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ABSTRACT 

DIRECT NUMERIC SIMULATION OF SHOCK WAVE STRUCTURES  

WITHOUT THE USE OF ARTIFICIAL VISCOSITY 

 

Kenneth B Jordan, B.S., M.S. 

 

Marquette University, 2011 

 

 

The purpose of this work is to directly simulate shock wave structures without the 

use of artificial viscosity.  The commonly used artificial viscosity model is replaced with 

an irreversibility model.  Irreversibilities are not typically taken into account when 

modeling the shock processes because shocks are resolved in a large domain where the 

thickness of the shock is thin compared to the numeric grid resolution.  The result is the 

shock is poorly resolved.  In addition processes other than shock processes are adiabatic 

and reversible.  The result is artificial viscosity, a form of irreversibility, is added to the 

numeric cells near the shock in order to account for the irreversibilities generated within 

the shock structure.  In this work the shocks are resolved and the physical sources of 

irreversibilities, namely viscous dissipation and localized heat transfer, are directly 

incorporated within the shock process.  The resulting simulations yield a more realistic 

shock structure, the shape of which can be integrated to determine the resulting increase 

in entropy of the shocked material.  Metrics such as shock thickness and wave structure 

compare favorably to experimental results.   

 

Irreversibility is traditionally accounted for by inserting artificial viscosity into the 

energy balance.  Artificial viscosity reduces numerical overshoot, diminishes the total 

energy, and smears out the shock front over several cells thereby eliminating the need for 

nanoscale grid resolution necessary to resolve the shock front and numerically resolve the 

gradients.  This approach fails to correctly model the shock wave structure of distended 

materials because their dynamic loading is a highly dissipative process and completely 

irreversible.  Thus, the work described herein models on a bulk scale a 

thermodynamically consistent representation of the irreversibilities associated with shock 

wave formation such as viscous dissipation and heat conduction and seeks to determine if 

these sources of irreversibility are comparable to artificial viscosity. 
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Chapter 1 

 

 

Introduction 
 

 
     Chapter 1 of this dissertation presents the objectives and goals of this work as well as 

the methodology that was used in its completion and a literature review. 

1.1 Objectives & Goals 

The purpose of this dissertation is to develop a better understanding of how 

porous/granular materials behave when subjected to shock loading.  This will be achieved 

through understanding the role of irreversibilities which arise from such phenomena as 

void collapse, internal heating, and initial porosity in the dynamic compaction of 

porous/granular materials.  The secondary objective of this dissertation is to use entropy 

to replace the artificial viscosity model [1, 2, 3] currently implemented in hydrocode 

formulations because it contains parameters not linked to physical properties.   

The goal of this research is to enhance existing continuum computational models 

and/or equations of state, or develop new models and/or equations of state that simulate 

the physical behavior of porous/granular materials experiencing shock loading.  

Continuum models currently in use originated within distinct scientific communities to 

address a particular class of problems.  Therefore, these models are not readily applicable 

to other situations.  Currently continuum level modeling does not directly couple grain 

level dynamics such as void collapse, plastic flow, or heating to the bulk simulation and 

they include parameters not linked to material properties.  This research work proposes 
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that grain level dynamics and irreversibilities can be summarized into continuum 

mechanics and thermodynamics via heat conduction and viscous dissipation. 

1.2 Methodology 

This work used a combined numeric and analytic approach supplemented with 

experimental data to accomplish the stated research objectives.  A variety of methods 

were used to improve the numeric simulations of porous/granular materials including 

incorporating entropy production into the conservation equations, and using a higher 

order polynomial in the Mie-Grüneisen equation of state.   

Irreversibilities are directly accounted for in the governing equations by the 

inclusion of viscous dissipation and heat conduction which eliminates the need for an 

additional constitutive relation such as artificial viscosity.  This approach removes the 

need to directly calculate entropy states which are not directly measurable and cannot be 

validated by comparison to experimental data.  This methodology was initially tested on 

an ideal monatomic gas, before being applied to liquids, heterogeneous and homogeneous 

solids.  The results of the ideal monatomic gas simulations were compared to a well 

known analytic solution as well as to available experimental data.  The governing 

equations used in the numeric formulation are the Navier-Stokes (NS) equations.  The use 

of the Navier-Stokes equations makes for a more complete analysis because this set of 

equations is thermodynamically consistent because they include temperature.  This 

contrasts with most hydrocode formulations that do not include temperature in their 

derivation.  The one-dimensional plane flow Navie-Stokes equations were implemented 

in a non-dimensional second order accurate Eulerian hydrocode formulation called NS.  

The unique contribution to this field of study is found in applying the Navier-Stokes 
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equations to porous/granular materials experiencing shock loading.  The numeric results 

were assessed by comparison to one-dimensional shock wave experiments and analytic 

solutions were available. 

1.3 Literature Review 

 The research thrusts of this work are centered on improving the predictive 

capabilities of hydrocodes when applied to porous/granular materials by replacing grain 

level dynamics with irreversibilities based on bulk scale thermodynamic concepts.  To 

complete the assigned task a thorough understanding of hydrocodes, experimental 

methods, and analytic techniques are needed.    

1.3.1 Literature Review - Experimental 

Until recently most of the experimental work involving porous/granular materials 

has revolved around the dynamic compaction of ductile metallic powders such as copper 

and iron.  An early pioneer in this area was Hermann, who, in 1969, conducted one 

dimensional (plain strain) experiments on iron powder and suggested the use of the P-α 

equation of state to model the compaction event.  The P-α model relates the density of the 

distended material to its fully consolidated density through α = ρdistended/ρconsolidated which 

is tuned to the experimental data [10].  This continuum level model provides an 

additional constitutive equation which describes the removal of porosity and therefore 

facilitates the improved predictive capabilities of hydrocodes.  In recent years the use of 

ceramic powders, plastics/polymers, rubber, and composite materials has become 

common place, which has spurred the need for new models or equations of state.  Work 

with metallic powders continues today and efforts by W. J. Nellis and D. J. Benson in 

their 1994 work with “Dynamic compaction of copper powder: Computation and 
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experiment” is considered essential reading.  Benson and Nellis used mesoscale 

simulations to directly simulate grain on grain interactions thereby removing porosity and 

the need for additional constitutive model such as the P-α model.  Mesoscale simulations 

track the individual grains that make up the distended material and models their 

morphology during the compaction event.  This approach is vastly different from the 

continuum approach which views the distended material as a continuous material with 

different properties from the fully consolidated form.  This work is concerned with 

modeling the dynamic compaction of porous silica powder on a continuum level without 

the aid of a porosity constitutive model.  Experiments conducted by D.J. Chaptman et al 

and J. P. Borg et al in 2005 used wet silica and dry silica respectively with density values 

as low as 0.1 g/cc.  Today there is great interest in the shock loading response of wet and 

dry silica because of their strategic importance to the military.   

1.3.2 Literature Review – Computational 

The original goal of this work was to use a Lagrangian hydrocode formulation 

(KO) based on Wilkins Hemp code [2] to model such phenomena as void collapse, 

internal heating, and initial porosity in the dynamic compaction of porous/granular 

materials.  There has been a lot of work performed in reference to modeling grain 

dynamics such as R. L. Williams in his 1990 work “Parametric studies of dynamic 

powder  consolidation using a particle-level numerical model”.  D. J. Benson in 1994 

studied the effect of particle morphology in his work “An analysis by direct numerical 

simulation of the effects of particle morphology on the shock compaction of copper 

powder”.  Grain level dynamics such as void collapse, frictional heating, and jetting etc 

were studied and modeled by Tang, Horie, and Psakhie in their 1997 work “Discrete 
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Meso-Element Modeling of Shock Processes in Powders”.   In contrast to the grain level 

approach which directly simulates the grain on grain iterations the continuum level 

approach has historically relied upon constitutive models such as the P-α compaction 

model, the Snow Plow compaction model, and Meyers Porous compaction model to 

simulate the dynamic compaction of porous materials [9, 10, 23].  Continuum level 

models such as snow-plow [4], p-α [5], p-λ [6], or CAP models [7] were created within 

distinct communities to deal with a specific class of problems.  In general they fail to 

result in adequate predictive capabilities for various high strain rates, and low density to 

volume materials.  Following a careful review of the open literature and examining our 

own work it became apparent that the equation of state was the key component to 

accurately model on bulk scale porous/granular materials.  This thrust lead to modifying 

the commonly used Mie-Grüneisen equation of state [14].  Details concerning the 

modifications made to the Mie-Grüneisen are contained in Chapter 5 of this work.  While 

this effort produced results that represent an improvement over the standard Mie-

Grüneisen equation of state as applied to porous silica it failed to adequately replicate 

pressure signatures across the entire velocity and density ranges tested.   

As an alternative approach to using a Lagrangian formulation and trying to 

modify an existing equation of state the decision was made to switch to an Eulerian 

formulation.  Many of the commercially available hydrocodes are Eulerian based such as 

CTH.  The Eulerian hydrocode formulation is a departure from the Lagrangian 

formulation that was initially used in this work.  The benefit of using a Lagrangian 

formulation over an Eulerian formulation is the Lagrangian formulation enables tracking 

of grain on grain interactions and grain morphology which isn’t possible with an Eulerian 
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formulation.  The primary advantage to using an Eulerian formulation over a Lagrangian 

formulation is that Eulerian formulations are better suited to deal with the large 

deformations present in shock problems [10], because an Eulerian mesh does not 

experience entanglement or other mesh related problems that occur with a Lagrangian 

formulation.  D.J. Benson discusses in details the differences between Eulerian and 

Lagrangian formulations in his 1990 paper “Computational Methods in Lagrangian and 

Eulerian Hydrocodes”.    

The artificial viscosity model frequently used in modern hydrocodes was first 

proposed by J. Von Neuman and R. Richtmyer in 1949 [1].  A secondary term was added 

by Landshoff in 1955 [12].  Artificial viscosity smears out the shock front eliminating the 

need for nanoscale resolution and dampens out numerical overshooting.  Alternative 

methods of simulating shocks without the use of artificial viscosity occur in gas dynamics 

with the use of the Navier-Stokes equations.  The application of the Navier-Stokes 

equations to an ideal monatomic gas follows the work of G. T. Elizarova in 2005 and 

2007 where the Navier-Stokes equations were applied to helium, nitrogen and argon gas 

[13,27,28].  This work involved simulating the shock wave structure of an ideal 

monatomic gas and predicting shock thickness without the use of artificial viscosity.  

Artificial viscosity was replaced with viscous dissipation and heat conduction within the 

shock front.  This work was extended by comparing the numeric solution to an exact 

analytic.   

1.3.3 Literature Review - Analytic 

There are two analytic solutions presented in this work.  The first solution is the 

higher order polynomial for the cold curve compression contribution to the pressure 
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function of the Mie-Grüneisen equation of state [1, 9].  The Mie-Grüneisen equation of 

state is a functional relationship for pressure corresponding to changes in volume and 

internal energy.  This constitutive relation was developed for fully consolidated metals.  

The Mie-Grüneisen equation of state is routinely used in commercially available codes 

such as CTH, and is typically represented by either a third order polynomial or a fifth 

order polynomial that is an exact fit to experimental data.  The second analytic solution is 

for a standing shock wave in an ideal gas.  The complete solution is presented in Bird, 

Stewart and Lightfoot Transport Phenomena.  The successful application of the Navier-

Stokes (NS) equations to an ideal monatomic gas has provided proof that viscous 

dissipation and heat conduction can be used to replace artificial viscosity in the 

simulation of shock waves.  The analytic solution and the NS formulation are 

computational stable and do not contain non-physical parameters.  The analytic solution 

is nondimensional and assumes constant viscosity and does an adequate job modeling 

shock wave structures in gases.  Using the NS formulation to directly model the shock 

wave structure presented the opportunity to compare a computational simulation to an 

analytic solution and experimental results.  Good agreement between the three indicates 

that this approach is valid and should be studied further.  The new contribution of this 

work to this field is the application of the Navier-Stokes equations to shock waves in 

incompressible substances.  
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Chapter 2 

 

 

Introduction to Shock Physics 

 

 
2.1 Shock Waves 

Shock waves are nearly instantaneous changes in the particle velocity, pressure, 

temperature, entropy, and density in a solid, liquid, or gaseous medium [8].  Shock waves 

form when a wave following the loading profile of an initial disturbance moves faster 

than the leading edge.  The increase in the trailing edge velocity occurs because the sound 

speed of a material increases as the density increases.  In other words the leading edge of 

the shock wave compresses the material thereby increasing the density.  Subsequently, 

the portion of the wave traveling through the higher density material moves faster until it 

catches the leading edge.  This steep wave is now a nearly instantaneous change in the 

material state and is called a shock wave.  This is graphically illustrated below in Fig. 

2.1.1.  
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Figure 2.1.1:  Disturbance moves at a speed of c + u, when the stress is above ζc which is the 

critical stress (Hugoniot Elastic Limit) for plastic deformation, c is the sound speed of material 

which is f(ρ), u is the particle speed, and U is the speed of the shock wave.  For stability U ≥ u+c 

[8]. 

 

Shock front thicknesses are finite and on the order of the molecular mean free path of the 

medium, on the order of four times mean free path length for gases and on the order of 

the mean free path length for solids.  These small length scales are usually considered to 

be too minute to resolve numerically.  However, using the NS formulation, with very 

high computational resolution, we were able to numerically resolve the shock front in 

argon gas under various loading conditions.  Irreversible conditions exist within the 

shock front due to plastic deformation (solids), viscous shear stress and heat conduction 

(solids, liquids, gases) as material flows in the direction of the shock.  While conditions 

in the shock front are not adiabatic, irreversible, and not in equilibrium, outside the shock 

front the material is assumed to be adiabatic and reversible.  This is graphically illustrated 

in Fig. 2.1.2. 
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Figure 2.1.2:  Shock front thickness is on the order of the molecular mean free path of the 

medium, i.e. 4x for a gas & 1x for solids [8]. 

 

The typical assumption made in hydrocodes is that all processes are adiabatic and 

isentropic.  When these two assumptions are made the 2
nd

 law is not incorporated into the 

derivation of the governing equations.  In relation to a stationary point some finite 

distance from the shock front the processes are adiabatic because the shock velocity is 

much greater than the sound speed of the medium.  Since conduction occurs at speeds 

much slower than the speed of sound there is insufficient time for conduction to occur 

between the shock front and the material immediately behind or in front of the shock.  

Within the shock front the mechanism that increases the temperature and pressure is 

momentum transfer and the irreversibilities associated with this process are approximated 

by heat conduction.  In addition, processes away from the shock front are assumed to be 

reversible, i.e. when unloaded the material returns to its’ initial state.  Thus, away from 

the shock front processes are assumed isentropic. 

