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Characterizations of Certain Recently Introduced Distributions

G.G. Hamedani

Department of Mathematics, Statistics and Computer Science
Marquette University, Milwaukee, WI 53201-1881, USA

g.hamedani@mu.edu

Various characterizations of the Beta Weibull Geometric distribution of Bidram et al. (2011), the New Gen-
eralized Exponential distribution of Bidram et al. (2012), and the Gamma Exponentiated Weibull distribution
of Pinho et al. (2012) are presented. These characterizations are based on: (i) a simple relationship between
two truncated moments (ii) certain functions of the nth order statistic, and (iii) certain functions of the 1st order
statistics.

Keywords: Beta exponential distribution; Beta Weibull geometric distribution; Gamma exponentiated distribu-
tion; Gamma geometric distribution; Generalized exponential distribution; Weibull geometric distribution.

1. Introduction

It is widely known that the problem of characterizing a distribution is an important problem which
has recently attracted the attention of many researchers. Thus, various characterizations have been
established in many different directions. The present work deals with the characterizations of three
continuous univariate distributions: Beta Weibull Geometric (BWG), New Generalized Exponential
Geometric (NGEG) introduced by Bidram et al. [1,2] and Gamma Exponentiated Weibull (GEW)
of Pinho et al. [16]. These characterizations are based on: (i) a simple relationship between two
truncated moments, (ii) certain functions of the nth order statistic, and (iii) certain functions of the
1st order statistic. The BWG distribution is a generalization of Weibull Geometric (WG) distribution
proposed by Ortega et al. [15]. The BWG distribution is a five-parameter distribution which depends
on scale, shape and, what we call, mixing parameters. This distribution is considered to be a suit-
able distribution for modeling monotone or unimodal failure rates. We refer the reader to Bidram
et al. [1] for a detailed discussion as well as applications of BWG distribution. Bidram et al. [2]
introduced the NGEG distribution based on the maximum of N i.i.d. (independent and identically
distributed) random variables X j, j = 1,2, . . . ,N whose common distribution is a generalized expo-
nential distribution, where N has a geometric distribution and is independent of X j’s. This resulted
in, as pointed out by Bidram et al. [2], a three-parameter distribution with applications to parallel
systems with i.i.d. components as well as other biological organisms or industry units. Again, we
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refer the reader to Bidram et al. [2] for a detailed discussion as well as applications of NGEG distri-
bution. The GEW distribution is a four-parameter distribution which includes several well-known
distributions as special cases. It is shown in [16] that its density function may be expressed as an
infinite linear combination of Weibull densities. For further details and the domain of applicability
of GEW distribution, we refer the reader to Pinho et al. [16].

An investigator will be vitally interested to know if their model fits the requirements of the
BWG or NGEG or GEW distribution. To this end, one will depend on the characterizations of these
distributions which provide conditions under which the underlying distribution is indeed one of
these distributions. Although in many applications an increase in the number of parameters pro-
vides a more suitable model, in characterization problems a lower number of parameters (without
seriously affecting the suitability of the model) is mathematically more appealing (see Glänzel and
Hamedani [9]). In view of this observation, we reduce the parameters of BWG distribution to four
in our characterization of this distribution based on the nth order statistic.

The pdf (probability density function) and cdf (cumulative distribution function) corresponding
to BWG distribution are given, respectively, by

f (x) = f (x;a,b,α,β , p) =
(1− p)bαβ (βx)α−1e−b(βx)α (

1− e−(βx)α)a−1

B(a,b)
(
1− pe−(βx)α

)(a+b)
, x > 0, (1)

and

F(x) = F(x;a,b,α,β , p) =
1

B(a,b)

∫ G(x)

0
ta−1(1− t)b−1dt, x≥ 0, (2)

where a > 0, b > 0, α > 0, β > 0 and p ∈ (0,1) are parameters B(a,b) =
∫ 1

0 ta−1(1− t)b−1dt and
G(x) is a cdf corresponding to WG distribution given by

G(x) = (1− e−(βx)α

)
(

1− pe−(βx)α
)−1

, x≥ 0.

