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ABSTRACT 

MATHEMATICAL MODELING AND DYNAMICAL ANALYSIS OF THE OPERATION OF 

THE HYPOTHALAMUS – PITUITARY – THYROID (HPT) AXIS IN AUTOIMMUNE 

(HASHIMOTO’S) THYROIDITIS 

 

Balamurugan Pandiyan, B.S., M.S. 

Marquette University, 2011 

 

This thesis is a mathematical modeling study of the operation of the negative feedback 

control through the hypothalamus-pituitary- thyroid (HPT) axis in autoimmune (Hashimoto’s) 

thyroiditis.  Negative feedback control through the HPT axis is a mechanism in which the high 

levels of thyroid hormone; free thyroxine (FT4) in the blood inhibits the secretion of the pituitary 

hormone, thyroid stimulating hormone (TSH) into the blood.  Similarly, the low levels of free 

thyroxine (FT4) sensed by the pituitary gland and then it secretes thyroid stimulating hormone 

(TSH) into the blood.  Autoimmune (Hashimoto’s) thyroiditis is a disease in which the immune 

system turns against the thyroid follicle cells and destroys them slowly for a long period of time.  

This in turn interrupts the operation of the negative feedback control, in fact, the HPT axis.  The 

half-life of thyroid stimulating hormone (TSH) and free thyroxine (FT4) is one hour and seven 

days respectively in the blood.  This implies that thyroid stimulating hormone (TSH) changes in a 

faster time scale than free thyroxine (FT4) both in the healthy and diseased thyroid gland.  Thus, 

the operation of negative feedback control is at least in two different time scales.  The normal 

reference range for TSH and FT4 is used in this thesis are               and           
   respectively.  In thyroid clinics, in general, physicians see three different kinds of patients 

with autoimmune (Hashimoto’s) thyroiditis with or without goiter (enlarged thyroid gland).  

i) Patients with euthyroidism (normal FT4 and TSH levels). 

ii) Patients with subclinical hypothyroidism (normal FT4 but TSH above normal 

levels).  

iii) Patients with overt (clinical) hypothyroidism (low FT4 and TSH above normal 

levels). 

Usually patients with euthyroidism progress to subclinical hypothyroidism and then progress to 

overt hypothyroidism.  This is a sequential event, but in some patients’ cases, it is not true.  

 

To describe the operation of the feedback control in autoimmune (Hashimoto’s) 

thyroiditis, we developed a mathematical model in this thesis involving four clinical (state) 

variables, thyroid stimulating hormone (TSH), free thyroxine (FT4), anti-thyroid antibodies 

(TPOAb and TGAb), and the functional size of the thyroid gland (T).  The first three variables are 

regularly measured in thyroid clinics to determine the function of negative feedback control and 

the status of the thyroid gland in autoimmune thyroiditis.  The last variable is determined through 

relationships between the other three variables and is required for this work to accurately track 

the output of the gland.  The problem of two different time scales is addressed using singularly 

perturbation theory.  Also, the analysis of the mathematical model establishes stability and 

conditions under which the diseased state can be maintained the slow movement of the 

functioning of the negative feedback control toward the diseased state equilibrium. 

  

In this thesis, the purpose of modeling the operation of negative feedback control is to 

describe the natural history of autoimmune (Hashimoto’s) thyroiditis.   This means to describe the 

natural course of euthyroidism, subclinical hypothyroidism or overt hypothyroidism for every 



 

 

 

 

patient with autoimmune thyroiditis.  Although, we have used four variables in modeling the 

feedback control through the HPT axis, the end product depends on the levels of thyroid 

stimulating hormone (TSH) and free thyroxine (FT4).  In addition, the clinical chart is developed 

based on the levels of thyroid stimulating hormone (TSH) and time.  To validate the model 

description, patient’s dataset are employed in chapter 5.  For this thesis, the dataset is obtained 

from Sicilian adult population, Italy through our clinical collaborator. 
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Figure 1.1: The Thyroid Gland 

  

Figure 1.2: This figure shows a typical follicle from the thyroid gland. It is roughly spherical in 

shape with normal follicle cells, thyroid receptors (TSHR), thyroid peroxidase (TPO) and 

thyroglobulin (TG) in the colloid. 

 

Figure 1.3: This figure shows the HPT axis. The sign (-) indicates the existence of a negative 

feedback loop. Note that free thyroid hormones (T3 and T4) are sensed by the pituitary gland and 

the hypothalamus. 

 

Figure 1.4: A chronic immune response to the thyroid gland interrupts the normal function of the 

HPT axis. The dotted lines represent the dormant part of the HPT axis.  The solid line from 

hypothalamus to pituitary to thyroid gland is the active part of the axis. 

 

Figure 1.5: The figures (A and B) show 45 patients with autoimmune thyroiditis from group1. 

Figure A shows patient’s TSH versus free T4. Figure B shows patient’s log (TSH) (mU/L) versus 

free T4(pg/mL). All patients have anti-thyroid antibodies but untreated clinically because free T4 

levels are normal. 2d plots show how each patient is different in the dataset. The solid red lines 

indicate the reference range of TSH. The dotted red line indicates the new upper reference limit 

of TSH.  

 

Figure 1.6: 3d plots (C and D) show that all patients from group1 have anti-thyroid peroxidase 

(TPOAb) and/or anti- thyroglobulin (TGAb) in their blood serum. Group1 patients are always 

untreated.  Figure C shows patient’s free T4 (pg/mL), TPOAb (U/mL) and TSH (mU/L). Figure 

D shows patient’s free T4 (pg/mL), TGAb(U/mL) and TSH(mU/L). 

 

Figure 1.7: 2d plots (E and F) show treated patients from time zero from group2.  Group2 

contains 51 patients with autoimmune thyroiditis. Figure E shows patients TSH versus free T4. 

Figure F shows patient’s log (TSH) versus free T4. Comparing Figures F and B, we see that 

treated patients from time zero has perfect inverse log/linear relationship between log (TSH) and 

FT4 than always untreated patients. 