2.2 Hydrocode Formulation 
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The term hydrocode is used to described a class of computer based numeric 

formulations which are distinct from more commonly used formulations such as solid 

material modeling (FEA) or computational fluid dynamics (CFD).  In traditional solid 

material modeling (FEA) the deformation strains are small and the plastic deformation is 

not necessarily of interest.  In addition the strain rates are slow such that an isothermal 

assumption is sufficient; this is not the case for shock processes in solids.  As a result 

there is typically no need for a formulation, which incorporates a thermodynamic 

equation of state or even an energy equation.  In traditional computational fluid 

dynamics, which incorporates shock processes, the material strength, the separation of 

elastic and plastic deformation is ignored.  This greatly simplifies the material 

constitutive relations.  In addition most CFD codes assume Newtonian behavior, i.e. 

linear stress-strain rate behavior as opposed to linear stress-strain behaviors associated 

with perfectly elastic materials.  The word hydro stems from the word hydrodynamic, 

meaning inviscid fluid behavior; however modern hydrocodes can and do incorporate a 

variety of stress-strain or strain rate constitutive relations.  Thus hydrocodes are a class of 

computational codes which seek solutions to material deformation problems which must 

incorporate both thermodynamic and material strength constitutive relations.  The 

following sections outline the equations which describe the hydrodynamic behavior of 

condensed materials and the codes in which they are encoded: KO and NS. 

2.3 Lagragian Formulation: KO 

     The hydrocode KO formulation described here utilizes the Lagrangian formulation of 

the conservation equations in a Lagrangian coordinate system in order to numerically 

resolve the shock interactions in solid materials.  The following briefly describes a typical 
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hydrocode formulation utilized in the modeling of shock processes in condensed matter.  

A more complete descriptions can be found in Wiklins [9], and Benson [10].   Section 6.2 

contains several modifications made to this formulation.  The Lagrangian unsteady 

compressible conservation of mass equation is  

.
D

V
Dt


  

                                                                                                             (2.3.1)
 

The time rate of change of density for the element is equal to the density multiplied by 

the velocity gradient per unit volume, because no mass flow is allowed into or out of the 

material element.  The momentum equation is 

,
DV

P
Dt


  

                                                                                                   (2.3.2)
 

where P is the mechanical pressure and ζ is the deviatoric shear distortion.  The energy 

equation is more complicated but it is also reduced by making several assumptions.  The 

assumptions are that there is no nuclear, radiative, electromagnetic, or potential energy in 

the system.  It is also assumed that there is no internal heat or entropy generation, and the 

effects of gravity and external forces are negligible.  Finally it is assumed that the process 

is adiabatic resulting in the following simplified energy equation 

 
2

0,
2

D V
e PV V

Dt
  
 

         
 

                            

 

2

 Internal  Kinetic  Total Energy ,
2

D V
E e

Dt
 
 

     
 

 

  0.E PV V     
 

                                                                                      (2.3.3) 

The commonly used stress strain constitutive relationship assumed to be in effect is the 

one used for consolidated materials, i.e. that the material behaves according to perfectly 
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elastic-plastic behavior with constant flow stress.  Equations (2.3.4) and (2.3.5) describe 

the stress strain relationships for the principle stress element (σii) and the corresponding 

cross term (σij) as functions of pressure (P), bulk modulus (μ), relative volume (V), 

artificial viscosity (q), and velocity strain (ε);  

1
( ) 2 ,

3
ii ii

V
P q

V
  

 
     

 
                                                                     (2.3.4a)  

2 .ij ij                                                                                                                (2.3.4b)  

This assumption is valid for a large class of brittle and ductile materials as confirmed by 

one-dimensional experiments that show a square elastic precursor wave ahead of the 

plastic wave, as illustrated in Fig. 2.1.1.  This behavior is simple to model assuming 

elastic-plastic behavior.  The magnitude of the dynamic yield strength can be determined 

from the experiment by measuring the amplitude of the elastic precursor, i.e. the 

Hugoniot elastic limit (HEL).  The relationship between static and dynamic yield strength 

can be estimated by equations (2.3.4) and (2.3.5).  The elastic precursor travels faster 

than the plastic wave.  However, porous/granular materials such as silica do not show an 

elastic precursor wave in front of the plastic wave, but if the same material is in a fully 

consolidated configuration it does show the two-wave structure.  Therefore, it is 

reasonable to assume that the two wave structure is somehow muted by the removal of 

porosity.   

In the elastic-plastic model the mean pressure, P, is defined as P = (1/3)(ζxx+ ζyy + 

ζzz), which is the volumetric compression P = (1/3)(ΔV/V).  The principle stress in the 

element, ζ, is defined as ζii = (-P + q) + sii, where q is the artificial viscosity.  Along the 

principle axis the resistance to shear distortion, s, is defined as sii = 2μ(εii – (1/3)(ΔV/V)).  
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The cross terms for stress and distortion are as follows; ζij = sij, where sij = 2μεij where i ≠ 

j.  Using the continuity equation the relationship between the change in volume and the 

strain is as follows: ΔV/V = εxx + εyy + εzz.  The stress deviators are defined so that they 

do not contribute to the mean pressure, P. 

The material yields plastically whenever stress exceeds the strength of the 

material.  The yield condition allows the material to elastically deform until the elastic 

limit is reached beyond which point the material flows plastically.  If the stress state 

calculated exceeds the yield strength of the material it would then be outside of the elastic 

yield surface (Von Mises).  The material is brought back onto the yield surface along a 

path normal to the yield surface.  Figure 2.3.1 shows conceptually how this is 

implemented in the program.  The energy associated with the plastic deformation of the 

material is excluded from the energy equation thereby reducing the available energy.  The 

Von Mises yeild condition is shown in equation (2.3.5). 

 2 2 2 2

1 2 3

2
( )

3

os s s Y K                                                                                             (2.3.5) 

If K ≤ 0 the material is within the elastic limit.  If K > 0 the multiply the stress deviators 

by 2 2 2

1 2 32 / 3 /oY s s s  .  Currently, KO calculates plastic energy but subtracts it 

from the total energy in order to remain on the yield surface.  The plastic energy is not 

continually tracked because temperature is not required in the formulation.   
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Figure 2.3.1:  Von Mises yield condition [9, pg 44].  Figure (a) depicts the yield surface and the 

three principle axis and figure (b) illustrates how a stress value that exceeds the yield surface is 

brought back to the surface. 
 

2.3.1 KO Artificial Viscosity Formulation 

Artificial viscosity is the way in which irreversibilities are incorporated into 

hydrocodes.  This methodology was first proposed by VonNeumann and Richtymer in 

1949 [1].  While the model was proposed for an ideal gas it has been successfully applied 

to many materials, solids or fluids, and performs several essential functions in modern 

hydrocodes.  It dampens the numerical overshoots behind the shock front, reduces the 

available energy, and smears the front across multiple cells so that nanoscale resolution is 

not needed to resolve gradients within the shock front.  Although Von Neumann and 

Richtymer state that the use of artificial viscosity was implemented purely for 

mathematical reasons the form of it is roughly based on a physical construct, namely 

Newtonian viscous dissipation of energy within the shock front.  A linear term was added 
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by Landshoff in 1955 [11], which together these form an equation listed below which is 

the form most often implemented in hydrocode formulation. 

 
2

22 ,o L

U a U
q C r C r

V r V r

     
      

                                                                    (2.3.1.1)

 

where q is the artificial viscosity, ρ is the density, CL and CO are constants, P is the 

pressure and a = /P  is the local sound speed of the material and Δr is the local grid 

spacing parameter.  The artificial viscosity, q, is defined as zero for 0U r   , because 

the artificial viscosity is only applied when the velocity gradient is negative and the 

volume gradient is positive.  This insures that the artificial viscosity is only applied 

during compaction (i.e. a shock) and not during release, which is considered isentropic.  

A more complete derivation of the governing equations is found in Appendix A.  These 

governing equations provide the basis on which the one-dimensional hydrocode KO is 

written, and can easily be extended to higher dimensions as in HEMP[9].   

The second term, not originally proposed by Von Neumann and Richtymer, was 

proposed by Landshoff in 1955 [12].  Together the artificial viscosity consists of two 

shear stress terms: a bulk non-linear and a longitudinal linear term.  Both contain 

gradients in the direction of flow and dependent on the wave speed.  The magnitude of 

the viscous terms contains non-physical parameters, CL and CO, which although they 

represent bulk longitudinal directions they are often set to arbitrary values such as 2 and 1 

respectively [1, 2, 9].  CO determines the number of grid spaces over which the shock 

front will be spread and is usually set to value of 2 which corresponds to 3 or 5 grid 

spaces.  CL and CO can be optimized through trial and error, but if the values are set lower 

than 2 and 1 respectively the numerical overshoot will increase because the shock front 
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thickness is being made thinner at which point nanoscale resolution would be necessary 

to resolve the gradients in the shock front [2]. 

The applicability of a viscous dissipation term within the shock front is debatable, 

notwithstanding the idea is that the material is plastically deforming at a constant flow 

stress.  This plastic deformation, which is above the yield strength, is fluidic in nature, 

even in solids, and as such, viscous dissipation applies.  Since the artificial viscosity is 

only active in the shock front as the material is compressed it serves to relax the 

isentropic assumption across the shock front and acts as a dissipative term because it 

reduces the available energy, defined by: 

( ) .E P q V Z                                                                                                 (2.3.1.2)                                                    

Here the change in internal energy is equal to the pressure-volume work plus the shear 

distortion energy Z , which is equivalent to the shear distortion, plastic deformation, 

work V     .  Since, the artificial viscosity is only active in compaction when the 

velocity gradient is negative and the pressure is positive the artificial viscosity reduces 

the effective pressure, i.e. ( )P P q   when q is active in the shock front, and 

( )P P q   when q = 0 elsewhere. 

2.3.2 KO Discretization 

 A uniform spatial grid was used to sub divide the material into an even number of 

cells based on the original material length.  In the one-dimensional Lagrangian 

formulation KO each cell consists of two faces and a cell center.  The velocity and 

position are tracked at the cell faces and all thermodynamic properties are determined at 

the cell center.  A resolution study was conducted on KO and the results indicate that the 
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optimal number of cells per unit length is 50 cells per millimeter.  The grid indices for 

time and space are denoted as  "j" and "n" respectively.  Equations (2.3.2.1), (2.3.2.2), 

and (2.3.2.8) show the one-dimensional, Lagrangian, central difference, discretization of 

the conservation mass, momentum, and energy.  The mass distribution determined by 

equation (2.3.2.1) is determined at the beginning of the simulation at time zero and 

remains constant throughout the remainder of the simulation because there is no mass 

flow into or out of a cell. 
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While there is no mass flow allowed equation (2.3.2.3) shows the change in relative 

volume, which is used to determine the density in a given cell.  Once the change in 

relative volume is determined the new position of each cell face is found using the time 

step and the velocity found using the equation of motion.  
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2.3.2.3  Conservation of mass
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Equations (2.3.2.4) and (2.3.2.5) are the velocity strains and stress deviators respectively.  
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Equations (2.3.2.6) and (2.3.2.7) are the Von Misses yield condition and the artificial 

viscosity constitutive relation. 
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2.3.2.5  Stress deviators
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Equation (2.3.2.9) is the Mie-Grüneisen equation of state that relates pressure to changes 

in volume and internal energy [14].  The Mie-Grüneisen was originally developed for 

metals in their fully consolidated form.  The Mie-Grüneisen is a summation of two 

functions; a cold compression function and an internal energy function.  The cold 

compression function, which is an error function, is represented here by a third order 

polynomial, which assumes pressure is a function of volume change and not temperature.  

The cold compression error function may also be represented by either a higher order 

polynomial or a curve fit to its exact solution (experimental data relating pressure to 

specific volume) as done in the commercial code CTH.  The internal energy function 

relates internal energy to pressure by the gamma parameter.  The gamma parameter is 

experimentally determined and typically a unique value for each material.  The gamma 

parameter can be functionally linked to changes in volume or temperature, however in 

this work the analysis is simplified by using a singular value available in open literature.  

By calculating internal energy before pressure and using an old value of pressure to 

determine the future internal energy value this formulation decouples pressure and energy 

so that they don’t have to be determined simultaneously. 
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These equations form the basis of the KO hydrocode.  At the edges, the second order 

central difference scheme is replaced by second order forward difference or backward 

difference schemes.  The code is staggered in space and time.  The code is considered 

spatially staggered because the velocity and position are determined on the cell faces 

while the thermodynamic properties are determined at the cell center.  The code is 
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temporally staggered because the velocity, velocity strains, and the artificial viscosity is 

found at the half time step while relative volume, stress deviators, pressure, and energy 

are found at the full time step.  The KO hydrocode is based on Wilkins one dimensional 

HEMP formulation [9].        

2.4 Eulerian Formulation: NS 

 The NS hydrocode described here refers to an explicit - second order accurate, 

finite difference, Eulerian formulation of the Navier-Stockes equations.  The use of 

nanoscale resolution in the NS code facilitates direct resolution of the shock front which 

eliminates the need to dampen numerical overshoot or oscillations through the artificial 

viscosity constitutive relation.  A brief description of the NS formulation used in this 

work is presented here.  A more complete description can be found in the work of 

Elizorova [13].  The Navier-Stokes Eulerian formulation for the one-dimensional 

conservation equations of mass, momentum, and energy are 

0,
j

t x
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In equation (2.4.1) ρ is the density, t is time, j is the mass flux density vector ( j u ), x 

is the spatial dimension, and u is the particle velocity.  Equation (2.4.2) is the 

conservation of momentum equation and includes the normal stress denoted by P x  , 

and the shear-stress tensor using Stokes assumption is Πxx, where xuxx  34 .  

Stokes assumption will be relaxed when implementing the Navie-Stokes equations in 
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liquids and solids.  The enthalpy in equation (2.4.3), is defined in the usual way, H = (E + 

P)/ρ; and q refers to the heat flux vector, where Fourier heat flux is assumed: 

xTq   .  The viscosity, µ, and the thermal conductivity, κ, in a perfect gas are 

determined by the following equations  wTT    and   Pr1/   R  where 

 and T are the viscosity and temperature of the far field upstream of the shock.  The 

Prandtl number is denoted by Pr, and γ is the ratio of specific heats. 

2.4.1 NS Discretization 

 A uniform spatial grid was used to sub divide the domain.  The grid was always 

chosen to be much less than the anticipated shock thickness for added numeric stability.  

The time step, which satisfied the Courant Stability Criterian, used in the process was 

directly linked to the spatial step insuring maximum stability and removing the need for 

artificial dissipation.  In an effort to minimize the appearance of steep gradients and in 

order to compare different materials at different initial conditions, the code was 

nondimensionalized.  The variables with the “*“ symbol are the dimensional variables 

while the “∞“ variables refers to the upstream conditions in the far field, such as 

temperature, density, and sound speed, and the “i” terms are the dimensionless quantities.  

In the NS formulation q and s refer to heat conduction and entropy respectively, as 

opposed to the KO formulation where q and s represented artificial viscosity and stress 

deviators. 

