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1. Introduction and Motivation

Forecasting is critical to successful execution of an organization’s operational and strategic
functions such as for delivery of a cost effective and efficient supply chain [1]. The complex and
dynamic organizational environment that defines much of today’s forecasting function is of‐
ten supported by a range of technology solutions, or forecasting decision support systems
(FDSS). Typically, FDSS integrate managerial judgment, quantitative methods, and databases
to aid the forecaster in accessing, organizing, and analyzing forecasting related data and judg‐
ments [1-2]. Forecasting task complexity can negatively impact forecast reliability, accuracy,
and performance [3-4]. Specifically, it can influence two elements of forecaster behavior – de‐
riving forecasts and judgmental adjustment of these forecasts [5]. In executing these functions,
forecasters may utilize different heuristics for complex series as opposed to simple ones in or‐
der to mitigate cognitive demands [6-7]. Because selection and execution of these heuristics can
be influenced by forecaster experience and knowledge-base, integrating time series complexi‐
ty into Forecasting Support Systems (FSS) design can bring greater objectivity to forecast gen‐
eration, while simultaneously providing meaningful guidance to forecasters [1].

Advances in design and use of FDSS, however, have been slow to come because of the fol‐
lowing range of problems that limit their usefulness in the forecasting domain. Firstly, FDSS
are expensive to create, operationalize, and calibrate and therefore, require significant or‐
ganizational investment. Second, and most significantly, forecasts generated by such expen‐
sive FSS are often subjected to judgmental adjustments. Such adjustments may be driven by
forecaster confidence, or lack thereof, in FDSS capabilities as well as forecaster’s sense of
ownership once they make judgmental adjustments as opposed to just accepting outputs of
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a forecasting model. Third, forecaster confidence in FDSS and its outcomes is influenced by
numerous system abilities such as strength of and confidence in explanations provided
about forecast creation [8], information presentation [9], data about the systems past success
rate [10], support from analogical forecasting tasks [11], and ability to decompose the fore‐
casting problem [12] to mention a few. Lastly, the functionality and processes underlying
FDSS are sometimes difficult to align with the experiential thinking of forecasters [11], i.e. If
such support systems adaptively support complex and simple tasks according to task de‐
mands, forecasters may be less tempted to make judgmental adjustments [11, 13-14].

The above discussions and supporting literature reaffirm that the level of agreement be‐
tween a task and the functionalities of the supporting technologies, i.e. the task-technology
fit (TTF), can determine individual performance on tasks [15-19]. TTF studies suggest that
the extent to which a technology supports individuals in performance of their portfolio of
tasks can determine the degree of success in the execution of their tasks through both im‐
proved performance and better system utilization [15, 20]. In a sense then, TTF provides im‐
portant justifications for discretionary use of FDSS for simple and complex tasks. Under
conditions where FDSS perform well empirically, it would likely be worth committing the
time and resources to utilizing the FDSS. In contrast, where FDSS do not perform effectively
or performs as effectively as human judgment, such commitment of time and resources to
parameterize the FDSS may not be warranted. It has been asserted that certain functionali‐
ties of a technology are better suited for specific types of processes or tasks [17]. To this end,
improved alignment between FDSS and FDSS-supported tasks, essentially better Forecast‐
ing Task-Technology Fit (FTTF), can mitigate the factors driving forecasters to make ad hoc
adjustments of questionable validity done for rationalizing their worth [19].

In this study, we specifically examine the issue of forecasting task complexity and commen‐
surate FDSS support to provide a framework for FSS design and implementation using the
TTF as an underlying motivator. In doing so, we achieve the following:

a. Develop a characterization of complex and simple time series forecasting tasks. Herein,
we rely on historical patterns and domain-based features of time series to develop dis‐
crete task profiles along a simple to complex continuum.

b. Review evidence from the empirical literature regarding forecasting task complexity
and  its  implications  for  FDSS  design  and  suggest  designs  that  would  benefit  the
forecasting process.

c. Develop an agenda for research and discuss practice-related issues with regard to bal‐
ancing forecasting utility with efficiency given the costs of FDSS.

2. Literature Review

2.1. Task-Technology Fit

TTF theory defines tasks as actions carried out by individuals to process inputs into outputs
[20] and task profile as aspects of these tasks that might require users to rely on information
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technology. Technologies are defined as any set of tools, such as FDSS, required for execut‐
ing these tasks. The fit between tasks and technologies, then, refers to the “degree to which a
technology assists an individual in performing his or her portfolio of tasks” [20]. In the usual
case, TTF theory is implemented at two levels: (a) an organizational level that examines the
presence of data, processes, and high-level system features (e.g. system reliability) to fulfill
the broad needs of a decision domain, and (b) a context level that examines the presence of
system features specific to a decision context e.g. system capabilities for time series forecast‐
ing or group decision making. Studies in both contexts develop TTF concepts from three
perspectives: identification of (a) a task profile [15] i.e. tasks specific to the domain of study;
(b) technology features or needs specific to a task profile; and (c) impact of TTF on individu‐
al performance. We discuss these findings in the next sections.

