using past observation values (yt and F t)

yields a posterior distribution of the parameters at time t. This posterior

distribution is normally distributed with mean mt and variance Ct. Hence, if we let
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• θ0 be a prior probability distribution,

• (θt|yt, F t) be a posterior probability distribution,

• yt be a sequence of values from y1 to yt (y1...yt), and

• F t be a sequence of values from F1 to Ft (F1...Ft),

then the prior and the posterior are expressed as

θ0 ∼ N(m0, C0), and

(θt|yt, F t) ∼ N(mt, Ct).

The values of mt and Ct can be obtained recursively as follows. If we let

ŷ = FtGmt−1,

e = yt − ŷ,

R = GCt−1G
T +Wt,

Ŷ = FtRF T
t + Vt, and

A = RF T
t Ŷ

−1,
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then

mt = Gmt−1 + Ae, and

Ct = R− AŶ AT .

A more through discussion of DLM is available in textbooks such as Time Series:

Modeling, Computation, and Inference [41], or in journal articles such as Bayesian

Forecasting [28].

One of the earliest applications of DLM can be seen by the work of Green

and Harrison [24]. The researchers applied DLM to forecast the sales of ladies’

dresses sold by a mail order company between August 1970 and December 1970.

The motivation of the study is to use a Bayesian approach to forecast the sales of a

new product in the absence of a sales history. Additionally, the prior estimates are

obtained by expressing the experiences of the staff members in terms of possibilities

and probabilities. Johnston and Harrison [30] applied DLM to forecast the demand

of alcoholic beverages in the United Kingdom between 1977 and 1980 using

historical sales data between 1970 and 1976. During the summer of 1976, an

unusually hot and dry summer significantly increased the demand, while the

introduction of Excise Duty at the end of 1976 depressed demand for alcoholic

beverages. The authors applied DLM because traditional forecasting techniques,

such as Linear Growth Seasonal Model, performed poorly given these unusual
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events. A DLM was applied to incorporate previously unaccounted information to

the overall model. Pezzulli et al. [38] forecasted electricity peak demand daily

trajectory during the winter season in Central England and Wales using DLM. The

study used daily peak demand fluxes for winters between 1986 and 2003. The model

uses three components: a calendar component that accounts for the day of the week

and winter cycles; an economic component that accounts for industrial activities

measured by the Service Sector Index; and a weather component that accounts for

temperature, wind, and solar radiation.

Green and Harrison [24] demonstrate that the Bayesian approach to

forecasting can be applied to cases where there is a lack of prior historical sales

data. This is critical because this project aims to forecast heating oil demand for

new customers without prior historical demand data. Additionally, this project

must incorporate an estimate from the outside expert as a part of the forecast. The

study also incorporated the forecasting process used by the expert (staff members)

into the overall model. Johnston and Harrison [30] and Pezzulli et al. [38] both

demonstrate that the technique can be applied successfully to forecast demand that

is dependent on weather conditions. A successful application of the Bayesian

methods in these studies suggest that Bayesian methods also can be applied to

forecast heating oil demand.

This concludes the overview of the key concepts and existing forecasting
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techniques. Chapter 3 discusses the details of our Bayesian Heating Oil Forecaster

and its evaluation method.
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CHAPTER 3

Bayesian Heating Oil Forecaster

This chapter introduces the implementation of our Bayesian Heating Oil

Forecaster by stepping through the estimation process using a hypothetical new

customer. An overview of software architecture and implementation constraints are

also covered. The major challenge for our Bayesian Heating Oil Forecaster is to

improve the forecasts without knowing the historical behavior of the target

customer being forecast. The next section provides a high-level overview of how our

Bayesian Heating Oil Forecaster generates its estimate.

3.1 Thought Experiment: Forecasting Demand Without Historical Data

This section contains a thought experiment that steps through the logical

process of generating a forecast without relying on the historical behavior of a

target customer. The aim of this exercise is to illustrate how our Bayesian Heating

Oil Forecaster is generating a forecast without using the historical data of the target

customer.

Consider an example illustrated in Figure 3.1. Suppose there is an operator
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Figure 3.1: Experiment setup

named Fei who works for a heating oil distribution company, My Oil Company

(MOC). The supervisor notifies Fei that Elly, a new customer, has just signed up for

the delivery service offered by the company. The supervisor asks Fei to estimate the

next delivery date for Elly. Fei has no information about Elly. We can assume that

Fei has access to the company database, which contains historical delivery records

and the latest delivery estimates for over 3,000 existing customers. Fei has access to

past and future (10-day forecast) weather data from a near-by weather station. We

can also assume that Fei knows the forecasting model that is used by the company,

a simple regression model as shown in Equation 3.1 that relates temperature to the

estimated demand (ŝk) using a heatload factor (β1) called the K-factor (K),

ŝk = β1x1,k = (1/K̂)HDD60,k. (3.1)

Since Fei can calculate the HDD60,k using data from the weather station, Fei can
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estimate Elly’s demand if he can estimate the K-factor and fit the model. Hence,

the objective becomes estimating Elly’s K-factor. Given the contents of the

database, Fei can estimate Elly’s most likely K-factor by calculating a range of

K-factors for a typical customer. Using the database, Fei can generate a customer

K-factor histogram such as the one shown in Figure 3.2. The histogram shows the

number of existing customers with their latest K-factor estimates. For example, the

histogram indicates that most of the existing customers have K-factors between 3

and 8, and over 70 existing customers have latest K-factors of around 6. Having

such a histogram enables Fei to identify what K-factor values are the most common.

Similarly, Fei can compute the average K-factor for all existing customers and treat

that as the K-factor estimate for Elly. Hence, Fei has gained some knowledge of

what the K-factor for Elly might be without knowing Elly’s historical behavior.

Figure 3.2: Histogram of the latest K-factor estimates for the existing customers
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Besides Fei, there is an expert, Bart, in the company. Bart contacts new

customers, interviews them, and estimates their K-factors. Bart has been an expert

at the company for over 30 years, and his estimates usually are good. Additionally,

the company database stores Bart’s past estimates. Hence, when Bart estimates the

K-factor, Fei can look at the database to see how Bart has performed in the past.

For example, the historical data demonstrates that when Bart estimated the

K-factor to be between 5.0 and 5.5, the actual K-factor was also between 5.0 and

5.5 for 10 percent of the time. Similarly, for the same estimated K-factor, the actual

K-factor was between 6.0 and 6.5 for 12 percent of the time. Repeating this process,

Fei can create a probability table that looks like Figure 3.3. This table indicates the

likelihood of the actual K-factor when Bart provided a certain K-factor estimate.