*

,i
i

T
T

T

                                                                                                                     (2.4.1.1) 

*

 ,i
i






                                                                                                                  (2.4.1.2) 
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*
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

  


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                                                                                                       (2.4.1.6) 

The time derivatives were approximated using an explicit first order forward difference 

method.  The spatial derivatives were approximated with a second order central or 

upwind/downwind stencil on a staggered mesh.  The Navier-Stokes equations, applicable 

to an ideal gas, rewritten in nondimensional finite difference form are: 

 1 1
ˆ ,t

i i i i

x

h
j j

h
                                                                                                 (2.4.1.7) 
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 
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h
E E u u j H j H q q
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         

                             (2.4.1.9) 

  2ˆ ˆ ˆ ˆ1 ( ) / 2 ,i i i iP E u    
 

                                                                                 (2.4.1.10) 

/ .i i iT P                                                                                                              (2.4.1.11) 

 These five equations describe the cell centered system in terms of dimensionless 

pressure, energy, temperature, density, and velocity.  The shear-stress tensor and the heat 

flux vector in nondimensional finite difference form are: 

  2
1 2

4 1
,

3 2

i i
i i i

x

u u

h
  

 

  
     

  
                                                                      (2.4.1.12) 
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 The cell face values are found by averaging: 

 1 2 2 / 2,i i i i ij u u                                                                                            (2.4.1.14) 

 1 2 / 2,i i i                                                                                                    (2.4.1.15) 

 1 2 / 2,i i iu u u                                                                                                   (2.4.1.16) 

 1 2 / 2,i i iP P P                                                                                                   (2.4.1.17) 

 1 2 / 2,i i iE E E                                                                                                 (2.4.1.18) 

 1 1 1 1/ .i i i iH E P                                                                                               (2.4.1.19) 

The next set of equations shows how variables are put into dimensional form; 
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To obtain the entropy generated within the shock front we integrate across the shock front 

using the following integral form: 

1
.xdu dq

s dx dx
T dx T dx


                                                                                       (2.4.1.20) 

The entropy production values obtained with this formulation were compared to the 

analytic formulation for the change in entropy for an ideal gas.
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Chapter 3 

 

 

Problem Description 

 

 
3.1 Compaction of Porous/Granular Materials 

The dynamic compaction of porous/granular material research is relevant to many 

applications including but not limited to; blast protection (armored vehicles), tectonic 

plate movement (earthquakes), and debris colliding with space shuttle, powder 

metallurgy and powder manufacturing.  The mechanism by which distended 

(porous/granular) materials are crushed and eventually consolidated is not well 

understood from the perspective of classic strength of material models.  The purpose of 

this work is to directly model the irreversible process by which a porous/granular 

material is consolidated by shock loading using viscous dissipation and heat transfer as a 

guide to suggest improvement to current formulations.   

Typically, in hydrocodes irreversibility is accounted for through the inclusion of 

an artificial viscosity model, and the unrecoverable work expended to plastically deform 

the material.  Artificial viscosity operates only in the shock front during compression and 

relates the sound speed of a material to its pressure and density.  Even though artificial 

viscosity is based on a physical construct, the sound speed of the material, it is rate 

dependent and contains non physical parameters.  This work seeks to replace the artificial 

viscosity model with an entropy model derived from fundamental principles of 

thermodynamics.   
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The inclusion of entropy into the hydrocode should make the formulation more 

dissipative by reducing the availability energy that can be transmitted with the shock.  

Entropy reduces the available energy via the mechanisms of heat conduction and viscous 

dissipation.  This energy loss should be coupled with the energy loss associated with 

plastic deformation.  The energy associated with plastic deformation is thought to be 

retained in the material as heat and contributes to the residual internal energy, which is 

substantially higher for a distended material as compared to a fully consolidated material 

given the same loading conditions.  With entropy and temperature included the 

formulation is now thermodynamically complete and the primary energy sources and 

sinks are now properly accounted for.  Accurate accounting of the available energy 

should lead to improvements in predicting the peak temperature, internal energy, and 

pressure in porous/granular materials.   

Hydrocodes require an equation of state for system closure and one of the 

equations of state used in this work, the Mie-Grüneisen [14], relates pressure to internal 

energy and volume.  While this equation of state works well for fully consolidated 

materials it does not perform as well for porous/granular materials.  Furthermore, it is 

thermodynamically incomplete, because it does not contain information regarding the 

temperature or entropy.  Details concerning this particular equation of state are presented 

in the subsequent chapters. 
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Chapter 4 

 

 

KO Analysis 

 

 
4.1 Introduction  

This investigation started by implementing and investigating the Mie-Grüneisen 

equation of state in the KO hydrocode.  Initial simulations were unable to successfully 

simulate the dynamic compaction of extremely porous silica (density near 0.1 g/cc).  The 

program would experience cell volume collapse and shut down.  This was unexpected 

since, the program was able to simulate the dynamic compaction of a fully consolidated 

material. 

4.2 Flyer Plate Experiments 

In order to better understand the simulations presented below, this section 

presents a short review of one-dimensional (plain strain) shock experiments.  One-

dimensional shock experiments are impact experiments that are designed to launch a 

plane shock wave into a material of interest.  The material of interest, the target, is 

usually sandwiched between two plates, an impact or front plate and back plate, both of 

which have a known response curve called the Hugoniot.  The Hugoniot describes the 

material response to shock loading and relates impact speed to shock wave speed.  The 

flyer plate is the plate launched towards the impact plate at a specified velocity.  In most 

instances, the impact plate is made up of the same material as the flyer plate. 
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Since the Hugoniot is known for all materials except the material of interest a 

technique called impedance matching [15] can be employed, which determines the shock 

speed and the particle speed, and stress and/or pressure of the shock launched into the 

material.  This technique is only valid so long as the wave front remains planar, i.e. one-

dimensional wave behavior.  The experimental dimensions are set to make the shock 

wave measured by the gages one-dimensional.  This is done by making the samples used 

large enough that the three-dimensional shock wave launched into the material on impact 

is reduced to one-dimension initially.  Eventually, reflected waves come in from the sides 

and obscure the measurements, but that happens later in time.  Manganin gages [16, 17] 

are embedded inside the material of known response or placed on the front or back of the 

material of interest to measure the stress and time of arrival for the shock, which can be 

used to establish the shock velocity.  Below in Figure 4.2.1 is a picture of a typical gas 

gun used in one-dimensional shock experiments [18]. 
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Figure 4.2.1:  Gas Gun Facility at the Naval Surface Warfare Center, Dahlgren Division 

(NSWCDD).  The gun muzzle, barrel, breech pressure vessel, velocity pins and target assembly 

are shown. 

 

The picture in Fig. 4.2.1 is of the gas gun facility at the Naval Surface Warfare Center, 

Dahlgren Division (NSWCDD) [18].  Gas guns use high pressure gas to launch flyer 

plates at desired velocity towards the target.  Figure 4.2.2 is a schematic of a typical setup 

[18,19].   
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Figure 4.2.2:  Schematic for One-Dimensional Hugoniot Experiments as implemented at 

NSWCDD. 
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Figure 4.2.3:  Copper impacting a section of PMMA sandwiched between a copper impact plate 

and a copper back plate.  The impact speed was 555 m/s.  The symbol Δσ represent the difference 

in peak stress between the experimental pressure signature and predicted pressure signature using 

the hydrocode KO. 

 

Figure 4.2.3 presents a typical series of time traces obtained from a flyer plate 

experiment.  The geometry for this experiment is a section of Polymethyl-mehacrylate 

(PMMA) sandwiched between two copper plates impacted by a copper plate at a speed of 

555 m/s.  Figure 4.3 presents data obtained from two Manganin gauges, one placed in 

front of the PMMA target plate and the other behind the target plate along with the KO 

simulation.  Figure 4.3 demonstrates that the KO program adequately simulates the 

dynamic compaction of fully consolidated materials.  The results seen here are 

comparable to the results obtained from commercially available hydrocodes.  As seen in 

Fig. 4.2.3 the code successfully predicts wave features both qualitatively and 

quantitatively.  There is only a slight overshoot in the peak stress and a small deviation in 
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the arrival time for shock wave at the back gage.  These features demonstrate that the KO 

code captures the underlying physics of the phenomena.  In Fig 4.2.3 it should be noted 

that the material is not displaying classic two wave structure, i.e. PMMA is not behaving 

like a perfectly elastic-plastic material with an elastic precursor wave in front of a plastic 

wave, even though the stress reported by the two gages are above the HEL (Hugoniot 

Elastic Limit) of 0.75 GPa reported in literature [20].  PMMA is a polymer and despite 

not using a polymer specific strength of material model the hydrocode KO does an 

adequate job predicting the shock response of the material under the specified loading 

conditions. 

Figure 4.2.4 shows how the code fails to qualitatively or quantitatively model the 

dynamic compaction of the porous/granular material Silica.  Figure 4.2.4 compares one-

dimensional (plain strain) experimental results to the KO results for the dynamic 

compaction of silica with a density of 0.1 g/cm
3
.  These results demonstrate the modeling 

limitations of the hydrocode KO, i.e. KO fails to adequately model porous/granular 

materials. 
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Figure 4.2.4:  Silica, density of 0.1 g/cm

3
, sandwiched between two PMMA, density of 1.2 g/cm

3
, 

plates and impacted by a PMMA flyer plate at 405 m/s. 

 

As seen in Fig. 4.2.4 the time of arrival and the peak stress on the back gage are poor 

predictions when compared to the gage data.  We interpret these discrepancies as 

indicators that the equation of state modeling the underlying physics of the dynamic 

compaction of porous/granular materials is deficient.  This initial modeling effort seemed 

to indicate that the failure to adequately model the dynamic compaction of 

porous/granular materials was due to the fact that the consolidation process, where void 

spaces are removed, occurs on a scale associated with the meso/grain or particle size and 

not on a bulk material scale, which is the underlying formulation for the code KO.  This 

interpretation of the modeling results lead to the conclusion that only direct simulation of 

grain level dynamics could resolve the modeling inadequacies, because it is here on a 

mesoscale were the grains experience fractures, morphology, friction heating, and jetting.     
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Subsequent modeling efforts altered this point of view when it was found that a 

commercially available code, CTH [21], was able to produce results without crashing 

using the same equation of state, the Mie-Grüneisen, and the same input parameters as 

KO.  Initial efforts to resolve this difference between the code used in this work, KO, and 

CTH revolved around using sub-iteration to simultaneously solve the energy and the Mie-

Grüneisen equation of state, and grid refinement to reduce mesh deformation.  These 

efforts failed to improve the original KO results, therefore it was concluded that the 

implementation of the Mie-Grüneisen equation of state was the source of the problem. 
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Chapter 5 

 

 

Equation of State Development 

 

 
5.1 Review of Mie-Grüneisen Equation of State 

The Mie-Grüneisen equation of state has a long history of successful 

implementation and works well for consolidated materials experiencing moderate strain 

levels.  The Mie-Grüneisen model [14] assumes that the total pressure and internal energy 

of a solid are function of the cold energy and pressure, thermal energy and pressure, and 

the electronic energy and pressure [22].   

Total c t eE E E E                                                                                                        (5.1.1) 

Total c t eP P P P                                                                                                           (5.1.2) 

The subscript “-c-” refers to the cold energy and pressure which describes the 

compression of the material at 0 K.  The cold pressure and energy, which only represents 

the lattice compaction, are functions of density only and independent of temperature.  

The subscript “-t-” refers to the thermal pressure and energy, which is caused by the 

motion of atoms.  The subscript “-r-” refers to the electronic pressure and energy and is 

caused by the thermal excitation of electrons.  Since the electronic energy and pressure is 

only important at temperatures above 10,000 K it is excluded from the derivation of the 

Mie-Grüneisen model [14].   
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Figure 5.1.1:  Mie-Grüneisen model [14] assumes that the total pressure in a material is only a 

function of the thermal pressure and cold pressure. 

 

The basic formulation of the the Mie-Grüneisen EOS is statistically based.  The 

formulation proceeds by selecting a partition function describing the distribution of 

energy to represent the thermal contribution and an error function to represent the lattice 

compaction [9, 23].  

The resulting analysis yields a simple EOS which is applicable on a bulk material 

scale.  The Mie-Grüneisen model [14] with the cold curve as the reference state, is 

( )
( , ) ( ,0) [ ( , ) ( ,0)],

V
P V T P V E V T E V

V


                                                                (5.1.3) 

 

where P is the pressure, V is the volume, E is the internal energy, and γ is the Grüneisen 

parameter [9, 24].  This derivation uses the convention that E(V0, 0) = 0, i.e. the internal 

energy is zero at a temperature of 0 K.  Therefore equation (5.1.3), using the Hugoniot 

(locus of all possible end states) as the reference curve, may be rewritten as  
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( )
( ) ( ,0) [ ( ) ( ,0)].H H

V
P V P V E V E V

V


                                                                    (5.1.4) 

In equation (5.1.4) the unknown state, the cold curve, is determined from the 

known reference state, the Hugoniot.  Assuming a linear relationship between the shock 

velocity, Us, and the particle speed, Up, and using the Rankine-Hugoniot equations (i.e. 

the jump conditions) [9, 24], 

0

0
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H S P
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P V U U

V U
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P V x V
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V


                                                                                (5.1.7) 

where x = 1 – V/V0 and the subscript zero refers to quantities on the undisturbed material 

properties.  In addition we define the cold pressure as the change in the cold (minimal) 

internal energy with respect to volume at 0 K [9, 24] 

0
0( ,0) ( ) .

E
P V P V

V


  


                                                                                             (5.1.8) 

After inserting equations (5.1.5) - (5.1.8) into equation (5.1.4) and collecting 

terms we obtain a 1
st
 order differential equation for the cold curve energy, E0(V) [9, 24] 

2

0 0 0 0
0 2

0

(1 ).
(1 ) 2

E c x
E x

V V sx

  
   
 

                                                                             (5.1.9) 

The exact solution of equation (5.1.9) yields an error function, the zero-Kelvin 

energy equation (5.1.10), which is problematic for implementation into computer codes. 

2
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To avoid the use of an error function, a power series solution was assumed in x.  It is 

typical that a 3
rd

 order power series solution is utilized which works well for fully 

consolidated materials.  However, it fails to produce adequate results when applied to 

porous/granular materials as will be shown here.  Extending the power series solution in x 

to a 6
th

 order polynomial results in the cold curve energy E0(V) having the following form 

and coefficients 

2 3 4 5 6
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2 2
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                                                            (5.1.11) 

The pressure can be obtained from equation (5.1.8), thus the cold pressure 

solution has the same order as the cold energy solution.  Solving the Mie-Grüneisen 

equation for the Hugoniot pressure we obtain

 
0

0 0

0

( ) ( ) [ ( ) ( )].H HP V P V E V E V
V


                                                                           (5.1.12) 

Inserting equations (5.1.6)-(5.1.8) and (5.1.11) into (5.1.12), we obtain pressure as 

a function of strain, x = 1 – V/V0, and internal energy 
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                                                     (5.1.13)               

                                      

 
For consolidated materials experiencing strains less that 10%, there is little difference 

between the exact solution for the cold curve, equation (5.1.10), and a 3
rd

 through 6
th

 

order polynomial solution.  The internal energy for the exact solution and the power 

series solution approach infinity as strain increases as seen in Fig. 5.1.2. 
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Figure 5.1.2:  Cold Curve for Copper with ρ0 = 8.93 g/cc, s = 1.49, c = 0.49 cm/μs, and γ0 = 1.99 

[9].  

