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AMERICAN MATHEMATICAL SOCIETY 
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PSEUDOBASES IN DIRECT POWERS OF AN ALGEBRA 

PAUL BANKSTON 

ABSTRACT. A subset P of an abstract algebra A is a pseudobasis if every func- 
tion from P into A extends uniquely to an endomorphism on A . A is called 
K-free if A has a pseudobasis of cardinality K; A is minimally free if A has 
a pseudobasis. (The 0-free algebras are "rigid" in the strong sense; the 1-free 
groups are always abelian, and are precisely the additive groups of E-rings.) 
Our interest here is in the existence of pseudobases in direct powers AI of an 
algebra A . On the positive side, if A is a rigid division ring, K iS a cardinal, 
and there is no measurable cardinal ,u with JAI < M < K, then AI is K-free 
whenever III = IAK . On the negative side, if A is a rigid division ring and 
there is a measurable cardinal ,u with IAl < ?< I , then AI is not minimally 
free. 

0. INTRODUCTION 

A pseudobasis in an abstract algebra is a subset of the underlying set of the 
algebra that "determines" the algebra's endomorphism structure, in the sense 
that functions from the pseudobasis into the underlying set extend uniquely 
to endomorphisms of the algebra. Algebras possessing pseudobases are termed 
minimally free. 

The notion of minimal freeness, first introduced in [ 1], generalizes (and there- 
fore unifies) the apparently unrelated theories of free algebras (which have pseu- 
dobases that are generating sets), rigid algebras (which have empty pseudobases), 
and E-rings (which are the endomorphism rings of groups having singleton 
pseudobases). (Such groups are easily shown [1] to be abelian.) Since its in- 
ception, the study of minimal freeness has served as a link between universal 
algebra and infinitary combinatorics, and in addition has motivated results in 
general topology through the investigation of minimally free rings of continuous 
real-valued functions (see [4, 5]). 

In this paper we consider the problem of when a direct power of an algebra 
is minimally free. In the first section we obtain some general results, and in 
the remaining two sections, our study is carried to the setting of division rings 
and Boolean rings. We consider the main result of the paper to be 2.10, a 
"straddling-a-measurable-cardinal" theorem. 
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80 PAUL BANKSTON 

1. POWERS OF GENERAL ALGEBRAS 

Let Q be a set of finitary operation symbols in the sense of universal algebra 
[6, 11]. For any n < co (where co is the first infinite ordinal), an n-place 
symbol from Q is termed n-ary; n is called the arity of the symbol. (0-ary 
symbols are called constants.) An interpretation VA of an operation symbol 
v E Q of arity n in a set A is just a map from the n-fold cartesian power An 
of A into A; an Q-algebra is a set A together with an interpretation in A for 
each symbol in Q. We benignly confuse notation by letting upper-case Latin 
letters A, B, . . . stand for both Q-algebras and their underlying sets. 

An Q-algebra A is minimally free if there is a subset P C A, called a 
pseudobasis, such that every function from P into A extends uniquely to an 
endomorphism on A. (For two Q-algebras A and B, Hom(A, B) is the set 
of all (Q-) homomorphisms from A to B; End(A) = Hom(A, A) is the set 
of endomorphisms on A.) If A has a pseudobasis of cardinality K, A is 
termed K-free [1, 2, 3, 4, 5, 12]. (Thus the 0-free Q-algebras are precisely 
the (endomorphism-) rigid ones. A group A is 1-free if and only if A is the 
additive group of an E-ring [1, 3, 91. Of course a free algebra in any variety 
is minimally free.) 

Given an Q-algebra A and a nonempty set I, the direct power is denoted 
AI, and consists of all functions f: I -* A. AI is made into an Q-algebra by 
defining the operations pointwise as usual. For each i E I, the ith projection 
map is denoted 7rT; 7i(f) = f(i). Then of course we have ii E Hom(AI, A), 
i E I. The diagonal map 3: A -* AI takes a E A to the "constantly a" 
map in AI. The image 3(A) is also denoted generically by A. Clearly 3 E 
Hom(A, AI), and 7i o 3 = idA, the identity map on A. Thus A is always an 
isomorphic copy of A that sits in AI as a retract. 

If K is a cardinal and I = AK, we denote the power AI by A T K (for 
obvious typographical reasons). We call this algebra the K-fold double power of 
A. (Of course we identify A T 0 with A and A T 1 with AA .) An important 
subset of A t K iS the set nI of projection maps 7ri: AK -+ A for 4 < K. 

When A is nontrivial, i.e., when the cardinality JAI of A is at least 2, 11 has 
cardinality K. We are interested in the issue of when nI is a pseudobasis for 
A T K, making the double power K-free. 

