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Highlights 

· Knockdown and rescue of drd expression was temporally controlled by heat 

shock. 

· Adult lifespan was affected only when drd expression was manipulated during 

mid to late metamorphosis. 

· Adult body mass was affected only when drd expression was manipulated 

through all of pre-adult development. 
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Abstract 

 In Drosophila melanogaster, mutations in the gene drop-dead (drd) result in early 

adult lethality, with flies dying within 2 weeks of eclosion. Additional phenotypes include 

neurodegeneration, tracheal defects, starvation, reduced body mass, and female sterility. 

The cause of early lethality and the function of the drd protein remain unknown. In the 

current study, the temporal profiles of drd expression required for adult survival and body 

mass regulation were investigated. Knockdown of drd expression by UAS-RNAi transgenes 

and rescue of drd expression on a drd mutant background by a UAS-drd transgene were 

controlled with the Heat Shock Protein 70 (Hsp70)-Gal4 driver. Flies were heat-shocked at 

different stages of their lifecycle, and the survival and body mass of the resulting adult flies 

were assayed. Surprisingly, the adult lethal phenotype did not depend upon drd expression 

in the adult. Rather, expression of drd during the second half of metamorphosis was both 

necessary and sufficient to prevent rapid adult mortality. In contrast, the attainment of 

normal adult body mass required a different temporal pattern of drd expression. In this 

case, manipulation of drd expression solely during larval development or metamorphosis 

had no effect on body mass, while knockdown or rescue of drd expression during all of pre-

adult (embryonic, larval, and pupal) development did significantly alter body mass. 

Together, these results indicate that the adult-lethal gene drd is required only during 

development.  Furthermore, the mutant phenotypes of body mass and lifespan are 

separable phenotypes arising from an absence of drd expression at different developmental 

stages. 

Key words 

Drosophila, lifespan, body mass, metamorphosis, drop-dead  
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1. Introduction 

 Over the past several decades, Drosophila has been a popular model organism for 

the study of neurodegeneration (Lessing and Bonini, 2009).  While some such studies 

involve genes that were identified through their association with human disease (Lu and 

Vogel, 2009), many neurodegeneration-linked genes were originally discovered in the fly 

through forward genetic screens for adult lethality, retinal defects, or neurodegeneration 

itself (Cook et al., 2011; Knust, 2007; Kretzschmar, 2009; Min and Benzer, 1997).  The very 

first adult lethal mutation connected to neurodegeneration, reported by Benzer and 

coworkers, was in the gene drd (Benzer, 1971).  Flies that carry the strong alleles drd1 or 

drdlwf have a median survival of four days and display widespread degeneration of the 

brain at the time of death (Benzer, 1971; Blumenthal, 2008; Buchanan and Benzer, 1993). 

Despite the early discovery of drd, the function of this gene remains unknown. 

 Flies with mutations in drd manifest diverse and seemingly unrelated phenotypes, 

many of which may contribute to their short lifespan.  Newly eclosed drd mutants display 

abnormal glial morphology that has been postulated to lead to the neurodegeneration that 

accompanies death (Buchanan and Benzer, 1993). Moreover, the tracheae in the brain 

appear fragile, and it is hypothesized that tracheal breakdown leads to hypoxia and 

subsequent neurodegeneration (Kim et al., 2012; Lehmann and Cierotzki, 2010; Tschäpe et 

al., 2003).  Also, these flies exhibit a gut phenotype; the movement of ingested food from 

the crop into the midgut is impaired (Peller et al., 2009). The decreased ability to digest 

food results in depletion of triglyceride and glycogen stores, suggesting that the flies may 

also be starving to death. In addition to these phenotypes, drd mutants have a reduced 
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body mass on the day of eclosion and are female sterile (Blumenthal, 2008; Buchanan and 

Benzer, 1993). 

 The drd gene encodes a member of the NRF (nose resistant to fluoxetine)-domain 

protein family, a group of putative integral membrane proteins with limited homology to 

prokaryotic acyltransferases (Blumenthal, 2008; Choy and Thomas, 1999).  The drd protein 

is localized to an intracellular membrane-bound compartment (Kim et al., 2012).  To date, 

no biochemical function has been reported for DRD, the other 16 NRF-domain proteins 

encoded by the Drosophila genome, or any other eukaryotic NRF-domain protein. 