Using the table shown in Figure 3.3, it can be seen that Bart tends to

underestimate the K-factor for the customers.

Figure 3.3: A simplified likelihood table



72

Before asking Bart for his estimate, Fei estimated that the K-factor for Elly

is the average K-factor for all existing customers. Assume that the average was 6.2.

Then Bart estimated Elly’s K-factor to be 5.2. Looking at Bart’s past performance,

Fei found that Bart is likely to underestimate. Based on the above, Fei concludes

that the K-factor for Elly is close to 6.2 but unlikely to be smaller than 5.2. Again,

the main point is that Fei is able to forecast and refine the K-factor estimate

without requiring Elly’s historical data.

In summary, Fei estimated Elly’s K-factor by first looking at the existing

customer’s latest K-factor estimates. Fei used an average of the existing customer’s

K-factors and used it as his estimate for Elly’s K-factor. Next, Fei obtained a

K-factor estimate from Bart, the company expert. Finally, Fei refined his K-factor

estimate for Elly without Elly’s historical estimates by combining his estimate with

Bart’s estimate. Our Bayesian Heating Oil Forecaster follows a very similar process.

Instead of using a single number (i.e. average of the existing customers), our

Bayesian Heating Oil Forecaster uses the distribution of K-factors to capture more

information. The algorithm ultimately represents the belief about the customer’s

K-factor using a probability distribution. The belief is updated according to Bayes’

Theorem as outlined in Chapter 2.
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3.2 Overview of the Bayesian Heating Oil Forecaster

Bayesian forecasting is an iterative process that revises the belief about an

unobservable quantity. This process is depicted in a 4-step flowchart originally

shown in Figure 2.2 (also reproduced below as Figure 3.4).

Figure 3.4: A model of how Bayes’ Theorem updates forecaster knowledge

Our Bayesian Heating Oil Forecaster follows the steps shown in Figure 3.4

with a slight difference. Instead of observing a same kind of event and updating the

belief based on the same likelihood, our Bayesian Heating Oil Forecaster observers

two different kinds of events: the expert’s K-factor estimate and the estimate

generated by the existing forecasting method. In the beginning when no delivery

information is available, the algorithm relies on the subjective K-factor estimate

provided by the expert (Figure 3.5). In subsequent steps when delivery information
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becomes available, the algorithm relies on the K-factor estimates provided by the

existing forecasting method, as suggested by Figure 3.6.

Figure 3.5: Observing the expert K-factor estimate

Figure 3.6: Observing the model K-factor estimate

Hence, instead of updating the belief using a single likelihood, our Bayesian

Heating Oil Forecaster relies on two different likelihoods. One likelihood is
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computed using the subjective K-factor estimates provided by the expert. We call

this likelihood the expert likelihood. Another likelihood is computed using the

K-factor estimates provided by the existing forecasting method. We call this

likelihood the model likelihood. A summary of what our Bayesian Heating Oil

Forecaster does under different conditions can be seen in Figure 3.7. Before the

second delivery is made, our Bayesian Heating Oil Forecaster uses the K-factor

estimate provided by the expert to perform the forecast. After the second delivery is

made, our Bayesian Heating Oil Forecaster uses the K-factor estimate provided by

the existing forecasting method.

Figure 3.7: Event timeline and algorithm behavior

Next, the individual computation steps of our Bayesian Heating Oil

Forecaster are examined in detail.
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3.3 Computation Steps of our Bayesian Heating Oil Forecaster

Our Bayesian Heating Oil Forecaster consists of the following 10 steps:

Bayesian Heating Oil Forecaster Algorithm

1. Compute the initial belief about the K-factor of the target customer;

2. Observe the K-factor estimate from the expert;

3. Update the initial belief using the expert likelihood;

4. Obtain the posterior belief about the K-factor of the target customer;

5. Observe the K-factor estimate from the existing forecasting method;

6. Update the initial belief using the model likelihood;

7. Obtain the posterior belief about the K-factor of the target customer;

8. Repeat steps 5 through 7 for every K-factor estimate generated by the existing

forecasting method;

9. Compute a K-factor estimate from the posterior belief; and

10. Obtain the estimated heating oil demand by evaluating the regression model

using the K-factor estimate.

This section discusses the details of each of the computation steps, using

actual training data (with scaled K-factors) from a heating oil sales and distribution

company that are collected between November 14, 2007, and September 30, 2009.
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3.3.1 Step 1: Compute initial belief

Input: Existing customers’ latest K-factor estimates

Output: Beta distribution parameters for the first prior

The first step of the Bayesian Heating Oil Forecaster Algorithm is to

compute the prior probability distribution of the K-factor estimate. This

probability distribution must be generated without knowledge about the target

customer. We rely on the most recent K-factor estimates of the existing customers.

First, we obtain a probability distribution estimate using the latest K-factor

estimates of the existing customers. Figure 3.8 shows a histogram of the latest

K-factor estimates collected during the training period for about 3,000 existing

customers. The figure indicates that there are 54 existing customers whose latest

K-factor estimates are [4.9, 5.0). Similarly, there are 58 existing customers whose

latest K-factor estimate fall between the range of [5.2, 5.3). Figure 3.2 (also

reproduced as Figure 3.9) is a histogram of the latest K-factor estimates.

Our Bayesian Heating Oil Forecaster requires the probability distribution to

be expressed as a beta distribution. The update process multiplies prior and

likelihood distributions, and multiplying two empirical distributions is far more

computationally intensive compared to multiplying two beta distributions. A

maximum likelihood estimation technique is used to obtain a pair of beta
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Figure 3.8: Frequency distribution of the latest K-factor estimates for the existing

customers

Figure 3.9: Histogram of the latest K-factor estimates for the existing customers

parameters that best fit the empirical distribution. (Details of beta distribution and

maximum likelihood estimation are discussed in Section 2.2.2.) Figure 3.10 shows a

beta distribution that best fits the empirical distribution, which is

Prior(1) = β(âPri
1 , b̂Pri

1 ) = β(4.4245, 8.9541).
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Figure 3.10: Empirical PDF (blue) and Beta PDF (red)

3.3.2 Step 2: Obtain K-factor estimate from the expert

Output: Expert’s K-factor estimate for the target customer

The second step is to obtain a K-factor estimate from the expert. The

estimate can come from any source, including subjective estimates from a human

expert in the field and a systematic process of estimating the initial K-factor value.