Define a subset P of an S2-algebra A to be extendible if every function from 
P to A extends (possibly not uniquely) to an endomorphism on A. Deciding 
whether a given subset of AI is extendible or a pseudobasis is facilitated by the 
following. 

1.1 Lemma. Let P C AI. Then P is an extendible subset (resp. a pseudobasis) 
if and only if every function from P to A extends (resp. extends uniquely) to a 
homomorphism from AI to A. 
Proof. Suppose P C AI is a pseudobasis, with f: P -* A. Let V/ e End(AI) 
extend 3 o f . Pick i e I and let (o =r jo ?i. Then clearly o E Hom(AI, A) 
extends f, so 3 o p extends a o f . Vr is unique, so 3 o ( = V. If (' = 
Hom(AI, A) were another extension of f, we would have 3 o (p' = V/ = 3 o (; 
hence (0' = ( . 

Conversely, suppose every function from P to A extends uniquely to a 
homomorphism from AI to A, and let f: P -- A' be given. For each i E I, 
let f1 = 7ri o f, with (Pi E Hom(AI A) the extension of f I i e I. Let 
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PSEUDOBASES IN DIRECT POWERS OF AN ALGEBRA 81 

Y/ E End(AI) be defined by the coordinate conditions 7i o yv = (i . Then Vy is 
the unique extension of f to End(A) . o 

1.2 Proposition. 1I1 is a pseudobasis for A t K if and only if every homomor- 
phism from A T K to A is determined by its restriction pf 1l to fl. 
Proof. By 1.1, 1I1 is extendible; since if f: L -- A is given, the map (o: A T K 

A, defined by (o(s) = s((f(7r) < K)), s E A T K, is a homomorphism 
extending f. El 

1.3 Remarks. (i) Any extendible subset of an algebra is "independent" in the 
sense of E. Marczewski [11]. 

(ii) Any pseudobasis is a set of "indiscernibles" in the model-theoretic sense 
[7]. (See also [3] for a simple proof.) 

(iii) As was discovered by G. Birkhoff [6], fl is a pseudobasis for the sub- 
algebra (II) of A T K generated by 11. In fact, pseudobases that generate are 
free bases [1 1]. 

(iv) Theorem 2 in [2] says that if A is a rigid algebra, then 171 is a pseudobasis 
for (LI U A) in A T K. Thus pseudobases can fail dramatically to be generating 
sets. 

There is a kind of converse to 1.3(iv): It is " almost always" the case that 
A must be rigid for 11 to be a pseudobasis for some subalgebra of A T K 
containing 171 u A. 

1.4 Lemma. Suppose Q contains a constant symbol c. If A is an Ql-algebra, 
I is a nonempty set, B is a subalgebra of AI that contains A, Q C B is 
such that nqEQ q-(cA) $ z, and every (0 e Hom(B, A) is determined by its 
restriction to Q, then A is rigid. 
Proof. Suppose A is not rigid, with B and Q as above. Let (0, Y/ E End(A) 
disagree at a E A, let i E nqEQq (cA), and set (p' = ( o (7rjB), y/' = 

V o (7r1B) . For each q E Q, we have p'(q) =(q(i)) = (0(cA) = cA = (cA) = 

V'(q). Thus (0' and Vy' agree on Q. However (p'(3(a)) = (p(a) $ y/(a) = 
YV'(3(a)). Thus (p', VI' E Hom(B, A) are distinct. o 

1.5 Proposition. Suppose Q contains a constant symbol, B is a subalgebra of 
A t K containing rl U A, and rl is a pseudobasis for B. Then A is rigid. 

Proof. For any a e A, nf<K iQ1(a) = {3(a)}. Apply 1.4. a 

It can easily happen that Q contains a constant, A T K is minimally free, 
but that 1I is not a pseudobasis and A is not rigid. (E.g., let Q = {c}, where c 
is a constant symbol. Then every Q-algebra has a pseudobasis (the complement 
of the interpretation of c), but only the trivial Q-algebra is rigid.) We do not 
know in general whether 11 is a pseudobasis for A T K given that A t K iS 
K-free; however if both A and K are finite, the answer is yes. 