 The two phenotypes under investigation in this work are adult lifespan and body 

mass.  These phenotypes share a dependence on signaling by insulin-like peptides (ilps) 

and by ecdysone and related steroid hormones (ecdysteroids).  In holometabolous insects 

such as Drosophila, adult body mass is determined by body mass at the time of pupariation; 

this in turn is regulated by the timing of pupariation and the growth rate of the larva up 

until that point (Mirth and Riddiford, 2007; Riddiford, 2011; Shingleton, 2005).  Larvae 

commit to pupariation upon reaching a “critical mass”; the growth rate up until this point 

determines the overall length of larval development, while the growth rate after this point 

affects the mass upon pupariation and the resulting adult mass.  Pupariation itself is 

triggered by a pulse of ecdysteroid production by the prothoracic gland, and mutants that 

fail to produce this pulse do not pupariate (Garen et al., 1977).  The overall growth rate of 

larval tissues is positively regulated by ilps in response to nutrient availability (Britton et 

al., 2002), and larvae with defects in ilp signaling become very small adults due to their lack 

of growth post-critical mass (Clancy et al., 2001; Tatar et al., 2001).  In addition, both 

positive and negative interactions exist between the ilp and ecdysteroid signaling 
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pathways, resulting in a complex regulatory network controlling larval growth and 

development (Caldwell et al., 2005; Colombani et al., 2005; Mirth et al., 2005).  In the adult, 

ilp signaling is a major determinant of lifespan; mutants in the ilp signaling pathway are 

long-lived (Clancy et al., 2001; Giannakou and Partridge, 2007; Tatar et al., 2001).  Modest 

reductions in ecdysteroid receptor expression also increase lifespan in male flies while 

conflicting results have been reported in females (Schwedes and Carney, 2012; Simon et al., 

2003; Tricoire et al., 2009).  As in larvae, ilp and ecdysteroid signaling in the adult are 

highly interconnected (Francis et al., 2010; Tu et al., 2002). 

 The dual effects of ilp signaling mutations on body mass and lifespan result from a 

lack of ilp signaling at different stages of the insect lifecycle.  Nutritional deprivation of late 

third-instar larvae, which inhibits ilp signaling and results in low body mass, has no effect 

on adult lifespan (Tu and Tatar, 2003).  Conversely, inhibition of ilp signaling specifically in 

the adult fat body results in an extension of lifespan with no change in body mass 

(Giannakou et al., 2004; Hwangbo et al., 2004). 

 In this study, we ascertained the temporal requirement for drd expression in 

determining rapid adult lethality and body mass. We find that drd expression during mid to 

late metamorphosis is both necessary and sufficient for survival beyond the first month of 

adult life.  Adult body mass requires a different period of drd expression that spans the 

larval-pupal transition and potentially encompasses all of pre-adult development.  

Together, these results demonstrate that drd is an essential developmental gene that 

separately modulates adult lifespan and body mass.  
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2. Materials and Methods 

Drosophila Stocks 

 All fly stocks were maintained on standard cornmeal-yeast-agar food  

(http://flystocks.bio.indiana.edu/Fly_Work/media-recipes/molassesfood.htm) at 25°C on 

a 12h:12h light:dark cycle unless otherwise noted. UAS-RNAi stocks (w1118; 

P{GD3367}v37404 (FBst0461992) and w1118; P{GD15915}v51184 (FBst0469325)) were 

obtained from the Vienna Drosophila RNAi Center. Other stocks (y1 w*; P{Act5C-

GAL4}17bFO1/TM6B, Tb1 (FBst0003954), w*; P{GAL4-Hsp70.PB}2 (FBst0002077), and 

w1118; P{UAS-Dcr-2.D}2 (FBst0024650)) were obtained from the Bloomington Drosophila 

Stock Center.  The genes and alleles referenced in this work include drd (FBgn0260006), 

drdlwf (FBal0193421), and rp49 (FBgn0002626).  Stocks were not outcrossed prior to this 

study. 