Experience-based estimation, as shown in Figure 3.5, is acceptable. The only

requirement is that the historical record of the past estimates are available at the

time of this forecast. Suppose the expert estimated the target customer’s K-factor

to be 5.2.



80

3.3.3 Step 3: Update belief using the expert likelihood

Input: Expert’s historical performance (Expert’s estimate vs. Latest estimate)

Output: Beta distribution parameters for the expert likelihood

The third step involves constructing a joint probability distribution for the

expert likelihood. A joint frequency distribution (Figure 3.11) and a joint

probability distribution (Figure 3.12) summarizes the past performance of the

forecaster by comparing the past K-factor forecasts with the latest K-factor. The

figures only show a portion of the full distribution. The full distribution contains

data from 175 customers whose K-factor estimates range from 0 to 20. For example,

the distribution shown in Figure 3.11 has a cell in the 8th row and 11th column

(labeled 3.5 and 5.0 respectively) that contains a value of 4. The 11th column

represents a case where the expert estimated the K-factor to be in the range

[5.0, 5.5). The 8th row represents a case where the latest K-factor estimates were in

the range [3.5, 4.0). Hence, row 8 column 11 represents a case where the expert

overestimated the K-factor by about 1.5. Since the cell contains the value 4, the

expert overestimated the K-factor by 1.5 for 4 out of 175 times. As time elapses and

we accumulate additional customers, the number of initial K-factors increases,

which in turn increases the observations that are available in the distribution.

The distribution is constructed by going over the historical performance of

the forecaster. For each existing customer, we look at the initial K-factor estimate
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Figure 3.11: Portion of the Expert Likelihood Joint Frequency Distribution between

November 14, 2007, and September 30, 2009 (175 observations)

Figure 3.12: Portion of the Expert Likelihood Joint Probability Distribution between

November 14, 2007, and September 30, 2009 (175 observations)

produced by the forecaster and the latest K-factor estimate produced by the

existing forecasting method. If the initial K-factor estimated by the forecaster for

an existing customer is 6.0, and the latest K-factor estimated by the existing
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forecasting method is 4.0, then we add a value one to the cell in row 9 column 13.

We repeat this process for all known existing customers until the joint frequency

distribution is fully populated.

Our Bayesian Heating Oil Forecaster requires the likelihood to be expressed

in terms of probability. If we divide each number in the joint frequency distribution

with the sum of all entries in the joint frequency distribution, we obtain the joint

probability distribution of the expert likelihood as shown in Figure 3.12. For

example, if we divide row 8 column 11 by the total number of entries, then the

resulting number (4/175 ≈ 2.29%) is a probability of the expert predicting the

K-factor to be in the range [5.0, 5.5) and the latest K-factor happens to be in the

range [3.5, 4.0). This probability, however, cannot be used as the likelihood. The

desired likelihood expresses the probability of the expert overestimating or

underestimating its forecast, given the initial estimate provided by the expert. This

is analogous to selecting a single column in the joint distribution that matches the

estimate provided by the expert. Hence, instead of dividing the number in row 8

column 11 by the sum of all entries in the joint distribution, we divide the number

by the sum of all entries in column 11. The resulting number is the probability of

the expert overestimating by 1.5 when the expert predicts a K-factor between

[5.0, 5.5).

The likelihood is a probability distribution rather than a single probability.
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Hence, the likelihood distribution is obtained by dividing each element in the

column by the sum of all elements in the same column. The result is a marginal (as

opposed to joint) probability distribution, which in our case is a discrete set of

probabilities as seen in Figure 3.13 (The column is transposed for display purposes).

Cells before the 11th element are the probabilities that the forecaster is

overestimating the K-factor. The 11th cell is the probability that the forecaster is

correctly estimating the K-factor. Cells after the 11th element are the probabilities

that the forecaster is underestimating the K-factor.

Figure 3.13: Column 11 marginal distribution from the expert likelihood joint distri-

bution

What we have so far is an empirical marginal probability distribution for the

likelihood. For the ease of calculation, it is desirable that the probability

distribution is expressed as a beta distribution. We can estimate the beta

parameters that best fit our empirical marginal probability distribution using a

maximum likelihood estimation technique. Figure 3.14 is the histogram

representation of Figure 3.13. Figure 3.15 shows a beta distribution that best fits

the empirical distribution, which is Likelihood(1) = β(âL1 , b̂
L
1 ) = β(4.5656, 8.8003).
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Figure 3.14: Histogram of the Marginal Frequency Distribution for the Expert Like-

lihood

Figure 3.15: Empirical PDF (blue) and Beta PDF (red) for the Expert Likelihood

In summary, Step 3 consists of the following tasks:

1. Construct the joint distributions for the expert likelihood using past estimates.
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2. Select the column that matches the initial estimate provided by the forecaster.

3. Perform a maximum likelihood estimation to obtain parameters for the beta

distribution that best fits the empirical probability distribution.

Step 4 uses the beta parameters obtained in Step 3.

3.3.4 Step 4: Obtain posterior belief

Input: Prior(1) and Likelihood(1) beta distribution parameters

Output: Beta distribution parameters for the Posterior(1) distribution

Bayes’ Theorem dictates that the posterior belief is proportional to the

product of the prior belief and the likelihood. Since both the prior and the likelihood
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are expressed as beta distributions, the posterior can be computed as follows:

Posterior = Prior ∝ Likelihood

Posterior(n) = β(âPost
n , b̂Post

n )

= β(âPri
n , b̂Pri

n )× β(âLn , b̂
L
n)

= kPost
n x(âPri

n +âLn−2)(1− x)(̂b
Pri
n +b̂Ln−2)

= β(âPri
n + âLn − 2, b̂Pri

n + b̂Ln − 2) (3.2)

Posterior(1) = β(âPost
1 , b̂Post

1 )

= β(âPri
1 , b̂Pri

1 )× β(âL1 , b̂
L
1 )

= β(âPri
1 + âL1 − 2, b̂Pri

1 + b̂L1 − 2)

= β(4.4245 + 4.5656− 2, 8.9541 + 8.8003− 2)

= β(6.9901, 15.7544). (3.3)

The end result (Equation 3.3) is a beta distribution with a new set of parameters,

6.9901 and 15.7544. The parameters for the posterior beta distribution is a sum of

parameters from the prior and the likelihood distributions. This drastically

simplifies the computation compared to using other distributions such as empirical

distributions. Due to the iterative nature of the Bayesian forecasting technique, the

posterior belief of the first iteration becomes the prior belief of the second iteration.
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3.3.5 Step 5: Obtain K-factor estimate from the model

Output: K-factor estimate produced by the existing forecasting method for the

target customer

Once the initial K-factor estimate is provided by the expert in Step 2,

subsequent estimates are provided by the existing forecasting method. Similar to

Step 2, the historical record of the past estimates must be available at the time of

this forecast.