 

Figure 1.8: 3d plots (G and H) show treated patients from time zero from group2. All treated 

patients live with anti-thyroid peroxidase (TPOAb) and/or anti-thyroglobulin (TGAb) in their 

blood serum. Figure G shows patient’s free T4 (pg/mL), TPOAb (U/mL) and TSH(mU/L). Figure 

H shows patient’s free T4(pg/mL), TGAb(U/mL) and TSH(mU/L). 

 

Figure 1.9: 2d plots (I and J) show patients from group3. Group3 contains 22 patients with 

autoimmune thyroiditis. Figure I shows how patient’s progress from euthyroidism to 

hypothyroidism both in terms of TSH and free T4. Figure J shows the data of 22 patients from 

group3 before treatment.  All patients in Figure J progress from euthyroidism to hypothyroidism 

while free T4 within laboratory reference range adopted for this project. In Figure J, the data 

seems to be more scattered than Figure I. 

 

Figure 1.10: 3d plots (K and L) show patients from group3.  It appears that group3 contains more 

anti-thyroid peroxidase antibodies rather than anti-thyroglobulin antibodies. Figure L shows 

group3 patients with TPOAb(U/mL). Figure L shows group3 patients with TGAb(U/mL). 
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Figure 1.11: 2d plots (M and N) show a patient from group1 and group3.  Figure M shows 

patient 103 from group1 while Figure N shows patient 114 (before treatment) from group3. 

 

Figure 1.12: The 2d scatter plot showing a linear regression model and the statistical quantities 

(R
2
 and ρ).  It seems R

2
 = 0.3243, (p < 0.001) and Pearson’s correlation           negative. 

This indicates that there is a linear relationship between log (TSH) (mU/L) and FT4 (pg/mL). 

This relationship is due to the functioning of the HPT axis. 

 

Figure 3.1: The figure shows that    value does not change the stability of the euthyroid (steady) 

state but changes the nature of the euthyroid state. Note that the euthyroid state is independent of 

  .  

 

Figure 3.2: The plot of free T4 and the thyroid functional size     as a function of time of a 

simulated individual.  Note the thyroid functional size     is in milliliters. We start the reduced 

(2d) model at the initial state             
  

  
          , having free T4 and   within the 

reference range (normal), and using parameter values from the Table A2 in Appendix A except 

for   . Here                      . The 2d reduced system predicts that the imaginary 

individual probably develops a goiter before asymptotically approaches the euthyroid 

state    
  

  
          in approximately 60 days. 

 
Figure 3.3:  The phase plane view of the previous time series plot. Note the thyroid functional 

size    is in milliliters. Here                       the monitored values. The reduced 

2d system asymptotically approaches the euthyroid state    
  

  
         . 

   

Figure 3.4: Note the thyroid functional size     is in milliliters. We start the reduced (2d) model 

at the initial state              
  

  
          , having free T4 above the upper reference limit 

of free T4 and T normal (hashitoxicosis), and using parameter values from the Table A2 in 

Appendix A except for   . Here                      . The 2d reduced system predicts 

that the imaginary individual asymptotically approaches the euthyroid state    
  

  
          in 

approximately 60 days. 

    

Figure 3.5: The phase plane view of Figure 3.4. Note the thyroid functional size     is in 

milliliters and                      . The reduced 2d system asymptotically approaches 

the euthyroid state    
  

  
          from hashitoxicosis state    

  

  
         . 

   
Figure 3.6: Note the thyroid functional size     is in milliliters. We start the reduced (2d) model 

at the initial state             
  

  
          , having free T4 below lower reference limit of 

free T4 and T normal (clinical hypothyroidism), and using parameter values from the Table A2 in 

Appendix A except for   . Here                      . The 2d reduced system predicts 

that the imaginary individual asymptotically approaches the euthyroid state    
  

  
          in 

approximately 60 days.  

   
Figure 3.7: The phase plane view of Figure 3.6. Note the thyroid functional size     is in 

milliliters and                      . The reduced 2d system asymptotically approaches 

the euthyroid state    
  

  
          from clinical hypothyroidism state   

  

  
         . 

 



ix 

 

 

 

Figure 3.8: Note the thyroid functional size     is in milliliters. We start the original (4d) model 

at the initial state                      
  

 
   

  

  
           , having TSH, free T4 outside 

the reference range (clinical hypothyroidism), T and Ab normal, plus using the parameter values 

from Table A2 in Appendix A except for   . Here                      . The 4d 

system predicts that the imaginary individual asymptotically approaches the euthyroid 

state    
  

 
   

  

  
            in approximately 60 days. Also, observe that TSH quickly 

approaches the euthyroid state suggestive of the existence of a fast-time-scale for TSH. 

 
Figure 3.9: 3d phase space view of Figure 3.8. Note the thyroid functional size     is in 

milliliters and                      .  The reduced 2d system asymptotically 

approaches the euthyroid state    
  

  
          from clinical hypothyroidism 

state   
  

  
         . Using the algebraic equation,    ,     is computed for the 2d system. 

The 4d system asymptotically approaches the euthyroid state    
  

 
   

  

  
            from 

clinical hypothyroidism state     
  

 
   

  

  
           . Note: the reduced 2d system 

approximates the 4d system. Also,    
 

  
        is a small fixed value. 

 
Figure 4.1: Note the thyroid functional size (   is in milliliters. The 4d system, (2.2) – (2.17) 

with the initial condition                 for the parameter values from Table A2, predicts that 

Ab concentration asymptotically approaches zero in approximately 350 days while other 

variables remain at steady state.  This means that the anti-thyroid antibodies did not affect the 

function of the HPT axis. 

 

Figure 4.2: For              
  and the parameter values from Table A2, the 4d system, (2.2) 

– (2.17) moves from the initial state                                  to euthyroid steady 

state               . Note the thyroid functional size (   is in milliliters. 

 

Figure 4.3:  If the initial state                                    is taken on the slow 

manifold, not at euthyroid state, then the 4d system, (2.2) – (2.17) for the parameter values from 

Table A2, predicts that the trajectory converges to euthyroid state. This suggests the euthyroid 

state is asymptotically stable. Since       
 , the diseased steady state is not on the surface. Note 

the thyroid functional size (   is in milliliters. 