 For RNAi experiments, the UAS-Dcr-2 transgene was recombined onto the two UAS-

RNAi chromosomes by a standard crossing scheme.  Recombinants were identified by eye 

color. 

 

Generation of UAS-drd transgenic flies 

 The entire coding sequence of drd was amplified from the cDNA clone RE74651 

(Drosophila Genomics Resource Center, Bloomington, IN) by PCR with PfuUltra II Fusion 

HS DNA polymerase (Agilent Technologies, Santa Clara, CA) and the primers drd CDS 5’ 

BglII 5’ GTC AGA TCT ATG TCG CGT ATG TCG CAT ATG 3’ and drd CDS 3’ Xbal 5’ GTC TCT 

AGA CCA GAC TAA TCC GAG TGC GG 3’, which included BglII and XbaI sites, respectively.  

The PCR product was purified (QIAquick, Qiagen, Valencia, CA), and digested with XbaI and 
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BglII (New England Biolabs, Ipswich, MA).  The digested insert was ligated into XbaI/BglII-

digested pUAST vector (Quick Ligation kit, NEB) and transformed into competent 

DH5alpha bacteria (NEB).  A single clone was isolated and miniprepped (Wizard Plus SV, 

Promega, Madison, WI) and its integrity confirmed by sequencing the entire drd coding 

sequence.  Maxi-prep DNA was prepared (QIAfilter Plasmid Maxi kit, Qiagen) and injected 

commercially to create transgenic lines (Genetic Services Inc., Cambridge, MA). 

 The resulting transgenic lines were crossed onto a drdlwf background to screen for 

“leaky” expression of the UAS-drd transgene. Lines that did not display a reduced lifespan 

were discarded (four out of 11 autosomal insertions).  The remaining lines were crossed 

with y w; Act5C-Gal4/ TM6B to drive ubiquitous overexpression of the UAS-drd transgene. 

Real-time PCR was performed on 3-day old flies and the line that displayed the greatest 

fold increase in drd expression relative to sibling controls was used for all experiments. 

 

Synthesis of cDNA 

 RNA was isolated from whole flies or pupae using Trizol reagent (Life Technologies, 

Grand Island, NY). One µg total RNA was treated with either RQ1 RNase-free DNase 

(Promega) for 30 minutes at 37°C or DNase I, amplification grade (Life Technologies) for 

20 minutes at room temperature and then cDNA synthesis was performed with qScript 

cDNA supermix (Quanta Biosciences, Gaithersburg, MD).  To determine the genotype of 

individual pupae, PCR was performed (GoTaq Hot Start Polymerase, Promega) for the 

presence of Gal4. Primers used: Gal4 F: 5’ GGC TAG AAA GAC TGG AAC AGC T 3’ and Gal4 R: 

5’ AGG GCA AGC CAT CCG ACA TG 3’. 
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Quantitative Real Time PCR  

 Real-time PCR was performed on cDNA using the MyiQ thermocycler (Bio-Rad, 

Hercules, CA) and iQ SYBR Green supermix (Quanta Biosciences). Each sample was run in 

triplicate. A melt curve was performed directly after amplification to verify the authenticity 

of the PCR products.  drd transcript levels, relative to the housekeeping gene rp49, were 

calculated in MyiQ software (Bio-Rad) using a dilution series of whole fly cDNA that was 

included in each PCR run. For the pupal heat shock experiments, these relative expression 

levels were then further normalized to the average expression at either the beginning of 

the heat pulse or 24 hours after the end of the heat pulse, depending on the experiment. 

Primers used: rp49 F: 5’ AAG ATC GTG AAG AAG CGC ACC AA 3’, rp49 R: 5’ CTG TTG TCG 

ATA CCC TTG GGC TT 3’, drd L: 5’ GCT CTG AAG ATG CAC GAC TC 3’, and drd R: 5’ CCT CGA 

ATT GTG TGG CAA AA 3’. 

 

Lifespan Assays 

 Flies were collected on the day of eclosion, transferred to fresh vials every 2-7 days, 

and scored daily for survival for 40 days, except for the experiment shown in figure 1b, 

which was continued until all flies died. A minimum of 50 flies per genotype were used for 

each survival curve. 