As mentioned earlier in section 1.4, the existing forecasting method is an

ensemble forecast model whose components include Linear Regression model, expert

K-factor, and tank size and K-factor model. The ensemble model accepts weather

data, delivery amount, and historical delivery record as inputs to produce its own

K-factor estimate for the target customer’s latest delivery. Our Bayesian Heating

Oil Forecaster accepts its latest K-factor estimate as an observation for the second

and subsequent deliveries.

3.3.6 Step 6: Update belief using the model likelihood

Input: Model’s historical performance (Model’s estimate vs. Latest estimate)

Output: Beta distribution parameters for the model likelihood

The overall process is exactly the same as in Step 3 when the belief was
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updated using the expert likelihood. Since the joint distribution for the expert

likelihood is different from the model likelihood, we must generate a new joint

distribution. Figure 3.16 is the joint frequency distribution, and Figure 3.17 is the

joint probability distribution for the model likelihood. Instead of the estimates

produced by the expert, the columns now refer to the estimates produced by the

existing forecasting method. For each past forecast, we look at the past K-factor

estimate and the latest K-factor estimate produced by the existing forecasting

method. For instance, if the existing forecasting method estimated a K-factor for an

existing customer to be 6.0, and the latest K-factor estimated for the same customer

is 4.0, then we add a value one to row 9 column 13 of the joint frequency

distribution. We repeat this process for all of the past forecasts until the joint

frequency distribution is fully populated.

Figure 3.16: Portion of the Model Likelihood Joint Frequency Distribution between

November 14, 2007, and September 30, 2009 (24,121 observations)
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Figure 3.17: Portion of the Model Likelihood Joint Probability Distribution between

November 14, 2007, and September 30, 2009 (24,121 observations)

Once the table is populated, we select a single column that matches the

current forecast produced by the existing forecasting method. Since the existing

forecasting method estimated the K-factor for the target customer to be 6.8, we

select column 14 in the joint frequency distribution for the model likelihood.

Following the same procedure as Step 3, we estimate the beta parameters that best

fit the column. Figure 3.18 is the histogram representation of column 14 in the joint

frequency distribution for the model likelihood. Figure 3.15 shows a beta

distribution that best fits the empirical distribution, which is

Likelihood(2) = β(âL2 , b̂
L
2 ) = β(43.01, 82.11).

Step 7 uses the beta parameters obtained in Step 6 to compute the posterior

belief.
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Figure 3.18: Histogram of the Marginal Frequency Distribution for the Model Like-

lihood

Figure 3.19: Empirical PDF (blue) and Beta PDF (red) for the Model Likelihood

3.3.7 Step 7: Obtain posterior belief

Input: Prior(2) and Likelihood(2) beta distribution parameters
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Output: Beta distribution parameters for the Posterior(2) distribution

This step is identical to Step 4. Using Equation 3.2, we compute the

posterior probability distribution using the prior distribution from Step 4 and the

likelihood distribution from Step 6. Equation 3.4 is the new posterior belief.

Posterior(2) = β(âPost
2 , b̂Post

2 )

= β(âPri
2 + âL2 − 2, b̂Pri

2 + b̂L2 − 2)

= β(6.9901 + 43.01− 2, 15.7544 + 82.11− 2)

= β(48.00, 95.86) (3.4)

3.3.8 Step 8: Repeat steps 5 through 7

We repeat Steps 5 through 7 for each of the previous K-factor estimates for

the target customer. If the target customer has had 4 deliveries so far, then Steps 1

through 4 are performed once, and Steps 5 through 7 are repeated 3 times. The

posterior belief is used to obtain the K-factor estimate for the 5th delivery.

3.3.9 Step 9: Obtain K-factor estimate

Input: Beta distribution parameters for the final posterior distribution

Output: Estimated K-factor for the target customer

The posterior belief is a beta probability distribution, while a K-factor is a
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single continuous non-negative number. Hence, the posterior belief itself cannot

represent a single K-factor estimate. Instead, we can compute an expected K-factor

from the posterior probability distribution. An expected K-factor is the K-factor

estimate that is most likely to occur, given the posterior probability distribution.

For a beta distribution, the expected value can be computed using Equation 2.3.

For example, if the posterior is β(48.00, 95.86), then the expected K-factor

estimate is

E(X) =
48.00

48.00 + 95.86
= 0.3337. (3.5)

The result is scaled by the maximum K-factor value of 20. Hence, the actual

K-factor estimate is 0.3337× 20 = 6.67.

3.3.10 Step 10: Obtain estimated heating oil demand

Input: Estimated K-factor for the target customer

Output: Estimated heating oil demand for the target customer

So far, we have estimated the K-factor for the target customer. To estimate

the heating oil demand for the target customer, we need to evaluate the regression

model (Equation 1.1) using the estimated K-factor. If the estimated K-factor is

6.67, the estimated baseload is 0.15, and the heating degree day is 35, then the

estimated demand for the target customer is 0.15 + 1/6.67× 35 ≈ 5.40 gallons.
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The above calculation is for a daily estimate. If the estimated cumulative

heating oil demand for the target customer becomes greater than 70% of the total

tank capacity, then the target customer is flagged as a customer that requires

heating oil delivery. Once the demand is computed, the steps above are repeated for

each of the new customers.

This concludes the explanation of our Bayesian Heating Oil Forecaster

Algorithm. The next section addresses the software implementation of the

algorithm.

3.4 Software Implementation

There is a slight difference between the theoretical and the actual

implementation of our Bayesian Heating Oil Forecaster. The theoretical

implementation of our Bayesian Heating Oil Forecaster Algorithm computes the

prior and the joint distribution for the two likelihoods during the estimation process.