The main parameters α and β are shape and scale and p is mixing parameters, respectively.

Note that for a = b = 1, F(x) = G(x) and hence WG distribution is a special case of BWG
distribution.

The pdf and cdf of the generalized exponential distribution are

f1(x;α,β ) = αβe−βx
(
1− e−βx

)α−1
, x > 0,

F1(x;α,β ) =
(
1− e−βx

)α
, x≥ 0.

}
α > 0, β > 0,

Bidram et al. [2] assume that X j, j = 1,2, . . . ,N are N i.i.d. random variables with cdf F1, where N
has a geometric distribution with parameter p ∈ (0,1) and is independent of X j’s. Then, they define

Published by Atlantis Press 
     Copyright: the authors 
                      12



Characterizations of Certain Recently Introduced Distributions

X = max{X j : j = 1,2, . . . ,N} which has pdf and cdf given, respectively, by

f (x) = f (x;α,β , p) =
(1− p)αβe−βx

(
1− e−βx

)a−1{
1− p(1− e−βx)α

}2 , x > 0, (3)

and

F(x) = F(x;α,β , p) =
(1− p)

(
1− e−βx

)a

1− p(1− e−βx)α
, x≥ 0, (4)

where α > 0, β > 0 and p ∈ (0,1) are shape, scale and mixing parameters respectively. Bidram
et al. [2] call this distribution NGEG.

The pdf and cdf of GEW distribution are given, respectively, by

f (x) = f (x;α,β ,k,δ )

=
kαδ

βΓ(δ )

(
x
β

)k−1

e−
(

x
β

)k
[

1− e−
(

x
β

)k
]α−1{

− ln

[
1− e−

(
x
β

)k
]}δ−1

, x > 0, (5)

and

F(x) = F(x;α,β ,k,δ ) = 1−
γ

{
− ln

[
1− e−

(
x
β

)k
]α

,δ

}
Γ(δ )

, x≥ 0, (6)

where the parameters α , β , k, δ are all positive and γ(x,δ ) =
∫ x

0 uδ−1e−udu.

2. Characterization Results

As we mentioned in the Introduction, the BWG, NGEG and GEW distributions (and their special
cases listed in [1, 2] and [16] respectively) may have potential applications in many fields of studies.
So, an investigator will be vitally interested to know if their model fits the requirements of the
BWG or NGEG or GEW distribution. To this end, one will depend on the characterizations of these
distributions which provide conditions under which the underlying distribution is indeed one of
these distributions.

2.1. Characterization based on two truncated moments

In this subsection we present characterizations of the BWG, NGEG and GEW distributions in terms
of a simple relationship between two truncated moments. We like to mention here the works of
Galambos and Kotz [3], Kotz and Shanbahag [14], Glänzel [4–6], Glänzel et al. [7, 8], Glänzel and
Hamedani [9] and Hamedani [10–12] in this direction. Our characterization results presented here
will employ an interesting result due to Glänzel [5] (Theorem G below).

Theorem G. Let (Ω,F ,P) be a given probability space and let H = [a,b] be an interval for some
a < b (a =−∞, b = ∞ might as well be allowed). Let X : Ω→ H be a continuous random variable
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with the distribution function F and let g and h be two real functions defined on H such that

E[g(x) | X ≥ x] = E[h(x) | X ≥ x]η(x), x ∈ H,

is defined with some real function η . Assume that g, h ∈C1(H), η ∈C2(H) and F is twice contin-
uously differentiable and strictly monotone function on the set H. Finally, assume that the equation
hη = g has no real solution in the interior of H. Then F is uniquely determined by the functions g,
h and η , particularly

F(x) =
∫ x

a
C
∣∣∣∣ η ′(u)
η(u)h(u)−g(u)

∣∣∣∣exp(−s(u))du,

where the function s is a solution of the differential equation s′ = η ′h
ηh−g and C is a constant, chosen

to make
∫

H dF = 1.