 
Figure 4.4: We started the 4d system, (2.2) – (2.17) from                =                 
    and the numerical solutions of the system approaches euthyroid state. Since       

 , the 

diseased steady state is located in the negative octant, so we did not plot the green dot 

(representing diseased state). 

 

Figure 4.5: For the initial state                , the 4d system (2.2) – (2.17) for the parameter 

values from Table A2 predicts that Ab concentration asymptotically approaches 6800 in 

approximately 2 years while other variables start at euthyroid state.  Note the thyroid functional 

size (   is in milliliters. 

 
Figure 4.6: For the initial state                 and              

 , the 4d system (2.2) – 

(2.17) for the parameter values from Table A2 predicts that euthyroid state becomes unstable, and 

the trajectory approaches the diseased state. 

 



x 

 

 

 

Figure 4.7: If the initial state                                  ) is taken on the level 

curve, not at euthyroid state, then the 4d system, (2.2) – (2.17) for the parameter values from 

Table A2, predicts that the trajectories approaches the diseased state (subclinical hypothyroidism) 

while euthyroid state becomes unstable and shows saddle-type behavior. Note the thyroid 

functional size (   is in milliliters. 

 
Figure 4.8: This figure shows the stability of diseased steady state, the initial state was chosen at 

                       . The reduced system, (2.26) – (2.28) approaches the diseased state 

via euthyroid state. Note the saddle-like behavior near the euthyroid state. Here,            
   

 . Note the thyroid functional size (   is in milliliters. 

 
Figure 4.9: A bifurcation diagram shows a transcritical bifurcation for a range of values  . The 

local bifurcation takes place at            . 

 
Figure 4.10: This bifurcation diagram illustrates how the anti-thyroid antibodies steady state 

concentrations     changes as    varies in the model from 0 to 5. Note that the bifurcation 

occurs at      
        .  

 
Figure 4.11: This bifurcation diagram shows how free T4      steady state concentrations 

changes as    varies from 0 to 7.  Observe that the bifurcation occurs at      
  and when    

  
      , we see a patient would have clinical hypothyroidism (see the baseline value of free T4, 

shown as a solid magenta line). 

 
Figure 4.12: This bifurcation diagram shows how     steady state concentrations changes as    

varies from 0 to 7. Also, observe that the bifurcation occurs at      
  and when      

  , 

resulting in clinical hypothyroidism. Thus, the model suggests that at   
  , TSH upper reference 

limit is 2.3 mU/L (approximately). The diseased steady state is still inside the box. 

 
Figure 4.13: This bifurcation diagram shows how the functional size of thyroid gland     

changes as    varies from 0 to 7. Also, observe that the bifurcation occurs at      
 .  

 
Figure 5.1: This figure shows Case 1: euthyroidism   euthyroidism chart. Note: The solid red 

lines illustrate the normal reference range for TSH. The dotted red line chosen for this project as 

an upper TSH reference limit. The green solid line indicates that the 4d system, (2.2) – (2.17) 

approaches the euthyroid (steady) state for ten different    values less than   
 . The initial state of 

the 4d system is                                 .  The parameter values are all from 

Table A2 in Appendix A. 

 

Figure 5.2: This figure shows euthyroidism   subclinical hypothyroidism chart. Note that all 

    solutions go to subclinical diseased steady state. We simulated the 4d system, (2.2) – (2.17) 

with the initial state                 and the parameter values from Table A2 with six different 

   values between    
   (2.3412) and up to   

       .  

 
Figure 5.3: 2d view of euthyroidism   subclinical hypothyroidism chart. We simulated the 4d 

system with the initial state                 and the parameter values from Table A2 but 

different    values, between    
   (2.3412) and up to   

       . The curve in this picture is 

parameterized by six different    values, that is,                              . For every 



xi 

 

 

 

      
  , we have a diseased steady state (subclinical), that is shown in the picture with a green 

dot. The euthyroid state is shown in the picture with a red dot. 

 
Figure 5.4: log      mU/L versus freeT4      pg/mL view of the previous Figure 5.3. 

 
Figure 5.5: This figure shows the euthyroidism → subclinical → clinical hypothyroidism chart. 

To generate this picture, we picked eleven different    values greater than    
   and then 

simulated the 4d system with initial condition                . The parameter values are all 

from Table A2. 

 
Figure 5.6: 2d view of euthyroidism → subclinical → clinical hypothyroidism chart. We 

simulated the 4d system with the initial state                 and the parameter values from 

Table A2 but different    values. The curve in this picture is parameterized by eleven different    

values greater than   
  .  For every       

   , we have a diseased steady state (clinical 

hypothyroidism), that is shown in the picture with a green dot. The euthyroid state is shown in the 

picture with a red dot. Note an individual progress to clinical hypothyroidism via subclinical 

hypothyroidism. 

 
Figure 5.7: log      mU/L versus freeT4      pg/mL view of the previous Figure 5.6. 

 
Figure 5.8: Clinical staging chart. This chart can be used to determine the natural course of 

subclinical or clinical hypothyroidism or euthyroidism by moving the graph up and down 

according to the patient’s set point (see Validation of Model with Data Section). Note we 

simulated all these curves with different    values in the 4d system using an imaginary 

individual’s table parameter values from Appendix A.  

 
Figure 5.9: Combing Figures 5.7 and 5.4 yields the above parameterized curve. This 

parameterized curve belongs to an imaginary individual that we picked for this project (see 

Appendix A). Since the model (2.2) – (2.17) is patient-specific, each patient has their own curve 

depending on their parameter values and the normal value of the HPT axis.  The euthyroid state is 

shown in the picture with a red dot and diseased steady states are shown with green dots. 

 
Figure 5.10: This figure illustrates patient (#99) natural history of euthyroidism in euthyroidism 

  euthyroidism chart. It seems patient’s     value remains at the euthyroid steady state for 40 

months.  This patient’s euthyroid state for     value is      mU/L   

 
Figure 5.11: This figure illustrates patient (#103) natural course of subclinical hypothyroidism in 

euthyroidism   subclinical hypothyroidism chart. It seems this patient’s TSH value continuously 

increases as time increases. By looking at 3 data points in this chart, we could predict that TSH 

cannot go beyond     mU/L at least for 40 months. Thus, this patient may have chance to become 

subclinical hypothyroidism throughout his life time unless there is some triggering event that 

changes the nature of the immune response and thus   . 