The prior probability distribution is generated for each customer. The likelihoods

are generated for each repeated iteration. This is acceptable if the computation is

instantaneous. However, repeating the calculation for every customer and for every

iteration is extremely time consuming (Figure 3.20). To reduce the computation

time, the actual implementation is modified in the following manner:
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1. The prior probability distribution is computed once at the very beginning.

This is possible because the prior probability does not change between target

customers. The same prior probability distribution is reused for all of the

target customers.

2. Instead of generating the likelihood tables for every iteration, the tables are

computed once at the very beginning for ex-ante forecasts and for each target

customer for ex-post forecasts

Figure 3.21 is a diagram of the actual implementation. Code 1 is a code

implementation of Figure 3.21, where prior and two likelihoods are calculated before

looping through each customer.

Figure 3.20: Theoretical implementation of our Bayesian Heating Oil Forecaster
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Figure 3.21: Actual implementation of our Bayesian Heating Oil Forecaster

Code 1 is the top-level pseudo-code of our Bayesian Heating Oil Forecaster.

As seen in Figure 3.21, the section before the for loop pre-calculates the prior and

the two likelihoods. The for loop repeats the calculation for each customer. Inside

the for loop, the existing model performs its forecast first. The estimated K-factor is

then combined with previous K-factor estimates and is passed to our Bayesian

algorithm. The evaluation uses the baseload computed by the existing model and

the K-factor computed by the Bayesian model.

Code 2 shows the contents of the getBayesEstimate function. This function

is responsible for generating the Bayesian K-factor estimate for each customer. It

implements our Bayesian Heating Oil Forecaster Algorithm with modifications to

use pre-calculated prior and likelihoods. The section before the for loop corresponds

to Steps 1 through 4 in our algorithm. The body of the for loop corresponds to
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Steps 5 through 7, and the for loop itself corresponds to Step 8. The remainder of

the code implements Steps 9 and 10. The function selectLikelihoodBeta is selecting

a pre-calculated beta parameters that corresponds to the observed K-factor. The

parameter values are stored in the expertLikelihood and modelLikelihood variables.

This concludes the explanation of our Bayesian Heating Oil Forecaster and

its implementation. The next chapter examines the evaluation method and

evaluation results of our Bayesian Heating Oil Forecaster. The backtesting process

and the evaluation method itself are the subject of the next chapter.
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Code 1 Pseudo-code for the top-level Bayesian Heating Oil Forecaster Algorithm

prior1 = getPriorBeta(listOfLatestKFactors, maxKFactor);

expertLikelihood = getLikelihoodBeta(

listOfExpertAndLatestKFactors, likelihoodBin, maxKFactor

);

modelLikelihood = getLikelihoodBeta(

listOfModelAndLatestKFactors, likelihoodBin, maxKFactor

);

for i = 1:numOfCustomers

% Run existing model

[baseload kFactor] = getExistingModelEstimate(

listOfCustomers(i),

listOfDeliveries,

hddPast

);

observedKFactor =

[listOfPastExistingModelKFactorEstimates kFactor];

% Run Bayes model

kFactorBayes = getBayesEstimate(

observedKFactor, prior1, expertLikelihood,

modelLikelihood, likelihoodBin, maxKFactor

);

% Evaluate model

listOfCustomers(i).estimatedDemand(today) =

baseload + kFactorBayes * hddToday;

end
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Code 2 Pseudo-code for getBayesEstimate

function estimatedKFactor = getBayesEstimate(

observedKFactor, prior1, expertLikelihood,

modelLikelihood, likelihoodBin, maxKFactor

)

prior(1) = prior1;

likelihood(2) = selectLikelihoodBeta(

observedKFactor(1), expertLikelihood,

likelihoodBin, maxKFactor

);

prior(2) = getPosteriorBeta(prior(1), likelihood(1));

for i = 2:numberOfForecasts

likelihood(i) = selectLikelihoodBeta(

observedKFactor(i), modelLikelihood,

likelihoodBin, maxKFactor

);

% Note: I don’t have an array for Posterior(i) because

% Posterior(i) = Prior(i+1)

prior(i+1) = getPosteriorBeta(prior(i), likelihood(i));

end

% Translate posterior to k-factor

estimatedKFactor =

getBetaExpectedValue(prior(numberOfForecasts+1)) * maxKFactor;

end
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CHAPTER 4

Bayesian Heating Oil Forecaster Test Results

Chapter 3 discussed the design and implementation of our Bayesian Heating

Oil Forecaster. This chapter discusses the details of the evaluation method that is

used to measure the effectiveness of our Bayesian Heating Oil Forecaster.

Additionally, this chapter reports the evaluation results. Our Bayesian Heating Oil

Forecaster should reduce the forecasting error of the heating oil demand during the

initial deliveries as defined in Section 1.2. The next section discusses the testing

method used to evaluate the performance of our Bayesian Heating Oil Forecaster.

4.1 Evaluation Method

This section describes the evaluation method that is used to determine the

effectiveness of our Bayesian Heating Oil Forecaster compared to the existing

forecasting method. Section 4.1.1 on the backtesting process explains how the

evaluation method using ex-post forecast is implemented, while the evaluation

criteria lists attributes and performance measures that are used to compare our

Bayesian Heating Oil Forecaster with the existing forecasting method.
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4.1.1 Backtesting Process

Backtesting is a software implementation of the ex-post forecast that

measures algorithm performance. The backtesting process uses historical delivery

records and weather data to simulate how the algorithm would have performed in

the past, and compares past forecasts with actual demand. The historical data used

by the backtesting process is corrected using domain insights to reduce or remove

the undesired effects from special cases, such as the overfill and underfill conditions.

Figure 4.1: Ex-ante Forecast Training Set

Figure 4.2: Ex-post Forecast Training Set

The behavior of the backtesting process is different from the ex-ante forecast

covered in Chapter 3. Ex-ante forecast produces daily demand estimates in the
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future. The ex-post forecast covered in this chapter estimates the demand in the

past and compares it against the actual demand for evaluation purposes. With an

ex-ante forecast, we only need to calculate the prior and the two likelihoods once.

Ex-post forecast, on the other hand, requires recalculation for each delivery for each

customer. This is illustrated by Figures 4.1 and 4.2. Since the training period does

not stay the same during the ex-post forecast, the implementation must account for

this by introducing an additional loop in the algorithm, as shown in Figure 4.3.

Figure 4.3: Ex-post implementation of our Bayesian Heating Oil Forecaster

The following example depicts the operation of the backtesting process.