 

Body Mass Assays  

 The mass of the flies was performed as previously described (Blumenthal, 2008). 

Flies were collected in the early afternoon of the day of eclosion, killed by placing on dry ice 

for 3 minutes, and weighed in groups containing 2-13 flies.  The average fly mass for each 
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group was determined by dividing the total mass by the number of flies.  The legend of 

figure 5 indicates the number of groups of flies weighed for each experimental condition 

and the total number of flies contained in those groups.  Large, newly eclosed flies were 

excluded from analysis.  We do not expect the measured differences in body mass to be 

biased by changes in mass that occur during the day of eclosion, as we have not observed 

any effect of drd on the timing of eclosion (E.M.B., unpublished observations). 

 

Statistics and Data Analysis 

 Data were graphed and analyzed using GraphPad Prism v5 for Windows (GraphPad 

Software, San Diego, CA, www.graphpad.com).  For survival curves (fig 1-3), pair-wise 

comparisons of each experimental group with its sibling control were carried out using a 

Mantel-Haenszel test.  For body mass data (fig 5), each dataset was first tested for 

normality using a D'Agostino-Pearson normality test, and all sets were found to be 

Gaussian.  The data for each experiment (based on the timing of the heat shock) was then 

analyzed by 1-way ANOVA followed by a Bonferroni Multiple Comparison Test to compare 

each experimental group with its sibling control. For real-time data (fig 4), a 1-way ANOVA 

followed by a Bonferroni Multiple Comparison Test was used to compare each time point 

either to the 0 hr value (start of heat shock) or the 24 hr value (recovery from heat shock). 
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3. Results 

 We first established a system for targeted knockdown and expression of drd. The 

UAS-RNAi lines w1118; {GD15915}v51184  and w1118; {GD3367}v37404 (referred to as 51184 

and 37404, respectively) were obtained from the Vienna Drosophila RNAi center (Dietzl et 

al., 2007). The hairpin from 51184 is targeted to the first exon of drd, while the hairpin 

from 37404 is targeted against the sixth exon; neither is predicted to have any off-target 

effects (http://stockcenter.vdrc.at). Both UAS-RNAi lines were recombined with a UAS-

Dicer-2 line to ensure efficient cleavage of the dsRNA. All experiments using the UAS-RNAi 

lines also included the UAS-Dicer-2 transgene. To test our ability to knock down drd, the 

UAS-RNAi lines were crossed with the ubiquitous Actin5C-Gal4 driver. Male progeny from 

both crosses recapitulated the early lethality phenotype, with flies from the 51184 cross 

surviving 4 days and flies from the 37404 cross surviving 3 days (Fig 1a). Sibling controls 

that lacked the Gal4 driver survived the duration of the experiment (40 days, p<0.0001 for 

pairwise comparisons of each knockdown population with its sibling control). Quantitative 

real-time PCR of 3 day-old males displayed 8.8±0.8 fold and 7.9±2.0 fold knockdown of 

transcript for progeny of the 51184 and 37404 crosses, respectively, relative to sibling 

controls (n=3, mean±SD). For targeted expression of drd, we created a line carrying an 

inducible UAS-drd transgene (see methods). Flies carrying both the UAS-drd transgene and 

the Act5C-Gal4 driver displayed a 32.7±1.3 fold upregulation of drd transcript relative to 

sibling controls (n=3). This level of overexpression did not affect lifespan (Fig 1b, p=0.59). 

To test the ability of UAS-drd to rescue lifespan, the UAS-drd transgene was placed on a 

drdlwf background and crossed with the Act5C-Gal4 line. The progeny ubiquitously 

expressing drd survived for the entire experiment and sibling controls had a median 
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survival of 5 days (Fig 1c, p<0.0001). This result indicated that we were able to rescue the 

early lethality phenotype and that the UAS-drd transgene is only expressed under Gal4 

control. 