 

While strains less than 10% are common place in shock and ballistic problems for 

consolidated materials, this is not the case for extremely porous granular materials.  In 

these cases it is critically important to accurately reproduce the exact error function 

solution for the cold curve at higher strains because porous granular materials experience 

greater deformation and strain than that experienced by consolidated materials under the 

same loading conditions.  As can be seen in Fig. 5.1.3, the power series solutions begin to 

deviate noticeably from the exact solution at 60% strain. 
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Figure 5.1.3:  Cold curve for porous silica with ρ0 = 0.10 g/cc, s = 0.9736, c = 0.0121 cm/μs, and 

γ0 = 0.3 [9]. 

 

These various representations of the cold curve were implemented as part of the Mie-

Grüneisen equation of state in KO [9]. 

For the data of interest here, namely highly porous silica powder, the expectation 

is that there will be large strains in the silica powder as it is compacted.  Hugoniot and 

pressure-time data was obtained for initial densities of 0.77 g/cc, 0.25 g/cc, and 0.10 g/cc 

porous silica from the Cavendish Laboratory, University of Cambridge [9, 25].  Utilizing 

a 3
rd

 order representation of the cold curve within KO failed because computational cell 

volumes went to zero.  The code would fail at the first silica cell because the internal 

energy and pressure in the cell would not increase enough to resist the reduction in 

volume required by the shock front.  By adding higher order terms to the cold curve, the 
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response is effectively stiffened, as illustrated in Figure 5.1.3.  Thus the operational 

capabilities of KO were increased so that shock waves in silica powders with initial 

densities as low as 0.1 g/cc could be resolved.  One should bear in mind how low an 

initial solid density of 0.1 g/cc is; air has a density of 1.2 g/cc. 

Figure 5.1.4 presents a pressure-time signature of 0.1 g/cc silica powder obtained 

from two manganin gages, placed near the front and back side of the powder respectively.  

For a complete description of the experiment and data set see Borg, et.al. [9, 25].  The 

experimental data is compared to two numeric simulations: CTH [21] and KO [9].  When 

comparing these results it is of interest to note that the Mie-Grüneisen formulation 

implemented in CTH is a 5
th

 order polynomial fit to the exact solution for the cold curve, 

equation (5.1.10) [26]. 
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Figure 5.1.4:  Experimentally obtained pressure signatures of 0.10 g/cc porous silica at an impact 

speed of 1100 m/s compared to CTH and KO. 
 

Several interesting features of these two experimental signatures as well as the 

resulting simulations can be observed.  First, the Hugoniot strain, x = 1 – V/V0, in the 

powder is approximately x = 0.97. Thus, when comparing this strain to Fig. 5.1.3, one 

can observe that the order of the cold curve representation will be critical.  Second, the 

experimental data indicates a rise in the front gage near 5 μs.  It is unknown whether this 

is an artifact of the gage or an actual variation in the pressure.  Thus the use of Manganin 

gages in this extreme application is not well characterized.  If the gage results are to be 

believed, this rise, which appears after the initial one-dimensional compaction wave, 

would indicate unsteadiness in the thermodynamic state of the powder.  Although CTH 

indicates this feature should not be present in the signature, KO does predict a rise in 
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stress.  Third, the back gage indicates that the transmitted stress signature rises near 6 μs, 

plateaus near a stress of 1.6 GPa, and then slowly rises to near 2.25 GPa at approximately 

7 μs.  The CTH simulation immediately rises to 2.25 GPa, over-predicting these pressure 

signature features.  The KO simulation, however, under-predicts these features but 

exhibits re-shock like behavior more closely resembling the experimental signature, and 

eventually asymptoting to 2.25 GPa.   

The results in Fig. 5.1.4 are consistent with other initial densities of the porous 

silica at high impact speeds, and these results are shown in Fig. 5.1.5 and Fig. 5.1.6.  The 

existence of these features in the experimental data, as well as the discrepancy between 

CTH and KO, motivate the current work. 

 
Figure 5.1.5:  Experimentally obtained pressure signatures of 0.25 g/cc porous silica at impact 

speeds of 900 m/s (left) and 220 m/s (right) compared to CTH and KO. 
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Figure 5.1.6:  Experimentally obtained pressure signatures of 0.77 g/cc porous silica at impact 

speeds of 280 m/s (left) and 970 m/s (right) compared to CTH and KO. 

 

This work indicates that higher order representations of the cold curve are 

necessary when applying the Mie-Grüneisen equation of state to extremely porous 

granular materials.  These additional terms are necessary if the numeric representation of 

the cold curve deviates significantly from the exact cold curve solution, i.e. the error 

function of equation (5.1.10). For the given experimental data, the KO simulations 

indicate that a 6
th

 order formulation over-predicts the stress at low particle velocity, while 

under-predicting the stress at high particle velocity. Coding the error function would 

involve numerically integrating the 1
st
 order differential equation for E0(V), equation 

(5.1.10) and fitting a polynomial of sufficient order through the resulting solution to 

obtain a better representation of the exact solution [26].  This could result in a better 

representation of the cold curve and a more accurate simulation of the experimental data. 

These results indicate that the Mie-Grüneisen equation of state performs 

adequately when applied to porous/granular materials if the cold curve representation is 

done properly, i.e. using either the exact solution at every instance in time or fitting a 

polynomial of sufficient order through the exact solution.  These results also show that 

even with the exact solution there is significant overshoot in some instances and the 
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predicted signature doesn’t always match up with the experimental data.  It is our 

conclusion that is the result of assuming that this process is both adiabatic and isentropic.  

This works seek to explore what happens when the isentropic assumption is removed and 

this process is no longer modeled as reversible. 
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Chapter 6 

 

 

Ideal Gas – Argon 

 

 
6.1 Introduction 

 
The Navier-Stokes (NS) equations have a long history of use in fluid mechanics.  

The Navier-Stokes equations can be used to describe the density profile of a shock wave 

in a gas [13, 27].  The NS equations provide a proven method for the direct simulation of 

a shock front in a gas without the use of artificial damping.  The NS equations include 

viscous dissipation and heat conduction which form the basis for the macroscopic view 

for entropy generation that this works seeks to employ in the dynamic compaction of 

porous/granular materials.  The use of these equations in an ideal gas provides insight 

into using entropy to replace artificial viscosity. 

The objective of the following analysis was to perform direct numeric simulations 

on perfect gases in order to build up expertise needed to perform direct numeric 

simulations on granular materials.   

6.2 Numeric Solution – Navier-Stokes 

 Direct numeric simulation of the shock wave structure of argon gas was 

investigated using the Navier-Stokes equations for one dimensional plane flow  

0,
j

t x

 
 

 
                                                                                                               (6.2.1)                                                                                                                  
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u ju P

t x x x

  
  

   
                                                                                   (6.2.2)       
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                                                                                   (6.2.3)       

The simulations reported here are modeled as a shock tube experiment where the shock 

wave is stationary and the fluid is in motion.  The parameters used in the NS code as 

related to argon gas can be found in the literature [13].   

The numeric and analytic simulations are compared to experimental results [28].  

Shock front thickness and entropy for three Mach numbers 1.55, 3.38, and 9 were used in 

the comparison.  The effect of viscosity was studied using three viscosity models; 

constant viscosity where µ is constant, the Power Law model where µ is a function of 

temperature to some power  wTT   , and Maxwell’s viscosity model 

where
2

2 /

3

mKT

d





 .  The results of a resolution study using the NS code are 

presented in Table 6.2.1.1.  The analytic solution and its associated results will be 

discussed in the next section.   

Recall from section 2.4 that entropy is calculated by integrating over the shock 

front with the following equation 

1
.xdu dq

s dx dx
T dx T dx


                                                                                       (2.4.1.20) 

The results obtained from this integration are compared to the change in entropy used for 

an ideal gas assuming constant specific heats 

2 2
,

1 1

ln ln .v avg

T v
s c R

T v
                                                                                               (6.2.4) 
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Shock front thickness is found by initially determining the dimensionless reciprocal 

shock thickness which is defined as λ/δ where λ is the upstream mean free path and δ is 

the shock thickness [13].  The reciprocal shock thickness in finite difference form is  

(2) (1)

2 2max [( ) / 2 ] / ( ),i i i xh
x

 
   


 


   


                                                        (6.2.5) 

 

where ρ is density and hx is the spatial distance and ρ(2)
 and ρ(1)

 are the density values 

upstream and downstream of the shock front respectively.  This equation essentially 

assumes the shock thickness can be represented by a linear line through the shock front.  

Equation (6.2.5) assumes that the maximum density gradient is equivalent to the 

reciprocal shock thickness.  The results of the resolution study in Table 6.2.1.1. indicate 

that at least 50 million iterations were needed in order for the values reported for shock 

thickness or entropy to converge to a single value. 

Given that this problem is a boundary value problem with the application of far 

field (x→±∞) boundary conditions at the edges, the domain size affects the numeric 

solution by either decreasing or increasing the shock front thickness.  In the ideal gas 

simulations the symbol “γ” represents the ratio of specific heats.  Upstream of the shock 

front the left boundary conditions (L.B.C) are defined as 

1,ref                                                                                                                         

(L.B.C. 1) 

 ,U M                                                                                                                 (L.B.C. 2) 

1
 ,P


                                                                                                                   (L.B.C. 3) 

2

 ,
2 1

U P
E 


 


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where γ is the ratio of specific heat and M is the Mach number.  The right boundary 

conditions (R.B.C) were defined by the Rankine-Hugoniot jump conditions; 
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The jump conditions are used to determine the end state for a material under a prescribed 

dynamic loading condition, but they do not describe the evolution of the loading process.  

The domain was split into two separate sections with one half set to the left boundary 

conditions while the other half was set to the right boundary conditions.   

If the domain size is too small the width of the shock front may be too thin in 

comparison to experimental data, or if the domain size is large the shock front may be too 

broad in comparison to the available experimental data.  Therefore the relative distance 

between the far field boundary conditions and the shock front is important and should be 

chosen to accurately describe Dirichlet boundary conditions at infinity.  The grid spatial 

resolution needed is also a function of the domain size.  The smaller the domain size the 

fewer grid nodes that need to be used and the larger the domain size the more grid nodes 

will be needed.  While high resolution may be desired near regions with steep gradients 

such as the shock front results using the NS code show that high resolution is needed 

throughout the domain particularly at the far field edges were the boundary conditions are 

imposed because of the appearance of spurious waves originating at the edges of the 

domain.  High resolution throughout the domain limits the appearance of these waves 

which have the potential to interfere with the maximum density gradient calculations.  In 
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an effort to have the numerical simulations efficiently converge to the steady state 

solution with a minimum number of nodes, a resolution study was conducted in which 

the number of nodes was varied and a resulting solution was converged.  Once the 

solution was converged two metrics were used to assess the accuracy of the solution: 

shock wave thickness and entropy generation. 

6.2.1 Shock Wave Thickness and Entropy Generation 

 In order to assess the effect of where the far field boundary condition can be 

applied, a numeric study applying the boundary condition at zeta = 5, 10, 100, etc was 

carried out.  Research efforts concluded that the optimal distance was zeta = +/- 150.  

Table 6.2.1.1 presents the results of a spatial grid and viscosity model study at total 

domain size of 300 zeta. 
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Table 6.2.1.1  Resolution Study of the shock wave structure in argon gas.   
Mach # 1.55 Mach# 3.38 Mach #9

Nx ST-DGM Entropy Nx ST-DGM Entropy Nx ST-DGM Entropy

300 5.47 12.76 300 4.18 60.52 300 NA NA

600 3.82 15.03 600 2.17 97.98 600 NA NA

1200 3.29 15.99 1200 1.24 155.35 1200 1.06 16.39

2400 3.04 16.31 2400 0.82 193.12 2400 0.59 281.95

4800 2.99 16.42 4800 0.65 211.08 4800 0.33 517.76

9600 2.97 16.46 9600 0.58 218.63 9600 0.23 629.42

19200 2.97 16.52 19200 0.56 221.82 19200 0.18 685.23

Mach # 1.55 Mach# 3.38 Mach #9

Nx ST-DGM Entropy Nx ST-DGM Entropy Nx ST-DGM Entropy

300 7.50 14.69 300 5.17 127.25 300 NA NA

600 6.29 15.84 600 3.42 175.94 600 3.95 408.94

1200 5.95 16.25 1200 2.85 201.70 1200 3.44 562.60

2400 5.83 16.39 2400 2.62 213.76 2400 3.25 643.47

4800 5.80 16.46 4800 2.56 219.29 4800 3.18 688.78

9600 5.80 16.52 9600 2.55 221.94 9600 3.16 712.51

19200 5.79 16.51 19200 2.55 223.06 19200 3.15 724.42

Mach # 1.55 Mach# 3.38 Mach #9

Nx ST-DGM Entropy Nx ST-DGM Entropy Nx ST-DGM Entropy

300 6.06 13.51 300 NA NA 300 NA NA

600 4.62 15.35 600 2.82 152.88 600 NA NA

1200 4.17 16.08 1200 2.11 189.99 1200 2.51 497.34

2400 4.02 16.33 2400 1.87 208.36 2400 2.26 604.92

4800 3.99 16.43 4800 1.78 216.78 4800 2.19 667.54

9600 3.98 16.50 9600 1.75 220.77 9600 2.17 701.49

19200 3.97 16.49 19200 1.75 222.52 19200 2.16 719.09

Maxwell Viscosity Model

Constant Viscosity Model Constant Viscosity Model Constant Viscosity Model

Power Law Viscosity Model Power Law Viscosity Model Power Law Viscosity Model

Maxwell Viscosity Model Maxwell Viscosity Model

 
Shock front thickness and change in entropy values are shown for the three viscosity models 

tested.  Table values are arranged according to viscosity model and Mach number.  The far field 

is set +/- 150 units and all simulations were carried out to 50 million iterations to satisfy the 

convergence criteria.  The column marked ST-DGM refers to the shock thickness found using the 

density gradient model of equation 6.2.5. 

 

 There are several noteworthy trends that appear in Table 6.2.1.1.  Notice that as 

the resolution increases the entropy and shock thickness values converge to a single value 

for a given viscosity model and Mach number.  The NS converged value for entropy for 

Mach 1.55 for the constant viscosity model is 16.52 KJ/Kg*K.  This value compares 

favorably to the analytic solution value of 16.49 KJ/Kg*K.  The NS value for shock front 

thickness of 2.97 zeta compares favorably to the analytic solutions value of 3.10 zeta. 

This trend indicates that the resolution study worked as anticipated with accuracy 

increasing with increased resolution.  The NS code predicted values for entropy 

production undershoot the anticipated results by a significant margin at low resolution as 
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compared to the entropy production values at higher resolution.  The same trend is 

displayed for the shock front thickness (ST).  For ST values at low resolution the NS 

code predicts too large a value for the shock front thickness, however as the resolution is 

increased the results improve depending upon the viscosity model used in the simulation.  