Suppose, we wish to test the algorithm by performing an ex-post forecast using

deliveries that occurred between 11/1/2009 and 5/31/2010 as our test set.

Historical data between 11/1/2008 and 10/31/2009 is used as our training set, as

shown in Figure 4.2. To test the algorithm, the backtesting process first selects
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customers who signed up during the test period. In Figure 4.2, customers D and E

are identified as new customers who signed up for the service during the test period.

Suppose the second delivery for Customer D occurs on 11/15/2009. The backtesting

process trains the algorithm using historical data between the training set start date

(11/1/2008) and the day before the second delivery (11/14/2009). The backtesting

process compares the demand forecast for the 15th with the actual demand that

was observed on the 15th. It continues the process by evaluating the third delivery

on 12/18/2009 for customer D. The algorithm is trained again using historical data

between the training set start date and the day before the third delivery

(12/17/2009). The forecast is compared against the actual delivery that occurred on

12/18/2009. This process is repeated for every delivery and for each new customer.

By selectively picking the historical data, the process simulates a forecast estimated

on a particular day in the past.

Unfortunately, introducing the likelihood recalculation dramatically increases

the processing time required to complete the backtesting process. Hence, the results

reported in this chapter is based on a modified backtesting process, where the

weather and historical delivery records are supplied for each delivery, but likelihoods

are calculated only once at the beginning of the training set. When the likelihoods

are not recalculated for each delivery, the Bayesian forecasting process is likely to
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perform worse since the likelihoods are not using all of the available historical data

at the time of the forecast.

The difference between the estimate and the actual delivery is used to

compute various error measures, such as the Root Mean Squared Error (RMSE) and

the Mean Absolute Percentage Error (MAPE). Our Bayesian Heating Oil Forecaster

and the existing forecasting method can be compared by assessing the difference in

the error measures.

4.1.2 Evaluation Criteria

Three error metrics are used to compare the performance and the forecasting

accuracy of our Bayesian Heating Oil Forecaster and the existing forecasting

method. In all equations used in this section, d is the delivery number, i is the

customer index, Id is the total number of customers with dth delivery, Dd is the

total number of deliveries for the dth delivery, si,d is the estimated demand for the

ith customer’s dth delivery, , ŝi,d is the estimated demand for the ith customer’s dth

delivery, and ci is the tank capacity for the ith customer.

Root Mean Squared Error (RMSE) measures the average magnitude of the

error. RMSE for the dth delivery is computed using Equation 4.1. RMSE

emphasizes large errors since it squares the error before it takes the average. The

unit of the RMSE is the same as the data itself.
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RMSEd =

√∑Id
i=1(ŝi,d − si,d)

Dd

. (4.1)

Mean Absolute Percentage Error (MAPE) measures the accuracy of the

forecast. MAPE Actual measures the average amount of error relative to the actual

amount. MAPE Actual for the dth delivery is computed using Equation 4.2.

MAPEactual
d =

1

Dd

Id∑
i=1

∣∣∣∣ ŝi,d − si,d
si,d

∣∣∣∣ . (4.2)

We also report MAPE Capacity, which measures the average amount of error

relative to the tank capacity. MAPE Capacity for the dth delivery is computed

using Equation 4.3.

MAPEcapacity
d =

1

Dd

Id∑
i=1

∣∣∣∣ ŝi,d − si,d
ci

∣∣∣∣ . (4.3)

With both measures, lower error values indicate that the algorithm produced

accurate estimates. When comparing the two algorithms, the algorithm with lower

error values is desirable.
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4.2 Models

To better compare the results, the following four models are used during the

performance analysis in addition to our Bayesian Heating Oil Forecaster.

Bayes with Simple Average

The simple average model combines the estimated demand of the existing

forecasting method and our Bayesian Heating Oil Forecaster by averaging the two

estimates with equal weights.

Bayes with Expanded Expert Likelihood

One of the drawbacks of our Bayesian Heating Oil Forecaster is that the joint

distribution for the expert likelihood is only sparsely populated. This is due to the

limited availability of expert’s historical initial K-factor estimates. This can

negatively affect the forecasts for the earlier deliveries, which rely on the expert

likelihood. Since expert’s estimates are available for most deliveries, this model uses

expert’s K-factor estimates for not just the initial deliveries but for all deliveries. As

a result, the joint distribution for the expert likelihood is populated with 28,572

observations instead of 175.

Bayes with Expanded Expert Likelihood, Simple Average

This model averages the estimates generated by the existing forecasting

method and Bayes with Expanded Expert Likelihood.
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Bayes with Simple Average, Season Flag

Over time, we have observed that our models tend to perform worse during

the sixth and seventh deliveries for no apparent reason. Upon closer investigation,

we discovered that these deliveries tend to occur during the summer because most

customers sign up for the service at the beginning of the heating season. Since there

is a significant difference in the weather pattern between seasons, models whose

observations only include winter tends to perform worse during the summer. This

model flags deliveries that occur during the summer months (April through

September) and uses the existing forecasting method during the summer.

Otherwise, it uses the estimates from Bayes with Simple Average.

The evaluation section compares the performance of the existing forecasting

method, our Bayesian Heating Oil Forecaster, and the four models that are

mentioned above.

4.3 Data Sets Used During the Test

The test uses two separate sets of historical heating oil delivery data that are

provided by two different heating oil sales and distribution companies (Company A

and Company B). Historical data from each company is split into training and test

data sets. The training data is used to compute the prior and expert and model

likelihoods. The test data set is used to evaluate the performance of the forecasts by
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comparing the estimated and actual heating oil demand. The development of our

Bayesian Heating Oil Forecaster involved repeated testing using the data from

company A. The data set from company B is reserved as a validation set and is used

only for evaluation purposes.

The training data consists of historical delivery and estimation data between

November 14, 2007, and September 30, 2009. Data between October 1, 2009, and

September 30, 2010, is used as the test data. These dates are selected based on the

availability of past delivery records. November 14, 2007, is the oldest date in which

the company’s past forecast results are recorded. From the discussions in Chapter 1,

a data set with at least 18 months of data is required for forecasting purposes.

Hence, the training data must include or exceed May 14, 2009. An end date of

September 30, 2009, is selected to ensure that the training data is sufficient. The

test data is between October 1, 2009, and September 30, 2010, so that one full

winter heating season is observed.