 
Figure 5.12: This figure shows the natural history of patient (#114). This patient reaches clinical 

hypothyroidism via subclinical hypothyroidism. Note this patient’s TSH value increases 

continuously but did not exceed   mU/L in 40 months.  
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Figure 5.13: To generate this 2d picture, log      (mU/L) versus free T4      (pg/mL). We 

simulated the 4d system with patient (#103) parameter values from Table 5.1. Here    was      

and the initial (euthyroid) state was                                           . Note: 

the diseased steady state is located within the normal free T4 reference range. So, the model 

predicts that the patient (#103) may remain in subclinical hypothyroidism unless the immune 

response of this patient changes in the future. 

 
Figure 5.14: To generate this 2d picture, log      (mU/L) versus free T4     )(pg/mL). We 

simulated the 4d system with patient (#114) parameter values from Table 5.1. Here    was      

and the initial (euthyroid) state was                                          . Note: 

the diseased steady state is not located within the normal free T4 reference range. So, the model 

predicts that the patient (#114) will definitely become clinical hypothyroidism patient in the 

future. 
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INTRODUCTION TO A MEDICAL PROBLEM 
 

The thyroid stimulating hormone (TSH), a key hormone, is synthesized and secreted into the 

blood by the pituitary gland. In response to TSH, the thyroid gland secretes thyroxine (T4) into 

the blood, in which 99% of T4 binds to proteins in blood serum such as thyroxine binding 

globulin, albumin and the remaining 1% circulates as free thyroxine (FT4).  This in turn inhibits 

the secretion of TSH in the pituitary gland.  This mechanism is called a negative feedback control 

through the hypothalamus-pituitary-thyroid (HPT) axis.  The existence of the negative feedback 

control is to maintain the adequate levels of free thyroxine (FT4) in the blood, which, in the 

clinical setting, referred to a set point of the HPT axis.  The set point of the HPT axis varies 

greater between individuals than in the same individual sampled repeatedly over time (Andersen 

et al. 2002). 

Autoimmune (Hashimoto’s) thyroiditis is a complex disorder in which the immune 

system attacks the thyroid gland with both proteins and immune cells such as T cells, and 

cytokines for long periods.  More precisely, as one aspect of autoimmune thyroiditis, the immune 

system produces proteins (thyroid peroxidase antibodies, TPOAb and thyroglobulin antibodies, 

TGAb) against the thyroid follicle cell membrane proteins (thyroid peroxidase, TPO and 

thyroglobulin, TG) in the blood.  These proteins (TPOAb and TGAb) induce thyroid follicle cell 

lysis by binding with TPO and TG respectively.  Thus, autoimmune thyroiditis interrupts the 

normal thyroid operation and eventually disrupts feedback control.  Consequently, one develops 

symptoms (like, goiter),signs (like, hyperactivity), and some clinical conditions, like, 

euthyroidism (normal FT4and TSH levels in the blood), subclinical hypothyroidism (normal FT4, 

but TSH above normal levels),overt (clinical) hypothyroidism (underactive thyroid gland- low 

FT4 levels and TSH above normal levels) or hashitoxicosis (transient hyper to hypothyroidism). 

Hashitoxicosis is a life-threatening abnormal clinical condition.  It is one of the rare presentations 

of autoimmune thyroiditis, approximately 5% of all autoimmune thyroiditis patients.  
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From the clinical viewpoint, the presence of anti-thyroid antibodies in blood serum is the 

hallmark of this disease and has been considered as a diagnostic tool of autoimmune thyroiditis in 

healthy and asymptomatic individuals.  Their presence in normal individuals is the risk factor for 

overt hypothyroidism and also believed that, antibodies induce thyroid damage for long periods 

until hypothyroidism is clinically become evident.  As a result, the set point of the HPT axis 

changes for long periods along with damaging thyroid gland.  So, in this thesis, a mathematical 

model will be constructed to track the changes of the set point, in other words, the development 

of overt hypothyroidism.  On the other hand, the absence of anti-thyroid antibodies is strong 

evidence against autoimmune thyroiditis (Shoenfeld et al 2007).  Therefore, individuals with anti-

thyroid antibodies (TPOAb and TGAb) considered being autoimmune (Hashimoto’s) patients in 

the clinical setting. 

In clinical practice, in general, physicians see three different kinds of patients with 

autoimmune (Hashimoto’s) thyroiditis with or without goiter.  

a) Patients with euthyroidism (normal FT4 and TSH levels). 

b) Patients with subclinical hypothyroidism (normal FT4 but TSH above normal levels).  

c) Patients with overt (clinical) hypothyroidism (low FT4 and TSH above normal 

levels). 

Usually patients with euthyroidism progress to subclinical hypothyroidism and then progress to 

overt hypothyroidism.  This is a sequential event in most patients.  But, euthyroidism in some 

patients may persist for many years even lifelong.  This means to say that overt hypothyroidism is 

not an obligated evolution of the autoimmune thyroiditis.  Similarly subclinical hypothyroidism 

in some patients may persist for many years even lifelong.  It means to say that again overt 

hypothyroidism is not an obligated evolution of the autoimmune thyroiditis.  Overt 

hypothyroidism is the end stage of the course of autoimmune thyroiditis where patients need 

thyroid hormone replacement treatment. Levothyroxine (synthetic free thyroxine) is commonly 

used drug as thyroid hormone replacement.  The half-life of thyroid stimulating hormone (TSH) 
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and free thyroxine (FT4) is one hour and seven days respectively in the blood.  This implies that 

TSH changes in a faster time scale than FT4.  Thus, the operation of negative feedback control is 

at least in two different time scales. 

To describe the operation of negative feedback control, that is, the HPT axis, in 

autoimmune thyroiditis, patient-specific mathematical model is required and will be developed in 

this thesis. The model is patient-specific since all autoimmune patients are different.  Modeling is 

done with ordinary differential (rate) equations.  Moreover the problem of two different time 

scales is addressed using singularly perturbation theory.  