Most TTF studies characterize tasks based on organizational level decision support needs
such as information and data quality, access, procedures surrounding data access, and sys‐
tem reliability [19-21] characterized tasks in terms of non-routineness, defined as lack of an‐
alyzable search behavior, and interdependence with other organizational units. Later a
dummy variable was added to capture managerial factors as a determinant of user evalua‐
tion of information system use [20]. Recently, an increasing number of studies have exam‐
ined tasks more contextually i.e. specific to the domain of study. Most commonly, these
studies classified tasks according to their complexity [22-23]. Also characterized tasks were
characterized on the basis of complexity and proposed a task classification that ranged from
simple to fuzzy tasks [23]. In group decision making, [15] extended this classification to fur‐
ther define task complexity in group decision making. These studies define task complexity
as having four dimensions: outcome multiplicity suggesting more than one desired outcome,
solution scheme multiplicity suggesting more than one possible approach to achieving task
goal, conflicting interdependence which can occur when adopting one solution scheme con‐
flicts with another, and outcome uncertainty defined as the extent of uncertainty regarding a
desired outcome from a solution scheme. Others found that task support for virtually-linked
teams often translated into those related to conflict management, motivation/confidence
building, and affect management [17]. Other applications of TTF theory appear in mobile-
commerce for the insurance industry [24], consumer participation in e-commerce [25]), and
software maintenance and support [16]) among others. In the forecasting domain, surpris‐
ingly we found only one TTF study [19], that adapted organizational level factors to the
forecasting domain by examining needs related to forecasting procedures.

In the TTF framework, technological support has been characterized most often in terms of
hardware, software, network capabilities, and features of the support system. Others, for in‐
stance, developed technology characteristics based upon input from an independent panel
of IS experts [20-21]. These technology capabilities included relationships between DSS and
its user, quality of support, timeliness of support, and reliability of system among others.
Further, some relied on the same technology characteristics for considering adoption of Per‐
sonal Digital Assistants (PDAs) in the insurance industry [24]. In keeping with the underly‐
ing emphasis of TTF, i.e. fit between tasks and technologies, context-dependent studies have
focused on specific capabilities for the domain of interest. For instance, others examined
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richness of communication media for resolving conflict between virtual teams and motivat‐
ing positive team work [17]. And some proposed that technologies supporting group deci‐
sion making must be capable of providing communications support and structuring group
interaction processes along with supporting information processing needs of the group [15].
Finally, [19] leveraged the framework of [20] to the forecasting domain by focusing more
significantly on system functionality and capabilities—specifically focusing on data, meth‐
ods, and forecasting effectiveness.

TTF studies have most commonly examined two outcomes of alignment between task and
technology – system utilization and task performance. It was found that there was a sugges‐
tive relationship between TTF and system utilization and a strong positive connection with
performance but mediated by utilization [20]. In contrast, it was suggested that TTF strongly
predicted customer intention to purchase from an e-commerce site [25]. Also it was con‐
firmed that a strong relationship between performance on certain insurance tasks and use of
mobile devices exists [24]. Finally others found that FSS characteristics, specifically forecast‐
ing procedures included in the FSS, to be positively related to perceptions of TTF which, in
turn, positively related to forecasting performance. In general, these results confirm a strong
association between performance and alignment between task needs and supporting tech‐
nologies [19]. This is a critical linkage for our study.

2.2. Adapting TTF to the Forecasting Domain

Time series extrapolation calls for quantitative methods to forecast the variable of interest
with the assumption that behaviors from the past will continue in the future [2]. Time series
forecasting is also found to improve with use of domain knowledge such as for series de‐
composition [26]. In essence, successful time series extrapolation relies upon recognizing idi‐
osyncratic aspects of the series as defined by patterns in the historical data as well as
domain knowledge likely to emerge through unknown future generating processes. Consid‐
ering this, the implementation of time series task classifications using TTF theory is best ach‐
ieved by following the context-specific approach discussed earlier as this perspective
emphasizes conditions that impact the contextual usefulness of FSS. In other words, if for
the task that a forecaster must execute, the time series, serves as input into the FDSS, task
characterizations may best emerge from the features of the series being processed. For pur‐
poses of this paper, we follow recommendations by [15, 23] to classify decision tasks, specifi‐
cally time series, along a simple to complex continuum.

2.2.1. Complexity in Time Series Forecasting

Complexity is inherent in the forecasting process [12]. While it can be argued that all one
needs is a forecasting method and adequate data, a non-trivial view of the forecasting proc‐
ess suggested by [2] provides a more realistic perspective—that of decomposition. Each
stage of the forecasting process entails coordinated action that requires use of judgment and
analytical skills, inputs from multiple organizational units, as well as validation and integri‐
ty checks. When decomposed into its components, the forecasting process integrates domain
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knowledge, historical data, causal forces acting upon the domain, as well as physical charac‐
teristics of the process producing the measured realizations that are to be forecast [12].

Of interest in our study, however, is characterization of complexity in the context of the task i.e.
the time series being forecast. Forecasting literature has provided some interpretations of com‐
plex time series. Most commonly, time series are defined as complex if the underlying process‐
es that generate them are such [27]. Chaotic time series, as opposed to “noise driven series”,
wherein observations drawn at different points in time follow a non-linear relationship with
past observations of variables [28] have also been referred to as complex series. More recently,
studies have characterized complexity in terms of time series composition. For instance, [26]
describe complex time series as those where forecasters expect conflicting underlying causal
forces, i.e. underlying forces will push the series in different directions in the forecast period. In
essence, such series can be represented as a composite of multiple series where the challenge is
to determine the overall effect or momentum of these multi-directional forces whose net effect
could be static i.e., no movement due to offsetting causal forces.