For company A, 397 deliveries are observed for 120 customers who signed up

for the service during the test period. There are about 3,000 existing customers that

appear during the training period. For company B, 1,139 deliveries are observed for

291 customers who signed up for the service during the test period. There are about

2,300 existing customers that appear during the training period. For both

companies, Figure 4.4 depicts the number of deliveries by delivery number.
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Figure 4.4: Number of Deliveries by Delivery Number

4.4 Trimming

To prevent unusual customer behaviors and other outliers from influencing

the error measures, we report both trimmed and untrimmed results. 10% trimming

of the delivery removes 5% of the deliveries with largest positive and negative

errors. 10% trimming of the customer removes 5% of the customers whose deliveries

have the largest positive and negative errors. Since 10% of the worst performing

deliveries for one model is different from that of another, trimming by delivery

causes each model to be evaluated on a different set of deliveries and customers.

This can be avoided by trimming 10% of the customers with worst performing

deliveries. By removing the same set of customers and all of its deliveries from the

test set, all of the models are evaluated on the same set of customers and deliveries.
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4.5 Chi-Square Goodness-of-Fit Test and Beta Probability Distributions

The Bayesian Heating Oil Forecaster uses beta distributions to represent

beliefs and likelihoods. As it was discussed in Sections 2.2.2, 3.3.1, 3.3.3, and 3.3.6,

the initial prior belief and the two likelihoods are obtained by performing a

maximum likelihood estimation of the beta parameters. The beta distribution was

chosen not because it best represents the empirical data, but because it drastically

simplifies the update process. In general, we expect the performance of our

Bayesian Heating Oil Forecaster to improve if the beta distribution fits the

empirical data. Hence, we compare the beta distribution with other probability

distributions, such as Normal, Weibull, Rayleigh, and Log Normal distributions, to

evaluate the goodness of fit using the Chi-Square goodness-of-fit test.

The Chi-Square goodness-of-fit test is used to check the likelihood of a set of

data coming from a specific distribution [20]. It is a statistical test whose null

hypothesis states that a set of data comes from a specified distribution. The

alternative hypothesis states that a set of data does not come from a specified

distribution. If we fail to reject the null hypothesis, we conclude that there is

insufficient evidence to state that the data does not follow a specified distribution.

If we reject the null hypothesis, we conclude that it is unlikely that the data came

from the specified distribution.
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Readers interested in a more detailed discussion of the Chi-Squared

goodness-of-fit test should consult a book by D’Agostino and Stephens [13]. This

book covers the mathematical theories behind various goodness-of-fit techniques,

including the Chi-Squared test. The NIST handbook [20] offers a more brief

introduction to Chi-Squared and other goodness-of-fit techniques as well.

Figures 4.5 and 4.6 show different kinds of distributions that are fitted to the

empirical distributions used by our Bayesian Heating Oil Forecaster. The

parameters for the distributions are determined using the Maximum Likelihood

Estimation. The goodness of fit of each distribution is tested using the Chi-Square

goodness-of-fit test, whose results are shown in Figure 4.7. The p-values in the table

indicate the probability of committing a type I error. Hence, a lower value indicates

high confidence that the data does not come from a specified distribution. Since

most entries in Figure 4.7 are zero, beta distribution, as well as all other

distributions, have a poor fit to the empirical distribution. The test results suggest

that other forms of more complex distributions, such as the Gaussian Mixture

distributions, might exhibit a better fit to the empirical distributions used by our

Bayesian Heating Oil Forecaster.
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Figure 4.5: Comparison of the Fitness of Various Distributions for Company A
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Figure 4.6: Comparison of the Fitness of Various Distributions for Company B
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Figure 4.7: P-values of the Goodness-of-Fit Chi-Squared Test

4.6 Results

This section discusses the results of the performance analysis by comparing

the error metrics of the existing forecasting method, our Bayesian Heating Oil

Forecaster, and four additional models proposed in Section 4.2.

Figure 4.8 compares RMSE, Figure 4.9 compares MAPE Actual, and

Figure 4.10 compares MAPE Capacity of the six models. The x-axis lists two

numbers: the top row is the delivery number, and the bottom row is the number of

deliveries. For example, a top row with a value of 3 and a bottom row with a value

of 150 indicates that 150 third deliveries were observed during the test set. ‘All’

indicates error measures taken across all of the deliveries regardless of their delviery

numbers. The bar graphs on the left are for company A, while the graphs on the

right are for company B. The top graphs show untrimmed results. The middle

graphs show the results with 10% of the worst performing deliveries trimmed. The
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bottom graphs show the results with 10% of the worst performing customers

trimmed. Trimming is based on the worst performing customers for the Bayes

model with simple average. Each bar represents a particular model. From left to

right: existing model, Bayes model, Bayes model with simple average, Bayes model

with expanded expert likelihood, Bayes model with simple average expanded expert

likelihood, and Bayes model with simple average season flag. For all of these figures,

lower bars indicate better performance.

Figures 4.11, 4.12, and 4.13 list error metric percent changes of different

models compared to the existing model. Negative percentage change indicates

improved performance. Rows that contain Bayes with simple average models are

highlighted, and negative percentage changes are maked with darker cells.

When we compare the trimmed results (graphs on the middle and bottom

rows) with the untrimmed results (graphs on the top row), we notice that trimming

reduces the overall RMSE by about 5 to 10 gallons. This indicates that a small

number of deliveries with large positive and negative errors heavily influence the

overall RMSE. This observation also holds true for other error measures. Trimming,

however, did not significantly alter the behavior of the models: Bayes with simple

average models remained either the best or the second best models with or without

trimming.

Looking at Figures 4.11, 4.12, and 4.13, we see that Bayes models generally
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Figure 4.8: RMSE
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Figure 4.9: MAPE Actual
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Figure 4.10: MAPE Capacity
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Figure 4.11: RMSE and MAPE Percent Change

performed poorly on the 4th and later deliveries. The results of the 4th delivery was

usually the worst, and performance improved on subsequent deliveries. Since our

Bayesian Heating Oil Forecaster is an iterative algorithm, the poor results of the 4th

delivery seems to be negatively affecting subsequent deliveries. This observation

remained true for both trimmed and untrimmed results.

Company B responded better to the seasonal model than company A. With

company A, simple average model with and without the season flag exhibited very

similar performance. With company B, simple average model with the season flag

usually performed better than the simple average model without the season flag.