Outline of Thesis 

Chapter 1 provides the background materials required for this thesis, such as, physiology of the 

thyroid gland, the HPT axis, autoimmune thyroiditis, and clinical staging.  In autoimmune 

thyroiditis, the clinical evidence suggests that the hypothalamus-pituitary function is intact and 

the thyroid-pituitary function is interrupted.  That is, to say that one part of the operation of 

negative feedback control is normal and the other part is abnormal (see Figure 1.3).  To observe 

this phenomenon in the dataset, we presented several graphs showing the abnormal behavior of 

the HPT axis.  As a final result of the Chapter 1, we established the patient-specific clinical 

staging criterion for patients with autoimmune thyroiditis.  The staging criterion has three general 

cases, namely euthyroidism   euthyroidism, euthyroidism   subclinical hypothyroidism and 

euthyroidism   subclinical   clinical hypothyroidism. 

Chapter 2 provides a four dimensional (4d) non-linear model for patients with 

autoimmune thyroiditis.  To construct this model, we used four clinical variables. Out of four, 

three of them are clinically measurable quantities, thyroid stimulating hormone (TSH), free 

thyroxine (FT4), and anti-thyroid antibodies (TPOAb and TGAb) and the other, the functional 
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size of the thyroid gland (T)
 1
  can be measured through relationships with other three variables. 

The model takes the form of a singularly perturbed initial value problem due to the presence of at 

least two-time scales.  Singular perturbation theory is the main tool for the analysis of a model, 

which is elaborated in this chapter.  The model has eleven parameters - some parameters are 

available from the literature and most are estimated through the equilibrium arguments.  But three 

parameters, namely,       and    turned out to be the governing parameters of the system. 

Through further investigation in Chapter 4, we noticed that    is an important parameter and with 

that we could describe the dynamics of all autoimmune thyroiditis patients.  

Chapter 3 provides the special case of the four dimensional (4d) non-linear model.  That 

is, investigate the 4d model in the aspect of absence of anti-thyroid chronic immune response. 

This resulted in the three dimensional (3d) non-linear model.  We found that 3d model has one 

steady state (set point of the HPT axis) in the positive octant, in fact, inside the trapping 

rectangular box.  In Chapter 3, we referred the steady state to euthyroid state and the arguments 

for constructing rectangular box have elaborated.  Through linear stability analysis, we proved 

that euthyroid state is always stable in the box.  Using singular perturbation arguments, we 

showed that all solutions are attracted to this euthyroid (steady) state.  

Chapter 4 provides the analysis of the dynamics of the 4d model. We constructed a 

rectangular box in 4d space such that the euthyroid (steady) state is trapped inside the box. 

Furthermore, through local stability analysis, we found that    is an important parameter in the 

system, in fact, a bifurcation parameter.  As    changes from zero to the larger range of values, 

we obtained two critical values, one   
  and another   

  .  When      
 , the box contains only 

one steady state which is the euthyroid state and the diseased steady state located in the negative 

orthant.   As    changes in the system, the diseased steady state moves towards the box and when 

     
  , the diseased steady state merges with the euthyroid (steady) state.  When      

 , the 

                                                      
1
The clinical variable T means the functional size of the thyroid gland as opposed to the thyroid size 
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diseased steady state emerges into the rectangular box and becomes stable – we showed that 

through local stability analysis.  But when     reaches the value of   
  , free thyroxine (FT4) 

concentrations goes below the lower reference range         which means clinical 

hypothyroidism.  Therefore, we conclude that, when    is below the critical value   
  , patients 

with autoimmune thyroiditis do not develop the consequences of autoimmune thyroiditis.  When 

   is in between    
   and up to   

  , patients with autoimmune thyroiditis develop subclinical 

hypothyroidism.  When    is greater than   
  , then patients develop subclinical hypothyroidism 

and eventually become clinical hypothyroidism.  

Chapter 5 implements the results of Chapter 4 through clinical staging criterion described 

in Chapter 1.  This in turn results in clinical staging charts.   It is the main result of this thesis. 

The charts are mainly based on TSH because test results of TSH are more reliable in autoimmune 

thyroiditis.  We have given the discussion of how one could use the clinical chart in thyroid 

clinics for all autoimmune patients to describe the natural history and to predict the eventual TSH 

value of particular patient.  In addition to clinical chart, we presented the dynamics in two 

dimensional (TSH versus FT4) phase plane parameterized by   .  Also, we validated the 

mathematical model using patient’s dataset in order to verify the model’s ability to describe the 

natural history of autoimmune thyroiditis. 
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CHAPTER 1 – BACKGROUND MATERIAL 
 

In this chapter, we introduce the background material required for this mathematical modeling 

work.  The background material mainly focuses on the operation of the hypothalamus-pituitary-

thyroid (HPT) axis both under healthy and diseased thyroid gland. The healthy thyroid gland 

preserves the normal operation of the HPT axis while the diseased thyroid gland interrupts the 

normal operation of the HPT axis with the thyroid unable to produce adequate amounts of thyroid 

hormones. The diseased thyroid gland in this work is the consequence of autoimmune 

(Hashimoto’s) thyroiditis. 

1.1    Introduction to Thyroid Physiology  

General Anatomy  

The thyroid is the largest endocrine gland, located in front of the neck just below the larynx or 

above the collar bones (see Figure 1.1). The thyroid gland is butterfly-shaped and consists of two 

wings, called lobes and attached through a middle part called the isthmus. In healthy state, the 

normal adult thyroid gland weighs approximately 10 - 20 g and each lobe of thyroid measures 

about 2.5 - 4 cm in length, 1.5 - 2 cm in width, and 1 - 1.5 cm in thickness, but in diseased state, 

the thyroid weight and size are variable (see Greenspan and Gardner, 2001). 