Most views presented above define complexity in terms of either specific patterns in historical
data (e.g. variation or volatility) or underlying processes and influences (e.g. causal forces).
This constrained view of time series complexity is surprising considering the taxonomy of time
series features available in existing literature. Time series features often captured in empirical
literature include stationarity or non-stationarity of series [29-31]. Stock market forecasting
studies have often relied on capturing features like volatility persistence, leptokurtosis, and
technical predictability of stock related series [32-33] classified time series in terms of three fea‐
tures – irrelevant early data (where the generating process has fundamentally and irrevocably
changed such that it creates a misleading impression of the future), outliers, and functional
form. Although focused on assessing judgmental confidence intervals, some have character‐
ized time series in terms of trend, level, seasonality, and noise [34]. These features provided
57% of the explanation for confidence intervals chosen by forecasters, suggesting that possibly
a finer breakdown of series characterizations may be worth consideration.

For purposes of this paper, we rely on a more extensive taxonomy of time series characteri‐
zations suggested by [35-37] to classify time series along the continuum of simple to com‐
plex tasks. Their classification is particularly relevant because it captures not merely a range
of patterns in historical data but also underlying generating processes and judgmental ex‐
pectations about the future based on domain knowledge. Initially it was suggested that
there were 18 such features [35] and these were later expanded to 28 by [36 - 37]. For pur‐
poses of this paper, we use a subset of these 28 features, particularly in the context of the
four feature sets discussed earlier in this paragraph. These time series features are described
at length in Table A in the Appendix and in [35].

2.2.2. Time Series Task Characterizations

As mentioned previously, some have classified tasks along a simple to fuzzy (complex) con‐
tinuum such that system features could be developed in alignment with the task [15, 23]– in
essence, TTF. Table 1 defines the key tasks types and their characteristics proposed in [15].
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Task Categorization Description

Simple Tasks Low uncertainty; low conflicting interdependence; clear solution

Problem Tasks
Multiple solution schemes to a well-specified outcome. Needs involve finding

optimal way of achieving the outcome.

Decision Tasks
Finding solutions that meet needs of multiple conflicting outcomes. Selecting

best option from several available.

Judgment Tasks
Conflicting and probabilistic nature of task related information. Need to integrate

diverse sources of information, predict future states.

Fuzzy Tasks

Multiple desired states and multiple ways of getting to them. Unstructured

problems that require effort to understand. High information load, uncertainty,

and information diversity. Minimal focus for the task executor.

Table 1. Overview of Suggested Task Characterizations [15].

In Table 2, we offer a simplified adaptation of this taxonomy for the forecasting domain and
classify series as simple, moderately complex, and complex. Time series features in [35],
hereafter referred to as C&A, were used to develop the complexity taxonomy. The C&A’s
feature set is particularly relevant because it captures not merely a range of visible patterns
in historical data that can influence judgmental forecasting processes (e.g. outliers, trends,
and level discontinuities), but also recognizes underlying generating processes and domain-
based expectations about the future. These features, described in Table A in the Appendix,
could broadly be categorized into four clusters: (a) uncertainty defined by variation around
the trend and directional inconsistencies between long and recent trend, (b) instability char‐
acterized by unusual time series patterns such as irrelevant early data, level discontinuities,
outliers, and unusual observations, (c) domain knowledge defined as availability (or lack
thereof) of useful domain knowledge and underlying functional form of the series i.e. multi‐
plicative or additive, and (d) structure, the presence or lack of a significant trend i.e., a per‐
ceptible signal. In forecasting literature, these features are the most comprehensive attempt
to characterize series for use in an FSS, Rule-based Forecasting (RBF). RBF studies have ex‐
tensively validated these features, first in C&A on 126 time series, then in [38] across 458
time series, and finally on 3003 M3 competition series [36]. Considering this, we relied on a
subset of these 28 features (see Table A - Appendix and C&A) for development and valida‐
tion of our taxonomy. The four feature clusters discussed above were used for classification
as they have the potential of destabilizing a time series (C&A). Table 2 below provides a
conceptual view of the details of this classification.

Using features from C&A, time series tasks can be classified into four categories with sim‐
ple and complex forecasting tasks being the two ends of this continuum. Simple forecasting
tasks  represent  low instability  and  uncertainty,  demonstrate  relatively  clear  structure  in
their underlying trend patterns, and do not rely on significant domain knowledge to gen‐
erate useful forecasts.  In most instances,  demographic series such as percentage of male
births tend to regress towards a known mean [37], have slow but steady trends, and var‐
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iations  that  are  rare,  unusual,  and easily  accounted for,  thereby making them easier  to
forecast. Alternatively, domain knowledge is clear and non-conflicting. Such tasks are ex‐
pected to pose low cognitive load on the forecaster because confounding features and un‐
derlying processes are few and, consequently evident.

Series Characteristics Simple Time Series
Moderately Complex

Time Series
Complex Time Series

Instability

Recent run not long

Near a previous extreme

Irrelevant early data

Changing basic trend

Suspicious pattern

Outliers present

Level discontinuities

Unusual last observation

Few or no instability

features present

Some instability

features present

Many instability

features present

Uncertainty

Coefficient of variation > 0.2

Difference between basic and

recent trend

Low variation

about the trend

Recent and basic

trends agree

Medium to high varia-

tion about the trend

Recent and basic

trends may disagree

High variation

about the trend

Recent and basic

trends disagree

Structure

Significant basic trend

Clear direction of trend

(up or down)

Insignificant trend

No or low trend

Significant trend

Clear direction

Significant trend

Lack of clarity in direction

due to confounding

features

Presence of Domain

Knowledge

Causal forces

Functional Form

Additive or

multiplicative series

Simple, consistent

causal forces

Multiplicative series

Multiple causal

forces

Multiplicative series

Unknown or inconsistent

causal forces

Table 2. Time Series Task Classification Based on Series Features.