1.6 Proposition. Suppose A is a finite Q-algebra and n < c. If A T n is 
n-free, then 171 is a pseudobasis. 

Proof. Let P C A T n be a pseudobasis with n elements, and let f: P -* 171 
be a bijection. Let ep E End(A t n) extend f . Since 17 is extendible, there 
is some VI e End(A T n) extending fl . Now (VI 0 (p)IP = idp . Since P is 
a pseudobasis, we know VI o (0 = idATfl; whence f9 is one-one. Since A T n is 
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82 PAUL BANKSTON 

finite, p is also onto. Hence (p is an automorphism on A T n taking P to lI, 
so fI is a pseudobasis. D 

In ?2 we take up the issue of finding conditions sufficient for II to be a 
pseudobasis for A T K. For the remainder of this section, we examine the 
role of pseudobases generally in direct powers. Our working set theory consists 
of the usual Zermelo-Fraenkel axioms, the Axiom of Choice included (ZFC). 
The following standard notations for operations on cardinal numbers are used: 
(i) K+ is the cardinal successor of K((o1 = co+); (ii) KA is the cardinality 
of the set of functions from A to K (this notation also doing double duty as 
the cartesian power); (iii) exp(K) = 2K, exp2(K) = exp(exp(K)), etc.; and (iv) 
K<A = SUp{Ka a < A 

1.7 Theorem. (i) Suppose AI and AJ are both K-free. Then they are isomor- 
phic (AI _AJ). 

(ii) Suppose A is nontrivial and AI is K-free. Then III < IA IK. 

Proof. (i) Let P = {p: : 4 < K} (resp. Q = {qE < K}) be an enumeration 
of a pseudobasis for AI (resp. AJ). Using 1.1, there is, for each i E J, a 
homomorphism epj : AI -- A taking p: to q (j), 4 < K. Thus there is a 
homomorphism p: AI -- AJ taking p: to q , 4 < K. Similarly there can be 
found a homomorphism y : AJ -, AI taking qx to pX, 4 < K. Because P 
and Q are pseudobases, and (g o (p)IP = idp and (po o v)IQ = idQ, we know 
(p and u are mutually inverse isomorphisms. 

(ii) Let P be as above, and suppose a E A is such that there are distinct 
i, i E nf<K pl (a) . Because A is nontrivial, the projection maps 7i and 7rj 
are distinct; whence rilP #A 7j|P. But for any 4 < K, 7i(P~) = p~(i) = a = 
pe(j) = 7rj(pe). This contradiction forces the conclusion that for all a E A, 

In, P-l (a) I < I 
Let h : I - AK be defined by the conditions 7rU o h = p4, 4 < K. For 

i :# j in I, we know from the last paragraph that there is some < K with 
ps (i) $A ps (j) . Thus h is one-one and IjII < IAIK. a 

The focus of the remainder of this section is a sharpening of 1.7(ii) to say 
that if I is "very much larger" than A, then better estimates are available for 
the cardinalities of possible pseudobases for AI. This brings us to results that 
fall under the rubric of "straddling a measurable cardinal". 

Our basic references for the theory of ultrafilters and large cardinals are the 
texts [7] and [8]. Recall that an ultrafilter D on a set I is K-complete if when- 
ever S C D and ISI < K, then nS E D. A cardinal ,u is measurable if 
there is a ,u-complete nonprincipal ultrafilter on ,u. By this definition, co is a 
measurable cardinal. (K iS called Ulam-measurable if there is an cow-complete 
nonprincipal ultrafilter on K; equivalently if there is some uncountable mea- 
surable cardinal ,u with ,u < K.) An infinite cardinal ,u is strongly compact if 
for every set I, every ,u-complete filter on I can be extended to a ,u-complete 
ultrafilter on I. Clearly strongly compact cardinals are measurable, and co is 
strongly compact. Measurable cardinals are "large"; i.e., they are regular and 
strongly inaccessible. (So if ,u is measurable with K, )A < ,u, then KA < P.) 
Finally, it is consistent with the ZFC axioms of set theory that there are no 
uncountable measurable cardinals at all. (G6del's universe L of constructible 
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PSEUDOBASES IN DIRECT POWERS OF AN ALGEBRA 83 

sets contains no uncountable measurable cardinals, by a celebrated theorem of 
D. Scott.) 

We identify the points of I with the principal ultrafilters on I. The set f, (I) 
of all ultrafilters on I is thus viewed as a superset of I, and is endowed with 
the Stone space topology: for each J C I, J* = {D E ,B(I) : J E D}. The sets 
J*, J C I, form a "clopen" set basis for the Stone-Cech compactification of the 
discrete space I. For each K > CD, we let flK(I) be the subspace of K-complete 
ultrafilters on I. 3,B,(I) = ,B(I); of course if K> III, then JIK(I) = I. 

1.8 Lemma (Theorem 8.32 in [8]). If ,u is strongly compact, u < III, and 
III = III<Y, then lJ,(I)I = exp2 ( I I) . a 

1.9 Remark. In the case ,u = co in 1.8, the condition III = II<" is redundant, 
and this result reduces to a famous theorem of B. Pospisil. 