The results contained in Table 6.2.1.1 show that the viscosity model plays more of a role 

in the calculation of the width of the shock front as compared to entropy production.  The 

Power Law viscosity model outperforms the constant viscosity assumption and the 

Maxwell viscosity model irrespective of the resolution used.  The Maxwell viscosity 

model returns a value for viscosity that is too large for the given conditions and as a 

result over dampens the shock and spreads out the shock front.  Constant viscosity makes 

the shock front too thin at higher Mach numbers which conflicts with experimental data 

[28].  The experimental data shows that in a gas the shock front starts off at some finite 

value at a Mach number around 1 and then reaches a minimum near Mach 3.5 and once 

again thickens as the Mach number continues to increase.  Since the constant viscosity 

model doesn’t adjust the viscosity to changes in pressure or temperature the predictions 

of a progressively thinner shock front with increasing Mach number falls in line with 

expectations.   

The analytic solution results are contained in Table 6.2.1.2.  It should be noted 

that the analytic solution assumes that viscosity is constant and doesn’t change with 

temperature or pressure.  That is why the shock thickness (ST) values listed in Table 

6.2.1.2 continue to decrease as Mach number increases.  The entropy values shown in 

Table 6.2.1.2 were calculated using the change in entropy equation for an ideal gas.  
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Table 6.2.1.2: Analytic results for shock front thickness and the change in entropy. 

ST ΔS [KJ/Kg*K] ST ΔS [KJ/Kg*K] ST ΔS [KJ/Kg*K]

3.10 16.49 0.72 224.55 0.23 738.31

Mach # 1.55 Mach# 3.38 Mach #9

 
 

Figure 6.2.1.1 graphs the change in entropy as a function of Mach number for the three 

viscosity models used in this work.  As seen in Fig. 6.2.1.1 the effect of the viscosity 

model on entropy is small except at higher Mach numbers where it appears that use of 

Maxwell’s viscosity model results in the largest amount of entropy produced as compared 

to the other two models and the Power Law model returning the smallest entropy 

production value.  The ideal gas entropy production values on Fig. 6.2.1.1 were generated 

using equation 6.2.4.  There is good agreement between the numeric solutions and the 

ideal gas analytic solution at low Mach numbers before deviating away from the ideal gas 

analytic solution at higher Mach numbers.  The Maxwell viscosity model has the best 

prediction of entropy production values when compared to the ideal gas analytic solution. 
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Figure 6.2.1.1:  Change in Entropy vs. Mach number for the ideal gas change in entropy equation 

and the three viscosity models; constant viscosity, Maxwell viscosity, Power Law viscosity. 

 

 Figure 6.2.1.2 graphs reciprocal shock thickness versus Mach number.  As seen in this 

figure the assumption that viscosity remains constant across a shock front and remains unaffected 

by temperature or pressure adversely affects the density gradient and causes poor predictions for 

the reciprocal shock thickness.  
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Figure 6.2.1.2:  Reciprocal shock thickness versus Mach number.  The constant viscosity line 

indicates that the assumption of constant viscosity does not work well when using the density 

gradient to determine reciprocal shock thickness. 

 

Figure 6.2.1.3 is the same graph as Fig. 6.2.1.2 except that the constant viscosity data is 

removed from the graph permitting closer inspects of the variable viscosity models, the 

Power Law model and Maxwell’s viscosity model, and Alsmeyer’s experimental data 

[28].  The important feature of Fig. 6.2.1.3 is that is shows that the shock front is thicker 

at lower Mach numbers, reaching a maxima near 3.5, and then decreases as the Mach 

number increases as expected but then the shock front thickens again at higher Mach 

numbers.  The experimental data by Alsmeyer also exhibits this trend [28].   
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Figure 6.2.1.3:  Reciprocal Shock Thickness versus Mach number.  Note the minimum shock 

thickness occurs near Mach # 3.5. 

 

6.3 Analytic Solution 

 
 The full derivation of the analytic solution to a one-dimensional stationary shock 

wave in a gas is available in the open literature [29, pg. 150]; the results are presented 

below for completeness.  The result of this derivation is a non-linear closed form solution  

 
  1 0

1
exp 1 ,Ma




   
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This solution is transcendental in which is the dimensionless velocity defined as the 

local velocity νx by the upstream velocity ν1, where  = νx/ ν1.  The dimensionless spatial 

coordinate ζ is defined by the relation x/λ, where x is the current position in the domain 
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and λ is the mean free path of the gas upstream of the shock, and ζ0 = x0/λ.  A solution for 

equation 6.3.1 is obtained through the bisection method found in Numerical Recipes.  

Thus the analytic solution can be compared with the NS solutions and the experimental 

data obtained from the literature [28]. 

Figure 6.3.1 compares the analytic solution to the numeric solution and the 

experimental data for argon gas with an inlet Mach number of 9, Pr is 2/3, R is 208.1 

J/Kg*K, initial density is 1.62 Kg/m
3
, and γ is 5/3.  Figure 6.3.1 contains several data sets 

of the NS solution and displays them according to grid spatial resolution.  As seen in Fig 

6.3.1 there is good agreement between the analytic and numeric solutions.  Note that as 

the resolution increases the numeric solution converges to the analytic solution which is 

as expected since they are both assuming constant viscosity.  The rise time of shock front 

is too rapid for the analytic and numeric solutions as compared to the experimental data.  

The analytic and numeric solutions are predicting a nearly instantaneous change in the 

thermodynamic state of the gas whereas the experimental data shows that the change in 

state takes place over a finite distance and time.  
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Figure 6.3.1:  Analytic Solution versus Numeric Solution and Experimental Data for argon gas at 

Mach 9 assuming constant viscosity. 

 

Figure 6.3.2 compares the analytic and numeric solutions to the Mach 9 

experimental data.  In the numeric simulations the constant viscosity assumption was 

replaced with Maxwell’s viscosity model.  In general the numeric solution more closely 

matches the experimental data than does the analytic solution.  This suggests that the 

Maxwell viscosity model is an improvement over the constant viscosity assumption used 

for the analytic solution. 

 The results shown in Fig. 6.3.2 are replicated in Fig. 6.3.3.  The only difference 

between these two graphs is that the numeric solutions presented in Fig. 6.3.3 incorporate 

the Power Law viscosity model.  While the Power Law viscosity model is an 

improvement over the constant viscosity assumption it does not perform as well as 

Maxwell’s viscosity model under these prescribed conditions.  Nevertheless these results 

indicate that when applying the NS equations in one-dimensional plane flow to an ideal 

gas the temperature or pressure effects should be taken into account when calculating 

viscosity. 
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Figure 6.3.2:  Analytic Solution versus Numeric Solution and Experimental Data for argon gas at 

Mach 9 using Maxwell’s viscosity model. 

 

 
Figure 6.3.3:  Analytic Solution versus Numeric Solution and Experimental Data for argon gas at 

Mach 9 using the Power Law viscosity model. 

 

 Figure 6.3.4 compares the analytic and numeric solutions to the experimental data 

for argon gas at Mach 3.38.  Note the magnitude of the oscillations in the NS generated 

solutions.  These oscillations are damped as the resolution is increased.  At higher 

resolution the numeric data converges to the analytic solution at spatial grids greater or 

equal to 4800 cells.  The nearly vertical assent of the shock front for the numeric and 
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analytic solutions is substantially greater at Mach 3.38 as compared to the experimental 

data at Mach 9.  This indicates that as the shock front widens the worse the assumption of 

constant viscosity becomes. 

 
Figure 6.3.4:  Analytic Solution versus Numeric Solution and Experimental Data for argon gas at 

Mach 3.38 assuming constant viscosity. 

 

 Figure 6.3.5 and Fig. 6.3.6 shows the effect of the two temperature dependent 

viscosity models, the Power Law viscosity model and Maxwell’s viscosity model, on the 

NS equations ability to model the shock wave structure of argon gas at Mach 3.38.  The 

temperature dependent viscosity models perform better under these conditions than the 

constant viscosity case.  The Maxwell’s viscosity model produces the best results for the 

Navier-Stokes equations.  However, the numeric results for Mach 3.38 using Maxwell’s 

viscosity model do not follow the experimental data as well as in the Mach 9 results. 
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Figure 6.3.5:  Analytic Solution versus Numeric Solution and Experimental Data for argon gas at 

Mach 3.38 using Maxwell’s viscosity model. 

 

 
Figure 6.3.6:  Analytic Solution versus Numeric Solution and Experimental Data for argon gas at 

Mach 3.38 using the Power Law viscosity model. 

 

 The last experimental data set is for the 1.55 Mach number.  The results of this 

resolution study are similar to the results for the Mach 3.38 and Mach 9 cases.  The 

numeric simulation results generated using Maxwell’s viscosity model match up well to 

the experimental data in regards to shock front thickness.  The constant viscosity model 

predictions are too steep relative to the experimental data.  Power Law viscosity produces 
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results that are similar to the Maxwell viscosity model results.  Since these results are in 

line with the previous results no discussion will be presented here and the reader is 

encouraged to review the observation of the Mach 3.38 and Mach 9 cases. 

 
Figure 6.3.7:  Analytic Solution versus Numeric Solution and Experimental Data for argon gas at 

Mach 1.55 assuming constant viscosity. 

 

 
Figure 6.3.8:  Analytic Solution versus Numeric Solution and Experimental Data for argon gas at 

Mach 1.55 using Maxwell’s viscosity model. 
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Figure 6.3.9:  Analytic Solution versus Numeric Solution and Experimental Data for argon gas at 

Mach 1.55 using the Power Law viscosity model. 

 

In order to accurately model one-dimensional shock wave structures in 

compressible fluids with the dimensionless, second order accurate Navier-Stokes 

equations in finite difference form there are several important features needed and they 

are; a temperature and or pressure dependent viscosity model, a minimum grid resolution 

of four cells per unit length or at least ten cells across the shock front.  The temperature 

dependent viscosity models take into account that the viscosity of a compressible fluid 

increases with increasing temperature.  Without this adjustment to the viscosity value 

there is insufficient viscous dissipation within the shock front, which leads to over 

predicting the rise time and under predicting the shock width.  The minimum grid 

resolution becomes important as the Mach number increases because any simulation with 

a resolution below this threshold fails to run to completion because the gradients are too 

large to be numerically resolved using the NS equations.  At Mach numbers below Mach 

3 the grid resolution becomes less important because the shock front is near its maximum 

width value and all resolution cases tested produced valid results as in the Mach 1.55 case 
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study.  The total cells in the domain may be decreased if the total domain size is made 

smaller.  However, the downside is that shrinking the domain might artificially alter the 

shock thickness as a result of applying the boundary conditions too close to the shock 

structure.  Higher resolution near steep gradients is not sufficient to produce good results, 

because low resolution near the boundary edges produces spurious waves that interfere 

with the density gradient calculation producing erroneous results for reciprocal shock 

thickness. 

6.4 Momentum Flux 

 Consider the momentum conservation equation rewritten below.  It states that the 

time rate of change of momentum is equal to the gradient of the shear stress tensor minus 

the momentum flux minus the pressure. 

   
.xx

u ju P

t x x x

  
  

   
                                                                                     (6.4.1) 

Figure 6.4.1 is a graph of the dimensionless derivatives vs. the normalized position for 

argon gas at Mach 1.55 assuming constant viscosity.  This graph shows that the change in 

shear stress across the shock front is minimal and that the momentum flux is nearly 

identical to the pressure gradient across the shock front. 
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Figure 6.4.1:  Derivative contribution to the conservation of momentum equation for argon gas at 

Mach 1.55 assuming constant viscosity.   

 

Figure 6.4.2 is a graph of the dimensionless derivatives vs. the normalized position for 

argon gas at Mach 3.38 with constant viscosity.  Note that the dimensionless values have 

increased by an order of magnitude while the velocity has increased from Mach 1.55 to 

Mach 3.38. 

 
Figure 6.4.2:  Derivative contribution to the conservation of momentum equation for argon gas at 

Mach 3.38 assuming constant viscosity.   

 

Figure 6.4.3 is a graph of the dimensionless derivatives vs. the normalized position for 

argon gas at Mach 9 with constant viscosity.  Note that the dimensionless values have 

increased again by an order of magnitude while the velocity has increased from Mach 

3.38 to Mach 9.   
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Figure 6.4.3:  Derivative contributions to the conservation of momentum equation for argon gas 

at Mach 9 using the constant viscosity model.   

 

The general trends seen in Figures 6.4.1 – 6.4.3 is that as the Mach number increases the 

dimensionless derivative values increase.  Away from the shock front the derivative 

values go to zero.  The pressure and momentum flux gradients become more weighted 

towards the downstream high pressure side of the shock front while the shear stress 

gradient remains evenly weighted across the entire shock front.  The normalized position 

over which the derivatives change decreases as the Mach number increases so that the 

derivative gradient becomes steeper.  This particular trend is observed when using the 

constant viscosity model, which predicts that as the Mach number increases the shock 

front thickness decreases.  Using a temperature dependent viscosity model such as the 

Power Law or Maxwell’s viscosity model the shock front thickness starts at some finite 

value then decreases until it reaches a minimum value then increases again to some 

maximum value.  This trend is consistent with experimental data for various gases [28].  

This trend is also observed in Figures 6.4.4 – 6.4.6, which demonstrate the effect of using 

Maxwell’s viscosity model. 
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Figure 6.4.4:  Derivative contribution to the conservation of momentum equation for argon gas at 

Mach 1.55 using Maxwell’s viscosity model.   

 

 

Figure 6.4.5:  Derivative contribution to the conservation of momentum equation for argon gas at 

Mach 3.38 using Maxwell’s viscosity model.   

 

Figure 6.4.6:  Derivative contribution to the conservation of momentum equation for argon gas at 

Mach 9 using Maxwell’s viscosity model.   
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Figure 6.4.7 shows the effect of the Power Law viscosity model on the derivative 

contributions to the conservation of momentum.  The shock front thickness starts at some 

finite value in (a) then reaches a minimal value near (b) before it increases again in (c). 

 
                                                                             (a) 

 
                                                                            (b) 

 
                                                                                (c) 

 

Figure 6.4.7:  Derivative contribution to the conservation of momentum equation for argon gas at 

Mach1.55 (a), Mach 3.38 (b), and Mach 9 (c) using the Power Law viscosity model.   
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6.5 Energy Flux 

 The energy equation used in these simulations is presented below.  It states that 

the time rate of change of energy, which is power, is equal to the gradient of shear flux 

minus the work flux minus the heat conduction. 

   
.

xxu jHE q

t x x x

   
  

   
                                                                                    (6.5.1) 

 

Figure 6.5.1 shows how these gradients change across the shock front for argon gas at 

Mach 1.55, Mach 3.38, and Mach 9 assuming viscosity is constant.  Note that the work 

flux term remains relatively negligible despite the shock front thinning and the gradients 

becoming steeper as the Mach number increases. 
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                                                                               (a) 

 
                                                                               (b) 

 
                                                                                (c) 

Figure 6.5.1:  Derivative contribution to the conservation of energy equation for argon gas at 

Mach1.55 (a), Mach 3.38 (b), and Mach 9 (c) using constant viscosity. 

 

The same trends seen in the momentum derivatives, assuming constant viscosity, are displayed in 

Fig 6.5.1.  The shock front thickness is decreasing with increasing Mach number and the 

amplitude of the gradients is increasing with increasing Mach number.  Figure 6.5.2 and Figure 
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6.5.3 show the effect of the temperature dependent viscosity model on the time rate of change of 

energy. 