At the other end of the continuum, by contrast, complex forecasting tasks are characterized by
greater instability and uncertainty, do not demonstrate a clear generating structure, and
may require “systematic” integration of a complex set of domain knowledge features that
send conflicting signals [26]. For instance, forecasting monetary exchange rates is made chal‐
lenging by the low signal to noise ratio and the non-ergodic nature of the process caused by
numerous undetermined underlying drivers [37]. Such series may pose greater cognitive de‐
mand on the forecasters who may find it difficult to isolate features such as trends and insta‐
bilities and recognize underlying processes.

Moderately complex time series will fall somewhere along the continuum (see Table 2). These
tasks demonstrate some instability, variation about the trend may be higher than for simple
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series, and/or recent and basic trends may conflict. The structure of such series demonstrates a
more complex interplay of domain knowledge than for simple series, thereby lending multiple
possible solution schemes depending upon interpretation and application of domain knowl‐
edge. An example of decomposition of UK Highway deaths illustrated these conflicting sce‐
nario possibilities where the decomposition of the series yielded two conflicting elements of
domain knowledge – growth in traffic volume and decay in decline in death rate [39]. Decom‐
posing the time series into its components helped improve forecasts for the target series.

2.2.3. Judgmental Accuracy on Complex and Simple Forecasting Tasks

In earlier sections, we have mentioned the dearth of studies in forecasting on complexity
and its implications on performance and outcomes. Consequently, we have relied on general
studies in other domains to highlight implications of complexity in forecasting complex ver‐
sus simple tasks. Most fundamentally, [23] defines simple tasks as those that are not com‐
plex. In general, more complex tasks require greater support [15] and richer information
presentation [40-43]. Complex tasks increase cognitive overload and place greater informa‐
tion processing requirements on the user, thereby reducing performance [44-45]. Under such
situations, decision makers choose “satisficing” but suboptimal alternatives [46] thereby
lowering decision accuracy. When task complexity does not match abilities of the decision
maker, motivation and consequently, performance may decline [47]. Using a Lens model ap‐
proach, [48] attributed poor judgment in complex task settings to limitations in participants’
ability to execute judgment strategies as opposed to their knowledge about the task domain,
essentially a lack of experiential acuity. This could be attributable to loss in perceived self-
efficacy and efficiency in application of analytical strategies.

In the forecasting domain, studies have uncovered confounding effects in situations that mani‐
fest uncertainty and instability. For instance, [34] found that as the trend, seasonality, and noise
increased in a time series, forecasters indicated wider confidence intervals, and hence uncer‐
tainty, in their forecasts. Further, [49] also found that while forecasters successfully identified
instability in time series, their forecasts were less accurate than statistical forecasts when such
instabilities were present. Considering this, even experienced forecasters may find lowered
performance in complex settings. These multidisciplinary findings then suggest:

• Practical Proposition 1: Judgmental forecasts of complex time series will be less accurate
than judgmental forecasts of simple time series.

• Practical Proposition 2: Judgmental forecasts of moderately complex time series will be less
accurate than judgmental forecasts of simple time series but more accurate than those for
complex time series.

FDSS, through effective design, can allay the cognitive and human information processing
demands that task complexity can place on the decision maker, and thereby potentially in‐
crease system use and confidence. DSS range from simple decision aiding such as using vis‐
ual, as opposed to text-based, presentations to complex intelligent systems that adaptively
perceive and respond to the decision context. The alignment between task needs and tech‐
nology support, however, needs reflection. If misaligned, decision maker performance can
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be compromised. For instance, [50] evaluated a DSS for treatment of severe head injury pa‐
tients by comparing physician expert opinions with results generated by the DSS. The study
concluded that the tool was not accurate enough to support complex decisions in high-stress
environments. Similarly, [51] found that providing certain types of cognitive support for re‐
al-time dynamic decision making can degrade performance and designing systems for such
tasks is challenging. Based on these studies, the following can be proposed:

• Practical Proposition 3: FDSS generated forecasts for complex time series will be more accu‐
rate than judgmental forecasts of complex time series.

• Practical Proposition 4: FDSS generated forecasts for complex time series will be more accu‐
rate than judgmental forecasts of moderately complex time series.

• Practical Proposition 5: FDSS generated forecasts for simple time series will be as accurate
as judgmental forecasts of simple time series.

2.2.4. Judgmental Adjustment of FDSS Generated Forecasts

While existing forecasting literature has yielded several recommendations for forecast ad‐
justment, once again, this area suffers from lack of sufficient empirical findings regarding
adjustment of forecasts for complex and simple tasks. Here too, we rely on multidisciplinary
studies and findings from our own studies [52] to support our propositions. Forecasting lit‐
erature, for instance, has suggested that statistically generated forecasts should be adjusted
based on relevant domain knowledge and contextual information that practitioners gain
through their work environment. Others [53-54] demonstrated that familiarity with the spe‐
cific factors being forecast was most significant in determining accuracy. Judgmental adjust‐
ments should also be applied to statistically generated forecasts under highly uncertain
situations or when changes are expected in the forecasting environment, i.e. under condi‐
tions of instability. Both uncertainty and instability, according to our earlier framework in
Table 2, lend complexity to the forecasting environment.