Remarks 2.1.1. (a) In Theorem G, the interval H need not be closed.
(b) The goal is to have the function η as simple as possible. For a more detailed discussion on the
choice of η , we refer the reader to Glänzel and Hamedani [9] and Hamedani [10–12].

Proposition 2.1.2. Let X : Ω→ (0,∞) be a continuous random variable and let

h(x) = e(b−a)(βx)α

(1− e−(βx)α

)1−a
(

1− pe−(βx)α
)a+b

and

g(x) = (1− e−(βx)α

)1−a
(

1− pe−(βx)α
)a+b

for x ∈ (0,∞). The pdf of X, with a 6= b, is (1) if and only if the function η defined in Theorem G has
the form

η(x) =
a
b

e(a−b)(βx)α

, x > 0.

Proof. Let X have pdf (1), then

(1−F(x))E[h(x) | X ≥ x] =
(1− p)b

aB(a,b)
e−a(βx)α

, x > 0,

and

(1−F(x))E[g(x) | X ≥ x] =
(1− p)b

aB(a,b)
e−b(βx)α

, x > 0,

and finally

η(x)h(x)−g(x) =
a−b

b

[
(1− e−(βx)α

)1−a
(

1− pe−(βx)α
)a+b

]
6= 0, for x > 0.

Conversely, if η is given as above, then

s′(x) =
η ′(x)h(x)

η(x)h(x)−g(x)
= aαβ (βx)α−1, x > 0,
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and hence

s(x) = a(βx)α , x > 0.

Now, in view of Theorem G, X has cdf (2) and pdf (1).

Corollary 2.1.3. Let X : Ω→ (0,∞) be a continuous random variable and let h(x) be as in Propo-
sition 2.1.2. The pdf of X with a 6= b, is (1) if and only if there exist functions g and η defined in
Theorem G satisfying the differential equation

η ′(x)h(x)
η(x)h(x)−g(x)

= aαβ (βx)α−1, x > 0.

Remarks 2.1.4. (i) The general solution of the differential equation in Corollary 2.1.3 is

η(x) = ea(βx)α

[
−
∫

g(x)aαβ (βx)α−1e−b(βx)α
(

1− e−(βx)α
)a−1(

1− pe−(βx)α
)−(a+b)

dx+D
]
,

for x > 0, where D is a constant. One set of appropriate functions is given in Proposition 2.1.2 with
D = 0.

(ii) In Proposition 2.1.2 we assume a 6= b. This condition can be removed with a minor change
in the expressions for functions h and g as given in the following Corollary.

Corollary 2.1.5. Let X : Ω→ (0,∞) be a continuous random variable and let

h(x) = e(b−1)(βx)α

(1− e−(βx)α

)1−a
(

1− pe−(βx)α
)a+b−2

and

g(x) = e(b−1)(βx)α

(1− e−(βx)α

)1−a
(

1− pe−(βx)α
)a+b

for x ∈ (0,∞). The pdf of X is (1) if and only if the function η defined in Theorem G is of the form

η(x) =
(

1− pe−(βx)α
)
, x > 0.

Proof. Is similar to that of Proposition 2.1.2 with a little more work to recover s(x) properly from
s′(x).

Remarks 2.1.6. (i) Clearly there are other triplets of functions (h,g,η) satisfying the conditions
of Theorem G. We presented two such triplets in Proposition 2.1.2 and Corollary 2.1.5. (ii) As
we mentioned earlier, for a = b = 1 BWG distribution reduces to WG distribution. In this case,
Corollary 2.1.5 will reduce to Proposition 2.1.2 of Hamedani and Ahsanullah [14].