 To temporally control the expression and knockdown of drd, we crossed each UAS-

RNAi line and the UAS-drd line with flies carrying the Heat Shock Promoter 70 (Hsp70)-Gal4; 

all experiments below were conducted on the progeny of these crosses. We first examined 

progeny at 24°C to ensure that the driver did not cause expression at a non-inducing 

temperature. Survival was wild-type for both of the UAS-RNAi lines (Fig 2a, p=0.06 and 

0.08 for 51184 and 37404, respectively) and the early lethality phenotype was observed in 

drdlwf rescue flies (Fig 2b, p=0.60). For the remainder of the experiments, we heat-shocked 

flies at 30°C for different stages of life to determine the temporal requirement of drd 

expression. This temperature is optimal for inducing and maintaining expression of a gene, 

while minimizing the adverse effects of increased temperature on lifespan (Chavous et al., 

2001).  

 To test the necessity of drd expression in adults, flies were maintained at 24°C until 

eclosion and then moved to 30°C for the duration of the experiment. As shown in Figure 2c, 

there was no significant difference between drd knockdown flies and sibling controls 

(p=0.06 and 0.70). Flies of all genotypes had a median survival between 24 and 27 days. 

We attribute the relatively short lifespan observed in this experiment to the increased 

temperature (Hollingsworth, 1968). Similarly, the complementary rescue experiment did 

not extend lifespan of the drd mutants, with both the experimental and control lines 

surviving a median of 5 days (Fig 2d, p=0.23). These results indicate that drd expression in 

the adult fly does not affect the early lethality phenotype.  
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 We next tested the requirement for drd expression during the embryonic and larval 

stages by crossing flies at 30°C and maintaining the progeny at this temperature until the 

wandering third larval instar. Under these conditions, knockdown of drd did not have an 

effect on lifespan; flies, experimental and control, survived the duration of the experiment 

for both UAS-RNAi lines (Fig 2e, p=0.11 and 0.67). Similarly, induction of drd expression 

during these developmental stages did not significantly rescue early adult lethality in drdlwf 

mutants (Fig 2f, p=0.77).  

 In contrast to the previous experiments, expression of drd during metamorphosis 

did have an effect on lifespan. Knockdown of drd from the white prepupal stage until 

eclosion resulted in a median survival of 5 and 13 days for 51184 and 37404, respectively 

(Fig 2g). Sibling controls survived the duration of the experiment (p<0.0001 for each RNAi 

line). Similarly, induction of drd during this developmental stage resulted in complete 

rescue of the early lethality phenotype (Fig 2h, p<0.0001).  

 To narrow down the requirement for drd expression within the four days of 

metamorphosis, white prepupae were collected, immediately moved to 30°C for 48 hours, 

and then returned to 24°C. We observed partial effects when manipulating drd expression 

during the first half of metamorphosis. Knockdown of drd during this period resulted in a 

significant reduction in median lifespan to 12 and 9 days for 51184 and 37404, respectively 

(Fig 3a, p<0.0001 for each RNAi line). However, 30-40% of the experimental flies survived 

for the duration of the 40-day experiment. In addition, we observed a significant effect on 

survival (p=0.03) of rescuing drd expression during the first two days of metamorphosis, 

but an inspection of the survival curves indicates that this rescue was marginal (Fig 3b). To 

examine the second half of metamorphosis, white prepupae were collected and left at 24°C 
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for 48 hours and moved to 30°C until eclosion, after which they were returned to 24°C. 

Knockdown of drd during this stage resulted in a median survival of 7 and 9 days for 51184 

and 37404, respectively (Fig 3c, p<0.0001 for each RNAi line). Moreover, driving drd 

expression during the last two days of metamorphosis resulted in a complete rescue of 

early adult lethality (Fig 3d, p<0.0001). 

 Quantitative real-time PCR was performed to determine the time course of drd 

knockdown and induction and subsequent recovery following the beginning and end of a 

30°C heat shock starting on day 2 of metamorphosis. For both UAS-RNAi lines, there was a 

significant reduction in transcript abundance after 6 hours of heat shock. Moreover, 37404 

showed significant knockdown of transcript by 3 hours (Fig 4a). The UAS-drd line required 

6 to 24 hours to induce an increase in the transcript level (Fig 4b). For the UAS-RNAi line 

51184, drd transcript levels recovered within 6 hours after removal from a 48-hour heat 

shock and in fact showed a slight overshoot. Transcript levels in the 37404 UAS-RNAi line 

returned to normal between 6 and 24 hours after the end of heat shock (Fig 4c).  Recovery 

in the UAS-drd rescue line also appeared to take 6-24 hours, although there was no 

statistically significant change in transcript abundance from 3 hours after the end of the 

heat shock (Fig 4d). 