Managerial involvement in the forecasting process, primarily in the form of judgmental adjust‐
ments, has been questioned in terms of value added benefits. For instance, [55] suggest that
benefits of managerial adjustment in stable series may not be justified as automatic statistical
forecasts may be sufficiently accurate. In contrast, they recommend high levels of managerial
involvement in data that has high uncertainty, in a sense, high complexity surrounding it.

In our own empirical studies comparing FDSS and judgmental forecasting behaviors [52], we
find that when given FDSS-generated forecasts, forecaster adjustments to simple series harm
forecast accuracy but improve accuracy of complex series when compared to unadjusted FDSS
forecasts. Furthermore, when given simple series, forecasters react to complex series by as‐
suming forecast values to be too low and, in response, adjust forecasts more optimistically than
necessary. In contrast, they view the forecasts for simpler series to be aggressive and accord‐
ingly overcompensate by suppressing the forecasts. Accordingly, we propose:

• Practical Proposition 6: Forecasters will adjust complex series more optimistically than sim‐
ple series whose forecasts will be suppressed.
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• Practical Proposition 7: Adjustments to FDSS-generated forecasts for simple series will
harm forecast accuracy.

• Practical Proposition 8: Adjustments to FDSS-generated forecasts for complex series, if exe‐
cuted correctly, can improve forecast accuracy.

As a caveat to the last proposition above, judgmental adjustments to complex forecasts may
be best supported by FDSS in a way that the adjustments are structured [53] and validated
automatically through improvements in forecast accuracy [35, 39]. In the following sections,
we rely on the TTF framework and other DSS studies to propose ways in which FDSS could
be best designed to adaptively support simple to complex tasks.

3. Implications for FSS Design and Research: Putting Theory into
Practice

In conjunction with the decision maker, DSS have been shown to generate better decisions
than humans alone by supplementing the decision makers’ abilities [56], aiding one or more
of phases of intelligence, design, and choice in decision making [57], facilitating problem
solving, assisting with unstructured or semi-structured problems [58-59], providing expert
guidance [60], and managing knowledge. Our discussion above raises additional issues per‐
tinent to FDSS design with emphasis on overcoming inefficiencies such as bias, irrationality,
sub-optimization, and over-simplification that underlie judgmental adjustments. Since a
growing body of research is focusing attention on specific DSS features such as information
presentation, model building and generation, and integration of dynamic knowledge, in this
section we view DSS design from the perspective of making directive and non-directive
changes in forecaster behavior regarding application of adjustments. Such behavioral
changes can be brought about in two ways: (a) by guiding and correcting forecaster behav‐
ior during task structuring and execution and (b) by encouraging evaluative analysis of de‐
cision processes through structured learning [61].

Our empirical research has raised two key observations related to forecaster behavior and
implications for FSS design:

I. Forecasters will make adjustments to forecasts even when provided highly accu‐
rate forecasts. However, the direction and magnitude of these adjustments may be
defined by complexity of the forecasting tasks. Considering this, FSS should offer
system features in congruence with adjustment behaviors.

II. Design of FSS must necessarily factor in, and adapt to, forecasting task complexity.

Elaborating on these findings,  we make several  propositions for  FSS design in  the next
few sections.

3.1. Design FSS that Adapt to Task Complexity

For years, DSS designers have proposed designing systems that adapt to decision makers
[62-63] and align with their natural thinking. Adaptive DSS support judgment by adjusting
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to high level cognitive needs of decision makers, context of decision making, and task char‐
acteristics [64]. The FTTF framework proposed in this paper provides a task-based approach
to such adaptive systems. As a time series is initially input into the FSS, automated feature
detection routines can categorize time series along the simple to complex continuum. Task
profiles gathered in this way could be used to customize levels of restrictiveness and deci‐
sional guidance for simple versus complex tasks.

Restrictiveness is the “degree to which, and the manner in which, a DSS limits its users’ de‐
cision making process to a subset of all possible processes” [65, p. 52]. For example, a DSS
may restrict access to certain data sets or ability to make judgmental inputs and adjustments
to the system. Restrictiveness can be desirable when the intention is to limit harmful deci‐
sion choices and interventions. However, general IS literature has largely recommended
limited use of restrictive features in DSS [1, 61, 65-66]. Excessive restrictiveness can result in
user frustration and system disuse [65, 67]. It can also be difficult for the designer to deter‐
mine a-priori which decision processes will be useful for a particular situation [1]. However,
when users are poorly trained [1], known to make bad decision choices, or when underlying
conditions are stable, restrictive DSS features can be beneficial.

Decisional guidance is “the degree to which, and the manner in which, a DSS guides its
users in constructing and executing the decision-making processes by assisting them in
choosing and using its operators” [65, p. 57]), can be informative or suggestive. Informative
guidance provides factual and unbiased information such as visual or text based display of
data thereby empowering the user to choose the best course of action. Suggestive guidance, on
the other hand, recommends an ideal course of action to the user such as by comparing
available methods and recommending the one deemed to be most suited to the task at hand.
Also [1] provide an excellent and extensive review of decisional guidance features for FSS
that we recommend highly. To complement their recommendations, in the next few para‐
graphs, we provide additional design guidelines emergent from the theme of this study.