In the next theorem, some topological notions come into use. In particular, if 
X is a topological space, the weight w (X) of X is the smallest infinite cardinal 
K such that X has an open basis of cardinality < K. Also, if I is an index 
set, we endow Xi with the (Tichonov) product topology: typical subbasic open 
sets are of the form 71l (U), where i E I and U C X is (basic) open. 

1.10 Theorem. (i) Suppose A is a nontrivialfinite algebra, I is an infinite set, 
and AI is A-free. Then A = exp(III). 

(ii) Suppose A is a nontrivial algebra, I is a set such that there is some 
strongly compact cardinal ,u with IAl < ? I II} I I<1t, and A' is A-free. Then 
exp(A) = exp2(III). 

Proof. (i) Let A and I be as hypothesized, with P C AI a pseudobasis of 
cardinality A. By 1.7(ii), A is infinite. For each D E ,B(I) and f E AI, there 
is a unique a E A with f- (a) E D. (Because A is finite, every f E AI is 
D-constant.) Let D- lim(f) be this unique a E A. Then, since all the algebraic 
operations in Q are finitary, D-lim E Hom(AI, A). Now suppose E E ,B(I) 
is different from D. Then there is some J C I with J E D and I \ J E E. 
Since A is nontrivial,there is some f E AI with D-lim(f) :$ E-lim(f); so 
D- lim $ E- lim. Since P is a pseudobasis, D- lim I P :# E- lim I P. 

Let : /B(I) -- AP be the assignment D -4 D-lim P. Then n is a one-one 
function. When A has the discrete topology, making the power AP into a zero- 
dimensional compact Hausdorff space, Q is also continuous. Indeed, if 7p I (a) 
is a typical subbasic open subset, then ii(D) E 7p I (a) if and only if D- lim(p) = 
a if and only if p-1(a) E D. Thus 6-1(7r2 I (a)) = (p 1 (a))*, a basic open 
subset of ,B(I). Since ii is a continuous one-one map from a compact space 
to a Hausdorff space, ij is a topological embedding. Thus w(,B(I)) < w(AP) . 
Now w(,B(I)) = exp(lI) and w(AP) = A). Thus A > exp(lIl). SInce P C AI, 
we already have A < exp(lIl). so equality holds. 

(ii) Let A, ,u, and I be as hypothesized, with P a pseudobasis of cardinality 
A. We note first that if A < ,u, then lAlI- < u because ,u is strongly inaccessible. 
Thus IAl2 < II}, contradicting 1.7(ii). Thus A > ,u; in particular IAPl = -Al2 = 
exp(A). Also we have A < ?AIA, so exp(A) < exp2(lIl). By 1.8, it remains to 
establish a one-one map from ,B(I) to AP. 

Let D E ,B(I). Since ,u is measurable and JAl < ,u, every f E AI is 
D-constant. We may establish the map ij as in (i) above, and the proof is 
complete. (N.B.: ij is still continuous, but ,B(I) is no longer compact, and 
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84 PAUL BANKSTON 

we have no reason to believe Q is an embedding. Thus an argument involving 
topological weight seems no longer available.) D 

1.11 Corollary. Suppose A is a nontrivial algebra and K is a cardinal such 
that for some strongly compact cardinal ,u, we have AI < , < K. If A T K 

is A-free, then exp(A) = exp3 (K). Moreover, if ,u = co, then A = exp2(K). In 
particular, A T K is not K-free. 
Proof. Here we set I = AK . Then III<" = III automatically, so we may apply 
1.10. 0 

Given an Q-algebra A and an index set I, we say that a subset Q C AI is 
continuous if there is a T1 topology on A and a compact topology on I such 
that each q E Q is a continuous map. 

1.12 Proposition. fI is a continuous subset of A T K. 

Proof. Let A have any compact T1 topology (of which there are many, e.g., the 
cofinite topology), and let AK have the product topology. Then AK is compact 
by Tichonov's product theorem. All the projection maps are continuous in this 
setting. a 

1.13 Theorem. Suppose A is a nontrivial algebra, and I is a set such that 
for some measurable cardinal ,u, we have JAl < ,u < III. Then AI has no 
continuous pseudobasis. 
Proof. Let A, ,u, and I be given as above, with Q C AI a continuous subset. 
Let D E ,B(I) be nonprincipal. As in the proof of 1.10(ii), every f E AI 
is D-constant, so we have the induced D- lim E Hom(AI, A). Thus, for each 
q E Q, q-I(D-lim(q)) E D. Since A has a T1 topology, so singleton subsets 
are closed, and q is continuous, we infer that each q- (D- lim(q)) is closed in 
I for q E Q. Now Z = {q-I(D-lim(q)): q E Q}, being a subset of D, has 
the finite intersection property. Since Z is also a collection of closed subsets 
of a compact space, we know n Z $ 0; whence there is a principal ultrafilter 
E on I with Z C E. Since E $A D, we know (from the proof of 1.10(i)) that 
E- lim :$ D- lim. On the other hand, D- lim I Q = E- lim I Q, so Q cannot be a 
pseudobasis. D 