 On the day of eclosion, drd mutants have a significantly lower body mass than 

sibling controls (Blumenthal, 2008). We set out to determine when drd must be expressed 

during development to cause the reduced body mass phenotype. The same experimental 

strategy utilized for lifespan determination was employed for body mass assays. Heat 

shock was performed at different stages of development and then flies were weighed on 

the day of eclosion. 
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 As expected, flies that did not undergo heat shock and were maintained at 24°C did 

not differ in body mass from their control siblings (Fig 5a). Since body mass is primarily 

determined during the larval stages, we next manipulated drd expression from 

embryogenesis until third instar wandering larvae. Knocking down and rescuing drd 

expression during this developmental time did not have a significant effect on body mass 

(Fig 5b). Moreover, there was no significant difference in body mass when drd was knocked 

down or rescued during metamorphosis (Fig 5c). However, when flies were heat-shocked 

throughout all of pre-adult development, we observed a significant difference in body mass. 

Knocking down drd throughout all of development resulted in a 10% decrease in body 

mass relative to sibling controls. Additionally, expressing drd throughout all of pre-adult 

development in a drdlwf background resulted in flies that were 19% heavier than sibling 

controls (Fig 5d).  
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4. Discussion 

 The defining phenotype of drd mutants is an extremely short adult lifespan, and we 

have demonstrated that this phenotype results from an absence of drd expression during 

pupal metamorphosis.  We can both rescue early adult lethality in drd mutants by 

temporarily expressing drd and recapitulate the adult-lethal phenotype in wild-type flies by 

temporarily knocking down drd expression. Therefore, we conclude that pupal expression 

of drd is both necessary and sufficient to ensure adult survival during the first weeks after 

eclosion. Consistent with this interpretation, manipulation of drd expression during 

embryogenesis, larval development, or adulthood had no effect on rapid adult lethality.  In 

addition, ubiquitous overexpression of drd on a wild-type background had no apparent 

detrimental consequences. 

 Within the four days of metamorphosis, expression of drd is required during the 

later stages.  Complete rescue/recapitulation of the adult lethal phenotype was achieved by 

heat-shocking pupae beginning 48 hours after prepupa formation and ending at eclosion.  

We can therefore rule out a requirement for drd expression during the first half of 

metamorphosis.  It remains possible, however, that drd is required early in the first day of 

adult life because in this experiment drd transcript levels remained suppressed/elevated 

for several hours after eclosion and the end of the heat pulse.  In the complementary 

experiment, heat-shocking pupae for the first 48 hours of metamorphosis had little effect 

on rescue of adult lethality but resulted in approximately half of the RNAi flies dying within 

two weeks of eclosion.  There is some overlap in the developmental stages probed by these 

two experiments, as metamorphosis is accelerated at higher temperatures (Powsner, 

1935).  Taking our data as a whole, we conclude that for survival during early adulthood, 
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drd expression is required beginning in the middle of the third day of metamorphosis, and 

this critical period may extend into the first several hours following eclosion.  Defining this 

critical period further will require not only shorter heat pulses but also knowledge of drd 

protein dynamics following the induction of expression or knockdown. 

 Our model for the timing of drd expression is consistent with recent 

immunostaining data, in which high levels of drd protein are reported in several pupal 

tissues (Kim et al., 2012).  Our results also agree to some extent with the modENCODE 

temporal expression data, which show a modest 3-4 fold increase in drd expression on the 

third day of metamorphosis relative to the previous two days (Graveley et al., 2011; 

McQuilton et al., 2012).  However, the modENCODE data also indicate that the highest level 

of drd expression occurs during the final third of embryogenesis, when expression levels 

are up to 7-fold higher than during metamorphosis.  While our results are not consistent 

with a role for embryonic expression of drd in the determination of adult lifespan, it is 

possible that this early expression peak is required for other aspects of Drosophila 

development or physiology.  No larval phenotypes have been reported for drd mutants, but 

to our knowledge this topic has not been thoroughly investigated. 