A.1 Restrict Where Harmful Judgment can be Applied: When unrestricted, forecasters are free to
apply adjustments at many levels in the forecasting process such as toward data to be used
or excluded, models to be applied and those to be ignored, and changes to decision out‐
comes. Similarly, as we demonstrated in our Study 2 [52], inexperienced forecasters may at‐
tempt to overcome their limited knowledge of underlying decision processes by making
adjustments to the final outcomes [1]. FSS can restrict where such judgmental adjustments
are permitted. Specifically, judgment is best utilized as input into the forecasting process or
within the context of a validated knowledge base rather than as an adjustment to the final
decision outcome [55].

A.2 Restrict FSS Display Based on Task Complexity: Since complex tasks pose significant de‐
mands on human cognitive and information processing capabilities, FSS displays for such
tasks can be restricted as opposed to simple tasks that can benefit from decisional guidance.
Since simple tasks create lower cognitive strain, performance on such tasks can potentially
be improved by increasing user awareness of the forecasting cues such as by displaying fea‐
tures underlying the time series, generating processes, forecasts from alternative methods,
and forecasting knowledge underlying the final forecasts. For instance, [49] found that mak‐
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ing available the long-term trend of a time series improved forecaster accuracy since it al‐
lowed them to overlook distracting patterns and apply knowledge more consistently.

As decision makers have a tendency to trade off accuracy in favor of cost efficiency, informa‐
tive and suggestive guidance could be displayed prominently such that the forecaster does
not have to drill down to make such trade-off decisions [68]. However, this same informa‐
tion presented to the forecaster for complex tasks can result in greater information overload,
cognitive strain, and over-reaction. Indeed, [69] confirm that in complex task settings, deci‐
sion makers tended to ignore suggestive advice and focused on informative guidance. To re‐
duce this cognitive load, several of the above discussed features could be hidden and made
available as layered drill-down options. Such adaptive support can reduce information
overload and related information processing challenges in the context of complex tasks [66],
and is replicable across different contexts and organizational settings.

A.3 Provide and Adapt Task Decomposition According to Task Complexity: Individual decision
maker’s working memory is limited and consequently, complex tasks broken into simple
“chunks” can be more effectively executed when compared to tasks not so simplified [12].
Cognitive overload may be avoided through effective and efficient design materials [44]
ranging from better information presentation to providing greater structure to the learning
environment [70] such as through use of decomposition strategies to simplify the subject do‐
main. Decomposition is found to improve performance over unaided and intuitive judg‐
ment [71-72] by breaking down a complex, holistic task into a set of easier tasks which are
more accurately executed than the more holistic task [1]. Others [73] also found that DSS
users were able to leverage more information when they used decomposition for forecasting
tasks. While there are neurological explanations for why decomposition is effective [74-75],
from a psychological perspective, decomposition allows the decision maker to optimize the
problem solving domain into manageable chunks so that information processing for each
chunk can be minimal and relevant while cognitive overload is minimized [70, 76-77].

Although it can be argued that decomposition can be a restrictive DSS feature when its use
is forced upon the decision maker [1], most often, a user may not focus on the benefits of
decomposing a task or may not recognize how to proceed with decomposition. To this end,
we suggest that decomposition be implemented in both restrictive and decisional guidance
mode. Specifically, we use the framework by [12] who suggests that decomposition can be
applied at three levels: decomposition via transformation, i.e. identifying characteristics of the
forecasting task and domain; decomposition for simplification, i.e. understanding components
of the forecasting process from problem formulation to forecast use (Armstrong, 2001 [2]);
and decomposition for method selection i.e. applying forecasting knowledge and rules to select‐
ing fitting methods. Herein, we propose transformational decomposition should be a restrictive
feature in FSS. This decomposition of time series into its features can enhance forecaster
ability to recognize meaningful patterns as opposed to random ones.

In the same vein, simplification of the problem domain could follow restrictive design by us‐
ing the forecasting process presented in Figure 1 to design FSS modules. In such a design,
then, the flow of activities presented in Figure 1 could be used to restrict more rapid conver‐
gence on forecast methods and use. In contrast, the evaluative component of this given proc‐
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ess can lend itself to decisional guidance in numerous ways discussed later in this section.
Decomposition by simplification can also be implemented by narrowing task demand for
complex decisions. For instance, [49] recommend that forecasts should not be required for
multiple time periods because forecasters tend to anchor long-term forecasts to short-term
forecasts. Our data indirectly suggests that complex series generate higher errors and such
anchoring and adjustment can compound errors across the long-term.

Finally, decomposition for method selection could largely be implemented as decisional guid‐
ance. Users may be prompted with forecasts from multiple relevant methods (selected using
rules applied to time series features) to consider use of alternative methods and processes.
Suggestive guidance on how to proceed with method selection and combination could be
useful for simple tasks.

As decision situations become complex, guidance may need to be modified to minimal lev‐
els as such situations are already characterized by information overload. Adding suggestive
guidance to this mix can lead to the FSS itself complicating the decision situation. Forecast‐
ers may become increasingly frustrated with interventions from such guidance and conse‐
quently engage in deleterious decision making behaviors. These suggestions are supported
by [69] who found that for highly complex tasks, subjects who were provided with sugges‐
tive guidance performed poorly at the task when compared to those who were provided in‐
formational guidance or no decision support. Specifically, we suggest that for complex
tasks, informational guidance be provided such that users can determine best strategy on
their own or ignore the additional information as desired.

Figure 1. Components of the Forecasting Process as Presented in [2].