Function of the Thyroid Gland 

Thyroid stimulating hormone (TSH) is synthesized and secreted into blood from the pituitary 

gland.  In response to TSH, the thyroid gland produces triiodothyronine (T3) and thyroxine (T4) 

and secretes them into the blood.  This is the main function of the thyroid gland. These hormones 

in turn control the metabolic rate in human body. The main thyroid hormone is thyroxine (T4), 

which contains four iodine molecules, whereas triiodothyronine (T3) contains three iodine 
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molecules. In the healthy state, the daily thyroid gland production of T4 is about       . The 

daily production of T3 is about      , of which about 20% is produced by the thyroid gland and 

80% by deiodination of T4 in extra thyroidal tissues (Bunevicius et al. 1999). T4 molecules are 

active longer in the blood than T3, but T3 molecules are more biologically active at the cellular 

level.  Further, approximately 99.98% of T4 in blood binds with plasma proteins (such as 

thyroxine binding globulin (TBG) (60-75%), prealbumin/transthyretin (15-30%), and albumin 

(~10%)(Werner et al. 2005; Robbins and Rall, 1960)) and circulates as bound T4 - the remaining 

0.02% circulates as free (unbound) T4. Similarly, (~ 99.7%) of T3 in blood binds with plasma 

proteins, specifically, TBG.  In the clinical setting, free T4 and TSH are considered to be the most 

reliable measure to determine the status of the thyroid gland (Surks et al. 1990). Their normal 

reference ranges for adult populations for free T4 and TSH are usually between              

and                (Baloch et al. 2003) respectively.  Note that TSH upper reference limit is 

4.0     .  But TSH upper reference limit is a controversial subject, so nowadays, researchers 

suggest to decrease the upper normal range of TSH to 2.5      (Surks et al. 2005) due to the 

clinical observation that patients with TSH between 2.5 to 4      have increased risk of 

progression to hypothyroidism (underactive thyroid gland). 

Thyroid Follicles 

The functional unit in the thyroid gland is the follicle. The follicle consists of thyroid follicle cells 

surrounding colloid. Colloid is the central region in the follicle, and contains the raw materials for 

thyroid hormone production such as thyroglobulin (TG), iodine, thyroid-peroxidase (TPO), and 

other proteins.  The microscopic findings indicate that the shapes and sizes of the follicles are 

irregular (Greenspan and Gardner, 2001), but for modeling purposes, one typically assume 

follicles are roughly spherical in shape (Degon et al. 2004) (see Figure 1.2). But, in our model, 

the shape and size do not matter. Furthermore, blood vessels, lymphatics, parafollicular cells (C-
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cells) and fibrous tissues all surround the follicles and they are completely covered by a network 

of capillaries. 

Thyroid Follicle Cells  

The follicle cells controls the secretion of thyroid hormones in blood based on the level of 

stimulation from the pituitary gland by TSH. The follicle cells become columnar (i.e., elongated 

and rectangular) when stimulated by TSH and are flat when resting. These follicle cells are the 

victims in Hashimoto’s thyroiditis. Charles et al. (1996) noted that the size of the follicles 

depends on the number of follicle cells and the amount of colloid.  If the follicle cells die under 

the diseased state, then it causes the size of the follicles to shrink significantly and results in 

decreased thyroid hormone production from that follicle.  

In the diseased state, the immune cells infiltration a region of the thyroid gland and their 

destructive action makes that region non functional or not active. Thus, the affected region is 

unable to respond to TSH and produce thyroid hormones. Therefore, for our work, we consider 

the active part of the gland (the functional part of the thyroid gland) which is able to respond to 

TSH and produce thyroid hormones.  The size of this active part of the gland we call the 

functional size of the thyroid gland.   

1.2    The Hypothalamus - Pituitary - Thyroid (HPT) Axis 

If the blood levels of free thyroid hormones (T3 and T4) become too low (below a set point), then 

the hypothalamus senses the reduction of free thyroid hormones and secretes thyrotrophic 

releasing hormone (TRH) which stimulates the pituitary gland to make and secrete TSH into the 

blood.  This in turn stimulates thyroid follicle cells to secrete thyroid hormones (T3 and T4) into 

the blood. If the blood levels of free thyroid hormones become too high, and then the 

hypothalamus and/or pituitary gland senses the high levels of free thyroid hormones and reduces 

its secretion of TRH and TSH, which in turn slows down the production of thyroid hormones in 
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thyroid follicle cells. This type of control mechanism is a negative feedback loop the control 

through hypothalamus - pituitary - thyroid axis (see Figure 1.3) (Brown-Grant, 1957; Zoeller et 

al. 2007).  

The principal purpose of the existence of the HPT axis is to maintain the set point of 

TSH, and free thyroid hormones (T3 and T4) within the normal reference range.  The set point 

and normal reference range changes from person to person and it depends on many factors such 

as age, gender, genes, body weight and race (Panicker et al. 2008).  For instance, in children, the 

HPT axis undergoes progressive maturation and modulation until puberty resulting in continuous 

changes in the set point and normal reference range (Nelson et al. 1993).  In general, children 

have higher TSH and lower thyroid hormone levels. On the other hand, higher TSH levels and 

lower thyroid hormones are reported in the elderly people (Surks and Hollowell, 2007), 

suggesting that elderly people have different normal set points for TSH and free thyroid 

hormones (T3 andT4).  In general, in healthy people, variability in TSH, and free thyroid 

hormones (T3 and T4), is greater between individuals than in the same individual sampled 

repeatedly over time, suggesting that different people have different set points for the function of 

HPT axis (Andersen et al. 2002).  

 

 

Figure 1.1: The Thyroid Gland 

 

(see http://nursingninjas.com/nursingschoolblog/2010/05/medical-surgical-rotation/functions-of-

thyroid-hormones/) 

http://nursingninjas.com/nursingschoolblog/2010/05/medical-surgical-rotation/functions-of-thyroid-hormones/
http://nursingninjas.com/nursingschoolblog/2010/05/medical-surgical-rotation/functions-of-thyroid-hormones/
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Figure 1.2: This figure shows a typical follicle from the thyroid gland. It is roughly spherical in 

shape with normal follicle cells, thyroid receptors (TSHR), thyroid peroxidase (TPO) and 

thyroglobulin (TG) in the colloid. 