1.14 Corollary. Suppose A is a nontrivial algebra, K is a cardinal, and there 
is a measurable cardinal ,u such that IA <,u < K. Then II is not a pseudobasis 
for A T K. D 

In the "straddling-a-measurable-cardinal" theorems above, we were able to 
give set-theoretic conditions that force fairly severe limitations on what kinds 
of pseudobases can occur in AI. Of course, as the paragraph preceding 1.6 
shows, one can never prove AI is not minimally free in general. A very natural 
setting in which AI is always minimally free, no matter how JAl and I}I are 
related, is given in the following. 

1.15 Example. Let A be a vector space (over a division ring). Every pseu- 
dobasis is Marczewski independent, hence linearly independent. Pseudobases 
are clearly maximal linearly independent sets; hence they are vector space bases. 
Therefore the analysis of what can and cannot be a pseudobasis for the power 
AI becomes a matter of linear algebra. In particular, a pseudobasis for an 
infinite power AI must have the maximal possible cardinality, since it must 
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generate AI. Also, since only the trivial vector space is rigid, fI can never be 
a pseudobasis for A T K when IAl > 1. (Indeed, the dimension of A T K far 
exceeds K, even in the finite case.) 

In the next section, we enrich the algebraic setting to that of unital rings, 
particularly division rings. Measurable cardinals figure both in deciding when 
fI is a pseudobasis for A T K, as well as in forcing AI to have no pseudobasis 
at all. 

2. POWERS OF DIVISION RINGS 

In the present section we focus on powers of unital rings, especially division 
rings. (So we take Q to be appropriate, say {+, *, 0, 1}.) From ?1 we know 
that if fI is to have a chance at being a pseudobasis for A T K, we need for A 
to be rigid (1.5) and for K not to be too much greater than JAl (1.14). 
1.2 Remarks. (i) R. Schutt [14] has done a lot of (so far unpublished) work 
on minimal freeness in unital rings. In particular he has proved special cases 
of 1.5 and 1.7 in the ring-theoretic context. Another interesting fact he has 
discovered is that Z4 T 1 (where Z4 is the ring of integers modulo n) has 
pseudobasis Il if and only if n is a power of a prime. To see, for example, 
that 46 T 1 is not 1-free at all, set 46 T 1 = Z6, so that the identity map id 
is (O, 1, 2, 3, 4, 5). Then Il = {id}. By 1.6, if 46 11 is 1-free then LI 
is a pseudobasis. Now eo = 7r0 takes id to 0; so also does the (unital ring) 
homomorphism i = 37r0 + 47r3 . Since ep :$ e, we know 46 T 1 cannot have 
Il for a pseudobasis. That Zp T 1 is 1-free when p is a prime number follows 
from 2.2 below. 

(ii) From here on in this section, our concern lies with powers of rigid division 
rings. The rational field Q and the real field R are well known to be rigid, as 
are the fields Zp, where p is a prime. (Every finite division ring is a field, and 
every finite rigid field is some Zp .) P. Prohle [13] has shown that every field of 
characteristic zero embeds in a rigid field, so there are plenty of rigid fields. 

(iii) No division ring is K-free for K > 0, since division ring homomorphisms 
are embeddings. 

(iv) Every product of division rings is a unital ring that is (von Neumann) 
regular; every regular unital ring whose idempotents are central is a product of 
division rings. 

Our main positive result is the following. 

2.2 Theorem. Let A be a rigid division ring, and suppose K is a cardinal 
such that there is no measurable cardinal ,u with JAI < u < K. Then Il is a 
pseudobasis for A T K . 