Proposition 2.1.7. Let X : Ω→ (0,∞) be a continuous random variable and let h(x) = 1 and
g(x) =

{
1− p(1− e−βx)α

}2
for x ∈ (0,∞). The pdf of X is (3) if and only if the function η defined

in Theorem G has the form

η(x) = (1− p)
{

1− p(1− e−βx)α

}
, x > 0.

Published by Atlantis Press 
     Copyright: the authors 
                      15



G.G. Hamedani

Proof. Is similar to that of Proposition 2.1.2 with an observation that for the converse, in recovering
s(x) from s′(x), one may use 1− p =

{
1− p(1− e−βx)α

}
− p
{

1− (1− e−βx)α
}

.

Proposition 2.1.8. Let X : Ω→ (0,∞) be a continuous random variable and let

h(x) =
[
1− e−(

x
β
)k
]2−α {

− ln
[
1− e−(

x
β
)k
]}1−δ

and

g(x) =
[
1− e−(

x
β
)k
]4−α {

− ln
[
1− e−(

x
β
)k
]}1−δ

for x ∈ (0,∞). The pdf of X is (5) if and only if the function η defined in Theorem G has the form

η(x) = 2−1
{

1+
[
1− e−(

x
β
)k
]2
}
, x > 0.

Remark 2.1.9. A corollary and a remark similar to Corollary 2.1.3 and Remark 2.1.4 (part (i)) can
be stated for NGEG and GEW as well.

2.2. Characterization of BWG and NGEG based on truncated moment of certain
functions of the nth order statistic

Let X1:n ≤ X2:n ≤ ·· · ≤ Xn:n be n order statistics from a continuous cdf F . We present here two
characterizations base on certain functions of the nth order statistic. We take b = 1 in (1) and hence
F(x) = [G(x)]a. So, F(x) will be an exponentiated distribution with base cdf G and the exponent
parameter a > 0. Our characterizations of BWG (for a 6= b) and NGEG distributions here will be
a consequence of the following proposition, which is similar to the one appeared in our previous
work. We give a brief proof of it here for the sake of completeness.

Proposition 2.2.1. Let X : Ω → (0,∞) be a continuous random variable with cdf F. Let
ψ(x) and q(x) be two differentiable functions on (0,∞) such that limx→0 ψ(x)[F(x)]n = 0 and∫

∞

0
q′(t)

[ψ(t)−q(t)]dt = ∞. Then

E [ψ(Xn:n) | Xn:n < t] = q(t), t > 0, (7)

implies

F(x) = exp
{
−
∫

∞

x

q′(t)
n[ψ(t)−q(t)]

dt
}
, x≥ 0. (8)
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Proof. If (7) holds, then using integration by parts on the left hand side of (7) and the assumption
limx→0 ψ(x)[F(x)]n = 0, we have∫ t

0
ψ
′(x)(F(x))ndx = [ψ(t)−q(t)](F(t))n.

Differentiating both sides of the above equation with respect to t, we arrive at

f (t)
F(t)

=
q′(t)

n[ψ(t)−q(t)]
, t > 0. (9)

Now, integrating (9) from x to ∞, we have, in view of
∫

∞

0
q′(t)

[ψ(t)−q(t)]dt = ∞, a cdf F given by (8).

Remarks 2.2.2. (a) Taking, e.g., ψ(x) =
(
1− pe−(βx)α)na+1

and q(x) = (1− p)
(
1− pe−(βx)α)na

in Proposition 2.2.1, equation (9) will be

f (x)
F(x)

=
a(1− p)αβ (βx)α−1e−b(βx)α

(1− pe−(βx)α
)
(
1− e−(βx)α

) . (10)

Now, replacing (1− p) with
[
(1− pe−(βx)α

)− p(1− e−(βx)α

)
]

in (10) we have

f (x)
F(x)

= a

[
αβ (βx)α−1e−b(βx)α

1− e−(βx)α
− pαβ (βx)α−1e−b(βx)α

1− pe−(βx)α

]
,

from which, in view of (8), we have F(x) = [G(x)]a, where G(x) is cdf corresponding to WG
distribution.