 
                                                                               (a) 

 
                                                                               (b) 

 
                                                                                (c) 

 Figure 6.5.2:  Derivative contribution to the conservation of energy equation for argon gas at 

Mach1.55 (a), Mach 3.38 (b), and Mach 9 (c) using Maxwell’s viscosity model. 
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                                                                               (a) 

 
                                                                               (b) 

 
                                                                                (c) 

Figure 6.5.3:  Derivative contribution to the conservation of energy equation for argon gas at 

Mach1.55 (a), Mach 3.38 (b), and Mach 9 (c) using the Power Law viscosity model. 
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6.6 Total Energy 

 The effect of the viscosity model on the total energy is negligible as shown in 

Figures 6.6.1 – 6.6.3.  The Mach number has the obvious impact of increasing the kinetic 

energy until the initial total energy and initial kinetic energy are nearly identical at higher 

Mach numbers. At high Mach numbers the total energy and kinetic energy are offset by 

minimal energy level available at room temperature for an ideal gas.  

 
Figure 6.6.1:  Total energy, kinetic energy, and internal energy vs. normalized position for argon 

gas at Mach1.55 assuming constant viscosity.   

 

 
Figure 6.6.2:  Total energy, kinetic energy, and internal energy vs. normalized position for argon 

gas at Mach 3.38 using Maxwell’s viscosity model. 
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Figure 6.6.3:  Total energy, kinetic energy, and internal energy vs. normalized position for argon 

gas at Mach 9 using the Power Law viscosity model. 

 

6.7 Viscous Dissipation and Heat Conduction 

Irreversibilities based on bulk thermodynamic concepts are used in this 

formulation instead of artificial viscosity. The bulk thermodynamic irreversibilities are 

shear stress and heat conduction.  In their discritized form heat conduction and shear 

stress are defined as: 
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Figures 6.7.1 – 6.7.3 show the dimensionless quantities for shear stress and heat 

conduction for argon gas at Mach 1.55, Mach 3.38, and Mach 9 respectively; assuming 

constant viscosity or using Maxwell’s viscosity model or the Power Law viscosity model.  

Note that the shear stress and heat conduction dimensionless quantities are of the same 

order of magnitude and therefore both sources of irreversibility are important and 

contribute to the dissipative process that replaces the artificial viscosity model.  This 
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equality in magnitude between viscous dissipation and heat conduction is gases may not 

be true in other mediums and may be the reason why these two sources of irreversibility 

have difficulty replaces artificial viscosity in those particular mediums. 

 
Figure 6.7.1:  Dimensionless shear stress and heat conduction vs. normalized position for argon 

gas at Mach1.55 assuming constant viscosity 

 

 
Figure 6.7.2:  Dimensionless shear stress and heat conduction vs. normalized position for argon 

gas at Mach 3.38 using Maxwell’s viscosity model. 
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Figure 6.7.3:  Dimensionless shear stress and heat conduction vs. normalized position for argon 

gas at Mach 9 using the Power Law viscosity model. 
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Chapter 7 

 

 

Liquids & Solids 

 

 
7.1 Introduction - Liquids 

 
 The one-dimensional second order accurate Navier-Stokes (NS) equations in 

finite difference form are applied to compressible Newtonian fluids.  The particular fluid 

studied in this work is liquid water due to the abundance of experimental data.  The NS 

equations and code are readily applicable to liquids because the formulation was derived 

for Newtonian fluids.  However, the equation of state will have to be modified from ideal 

gas to Mie-Grüneisen.  Material strength is typically ignored in liquids, therefore there is 

no need to include a strength of material model to account for plastic deformation and 

work.   

The equation of state used in the NS code changes from the ideal gas law to the 

Mie-Grüneisen equation of state [14].  The Mie-Grüneisen equation of state is applicable 

to liquids since they are compressible and fully consolidated.  Recall from Chapter 5 that 

the Mie-Grüneisen equation of state asserts that pressure is function of volume change 

and internal energy.  Using the Mie-Grüneisen equation of state and artificial viscosity 

KO does an adequate job of modeling shocks in liquids.  Therefore this work seeks to 

successfully model shock wave structures in liquids with the NS code using the Mie-

Grüneisen equation of state without the aid of artificial viscosity. 

 When working with the NS code the initial/boundary conditions are important 

because this code is used to numerically resolve the shock front.  In the case of 
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compressible substances the initial/boundary conditions are determined through the jump 

conditions which are function of γ, the ratio of specific heats, and Mach number.  In 

perfect gas simulations the upstream conditions before the shock in nondimensional form 

are  

1,                                                                                                                             (7.1.1) 
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Downstream of the shock in nondimensional form the jump conditions as a function of γ 

and Mach number are 
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The subscript s denotes the shocked region of the domain.   
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Simulating standing waves in a shock tube for an ideal gas is a relatively straight 

forward process.  Simulating liquids is complicated by the fact that the thermodynamic 

states are not merely some functional relation of γ, the ratio of specific heats, and Mach 

number.  The setup was further complicated by the need to transform a propagating wave 

to a standing wave, because the experimental data used for comparison involved a 

propagating wave.  In liquids and solids the symbol “γ0” refers to the Grüneisen 

parameter.  The upstream conditions before the shock in nondimensional form are 

0 ,
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The term refP refers to atmospheric pressure of 101.325kPa.  Downstream of the shock in 

nondimensional form the jump conditions are 
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The subscript s denotes the shocked region of the domain.  Implementing the boundary 

conditions for the solids and liquids becomes non trivial; the equation of state must return 

the same value as the Rankine Hugoniot equations.  The Rankine-Hugoniot equations 

that determine the density, pressure, and energy of the shock state are presented below; 
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Comparing the equations of state for the ideal gas to the Mie-Grüneisen and the pressure 

relationship obtained from the Rankine-Hugoniot relationships reveals that for the same 

parameters identical results are not obtainable. 

 (Ideal Gas),P RT                                                                                                (7.1.25) 
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Note that the ideal gas and Rankine-Hugoniot pressure equations are linear while the 

Mie-Grüneisen in nonlinear. 

 While undergoing dynamic loading a material follows a thermodynamic path that 

is described (shocks up) via the Rayleigh line, which is a combination of the continuity 

and momentum equations, to its final state.  If the Rayleigh line is plotted against the 
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Fanno line, which is a combination of the continuity and energy equations, the two lines 

will intersect one another twice on an enthalpy versus entropy plot.  The two points 

where they intersect represent the points where the conservation equations are satisfied 

which are the states before and after the shock.   

In pressure-density space the Fanno, Rayleigh, and Mie-Grüneisen equation are; 
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Note in Figure 7.1.1 that the Mie-Grüneisen equation intersects the Fanno and the 

Rayleigh line at the initial and jump states.  Figure 7.1.1 shows that in pressure-density 

space the Fanno and Rayleigh lines overlap and fall on top each other.   The Mie-

Grüneisen equation of state correctly predicts the shock state pressure and density as well 

as the upstream far field conditions.  The first intersection point shown in Fig. 7.1.1 

represents the liquid flowing left to right in the ground state.  The second intersection 

point represents the shocked liquid.  The red line represents the peak pressure after the 

shock determined from the jump conditions.  Given that this is a boundary value problem, 

the boundary values are set by the Rankin-Hugoniot equations.  However, if the selected 

equation of state fails to match the boundary conditions, the result of this mismatch will 

cause the numeric simulation to diverge.  The effect of this error is that throughout the 

computational domain the equation of state will predict a different pressure for a given 

strain compared to the boundary conditions.  The solution will deviate from the set 

boundary conditions creating erroneous step functions upstream and downstream of the 
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shock front which eventually will cause the solution to go awry.  It is interesting to reflect 

on this mismatch as it does not affect a wide host of hydrodynamic formulations.  This is 

because the use of artificial viscosity will dampen disturbances everywhere in the 

domain.  

 
Figure 7.1.1:  Dimensionless Pressure vs. Dimensionless Density for the Fanno, Rayleigh, and 

Mie-Grüneisen equations applied to water.  The red line represents the shock (jump) pressure. 
 

This problem results in numeric instability and the solution rapidly degrades because 

these errors cannot be smoothed out by the available thermodynamic irreversibilities i.e. 

viscous dissipation and heat conduction.  Nor can artificial viscosity negate the time 

evolved propagation of error.  There are several options to correct this problem.  One 

alternative would be to optimize the error associated with the Rankine-Hugoniot 

intersection with the equation of state.  Another alternative is to adjust the Grüneisen 

parameter used in the Mie-Grüneisen equation of state from the 0.1 value obtained in 
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open literature to 2.84 [30].  This new value causes the Mie-Grüneisen line to intersect 

the Fanno and Rayleigh lines at the first and second intersection points which represent 

the ground and shock state. 

For the implementation utilized here the Mie-Grüneisen γ0 equation (7.1.30), was 

adjusted so that the equation of state exactly matched the Rankine-Hugoniot equations at 

the shock locus.  Interestingly enough, this turns out to be a unique value, as will be 

illustrated here.  This is common practice for the Mie-Grüneisen equations of state when 

applied to ideal gases where it is assumed that the ratio of specific heat is equal to the 

Mie-Grüneisen gamma minus one, γ = γ0 – 1.  This identically insures that the Mie-

Grüneisen equation of state matches the Rankine-Hugoniot equations.  In fact this 

assumption, in the absence of a strain potential, reduces the Mie-Grüneisen to a perfect 

gas model. 

 In order to insure the equation of state intersects the pre- and post-shock states, 

we substitute jump conditions into the equation of state and solve for the new gamma, the 

resulting equation is: 
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For the specific case investigated here the Grüneisen parameter of 0.15 value obtained in 

open literature was set to 2.84.  This new value causes the Mie-Grüneisen line to intersect 

the Fanno and Rayleigh lines at a second intersection point which represents the shock 

state. 

 The simulation of liquids can become increasingly complicated because dynamic 

loading may potentially solidify the liquid.  If this occurs the physical models currently 
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included in code and the underlying assumptions made in its formulation are no longer 

sufficient to capture the physics of the problem.  Furthermore, the liquid may solidify 

upon isentropic release from the shock state.  In an effort to mitigate these problems the 

shock states were carefully chosen to avoid solidification during loading and solidifying 

upon release is a non issue in this work because the isentropic release phenomena was not 

studied or taken into consideration.  Figures 7.1.2 shows where the dynamic loading 

process is relative to the saturation dome. 

 
Figure 7.1.2:  Pressure vs. Specific Volume for water and includes saturation dome with constant 

entropy and temperature lines.  Note that the Mie-Grüneisen, Fanno line, and Rayleigh line are in 

the compressed liquid region away from the saturation dome and the solid (ice) space. 

 

 For water a low pressure case and a high pressure case were tested.  The low 

pressure case is based on the work of K. Nagayama et al [31].  The data was obtained 

from a gas gun experiment.  Details concerning gas gun experimental setup and 

2nd Intersection 

1st Intersection 
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procedures are contained in Chapter 5 of this work.  Figure 7.1.3 shows the initial 

conditions and the two shock conditions tested on a phase diagram of water. 

  
Figure 7.1.3:  Phase diagram of water.  Point one is the initial condition used for the two water 

cases.  Point two is the shock state for the low pressure water case and point three is the shock 

state for the high pressure water case.  Note all three states are in the liquid phase away from 

either the solid or vapor space.  Graph is taken from Wikipedia (Phase Diagram).  

 

Important parameters related to three water cases, low pressure water, high pressure 

water, and high pressure water with a larger domain and smaller time step are contained 

in Table 7.1.1. 
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Table 7.1.1:  Material parameters for water. 

  

Low Pressure                  

Water 

High Pressure                  

Water 

High Pressure                  

Water 

 

γ00 2.8381831 2.9543413 2.9543413  

ρ 1000 kg/m
3
 1000 kg/m

3
 1000 kg/m

3
 

 

µ 1.003e-3 kg/m/s  1.003e-3 kg/m/s  1.003e-3 kg/m/s   

α 1.00E-05 1.00E-04 1.00E-05  

λ 6.2E-10 m 6.2E-10 m 6.2E-10 m  

Pr 7.01 7.01 7.01  

CV 1385 J/kg*K 1385 J/kg*K 1385 J/kg*K  

C0 1450 m/s 1450 m/s 1450 m/s  

hx 12.5 12.5 25  

s 1.99 1.99 1.99  

UP 387.5 m/s 858 m/s 858 m/s  

The second high pressure water case is a repeat of the first case with the domain size increased by 

a factor of two. 
 

In the experiment for the low pressure water case a copper flyer plate with a measured 

velocity of 412 m/s impacted a PMMA drive plate launching a shock wave into a liquid 

water sample.  The shock pressure and density in the water sample was determined using 

the jump conditions.  The peak pressure is 0.862 GPa and the shock density 

corresponding to that pressure is 1.211 g/cc.  In keeping with the ideal gas analysis the 

results of applying the Navier-Stokes formulation with the Mie-Grüneisen equation of 

state will be analyzed using the individual components of the conservation equations.  

Figure 7.1.4 is graph of the momentum flux versus normalized position.  The flux terms 

represent the right hand side of equations (6.4.1) and (6.5.1).  As seen in Fig. 7.1.4 the 

change in shear stress per unit length is small when compared to the pressure gradient 

and momentum flux. 
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Figure 7.1.4:  Dimensionless Derivatives versus Normalized Position for the conservation of 

momentum equation in water. 

 

The total domain is shown in Fig. 7.1.4 for comparative purposes.  While it appears in 

dimensionless space that this shock front is substantially larger than the ideal gas in fact it 

isn’t because in dimensional space the shock front is smaller for water than for argon gas.  

Shock front thickness values in units of nm will be presented later in Table 7.2.1.  Figure 

7.1.5 is a graph of the energy derivatives versus normalized position.  Note the significant 

amount of fluctuations taking place away from the shock front which is centered near 

zeta zero.  At this point in the simulation the high frequency fluctuations have reflected 

off of the boundaries and are heading back toward the shock front.  Plots derived from 

data obtained earlier in the simulation do not show unobstructed views of the energy flux 

terms in the shock front.  Despite the appearance of the reflected numeric noise in the 

domain within the shock front the conduction gradient is small relative to the energy 

associated with viscous shear, momentum and enthalpy. 
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Figure 7.1.5:  Dimensionless Derivatives versus Normalized Position for the conservation of 

energy equation in water. 

 

The dominate term across the entire domain in the conservation of energy equation 

appears to be the product of j*H where j is the momentum = ρu and H is enthalpy, H = u 

+ ρv.  Figure 7.1.6 shows the total energy, defined here as the internal and kinetic, as 

well as the kinetic and internal energy individually.  The results of this plot are similar to 

the ideal gas plot with the distinction that the kinetic energy dominates upstream of the 

shock.  This occurs because of the transformation of the propagating shock to the 

standing shock wave where the liquid is assumed to be flowing at a specified speed 

through the standing shock wave.  The relatively large kinetic energy, as compared to the 

internal energy, creates numeric difficulty when resolving the temperature.  Since the 

internal energy is the difference of two large numbers, which is then used in the 

denominator of the Temperature calculations, see equation (7.1.21), the result is numeric 

sensitivity of the Temperature calculations.  This variability in Temperature “feeds-back” 

into the overall simulation through the presence of the conduction term in equation 

(6.5.1).  A way to improve the current technique is to formulate an evolution equation for 

Temperature directly based on the conservation equations.  This would be to take the dot 

product of the momentum equation with velocity to arrive at an equation for mechanical 
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energy and subtract this equation from the total energy equation.  The result would be an 

evolution equation for temperature alone ([29], pg 81). 