Proof. In view of 1.2, it suffices to show that every homomorphism eo E 
Hom(A 1 K, A) is determined by its restriction pIII . So let (p be given, and let 
K. be the kernel ideal of ( . Now (p o = idA since A is rigid, so (p is onto. 
Consequently K. is a maximal ideal in the ring A T K. Since (p preserves 1, 
K,, is also proper. Let I = AK, and write A T K as AI. It is a well-known result 
of A. Daigneault (see Exercise 4.1.30 in [7]) that D,, = {k-1(0): k E Kp,} is an 
ultrafilter on I; moreover this correspondence is a bijection between the proper 
maximal ideals of AI and the points of ,B(I). For each < K, let ae = (o(7rc) . 
Then 7rz - 3(az) E K, for all 4, so (7re - 3(a:))1(0) = 71(a:) E D,p . Let 
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Z = {f7rf(a~): < K}. Then nZ = {da}, where a = (a: < K). Now 

po = idA is the canonical embedding of A into the D,-ultrapower; thus 
every f E AI is Dr-constant (i.e., (p = Df,.lim in the notation of 1.10). 
We wish to show DA is the principal ultrafilter {J C I: a E J}. For then 
Dv,, hence K,, is determined by IoI. 9 is thus determined, because if 

i E Hom(AI, A) has kernel KQ,, then i too is onto since A is rigid. Let 
0 E Hom(AI, AI/K,) be the natural quotient map. Then the induced ho- 
momorphisms p', q' E Hom(AI/K,, A) are isomorphisms and ( = 9' o 0, 

= q/' o 0. Because A is rigid, we have (p' = e'; whence (p = V. 
To show D. is principal, assume otherwise. Then there is a largest cardinal ,u 

such that D. is ,u-complete, and this ,u is measurable. If K < i, then K+ < i 

(by inaccessibility); whence n Z = {a}, an intersection of K members of D9,, 
is a member of D,, and D, is principal. Thus K> U. By our hypothesis of 
"nonstraddling", we have IAI > ?u also. Now Df is ,u+-incomplete, so there is 
a partition of I into ,u pieces such that no piece is in D9,. This gives rise to 
a function f E AI that is not D.-constant. This is a contradiction, and D. is 
therefore principal. D 
2.3 Corollary. Let A be a rigid division ring, n < co. Then fI is a pseudobasis 
for AT n. a 

2.4 Remarks. (i) R. Schutt [14] proved 2.3 independently for the case A is a 
field and n = 1 . 

(ii) E. Fried and J. Sichler [10] have shown that there are arbitrarily large 
commutative unital rings that are rigid. By work in [2] and [12], this result was 
extended to show there are arbitrarily large K-free commutative unital rings for 
any fixed K. Prohle's result [13] that there are arbitrarily large rigid fields can 
now be combined with 2.2 to show that there are arbitrarily large K-free regular 
commutative unital rings for any fixed K . 

The "algebraic" part of the proof of 2.2 can be used to prove the minimal 
freeness of certain subrings of A T K. 

Let A be an Q-algebra, K a cardinal. A subalgebra B of A t K iS called 
a C-subalgebra if: (i) fI U A C B; and (ii) whenever g E B and fJ E B for 

< K, then h E B, where h(d) = g((fJ(d): < K)). 

2.5 Examples. (i) (Hl U A) is a C-subalgebra of A t K [2], as is A t K itself. 
(ii) Let IRK be given the usual Tichonov product topology, with B C R t K 

the ring of continuous real-valued functions on IRK . Then B is a C-subring of 
A T K. 

(iii) If n < co and B C R T n is the ring of infinitely partially differentiable 
real-valued functions on inR, where all partial derivatives are continuous, then 
B is a C-subring of R t n. 

Define a division ring A to be n-formally real, n < co, if whenever Em<n am 
-0 in A,then am =0 forall m < n. If feAI isaunitof AI,then f has 

a unique multiplicative inverse denoted 1/f . Also, if i E I, we let Xi E AI be 

the map that takes i to 1 and everything else in I to 0. 

2.6 Theorem. Let A be a rigid division ring, n < o, and B C A t n a C- 
subring such that 1/f e B whenever f e B is a unit of A t n. Then H1 is a 
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pseudobasis for B provided either: (a) A is (n + 1)-formally real; or (b) A is 
n-formally real and xd E B for all d E An . 
Proof. By the discussion leading to 1.2 (and its proof), LI is always an ex- 
tendible subset of B whenever B C A t n is a C-subalgebra. Thus, to see 
that LI is a pseudobasis for B, it suffices to check that every (0 E Hom(B, A) 
is determined by 0 II. Proceed as in the proof of 2.2. Since A is rigid, 
we know (0 is surjective and its kernel K, is a proper maximal ideal of 
B. Let am = (0(7(m), m < n. For each m < n, 7rm - 3(am) E K,, and 

(7(m-36(am))-Y(0) = 7rU1(am). LetS = Em<n(7(m-3(am))2, a sum of n 
squares. Then s-1(o) = nm<nrmI(am) - {a}, where a = (ao, ... ,an_ ) 
since A is n-formally real. Assume first that A is (n + l)-formally real. Let 
f E K, and assume f(d) :$O. Then g = s + f2 E Kg,, a sum of n + 1 
squares; hence g91(0) = 0. Thus g is a unit of A t n contained in B, 
so 1/g E B. Since g E Kg,, we infer that 1 = 1 * g E Kg,, so Kg, is not 
proper. This contradiction tells us that every f E Kg, takes a to 0; whence 
Kg, C {f E B : f(a) = O}. Since K,, is maximal proper ideal, equality must 
hold. Thus K,,, hence 0, is determined by ( In . 