(b) Taking, e.g., ψ(x) =
{

1− p
(
1− e−βx

)α}n+1 and q(x) =
{

1− p
(
1− e−βx

)α}n in Proposition
2.2.1, equation (9) will be

f (x)
F(x)

=
αβe−βx{

1− p
(
1− e−βx

)α
}(

1− e−βx
) . (11)

Rewriting (11) we have

f (x)
F(x)

=

[
pαβe−βx

(
1− e−βx

)α−1

1− p
(
1− e−βx

)α +
αβe−βx

(
1− e−βx

)α−1(
1− e−βx

)α

]
,

from which, in view of (8), we have F(x) =
(1−p)(1−e−βx)

α

1−p(1−e−βx)
α .

2.3. Characterization of NGEG and GEW based on truncated moment of certain
functions of the 1st order statistic

Our characterizations of NGEG and GEW distributions here will be a consequence of the following
proposition, which again is similar to another one appeared in our previous work. We give a brief
proof of it here for the sake of completeness.
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Proposition 2.3.1. Let X : Ω→ (0,∞) be a continuous random variable with cdf F. Let ψ1(x)
and q1(x) be two differentiable functions on (0,∞) such that limx→∞ ψ1(x)[1− F(x)]n = 0 and∫

∞

0
−q′1(t)

[ψ1(t)−q1(t)]
dt = ∞. Then

E [ψ1(X1:n) | X1:n > t] = q1(t), t > 0, (12)

implies

F(x) = 1− exp
{∫ x

0

q′1(t)
n[ψ1(t)−q1(t)]

dt
}
, x≥ 0. (13)

Proof. If (12) holds, then using integration by parts on the left hand side of (12) and the assumption
limx→∞ ψ1(x)[1−F(x)]n = 0, we have

∫
∞

t
ψ
′
1(x)(1−F(x))ndx =− [ψ1(t)−q1(t)] (1−F(t))n.

Differentiating both sides of the above equation with respect to t, we arrive at

f (t)
1−F(t)

=
−q′1(t)

n[ψ1(t)−q1(t)]
, t > 0. (14)

Now, integrating (14) from 0 to x, we have, in view of
∫

∞

0
−q′1(t)

[ψ1(t)−q1(t)]
dt = ∞, a cdf F given by

(13).

Remarks 2.3.2. (c) Taking, e.g.,

ψ1(x) =
{

1− p
(
1− e−βx)α}n+1 and q1(x) = (1− p)

{
1− p

(
1− e−βx)α}n

in Proposition 2.3.1, equation (14) will be

f (x)
1−F(x)

=
(1− p)αβe−βx

(
1− e−βx

)α−1{
1− p

(
1− e−βx

)α
}{

1−
(
1− e−βx

)α
} . (15)

Rewriting (15), we have

f (x)
1−F(x)

=

[
αβe−βx

(
1− e−βx

)α−1

1−
(
1− e−βx

)α −
pαβe−βx

(
1− e−βx

)α−1

1− p
(
1− e−βx

)α

]
,

from which, in view of (13), we have F(x) = 1− 1−(1−e−βx)
α

1−p(1−e−βx)
α , which is cdf of NGEG.
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(d) Taking, e.g., ψ1(x) = 2γ

{
− ln

[
1− e−

(
x
β

)k
]α

,δ

}
and q1(x) = 1

2 ψ1(x) in Proposition 2.3.1,

equation (14) will be

f (x)
1−F(x)

=

− d
dx γ

{
− ln

[
1− e−

(
x
β

)k
]α

,δ

}

γ

{
− ln

[
1− e−

(
x
β

)k
]α

,δ

} ,

from which,

F(x) = 1−
γ

{
− ln

[
1− e−

(
x
β

)k
]α

,δ

}
Γ(δ )

, x≥ 0,

which is cdf of GEW.
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