 
Figure 7.1.6:  Total Energy, Kinetic Energy, and Internal Energy versus Normalized Position in 

water. 

 

Another very interesting characteristic of the energy distribution of the liquid versus the 

gas, Figure 6.6.1, is that the total energy decreases through the shock for the liquid 

whereas the total energy increased for the gas.  In addition for the gas there was an 

exchange of dominate energy from kinetic to internal as the material passed through the 

shock, whereas the liquid is completely dominated by kinetic energy both fore and aft of 

the shock. 

Figure 7.1.7 is a graph of momentum versus normalized position.  Note the small 

scale on the vertical axis.  Since momentum must be conserved, even through the shock, 

changes in momentum represent error (i.e. residual) in the converged solution.  This 

zoomed in view is provided to show how momentum changes through the computational 

domain.  There is variation in the momentum through the shock, centered near zero, 

which represents residual.  Note the large deformation downstream of the shock front, 

between zeta 4000 and 6000.  This wave packet originates as a result of the initial 

conditions set to a step function, which contains near infinite gradients, and propagates 

down stream as the shock profile evolves toward a steady state solution.  The wave 



92 

 

packet eventually should pass out of the domain.  The presence of this disturbance, and 

the residual near zero, indicates that the solution is either not converged or that the 

irreversible processes included in the formulation aren’t significant enough to eliminate 

all of the spurious waves (numeric noise) that form in shock front.  To some degree this 

plot which illustrates the momentum is not yet constant, indicates convergence of the 

solution.  For a completely converged solution the dimensionless momentum should be a 

constant through the shock, from negative to positive infinity. 

 
Figure 7.1.7:  Momentum versus Normalized Position in water. 

 

Figure 7.1.8 presents the nondimensional shear stress and heat conduction; the heat 

conduction is small in comparison to the shear stress.  This is quite different than the gas 

where the conduction and shear stress terms were closer in magnitude, see Figures 6.7.1-

6.7.3.  Recall that change in shear stress is negligible in comparison to the pressure 

gradient and momentum flux in the conservation of momentum equation. 
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Figure 7.1.8:  Conduction and Shear Stress versus Normalized Position in water. 

 

These results for liquid water are in stark contrast to the ideal gas results in that 

the irreversible terms are small for liquid water as compared to the ideal gas argon.  This 

view point is all supported by the fact that the time step had to be lowered in order for the 

solution not to go awry and the domain size had to be enlarged as well.  These factors 

made it necessary to run the simulation for a minimum of 50 million iterations and the 

time step was decreased by one order of magnitude.   

Figure 7.1.9 is a plot of the dimensionless density versus normalized position for 

water, at various snapshots in time.  Note in Fig. 7.1.9 that the density values are offset 

from one another on the vertical axis for improved visualization of the shock evolution 

and the propagation of wave packets (numeric noise).  Not that the wave packets 

continually move out away from the shock front towards the boundary.  The domain size 

was increased to allow more time for the viscous dissipation and shear stress to reduce 

these wave packets.  If the domain size was not increased then these wave packets would 

hit the boundary and return to the shock front causing the solution to go awry.  The reader 

should keep in mind that the wave packets, and their suppression, are a complete artifact 

of the numeric approach taken here.  Since the initial condition of the shock was a step 
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function, something that could not be duplicated experimentally, the resulting wave 

packets and their evolution could not be observed in nature.  

 
Figure 7.1.9:  Density profiles versus Normalized Position in water.  Note that in the last profile 

graphed that the spurious waves are nearly all removed. 

 

 In Fig. 7.1.10 momentum is shown to be affected by the domain size. 

  
Figure 7.1.10:  Momentum versus Normalized Position in water.  Note the disturbance to the left 

of the shock front which is located at zero. 

 

Figure 7.1.10 indicates that a spurious wave packet has reflected off of the left boundary 

is now returning toward the shock wave.  In order to clarify what the disturbance is the 

time evolved density profile is presented next in Fig. 7.1.11. 

Increasing time 
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Figure 7.1.11:  Density profiles versus Normalized Position in water.  Note that in the last profile 

graphed that the spurious waves are nearly all removed. 

 

While it appears that all the numerical noise is eliminated from the last density profile 

shown (top) in Fig. 7.1.11 that is not the case if one zooms in on the last profile.  Notice 

that the spurious waves are moving back and forth in the domain until it appears that 

more noise is being generated partially though the simulations.  This simulation was 

carried out for 50 million iterations just as the lower pressure case was.  It appears that 

while a lower time step can be used to resolve this shock front care must be take to halt 

the simulation at an appropriate time so that the spurious waves don’t have time to reflect 

back and obscure the results.  Finally it appears that it is best to use a slower time step in 

order give time for the spurious wave packets to dissipate before they encounter either 

boundary. 

 Figure 7.1.12 is graph of total energy, kinetic energy, and internal energy versus 

normalized position.  As expected there is a larger increase in the internal energy as 

opposed to the lower pressure case. 
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Figure 7.1.12:  Total Energy, Kinetic Energy, and Internal Energy versus Normalized Position in 

water. 

 

Figure 7.1.13 shows a significant increase in the conduction term, however when 

compared to other terms in the energy equation conduction remains small. 

 
Figure 7.1.13:  Dimensionless Derivatives versus Normalized Position for the conservation of 

energy equation in water. 

 

Figure 7.1.14 shows that as velocity is increased and subsequently there is a larger 

change in pressure and momentum flux that the shear stress becomes relatively smaller.  

Figure 7.1.15 illustrates that at high pressures conduction remains relatively small 

compared to the shear stress tensor. 
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Figure 7.1.14:  Dimensionless Derivatives versus Normalized Position for the conservation of 

momentum equation in water. 

 

 
Figure 7.1.15:  Conduction and Shear Stress versus Normalized Position in water. 
 

 The effect of the domain size and time step is further examined by doubling the 

domain size and repeating the high pressure simulation with a smaller time step.  In Fig. 

7.1.16 the conservation of momentum graph shows the spurious waves moving away 

from the shock front towards the boundaries. 
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Figure 7.1.16:  Dimensionless Momentum versus Normalized Position for water with increased 

domain size. 
 

This point is reinforced in Fig. 7.1.17  - Fig. 7.1.19 which show the time evolved arbitrary 

dimensionless density, dimensionless pressure, and dimensionless temperature profiles 

for water with increased domain size. 

 
Figure 7.1.17:  Arbitrary Dimensionless Density versus Normalized Position for water with 

increased domain size. 
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Figure 7.1.18:  Dimensionless Pressure versus Normalized Position for water with increased 

domain size. 
 

 
Figure 7.1.19:  Dimensionless Temperature versus Normalized Position for water with increased 

domain size. 
 

Note in Fig. 7.1.17 – Fig. 7.1.19 that the dimensionless domain size has been increased 

from a value of 7500 to 15000.  In the particular graphs the domain size may have been 

changed in order to maximize the viewing of the spurious waves moving out towards the 

boundaries.  With the increased domain size and smaller time step the spurious waves 

appear to be diminishing in magnitude as they propagate out towards the boundaries and 

in case of the last presented profiles in Figs. 7.1.17 – 7.1.19 seem to have disappeared all 

together.  Figures 7.1.20 – 7.1.23 present the individual derivative contributions for the 

conservation of momentum and energy along with the relative contributions of the 

Increasing time 
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viscous shear tensor and heat conduction terms and the kinetic, internal and total energy 

summation as affected by domain size. 

 
Figure 7.1.20:  Dimensionless Derivative versus Normalized Position for the conservation of 

momentum for water with increased domain size. 
 

 
Figure 7.1.21:  Dimensionless Derivative versus Normalized Position for the conservation of 

energy for water with increased domain size. 
 

 
Figure 7.1.22:  Heat Conduction and Shear Stress versus Normalized Position for water with 

increased domain size. 
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Figure 7.1.23:  Total Energy, Kinetic Energy, and Internal Energy versus Normalized Position for 

water with increased domain size. 
 

Note that by increasing the domain size and decreasing the time step that the high 

frequency fluctuations, spurious waves, numeric noise, and negative feedback are 

minimized.  However, care must be taken to insure that resolution throughout the domain 

remains relatively high to reduce the chances of steep gradients forming at the boundaries 

or around the shock front.    

 Figure 7.1.24 compares the experimental pressure signature to the pressure 

signature predicted by the NS code.  The data presented here comes from flyer plate 

experiments performed by Morley [32].  The data was obtained from Manganin gage 

trace but was converted to a profile in space by multiplying by the shock speed of water, 

3158 m/s.  The particle speed in the water sample is 858 m/s as compared to 387.5 m/s in 

the lower pressure case discussed earlier.  The dimensionless experimental pressure 

signature was nondimensionlized in the same way as the computational pressure 

signature, namely dividing the dimensional pressure signature by the far field dynamic 

pressure (ρ∞C∞C∞).  The far field dynamic pressure is found by multiplying the far 

field density of water 1000 g/m
3
 times the far field sound speed squared which is 1450 

m/s.  The experimental pressure signature is immediately relieved upon reaching its peak 
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pressure.  The experimental pressure signature shown in Fig. 7.1.24 has been shortened 

because where it currently ends another reshock starts.  Note that the peak pressure 

predicted using the NS code is an under prediction of the experimental peak pressure 

which is a signature trace of a reshock of the water sample. 
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Figure 7.1.24:  Experimental pressure signature versus computational pressure signature 

generated with NS code for high pressure water case. 

 

Table 7.1.1 compares the shock front thickness values obtained from experiments 

with those obtained from numeric simulations.  The numeric simulations under predicts 

the shock front thickness in water at high pressure.  The pressure signature for the low 

pressure case was not available therefore the shock thickness could not be determined.  

Vogel and Busch [33] observed shock front thicknesses values between 200-300 µm, 

which is in good agreement with the 253 µm value obtained in this work.  The predicted 

shock thickness value of 868 nm using the NS code is narrow in comparison to what is 
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observed experimentally.  There could be several reasons for this discrepancy.  The gas 

simulations exhibited sensitivity of shock thickness to the dynamic viscosity (i.e. shear 

viscosity); whereas the viscosity for the water simulations was held constant.  Although 

the dynamic viscosity for liquids exponentially decreases as a function of temperature, 

the functionality of the liquid viscosity at these pressures and temperatures is not well 

understood.  The dynamic viscosity of water becomes super critical near 800 K.  In 

addition, the formulation utilized here invoked the hypothesis that the ratio of the bulk 

viscosity to the shear viscosity is 4/3, whereas at standard pressure and density, this ratio 

is more like three.  Again the validity of this assumption is not well understood for the 

thermodynamic states of interest here. 

Table 7.1.2:  Shock front thickness values in water. 

Water SFT-Simulations SFT-Experiment Entropy-Simulations Entropy-Calculations Nist Data 

Low Pressure 310 nm NA 1.71 KJ/Kg*K 0.879 KJ/Kg*K 0.712 KJ/Kg*K 

High Pressure 868 nm 253 µm 1.51KJ/Kg*K 0.230 KJ/Kg*K NA 

 

7.2 Introduction – Solids 

 

 The solid used in this work is porous silica.  Porous silica of densities 0.1 g/cc, 

0.25 g/cc, and 0.77 g/cc will be studied.  This material was chosen because it represents a 

transitional material between liquid and solid; transmitted waveforms do not exhibit HEL 

behavior and granular materials have strain rate shear stress.  With regard to experimental 

measurements, a highly porous material exhibits relatively long structured compaction 

wave forms.  However, the mechanisms for irreversibilities in granular materials are 

more complicated as compared to the liquids.  These mechanisms include not only heat 

conduction and some viscous shear stress, through either bulk mechanics or localized 

plastic flow, but also inter-granular friction and grain fracture.   
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The data and material parameters used here were determined through 

experimental work by Borg et al [4, 25].   

Table 7.2.1:  Material parameters for porous Silica. 

  

Silica                             

65% Porosity 

Silica                             

89% Porosity 

Silica                                

95% Porosity 

γ00 0.1918117 0.7240199 0.1016222 

ρ 100 kg/m
3
 250 kg/m

3
 770 kg/m

3
 

µ 4.40E-5 kg/m/s 1.10E-4 kg/m/s 3.39E-4 kg/m/s 

α 1.00E-07 1.00E-07 1.00E-05 

λ 1.61E-10 m 1.61E-10 m 1.61E-10 m 

Pr 0.91 2.27 7.00 

CV 86.2 J/kg/K  86.2 J/kg/K  86.2 J/kg/K  

C0 121 m/s 97 m/s 1070.9 m/s 

hx 0.25 0.25 0.25 

s 0.9736 1.2509 0.4045 

UP 704 m/s 770 m/s 934 m/s 

 

The highest shot velocities available for the three densities will be used in the simulations 

presented in this work.  It is of interest to this work to determine if the NS formulation 

can numerically resolve the shock front a distended material.  It is assumed that porous 

silica has no material strength like a liquid until it is fully consolidated thereby 

eliminating the need to include a strength of material model into the formulation.  The 

simulations of the 0.1 g/cc and 0.25 g/cc samples were run out to 75 million iterations, 

while the 0.77 g/cc silica sample was stopped at 50 million iterations because it was 

assumed that either convergence or reflected noise from boundaries would have arrived 

to distort the shock front because the time step (α) used was two orders of magnitude 

larger than in the two cases.  The results indicate a high sensitivity to the time step size.  

If the time step used was too large the solution would quickly go awry because the 

gradients would not be resolved within the given time step.  If the time step chosen was 
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too small the number of iteration needed for convergence would make the particular 

simulation impractical.   

Figure 7.2.1 is a graph of dimensionless density versus normalized position for 

porous silica of density 0.1 g/cc, 0.25 g/cc, and 0.77 g/cc.  For the most distended case, 

porous silica with a density of 0.1 g/cc, high frequency disturbances appear in the density 

profile as the solution converges.  Note in Fig 7.2.1 (b) the appearance of large waves 

upstream of the shock front.  They appear to be moving to the left and increasing in 

number.  These waves are not thought to be spurious waves or numerical noise because 

of their size and their duration in the computational zone.  It also appears that they are 

beginning to immerge downstream of the shock front leading edge.  In Fig 7.2.1 (c) the 

spurious waves seen upstream of the shock dissipate as they move towards the left 

boundary. 
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                                                                               (a) 

 
                                                                               (b) 

 
                                                                               (c) 

Figure 7.2.1:  Dimensionless Density versus Normalized Position for porous silica with a density 

of 0.1 g/cc (a), 0.25 g/cc (b), and 0.77 g/cc (c). 

 

Figure 7.2.2 shows the evolution of the dimensionless pressure profile for all three silica 

samples is smoothing out and becoming less steep as the simulations progress in time.  