A.4 Provide In-Task Feedback for Simple Tasks and Shift to Post-Task Feedback on Complex Tasks:
Feedback is intended to promote learning and behavior modification with the assumption that
organizational practices encourage such review. Broadly speaking, evaluative feedback can be
offered to forecasters at two stages – during task execution and post task execution – the former be‐
ing critical to effective forecasting and the latter being beneficial for fostering reflection and
learning [1]. Suggestive and informational feedback regarding impact of their current actions
on other aspects of the forecasting environment may contain the extent to which a series of
poor adjustments may be executed. However, feedback during execution of complex tasks can
frustrate the user. Forecasters facing complex tasks may not have the time or cognitive resour‐
ces to reflect adequately upon the impact of their adjustments on the environment [78] and
consequently fail to consider control actions that can impact the forecasting environment. In‐
deed, corrective process-based feedback has been found to be transient and shallow [79-80]
and inadequately contributes to long term behavior modification [81].
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To this end, FSS developers may primarily focus on post-execution feedback for complex
tasks. Post-task feedback has been found to improve decision quality [82] and attainment of
challenging goals [83], particularly when the feedback is informative [69]. Further, [1] sug‐
gest four forms of post-task feedback: outcome feedback, result of outcomes from the forecast‐
ing task; performance feedback, assessment of performance such as forecast accuracy; cognitive
process feedback, effectiveness of forecasting process deployed; task properties feedback, infor‐
mation about the task e.g. presence of conflicting underlying series. Considering that the in‐
tention of post-execution is to foster learning, holistic learning is possible for instance, by
providing informative guidance on the above aspects complemented with the ability to drill
down to the suggestive components, may be most beneficial to forecasters.

Simple tasks, in contrast, do not require the same level of feedback and support as complex
tasks. Moreover, these tasks are cognitively less demanding. Consequently, in-task feedback
may not be detrimental and may be designed to provide the user with guidance such as by
displaying features of the time series and discussing their impact on forecasts, providing
original series contrasted with series that have been cleansed of distracting features such as
outliers and irrelevant early data, and providing forecasting guidance in form of rules and
relevant methods. As a case in point, RBF rules that pertain to a specific set of features
present in the task being executed could be displayed such that the user can recognize the
knowledge that has gone into generating the forecast.

A.5 Restrict Data and Models According to Task Complexity: Restrictiveness may be relaxed for
simpler tasks by increasing the range of available data and models. FSS can shift to making
some desirable processes easy to use while making other, less desirable alternatives, more dif‐
ficult [1]. Automating and thereby simplifying the application of desirable strategies can serve
to reduce the effort associated with executing the more desirable strategies [84] and thereby re‐
duce the need for making damaging judgmental adjustments to the decision process [13].

A.6 Restrict to Impose Standards and Best Practices: Finally, restrictions can be applied when
certain organizational best practices and standards need to be applied in the forecasting
process. For instance, a critical issue in supply chain forecasting is an escalation of forecast‐
ing adjustments as a forecast moves down the supply chain, thereby contributing to the
bullwhip effect [85]. Embedding restraints in the forecasting system that contain the magni‐
tude and directionality of adjustments may potentially reduce the risks associated with
overcompensating for each element of the supply chain. This is particularly true for complex
data where forecasters may overemphasize random patterns in the data or simple series
where forecasters may want to overcompensate for seemingly aggressive forecasts. These
restraints may be in the form of boundaries or confidence intervals which adapt to the na‐
ture of the complexity being presented to the forecaster.

3.2. Design FDSS to Increase Forecaster Confidence

Earlier, we discussed judgmental adjustments as a mechanism for forecasters to develop
ownership of the forecasts. If FSS can be designed with features that enhance forecaster con‐
fidence in its abilities, possibly the compulsion to make judgmental adjustments may be mi‐
tigated. Most studies have focused on DSS use and satisfaction and suggested user attitudes

Decision Support Systems14



towards DSS and their satisfaction with DSS as indicators of DSS use [86-87]. However, our
concern in this paper extends beyond use since forecasters may use an FSS to generate fore‐
casts and still make judgmental adjustments. Confidence in the system can be enhanced by
making its abilities transparent to the forecaster by making the FDSS and its features fully
disclosed [35]. Furthermore, a well validated FDSS that has demonstrated stability across
time and multiple data sets can potentially improve confidence [88]. This validation is par‐
ticularly simple to implement in FDSS due to the well-defined and universally accepted suc‐
cess measure, forecast accuracy. Confidence in an FDSS may also be enhanced by
highlighting the credibility of knowledge underlying it. When transparent to forecasters, use
of expert knowledge, empirically validated findings, and methodical calibrations can poten‐
tially enhance forecaster confidence in system abilities, and thereby mitigate the need for ad‐
justments. Finally, user involvement in systems design and development has been shown to
increase user satisfaction with and commitment to the system and its outcomes [89-91]. For
instance, [92] found that forecasters involved in defining features of the FSS such as display
and models indicated greater satisfaction with FSS forecasts, even though their overall accu‐
racy was lower than those who were constrained in their involvement.

3.3. Implications for Practical Design Research

In the sections above, we have offered numerous suggestions regarding FSS design. While
some of these have been researched and validated, most require further research attention
particularly in light of the simple-complex task classification that forms the foundation of
our paper. To this end, we first suggest that our proposed task classification be tested on a
broader time series base to (a) determine if the application of this framework is generaliza‐
ble to a larger set of time series, and (b) whether the patterns of judgmental performance
and adjustments we observed across the two studies [52] hold ground in a larger context. If
our results are proven across a broader base, implications for FSS design are numerous in
terms of recommendations addressed earlier.