 

 
Figure 1.3: This figure shows the HPT axis. The sign (-) indicates the existence of a negative 

feedback loop. Note that free thyroid hormones (T3 and T4) are sensed by the pituitary gland and 

the hypothalamus.  
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1.3    Hypothyroidism and its Types 

Hypothyroidism is an underactive thyroid gland, which means the thyroid gland does not produce 

enough thyroid hormones to stay in the reference range (Silverman and William, 1997; Ord, 

1878). The result of hypothyroidism is the slowing down many bodily functions, most 

importantly, metabolism. Hypothyroidism is also known as myxoedema. For the hypothyroidism 

condition, the patients are treated clinically with synthetic thyroxine pills, called Levothyroxine, 

which they must take every day for their entire life (Papapetrou et al. 1972). There are three main 

types of hypothyroidism, namely primary, secondary and tertiary, which result from the 

dysfunction of the thyroid gland, the pituitary, and the hypothalamus respectively.  

Primary Hypothyroidism 

An individual is said to have primary hypothyroidism if the thyroid gland does not produce 

enough of thyroid hormones, but the pituitary and hypothalamus are normal. Primary 

hypothyroidism occurs mainly due to autoimmune (Hashimoto’s) thyroiditis or due to lack of 

dietary iodine. We discuss primary hypothyroidism in detail in next section after the introduction 

of autoimmune (Hashimoto’s) thyroiditis. 

Secondary Hypothyroidism 

An individual is said to have secondary hypothyroidism if the pituitary gland does not produce 

enough of TSH which stimulates the thyroid gland to produce the thyroid hormones, but the 

thyroid and hypothalamus are normal. Secondary hypothyroidism occurs in pituitary tumors, 

radiation and after surgery.  
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Tertiary Hypothyroidism 

An individual is said to have tertiary hypothyroidism if the hypothalamus does not secret 

thyrotropin releasing hormone (TRH) which stimulates the pituitary gland to produce TSH, but 

the thyroid and pituitary are normal. 

Symptoms 

The general symptoms of hypothyroidism are fatigue, drowsiness, forgetfulness, difficulty with 

learning, dry and itchy skin, puffy face, constipation, sore muscles, weight gain and heavy 

menstrual flow. The symptoms are variable among patients; so the only way to know for sure 

whether the patient has hypothyroidism is via blood tests. We will discuss the thyroid function 

test below. 

1.4    Autoimmune (Hashimoto’s) Thyroiditis 

Hashimoto’s thyroiditis or autoimmune thyroiditis, also called chronic lymphocytic thyroiditis, is 

caused by the abnormal immune response to components of the thyroid gland by means of both 

the cellular and humoral response (Chistiakov, 2005). This cellular and humoral immune 

response results in production of T-cells, helper T-cells, B-cells, killer cells, macrophages, and 

cytokines specifically against the thyroid gland (Dayan and Daniels, 1996). These immune cells 

then infiltrate into the thyroid gland and induce damage to thyroid follicles, more precisely 

follicle cells, size and thereby structure, which in turn interferes with the production of thyroid 

hormones, triiodothyronine (T3) and thyroxine (T4).  Autoimmune thyroiditis is characterized as 

a complex disease due to a strong involvement of genetic and environmental contributors to the 

pathogenesis of disease (Burek, 2009). The pathogenesis of autoimmune thyroiditis remains 

unclear to this date and the subject of controversy, although there are many animal models 

published since the mid-1950s demonstrating autoimmune thyroiditis, with different hypothetical 

mechanisms (Nishikawa and Iwasaka, 1999; Rose and Burek, 2000; Kong, 2007). 
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The B-cells responsible for the humoral antibody response produce anti-thyroid 

antibodies, mainly thyroid peroxidase and thyroglobulin antibodies (TPOAb and TGAb), which 

in turn attack the specific thyroid proteins, thyroid peroxidase and thyroglobulin (TPO and TG) in 

the thyroid tissue. Although only one aspect of the immune response, in the clinical setting, these 

anti-thyroid antibodies are considered to be the bio-markers of the level of the immune response 

activity in autoimmune thyroiditis (McLachlan and Rapoport, 1995; Fink and Hintze, 2010). 

Usually, these anti-thyroid antibodies are measured from the patient blood serum in order to 

evaluate the level of intensity of immune response to the thyroid gland. 

Overall, autoimmune thyroiditis induces a slow destruction of the thyroid gland over 

many years, which results in the disruption of function of the HPT axis that controls the thyroid 

physiology. As a result of this progressive destruction of the thyroid, autoimmune thyroiditis 

patients may experience various clinical forms, such as euthyroidism, subclinical or clinical 

hypothyroidism and/or hashitoxicosis (transient form characterized as from hypothyroidism to 

hyperthyroidism or from hyperthyroidism to hypothyroidism – experienced by some at the onset 

of the autoimmune thyroiditis, according to some researchers) (Mazokopakis, 2007) with or 

without diffuse goiter (an enlarged thyroid gland).  

Autoimmune thyroiditis is more common in women than in men and it can occur at any 

age (including, children and adults), but usually shows up in middle-aged women.  In 1912, 

Hashimoto, a Japanese physician (Hashimoto, 1912), described this disease with hypothyroidism 

and goiter (symptom), referred to a classical form. However, some patients do not develop a 

goiter but have hypothyroidism – atrophic form; some patients do develop a goiter but switch to 

atrophic form as the disease progress over time. Little is known about the connection, if any, 

between two forms. Researcher’s suspect that apoptosis (programmed cell death) plays an 

important role at the late stage of the disease that causes atrophy (Kotani et al. 1997). Overall, a 

complicated phenomenon involved in the course of the disease that makes the size of the thyroid 

gland unpredictable.  
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Primary Hypothyroidism  

Primary hypothyroidism results from the destruction of thyroid gland by autoimmune thyroiditis. 

Some people develop this type of hypothyroidism quickly over a few months and some develop it 

slowly over several years – this different behavior depends on the aggression of the immune 

response to the thyroid gland (Tunbridge et al. 1981; Karmisholt et al. 2011).  

Primary hypothyroidism is a graded phenomenon in which the thyroid status changes 

from euthyroid (non-diseased) state to subclinical hypothyroidism and may progress to the overt 

hypothyroidism state. For this transient situation, TSH values are used to monitor the disease 

progression (see Hall and Evered, 1973).  We will now give the clinical definitions of subclinical 

and overt hypothyroidism based on TSH and free T4 values.   

Subclinical (Mild) Hypothyroidism 

Elevated blood levels of TSH                 and           , but normal free T4   

          . 