Next assume A is n-formally real and that xd E B for all a E An. We let 
f E K,, and assume f(d) : 0, where am = (7(m), m < n. Now Xd E B, so 
g=Xdf EKp, and g-I(O)=An\{I}. Thus (g+s)1(O)-o,so g-seKg,y 
is a unit of A t n. This tells us again that Kg, = {f E B : f(d) = O}, and the 
proof is complete. 5 

To end the section on a negative note, we show that when A is a rigid division 
ring and I is much larger than A, then AI is not minimally free. The proof 
depends on some topological aspects of IK (I), the space of all K-complete 
ultrafilters on I, as introduced just prior to 1.8. 

It is easy to see that if I1 and I2 are sets, with f: I1 -+ I2 any function, there 
is a unique continuous 9: /iK(I1) -_ /iK(I2) extending f . For D E /iK(I1) , just 
let (0(D) = {J C I2 f-1 (J) E D}. (This also works when f is the inclusion 
map I, C I2. Then (0(D) = {J C I2 : J n II E D}.) We need a strengthening 
of this. 

2.7 Lemma. Every K-complete ultrafilter on the space fK (I) converges. 

Proof. Let v be a K-complete ultrafilter on fiK(I). Then Y = {V C /(I): 
Vn flK(I) E W} is a K-complete ultrafilter on /3(I), and Y converges to some 
(unique) D E /3(I). We show D E /K(I), so v/ converges to D. Let A < K, 
with J> E D for all 4 < A. Let J = n,<, i4 . For each 4 < A, J* contains 
some member of Y, so (J.)K = Jf n/3K(I) contains some member UX E W. 
Now (J*)K= nf,<, ( J)K * If J ? D, then I\ J E D; and there is some U E / 
with (I \ J)K containing U. But (J*)K f nf<, UX E Z/, a contradiction. Thus 
J E D, and so D E /K(I) . Therefore v/ converges to D. a 

2.8 Lemma. Let I,, I2 be sets. Then everyfunction from I, to /3K(I2) extends 
uniquely to a continuous map from 3K (I1) to 3K (I2) . 

Proof. Let f: II -B /3K(12) be given. For each D E /3K(I1), define Z/D = {U C 

/K (h2) f-l(U) E D}. Then Z/D is a K-complete ultrafilter on /K (I2), so by 
2.7, Z1D converges to some ultrafilter in /3K (12), which we label (0(D) . Clearly 
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(p extends f. If J C I2, then q-l((J*)K) = ((-l((J*)K))*)K- Thus (p is 
continuous. 5 

2.9 Theorem. Let A be a rigid division ring, with I a set such that there is a 
measurable cardinal ,u with JAI < u < III. Then AI is not minimally free. 

Proof. Let A, I, and ,u be as hypothesized, with P a pseudobasis for AI. 
Proceed as in the proof of 1.10(ii), assuming that ,u is the least measurable 
cardinal with JAI <k,. For each D E /,l(I), we have D-lim E Hom(AI, A); 
hence we let ?I: f/, (I) -- AP take D e I3,B(I) to D-lim |P. ?I is one-one and 
continuous; we now show ? is onto AP. 

Given f e AP, f extends uniquely to a homomorphism ( e Hom(AI, A), 
since P is a pseudobasis. Because A is rigid, ( is onto; hence its kernel K., 
is a proper maximal ideal (as in the proof of 2.2). Moreover, (P is the only 
homomorphism to A with K., as kernel. By Daigneault's correspondence, 
D_ = {k-1(0): k E Kg,} is an ultrafilter on I for which every member of AI 
is DJg-constant. It is clear that f = ?I(Dg,) once we show Dq, E /3,l(I) . If Dg, is 
principal, we are done. Otherwise, there is a largest cardinal v, a measurable 
cardinal, such that D., is v-complete. But every f E AI is D.-constant, so 
Al < v . By the minimality condition on u, u < v; whence D(, E /B,3 (I). 

We now have a continuous bijection I: /,B,(I) -- AP, where A has the 
discrete topology and AP has the product topology. (In case ,u = co, the proof 
has an easy finish: ?I is a homeomorphism, since ,B(I) is compact and AP is 
Hausdorff. But fl(I) has isolated points and AP does not. Contradiction.) 