Beyond confirmation of the FTTF framework, there are numerous opportunities for examin‐
ing FSS design issues. Most importantly, our proposition has been that FSS should be de‐
signed to not only enhance forecaster support for task execution but also to promote
effective behavior modification during and post execution. Such learning and modification
will occur over long term system utilization, features supporting feedback and learning in
FSS should occur early in the design process. This has implications for finding the ideal bal‐
ance between restrictive and decisional guidance features and identifying the decision mak‐
ing stage to which these are best applied. As [69] suggest, increased decisional guidance
during problem formulation can have an adverse effect on judgmental task performance but
providing feedback at the right opportunity can improve performance. In response, much
research is required to identify aspects of forecaster behavior that are amenable to behavior
modification and those that are not, nature of desirable support, and stage of forecasting
process where these support features are best applied.
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4. Summary and Conclusions

The practical implications of our chapter are, indeed, numerous from the eight practical
propositions to the six design FSS aspects regarding adaptations to Task Complexity and is‐
sues having to do with forecaster confidence. We summarize these here next. First, fitting
technology support to task characteristics can provide a useful mechanism for identifying
gaps between system functionality and user needs. Understanding task characteristics and
corresponding support needs will enable FDSS designers to create systems that better suit
and adapt to user needs. Second, a methodical integration of task and support technologies
can lead to greater user commitment, thereby reducing forecaster’s tendency to make delete‐
rious ad hoc adjustments. Task-technology fit can enable identification of functions for which
human intervention can be problematic and thereby restrict or guide selection towards im‐
proved choice [65, 93]. For instance, systems that complement limitations of human informa‐
tion processing (HIP) may improve decision maker performance [40] because they mitigate
cognitive overload that constrains human performance on complex tasks [94]. Finally, a
well-designed and optimally utilized FSS has a strong positive impact on individual per‐
formance and system adoption [20]. From an organizational perspective, this can have
measurable positive implications for return on investments [95-96].

From a forecasting perspective, this study has yielded several insights to forecaster behavior
and implications for FDSS design. We find that little has been done in the forecasting litera‐
ture by way of developing a formal taxonomy for forecasting tasks. The principal reason for
this is that a taxonomy for forecasting tasks essentially depends upon a codification of series
complexity. We have endeavored to begin this classification work [52]. Our framework pro‐
vides an initial attempt to do so in the domain of time series forecasting. Researchers in vari‐
ous other domains may find explorations of similar classifications to be beneficial in making
recommendations for systems design in their own domains. Further, we find that forecast‐
ers' behaviors regarding direction and magnitude of these adjustments is impacted by com‐
plexity of the forecasting task, thereby underscoring the value of parsing out simple from
complex tasks. Finally, considering the above contributions, we recommend the need for
congruence between system features and task features. Our research, in some aspects, is ex‐
ploratory in nature and further work is required to solidify this research stream.

Appendices

Feature Description and Implementation as in C&A Operationalization

Coefficient of Variation

(CV)

Standard deviation divided by the mean for the trend

adjusted data.

Automatic identification -

C&A

Regression T-Statistic

(T-Stat)

The t-statistic for linear regression. If T-statistic is greater

than abs(2), the series is classified as having a significant

basic trend.

Automatic identification -

C&A
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Feature Description and Implementation as in C&A Operationalization

Functional Form (FF) Expected pattern of the trend of the series. Can be

multiplicative or additive.

Judgmental identification -

C&A*

Basic Trend (BT) Direction of trend after fitting linear regression to past

data.

Automatic identification -

C&A

Recent Trend (RT) The direction of trend that results from fitting Holt’s to

past data.

Automatic identification -

C&A

Near a Previous Extreme

(Ext.)

A last observation that is 90% more than the highest or

110% lower than lowest observation.

Automatic identification -

C&A

Outliers (Out.) Isolated observation near a 2 std. deviation band of linear

regress.

Automatic identification -

C&A

Recent Run Not Long (RR) The last six period-to-period movements are not in same

direction.

Judgmental identification -

C&A

Changing Basic Trend (CB) Underlying trend that is changing over the long run. Judgmental identification -

C&A*

Irrelevant Early Data (Irr.) Early portion of the series results from a substantially

different underlying process.

Judgmental identification -

C&A

Unusual Last Observation

(ULO)

Last observation deviates substantially from previous data. Judgmental identification -

C&A*

Suspicious Pattern (Sus.) Series that show a substantial change in recent pattern. Judgmental identification -

C&A

Level Discontinuities (LD) Changes in the level of the series (steps) Judgmental identification -

C&A*

Causal Forces (CF) The net directional effect of the principal factors acting on

the series. Growth exerts an upward force. Decay exerts a

downward force. Supporting forces push in direction of

historical trend. Opposing forces work against the trend.

Regressing forces work towards a mean. When uncertain,

forces should be unknown.

Judgmental identification -

C&A

Trend Conflict (TC) If recent trend conflicts with causal forces, e.g. recent

trend is growing while causal forces are decay, then

a trend conflict is flagged.

Judgmental assessment for

this study

Trend Variation (TV) Standard deviation divided by the mean for the trend

adjusted data. If coefficient is >0.2, the series is flagged

as being uncertain.

Automatic identification -

C&A

Table A.
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