 One drd phenotype that could arise during metamorphosis is a defect in glial 

morphology.  On the day of eclosion, glial cells in drd mutants appear morphologically 

immature and fail to wrap around the neurons (Buchanan and Benzer, 1993). The process 

of glial cell maturation and neuronal wrapping occurs in late pupae; eighty hours after 

pupal formation, glia in drd mutants are morphologically wild-type.  It has been 

hypothesized that drd expression is required for glial maturation during late pupal 
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development and that the failure of glial maturation is related to the neurodegeneration 

that occurs several days after eclosion (Buchanan and Benzer, 1993). 

 Some of the phenotypes seen in adult drd mutant flies are hypothesized to be 

associated with defects in epithelial integrity or function.  The tracheae and air sacs in 

mutant flies are reported to be fragile, and drd mutants express genes associated with 

hypoxia (Kim et al., 2012; Lehmann and Cierotzki, 2010; Tschäpe et al., 2003).  Mutant flies 

also exhibit a specific defect in the movement of food from the crop through the cardia and 

into the midgut (Peller et al., 2009).  It is noteworthy that both the foregut and the tracheae 

are lined with cuticle (Nation, 2002), and the cardia synthesizes another chitinous 

structure, the peritrophic matrix (PM) (Hegedus et al., 2009).  The expression of multiple 

genes encoding cuticular or PM components, such as Peritrophin A, Crystallin, resilin, 

Acp65Aa, and 12 Cpr genes, peak on day 3 of metamorphosis (Graveley et al., 2011)—the 

same day on which drd expression is required for adult survival.  The causal relationships 

among neurodegeneration, hypoxia associated with fragile tracheae, and starvation 

associated with defective food movement remain to be elucidated, as do the relative roles 

of these phenotypes in causing rapid adult death.  However, all three of these phenotypes 

are potentially connected with developmental events that occur during the second half of 

metamorphosis. 

 The other phenotype examined in this study was adult body mass, which is 

significantly reduced in drd mutants (Blumenthal, 2008).  In contrast to the effect on adult 

survival, knockdown/rescue of drd expression during metamorphosis had no effect on 

body mass.  This result indicates that the reduced body mass observed in drd mutants is an 

independent phenotype, separate from adult lethality.  In this respect, mutation of drd is 
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similar to mutations in ilp signaling, which, as reviewed above, have separable effects on 

body mass and lifespan.  However, the control of lifespan by ilp signaling is an adult-

specific effect, in contrast to the actions of drd during metamorphosis.  Furthermore, 

knockdown/rescue of drd expression from embryogenesis through the wandering third 

larval instar, which encompasses the entirety of larval feeding, failed to affect body mass.  

Thus, the drd body mass phenotype appears to be distinct from the nutritionally regulated 

ilp-dependent control of larval growth rate discussed above.  We were able to 

rescue/recapitulate the body mass phenotype by heat-shocking flies continuously from 

embryogenesis until eclosion.  This effect was significant but did not fully eliminate the 

difference in body mass between the different genotypes; for example, even after heat 

shock, the experimental rescue flies still had a lower mass than the control RNAi flies.  We 

attribute this residual mass difference to differences in the genetic backgrounds of the 

stocks used in this experiment.  We conclude from these results that the critical period for 

the body mass effects of drd either extends throughout pre-adult development or 

encompasses the transition between the end of larval development and the beginning of 

metamorphosis.  It is interesting to note that both insulin receptor activity and the ilp 

dILP6 are reported to have effects on adult body mass after the cessation of feeding, during 

the wandering third instar (Okamoto et al., 2009; Shingleton et al., 2005; Slaidina et al., 

2009).  Thus, our data are consistent with an interaction between drd and ilp signaling late 

in larval development.  We also cannot rule out a role for drd in ecdysteroid production or 

signaling that would affect the timing of pupariation. 