Note that for two of silica samples densities 0.1 g/cc and 0.25 g/cc respectively that the 

pressure values are initially non physical because the code is predicting negative 
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pressures.  As the simulations progress the non physical negative pressure profile is 

eliminated over a finite number of iteration until the pressure profile behaves as expected, 

which is a smooth transition from low pressure to high pressure.  Porous silica with a 

density of 0.77 g/cc behaves correctly replicating fully consolidated behavior.  

 
                                                                               (a) 

 
                                                                               (b) 

 
                                                                               (c) 

Figure 7.2.2:  Dimensionless Pressure versus Normalized Position for porous silica with a density 

of 0.1 g/cc (a), 0.25 g/cc (b), and 0.77 g/cc (c). 
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Figure 7.2.3 shows the time evolution of the temperature profile for all three densities 

used in this work.  Note in Fig 7.2.3 in both (a) and (b) that the vertical curve is the 

temperature profile of the first iteration of the simulation.  As can be seen in Fig 7.2.3 the 

temperature profile continually improves during the simulation forming a gradual slope.  

It appears from studying the results presented in Fig 7.2.3 that the solution improves with 

respect to temperature regardless of the initial porosity.  Figure 7.2.3 (c) appears different 

because a larger offset was used in graphing the data so the subsequent iterations would 

appear above the initial solution instead of overlapping like in (b) and (a).  The 

overlapping technique used in Fig 7.2.3 (a) and (b) show in a more obvious manner the 

change in the slope of the shock rise for temperature.  The benefit of using a larger offset 

like the one used in Fig 7.2.3 (c) is that it permits visualization of the wave packets.  

Notice in Fig 7.2.3 (c) that no wave packets appear either upstream or downstream of the 

shock front.  This seems to indicate that the 0.77 g/cc sample behaves more like fully 

consolidated silica and less like the more porous samples tested in this work.  A viable 

solution is more easily obtained for the less porous samples of silica such as the 0.77 g/cc 

case and more slowly for the most distended case which is the 0.1 g/cc case. 
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                                                                               (a) 

 
                                                                               (b) 

 
                                                                               (c) 

Figure 7.2.3:  Dimensionless Temperature versus Normalized Position for porous silica with a 

density of 0.1 g/cc (a), 0.25 g/cc (b), and 0.77 g/cc (c). 

 

The next graph Fig. 7.2.4 is for momentum which is a good indicator for when the 

solution has converged.  Note in Fig 7.2.4 that the steepness of the momentum reduces as 

initial porosity is decreased.  In Fig 7.2.4 (c) that in the shock front which is centered near 

Increasing time 
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zero in dimensionless space that the momentum change across the shock is small.  

However, there is a large displacement in the downstream field in Fig 7.2.4 (c).  The 

appearance of a large wave downstream of the shock front and a smaller wavelet 

upstream of the shock are indicative of wavelets propagating out towards the boundaries.  

These waves need to be studied more because their appearance was not expected based 

on the momentum profile in Fig 7.2.4 (a) and (b), which seem like they are either fully 

converged or nearly converged solutions because the absence of spurious waves (b) or 

the minimization of such waves. 
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                                                                                (a) 

                                                                                (b) 

  
                                                                              (c) 

Figure 7.2.4:  Dimensionless momentum versus normalized position for porous silica with a 

density of 0.1 g/cc (a), 0.25 g/cc (b), and 0.77 g/cc (c). 
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In order to shed some light the appearance of these waves in Fig. 7.2.4 (c) graphs of the 

total energy, momentum and energy fluxes will be presented.  Figure 7.2.5 graphs the 

total energy of the three densities studied.  The steep change in momentum depicted in 

Fig. 7.2.4 (a) and (b) are replicated here in Fig. 7.2.5 (a) and (b).  The smoothness of Fig. 

7.2.4 (a) and (b) are replicated in Fig. 7.2.5 (a) and (b) away from the shock front.  It 

appears that the solution obtained for porous silica with a density of 0.77 g/cc may not be 

fully converged at 50 million iterations.  The wavelets seen in Fig. 7.2.4 (c) are less 

pronounced in the total energy graph of Fig. 7.2.5 (c).  The magnitude of waves in 

dimensionless space suggests that these waves can be attributed to mere numeric noise or 

reflected noise that is now geometrically increasing.  Subsequent investigation and 

plotting of the solution as it evolved shows that these waves present in Fig. 7.2.5 (a) and 

(b) are caused by numeric instability originating within the shock and growing as the 

solution progresses.  Merely rerunning the solution may eliminate these waves; however 

when considering the time step and grid spacing used to obtain these solutions it may be 

impractical to wait for these waves to move away from the shock front.  It becomes 

impractical because the waves may be generated within the shock front itself, which 

means a wavelet would always be present and eventual the wavelets would reflect back 

into the domain at the boundary causing the solution to go awry.  Instead an entire new 

setup such as material parameters used in the simulation, the domain size and time step 

used may have to be adjusted.  Many of the parameters used in the simulation of the 

porous silica are not available such as Prandtl number and viscosity, because these 

parameters are used in reference to fluids.  Therefore density weighted averaging was 

used to obtain the necessary values.  Since these values are only present in the shear 
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stress tensor and heat conduction terms and only the change in these quantities is used in 

the simulations there relative importance is thought to be small.  

 
                                                                               (a) 

 
                                                                               (b) 

 
                                                                                (c) 

Figure 7.2.5:  Dimensionless Energy versus Normalized Position for porous silica with a density 

of 0.1 g/cc (a), 0.25 g/cc (b), and 0.77 g/cc (c). 
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Figure 7.2.6 and Fig. 7.2.7 show the individual contributions to the momentum and 

energy conservation equations. 

 
                                                                               (a) 

 
                                                                               (b) 

 
                                                                                (c) 

Figure 7.2.6:  Dimensionless Derivative versus Normalized Position for the momentum equation 

applied to porous silica with a density of 0.1 g/cc (a), 0.25 g/cc (b), and 0.77 g/cc (c). 
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Note in Fig. 7.2.6 and Fig. 7.2.7 that the magnitude of the derivatives are orders of 

magnitude larger for the 0.1 and 0.25 g/cc cases as opposed to the 0.77 g/cc case.     

 
                                                                               (a) 

 
                                                                               (b) 

 
                                                                                (c) 

Figure 7.2.7:  Dimensionless Derivative versus Normalized Position for the energy equation 

applied to porous silica with a density of 0.1 g/cc (a), 0.25 g/cc (b), and 0.77 g/cc (c). 
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The results in (c) of Fig. 7.2.7 and Fig. 7.2.8 show that the 0.77 g/cc case behaves 

differently than the 0.1 g/cc and 0.25 g/cc cases. 

 
                                                                               (a) 

 
                                                                               (b) 

 
                                                                                (c) 

Figure 7.2.8:  Dimensionless Flux versus Normalized Position for the shear stress tensor and heat 

conduction for porous silica with a density of 0.1 g/cc (a), 0.25 g/cc (b), and 0.77 g/cc (c). 
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Figure 7.2.8 shows that as initial porosity is increased heat conduction dominates the 

shear stress tensor, and conversely as initial porosity is decreased the magnitude of the 

shear stress tensor increases.  As noted in Fig. 7.2.8 (c) the shear stress tensor is equal to 

the heat conduction. 

Table 7.2.1 contains the calculated shock front thickness values in nm for porous 

silica, liquid water, and argon gas.  The trends seen in Table 7.2.1 are not consistent with 

respect to the anticipated values because they are too small.  Initial porosity has a 

significant effect on the shock thickness values for the porous silica.  Each silica sample 

has a different range of values for shock thickness which may be indicative of a 

compaction wave versus a shock wave.  Pressure signatures for porous silica indicate a 

broad shock front in which porosity is removed from the test sample.  In general this 

compaction wave is much thicker than a shock wave in a fully consolidated material.  

The numeric simulations of porous silica under predict shock thickness values.   

The shock front thickness values for liquid water are not consistent with what is 

expected.  While shock front thickness increases as the pressure increases the values are 

entirely too large.  The shock front in a liquid should be smaller than that of a gas.  The 

results from the numeric simulations of liquid water over predict the shock thickness 

values.   

The shock front thickness values determined from the numeric simulation of the 

ideal gas argon are consistent with both analytic and experimental data.  The values 

shown in Table 7.2.1 for argon were found using the Power Law viscosity model.  The 

Power Law viscosity model was chosen because it most closely followed the 

experimental data available in open literature [28].  In experiments that directly measured 
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shock front thickness as a function of Mach number the results resemble a bell curve.  At 

lower Mach number the shock front is some finite thickness which reduces until it 

reaches a minimum value and then proceeds to increase again as the Mach number 

increases.  Shock front thickness values obtained from numeric simulations of argon gas 

are quantitatively accurate and consistent with experimental data and analytic solutions. 

Table 7.2.2:  Shock front thickness values in nm for porous silica, water, and ideal gas argon. 

Solids Silica Shock Front Thickness 

  

0.10 g/cc 1.6 nm → 16 nm 

0.25 g/cc 4.0 nm → 16 nm 

0.77 g/cc 8.1 nm → 32 nm 

Liquids Water Shock Front Thickness 

  

Low Pressure 310 nm 

High Pressure 868 nm 

Ideal Gas Argon Shock Front Thickness 

  

Mach 1.55 419 nm 

Mach 3.38 184 nm 

Mach 9 228 nm 
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Chapter 8 

 

 
8.1 Conclusions 

 
 There are several conclusions that can be made based on the work presented here.  

The first conclusion is that the analytic 6
th

 order polynomial for the cold curve 

representation for the Mie-Grüneisen does improve the predictive capabilities of a 

hydrocode when applied to a lagrangian formulation such as KO.  The 5
th

 order 

representation based on the exact solution as used in CTH performs better in general but 

cannot simulate the unique features seen in pressure signatures for distended materials 

such as porous silica.  The work presented here leads to the conclusion that numerically 

solving the cold curve error function is the most accurate way to predict pressure based 

on strain when using the Mie-Grüneisen equation of state.  This method is thought to be 

more accurate than using a polynomial to represent the exact solution because at high 

strain the representative solution may deviate from the exact solution, whereas if one uses 

the exact solution at every point then numeric error should be less than using a 

representative method. 

 The other conclusion is the Navier-Stokes equations using the Mie-Grüneisen 

equation of state can be applied to gases, liquids, and solids in the form of 

porous/granular or distended materials.  The NS formulation works well for the ideal gas 

argon.  Entropy values found by integrating over the shock front match values obtained 

through the analytic equation for the change in entropy for an ideal gas.  Reciprocal 

shock thickness values at high resolution converge on the values obtained experimentally.  

However, it should be noted that the NS formulation failed to match the experimentally 
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obtained shock thickness value for liquid water.  Entropy production values were not 

available for liquid water in the pressure ranges tested.  The unique features observed in 

the experimentally obtained pressure signatures for porous silica were not observed in the 

numeric simulations performed in this work.  In liquids and solids the domain size must 

be increased to allow time for high frequency disturbances to either dampen out or if they 

will not dampen out for the code to numerically resolved the shock front.   

Viscous dissipation and heat conduction are not sufficient to dampen out numeric 

noise in liquids and solids.  To alleviate this problem one must use large domains and 

take small time steps.  It has been observed in this work that in distended materials heat 

conductions dominates at high porosity but as porosity is removed heat conduction and 

the shear stress tensor become equal in magnitude.  This is consistent with what is known 

about distended materials versus their fully consolidated counter parts i.e. for the same 

dynamic loading condition the temperature is higher for the porous material as opposed 

to the fully consolidated version.  Care must be taken in regards to the boundary 

conditions when using the Navier-Stokes formulation on a liquid or solid because the 

jump conditions and the equation of state used may not return the same values for the far 

field boundary conditions.  In this work that problem was solved by recalculating the 

Grüneisen parameter so that the Mie-Grüneisen equation of state intersected the Rayleigh 

and Fanno lines which describe the jump conditions. 

8.2 Future Work 

 
 Code up the exact solution to the cold curve error function and implement it into 

the lagrangian hydrocode KO.  While this approach is computationally expensive it 

seems to be the most accurate way of implementing the Mie-Grüneisen equation of state.  
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Incorporate a strength of material model or plastic work model into the Navier-Stokes 

formulation because they would serve as another method of energy dissipation for solids 

to go along with viscous dissipation and heat conduction.  Also the use of a strength of 

material model or plastic work model may allow the NS formulation to capture the 

unique features seen the pressure signatures of distended materials being dynamically 

loaded.  The domain size should be increased to match the grain size of the porous 

medium, approximately 50 microns.  In this work the length scale used for simulating the 

porous silica was on par with the bond length of silica dioxide which is 16.2 nanometers.  

Grain dynamics play an important role in the dynamic compaction of porous materials 

and by changing the scale over which NS formulation is applied some of those features 

may be captured in a simulation.  Finally, entropy in the form of the second law may be 

included in the governing equations of both the NS and KO formulations.  Inclusion of 

the second law into the derivation may become necessary if the addition of a strength of 

material model or plastic work model fails to add enough irreversibility into the model to 

dampen out the numeric noise.   
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Chapter 9 

 

Appendix – Governing Equations – KO Formulation 

9.1 Mass Conservation – Lagrangian Form 

0;  

 The time rate of change of density of the element as it moves in space.

 The density multiplied by the time rate of change of the volume 

               of a moving element p

D
V

Dt

D

Dt

V








  



 

er unit volume.

Mass is not allowed to flow into or out of the system or element therefore

.
D

V
Dt


  
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9.2 Momentum Conservation – Lagrangian Form 

 

 The time rate of change of the element velocity and density.

 The mechanical pressure exerted on surface element.

 The shear force as element resist shear distor

D V
P g

Dt

D V

Dt

P


 





   



 

   tion due 

               to  exerted on element surface.

 The gravitational force.

Assumptions

Effects of gravity and external forces are negligible, 0.

Where  is mechanical pr

P

g

g

DV
P

Dt

P














  

essure and  is deviatoric shear distortion. 
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9.3 Energy Conservation – Lagrangian Form 

 

 
2

Starting Assumptions

No nuclear energy; No radiative energy; No electromagnetic energy; 

No chemical energy; No potential energy; Constant Entropy

 

( ) ( )
2

D V
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 The total energy per unit volume.
2

 The internal heat generation per unit volume.

( )  The energy associated body forces per unit volume.

( )  The energy associated wit
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Simplifying Assumptions

No internal heat generation 0.

Assume adiabatic conditions before and after the shock front ( ) 0.

Effects of gravity and external forces are negligible 0.
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q
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9.4 Stress-Strain Relation 

 
1

The mean pressure,  is defined as ( ).
3

The principle stress in the element,  is defined as ( ) ,  

where  is artificial viscosity and .

Along the principle axis the resistan

xx yy zz

ii ii

P P

P q s

q i j
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ce to shear distortion, 

1
 is defined as 2 ( ) where .

3

The cross terms for stress and distortion are as follows; ,  

where 2 where 

Using the continuity equation the relatio
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V
.

V

Note:  Stress deviators are defined so that they do not contribute 

to the mean pressure, .
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