Bayes with simple average models exhibited performance improvements with
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Figure 4.12: RMSE and MAPE Percent Change (Trim 10% Customer)

Figure 4.13: RMSE and MAPE Percent Change (Trim 10% Delivery)

the second, third, and overall deliveries. This result remained true regardless of

trimming, error measures, and company (except for untrimmed RMSE for company
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B). This is a strong evidence that the Bayes with simple average models are

effective during the initial deliveries. The largest improvements can be seen with the

second delievery, with 10% to 16% reduction in MAPE for both companies. The

overall error is reduced by about two to eight percent. The largest overall

improvement of 8.9% was observed with MAPE Actual for company B when the

10% of the worst deliveries were trimmed (Figure 4.13).

Next chapter concludes the thesis by summarizing its findings and results.

The chapter also discusses potential extensions and improvements to our Bayesian

Heating Oil Forecaster.
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CHAPTER 5

Conclusions and Future Research

5.1 Conclusions

The goal of this thesis was to develop an algorithm that, compared to the

existing forecasting method, reduces the error between the new customers’ forecast

and actual heating oil demand during initial deliveries. We have presented a novel

forecasting algorithm in Chapter 3 which uses forecasters’ past performances for

existing customers to adjust the current forecast for target customers. We have

adapted a Bayesian approach to forecasting [4; 5] combined with domain knowledge

and original ideas to develop our Bayesian Heating Oil Forecaster which forecasts

demand for target customers without relying on their historical deliveries.

Performance evaluation presented in Chapter 4 demonstrated that our

Bayesian Heating Oil Forecaster showed increased performance over the existing

forecasting method when the two techniques are combined. We used Root Mean

Squared Error (RMSE), Mean Absolute Percent Error (MAPE) Actual, and MAPE

Capacity to compare the performance of the two algorithms. Compared to the

existing forecasting method alone, our Simple Average model, which combines the
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forecasts from the existing forecasting method and our Bayesian Heating Oil

Forecaster, recorded an overall improvement of 6.7% in RMSE, 6.5% in MAPE

Actual, and 4.8% in MAPE Capacity when 10% of the worst performing customers

for company A are removed. When using all of the customers for company A, the

improvements were 2.4%, 5.0%, and 2.8%, respectively. Company B reported

similar results using the simple average model with season flag. When 10% of the

worst performing customers were removed, the RMSE, MAPE Actual, and MAPE

Capacity improved by 6.4%, 7.9%, and 4.1% respectively. When untrimmed data

was used, the improvements were 0.3%, 7.1%, and 2.8% respectively. This

improvement was attained without requiring additional information about the

customers. Furthermore, the algorithm succeeded in reducing the overall error

across three different error measures for two different companies with or without

trimming the test results. This is a strong evidence that our Bayesian Heating Oil

Forecaster is effective in reducing the error during the initial deliveries.

It should also be noted that, due to the limited availability of the training

data, the training set is less than two years long. Additionally, the backtesting

process did not update the likelihoods during the test period. The Bayes models

were forecasting deliveries that occurred in September 2010 using likelihoods that

were trained between November 2007 and October 2009. In the actual operation,

the likelihoods will be updated each day, allowing the algorithm to forecast demand
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using current data. Hence, it is expected that the model’s performance will be

better under actual operating condition as it accumulates more data and it uses

up-to-date likelihoods during daily forecast.

A direct impact of improved forecasts is a reduction in operational expenses.

The majority of the cost savings is assumed to be the result of reducing the number

of unnecessary deliveries. Using the existing forecasting method, company A made

approximately 18,000 deliveries a year. Since most customers are living in rural

areas, assume that the average delivery time is 30 minutes and its travel distance is

10 miles. Furthermore, assume that the delivery person works for $15 per hour, fuel

economy of delivery trucks is around 10 miles per gallon, and a gallon of diesel fuel

costs 4 dollars per gallon. 18,000 deliveries requires 9,000 hours and 18,000 gallons of

fuel for a total cost of $207,000. If reduction of error directly results in reduction of

deliveries, a 5% reduction in deliveries would save approximately $10,000 annually.

5.2 Recommendations

The Bayesian Heating Oil Forecaster was found to be most effective when it

was combined with the existing forecasting method. Hence, Bayes model with

simple average should be used as the primary forecasting method instead of the

existing forecasting method. Demand forecasts for company B should use Bayes

model with simple average and season flag since it performed better compared to
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the model without the season flag. We were only able to test the performance of our

Bayesian Heating Oil Forecaster for the first six to seven deliveries. Hence the

model’s performance is not known beyond the first year and a half. It is

recommended that the performance of the model be reevaluated after one year to

test its effectiveness beyond the first few deliveries.

5.3 Future Research

Although we proposed a feasible method to reduce the forecast error for new

customers’ heating oil demand during initial deliveries, there may still be some

improvements that can be made to our method. Listed below are some possible

improvements and enhancements to our Bayesian Heating Oil Forecaster.

• Our Bayesian Heating Oil Forecaster uses beta distributions because of its

multiplicative properties. As demonstrated in Section 4.5, beta distributions

do not fit our empirical distributions very well. Using other forms of

distributions, such as Gaussian or beta mixture models, can improve the fit

and performance of our algorithm.

• When we fit beta distributions to the joint distributions for the two

likelihoods, we fit individual beta distributions to the columns of the joint

distributions. Since the joint distributions form a surface across rows and
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columns, fitting a surface to the entire joint probability distribution can

improve the fit, and in turn improve the performance of our algorithm.

• Since the performance analysis indicates a lower performance on the fourth

deliveries, a rule-based forecasting method that adjusts the forecasts based on

the delivery number is likely to improve the performance of our algorithm.

• Our Bayesian Heating Oil Forecaster adjusts the heatload coefficient

(K-factor) but not the baseload coefficient. If our Bayesian Heating Oil

Forecaster is extended to adjust both the baseload and the heatload

coefficients, the overall forecast is expected to improve.

• The model with the best performance was the model that combined the

forecasts from the existing forecasting method and our Bayesian Heating Oil

Forecaster. Use of other combination techniques, such as rule-based unequal

weighting, can improve the performance of the model.

• Although our Bayesian Heating Oil Forecaster reports point estimates of the

estimated demand, the algorithm uses probability distribution throughout the

computation process. The algorithm can be extended to provide additional

information about its estimates by reporting probability forecasts instead of

point forecasts.
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