The primary finding of this work is that the early adult lethality observed in drd 

mutants arises from an absence of drd expression at an earlier stage of the life cycle.  To 
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our knowledge, this is without precedent among neurodegeneration mutants.  While many 

neurodegeneration-associated genes are expressed both during development and in adults, 

this expression has either been demonstrated or is believed to be required for the 

maintenance of larval, pupal, or adult neuronal integrity (Khodosh et al., 2006; Lee et al., 

2011; Lim and Kraut, 2009; Mühlig-Versen et al., 2005; Sone et al., 2009).  In contrast, drd 

expression is clearly not required for the maintenance of the adult nervous system.  Rather, 

drd expression appears to be required for the development of one or more adult tissues 

during metamorphosis, and the improper development of such tissues in drd mutants 

leads, within 1-2 weeks, to the death of the adult.  It has also been reported that appearance 

of several age-dependent markers or phenotypes is accelerated in drd mutant adults, 

suggesting that drd mutants age more quickly than wild-type flies (Reenan and Rogina, 

2008; Rogina et al., 1997).  In light of this finding, our data raise the intriguing possibility 

that the rate of aging in adults could be controlled to some degree by events that occur 

during metamorphosis.  
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Figure Legends 

Figure 1.  Establishment of a system for knockdown and expression of drd. a) Ubiquitous 

knockdown of drd by crossing y w; Act5C-Gal4/TM6B males with either w; 

{GD15915}v51184 UAS-Dcr-2 or w; UAS-Dcr-2 {GD3367}v37404 females recapitulates the 

early lethality phenotype. b) Overexpression of drd on a wild-type background by crossing 

y w; Act5C-Gal4/TM6B males with w; UAS-drd females has no effect on lifespan. c) 

Ubiquitous expression of drd on a drdlwf background by crossing y w; Act5C-Gal4/TM6B 

males with drdlwf/ FM7a; UAS-drd females rescues the early lethality phenotype. n=50-57 

flies/genotype. 

 

Figure 2.  Temporal requirement of drd expression for survival. Survival curves of adult 

male progeny from crossing w; Hsp70-GAL4 males with either w; {GD15915}v51184 UAS-

Dcr-2 or w; UAS-Dcr-2 {GD3367}v37404 females for drd knockdown (a,c,e,g) and w; Hsp70-

GAL4 males with drdlwf/ FM7a; UAS-drd females for drd rescue (b,d,f,h). a,b) flies were 

maintained at 24°C for the entire life cycle. c,d) flies were maintained at 30°C after eclosion. 

e,f) flies were maintained at 30°C from embryogenesis until wandering third larval instar. 

g,h) flies were maintained at 30°C during metamorphosis. n=50-70 flies/genotype. 

 

Figure 3.  Requirement for drd expression within metamorphosis. Survival curves of adult 

male progeny of crosses as detailed in fig. 2 following knockdown (a,c) or rescue (b,d) of 

drd during the first 48 hours of metamorphosis (a,b) or the final 48 hours of 

metamorphosis (c,d).n=50-60 flies/genotype. 
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Figure 4.  Time course of drd knockdown and rescue during and following heat shock in 2-

day pupae.  Pupae were derived from crosses as detailed in fig. 2.  a) knockdown of drd and 

b) rescue of drd after different durations at 30°C. Transcript levels were normalized to the 

level at 0 hours. c,d) Recovery of drd transcript from knockdown (c) and rescue (d) at 

different times after the end of a 48-hour heat shock. Transcript levels were normalized to 

the level at 24 hours of recovery. Asterices indicate significant difference from 0 hours (a,b) 

and 24 hours (c,d) by 1-way ANOVA and Bonferroni post-test. *:p<0.05; **:p<0.01; 

***:p<0.001. n=2.  Error bars represent S.E.M. 

 

Figure 5.  Temporal requirement of drd expression for normal body mass on the day of 

eclosion.  Crosses and heat shock were performed as in fig. 2.  The legend shown in (a) 

applies to all four graphs.  a) No heat shock. b) Heat shock from embryogenesis until 

wandering third larval instar. c) Heat shock throughout metamorphosis. d) Heat shock for 

all of pre-adult development from embryogenesis until eclosion.  Asterices indicate 

significant effect of rescue or knockdown by 1-way ANOVA and Bonferroni post-test. 

*:p<0.05; **:p<0.01.  n=50-55 flies weighed in 10-23 groups per condition.  Error bars 

represent S.E.M. 
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