Now choose D E f/3(I) nonprincipal and E E 1#8(I) principal (so D is 
nonisolated and E is isolated in /3,B(I)). Then AP is a point-homogeneous 
space, so there is a homeomorphism V on AP taking r(D) to I(E). Let 
0 = VI o . By 2.8 there is a continuous p: I,B,(I) --, f3,(I) extending the 
function il- o (0II) . Then 0 and t1 o p are continuous maps from /,(I) to 
AP, and they agree on I. Since I is dense in /,Bl(I), we have 0 = ?I o p, i.e., 
V/ o il = ?I o p. Clearly p is one-one and takes D to E. But E is isolated 
in ,#j (I), and this forces D to be isolated. This is a contradiction, and we 
conclude that there can be no pseudobasis in AI. 0 

From 2.2 and 2.9 we immediately get the following. 

2.10 Corollary. Let A be a rigid division ring, K a cardinaL The following 
are equivalent: 

(i) H is a pseudobasis for A t K. 
(ii) A T K is K-free. 
(iii) A t K is minimally free. 
(iv) There is no measurable cardinal ,u such that JAI < i < K. O 

2.1 1 Remark. It is ironic that the rigidity of the base division ring is called for 
in the hypothesis of both 2.2 and 2.9. This assumption is absolutely essential 
for 2.2, by 1.5; and it seems indispensable in 2.9 at the point where we need to 
show ?I: f3, (I) -- AP is onto. We have made several attempts at circumventing 
rigidity; but have failed, even in the (minimally problematic) case A is finite 
and I is infinite. 
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3. POWERS OF BOOLEAN RINGS 

The situation with Boolean rings offers a sharp contrast to that with division 
rings, as regards minimal freeness. This is mainly due to Stone duality, linking 
the category of Boolean rings and unital ring homomorphisms contravariantly 
with the category of zero-dimensional compact Hausdorff spaces and continuous 
maps. The following consequence of this duality is a corollary of Theorem 3.5 
in [1]. 
3.1 Theorem. Let A be a Boolean ring, K a cardinal. Then A iS K-free if and 
only if A is the free Boolean ring on K generators. ol 

Thus the problem of deciding whether a power AI is minimally free hinges 
on recognizing when direct powers of Boolean rings are free Boolean rings. 
This is not always an easy task; what we can show with the aid of Stone duality, 
together with well-known topological facts about certain Stone spaces, is the 
following. 

3.2 Theorem. (i) Let A be a Boolean ring, I a nonempty set. Then AI is not 
minimally free if either. (a) I is uncountable; or (b) III = co and JAI < IA/ w. 

(ii) Let A be a Boolean ring, K a cardinal. If A T K is minimally free, then 
K < c0. If, in addition, A is finite, then A l K Z2 T n, the free Boolean ring 
on n generators, for some n < co. 
Proof. (i) Let ar(A) denote the Stone space of ultrafilters on the Boolean ring 
(lattice) A. Then c(AI) is the I-indexed copower of v(A), namely the 
Stone-Cech compactification /1(ao(A) x I) (where I has the discrete topology). 
a(A) x I is locally compact, and is hence embedded naturally as an open sub- 
set of fJ(a(A) x I). Thus if I is uncountable, then fl(a(A) x I) possesses an 
uncountable family of pairwise disjoint nonempty open subsets. But the Stofie 
space of a free Boolean ring is a generalized Cantor space, of the form 2A, 
which has no such family. (Tichonov products of spaces satisfying the count- 
able chain condition also satisfy this condition.) Consequently AI is not free; 
by 3.1, AI is not minimally free. 

Suppose now that JAI < IA/W and III = cv. If AI is minimally free, hence 
free, it must have a free basis of cardinality i = IA Iw. Its Stone space must 
therefore be 21. But for dyadic spaces, of which 2A is an example, the weight 
equals the character. Now w(2A) = A; hence, because of homogeneity, each 
point of 2A has a neighborhood basis of cardinality A, and no point has a 
neighborhood basis of smaller cardinality. But in a(AI) = fl(o(A) x I), v(A) 
is embedded as an open subset. By Stone duality, w(a(A)) = JAl; whence 
a(AI) contains points having neighborhood basis of cardinality JAI < A. Thus 
AI is not free, hence not minimally free. 

(ii) The Boolean rings Z2 t n, n < c, are all free on n generators (so indeed 
fl is a pseudobasis). So suppose A T K iS minimally free. Then K < c by (i) 
above. If A is also finite, then so is A t K; whence A T K Z2 T n, where 
n = K log2(IA/) + log2(10g2(IA/)) *l 
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