Clinical (Overt) Hypothyroidism 

Elevated blood levels of TSH                  with low free T4            .  

Goiter 

Goiter means an enlarged thyroid gland. It can be treated by a thyroid hormone replacement, 

Levothyroxine (Schmidt et al. 2008). There is no consensus explanation available for the 

appearance of goiter in Hashimoto’s thyroiditis, some hypothesize that either that high blood 

levels of TSH induce a goiter or inflammation of thyroid gland induce a goiter. 
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Hashitoxicosis 

Hashitoxicosis is an autoimmune thyroid condition in which the patient experiences transient 

hyperthyroid episodes. According to some researchers, Hashitoxicosis is most likely to be 

encountered in the early stages of autoimmune (Hashimoto’s) thyroiditis (Mazokopakis, 2007). 

Since the chronic immune response is activated against the thyroid gland at early stages 

of Hashimoto thyroiditis, the thyroid gland releases its stores of thyroid hormones (both T3 and 

T4) and the raw materials for thyroid hormone production into the blood. This sudden burst of 

thyroid hormones, especially T3, is responsible for the transient symptoms of hyperthyroidism. 

1.5    Clinical Tests  

Thyroid function tests are designed to identify the diseased states (hypothyroidism and 

hyperthyroidism) from the healthy state of the thyroid gland (Dunlap, 1990). Here, we will 

discuss a few tests that are necessary for our study.  

TSH Test 

Thyroid stimulating hormone (TSH) is measured through the simple blood test by using a modern 

method of non-isotope immunometric assay (IMA) with highly enhanced sensitivity and 

specificity.  The IMA is capable of achieving a functional sensitivity    0.02 mU/L, which is the 

necessary sensitivity for detecting the full range of TSH values observed between hypothyroidism 

and hyperthyroidism (Baloch et al. 2003).  As stated before, the normal reference range for TSH 

for adult population is                     .  If TSH test results in values that are outside 

the reference range, then thyroid status is not stable. Suppose thyroid status is stable and 

hypothalamic – pituitary function is normal, then serum TSH test is more sensitive and preferred 

test than free T4 test (as discussed below) for detecting subclinical (mild) thyroid hormone excess 

or deficiency. Therefore, the TSH measurement is considered to be the main tool for the detection 

of various degrees of diseased states (such as subclinical hypothyroidism and hyperthyroidism).  
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Free T4 Test 

Thyroxine (T4) in blood is available in two forms. One is bound T4 and the other free T4. There 

is approximately 99.98% bound T4 and 0.02% free T4 in the blood.  There are some physical 

methods exist to separate free T4 from bound T4 that are equilibrium dialysis, ultra filtration and 

gel filtration. Unfortunately, they are technically demanding, inconvenient to use and relatively 

expensive for routine clinical laboratory to use. There are other methods that most clinical 

laboratories employ, that is, indexes and immunoassay, to get an estimate of free T4.  The Index 

method requires two separate measurements - one is a total hormone measurement and the other 

is an assessment of thyroid binding protein concentration using an immunoassay for thyroxine-

binding globulin (TBG) or a T4 uptake test called thyroid hormone binding ratio (THBR) (Baloch 

et al. 2003).   

Anti-thyroid Antibodies (TPOAb and TGAb) Test 

The anti-thyroid antibodies (TPOAb and TGAb) can be measured either by hemagglutination 

assay or radioimmunoassay (RIA).  The summary of these assays are discussed in (Merrill, 1998). 

These methods have been commonly used in thyroid clinics to quantify the anti-thyroid 

antibodies.  

Ultrasound 

Ultrasound can detect thyroiditis because a hypoechoic ultrasound pattern indicates lymphocytic 

infiltration (Rosario et al. 2009; Premawardhana et al. 2000). In addition, ultrasound can detect 

nodules, lumps, and enlargement of the thyroid gland.  In a study of over 3000 prospective 

ultrasounds ordered for a variety of reasons, nearly 15% of subjects displayed evidence of 

hypoechogenicity. 
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1.6    The Operation of the HPT Axis in Hashimoto’s Thyroiditis 

The normal function of the HPT axis depends on the function of the hypothalamus, the pituitary, 

and the thyroid gland.  If something goes wrong with any one of these organs, then the function 

of axis is typically interrupted. In our setting, autoimmune thyroiditis destroys the thyroid gland, 

which affects the operation of the HPT axis (see Figure 1.4).  As a consequence, autoimmune 

thyroiditis patients become euthyroid, subclinical, or clinical hypothyroidism with or without 

goiter. But, most patients successfully regulate free T4 for several years before they become 

hypothyroidism – suggesting that the dynamics of TSH may be interesting in the clinical setting.  

Our primary interest here is to track the development of euthyroidism, subclinical or clinical 

hypothyroidism with or without goiter, using the measurable quantities in blood, TSH, free T4, 

and anti-thyroid antibodies (Ab) along with the other quantity, the functional thyroid size in the 

autoimmune thyroiditis. We also want to demonstrate some known and unknown clinical results 

using a mathematical model.  

 
Figure 1.4:  In autoimmune thyroiditis, there exists a chronic immune response against the thyroid 

gland. Due to immune response, the gland’s hormone production may decrease and this cause the 

interpretion of the operation of the HPT axis. The dotted lines represent the dormant part of the 

HPT axis.  The solid line from hypothalamus to pituitary to thyroid gland is the active part of the 

axis.  
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TSH and Free T4 Relationship 

An understanding of the normal relationship between the blood levels of TSH and free T4 is 

useful when interpreting thyroid function test results. If TSH measurements are to be used to 

evaluate primary thyroid dysfunction (such hypothyroidism/ hyperthyroidism), then it is a 

prerequisite that the function of the hypothalamus – pituitary axis is intact. When hypothalamus – 

pituitary axis function is normal and thyroid status is stable (meaning free T4 normal), then there 

is an inverse log/linear relationship between TSH and free T4 (Spencer et al. 1990). We will show 

this log/linear relationship in our dataset and as a consequence of our model later.  

1.7    Dataset 

We have received a dataset of 119 patients with autoimmune thyroiditis from our clinical 

collaborator, Dr. Salvatore Benvenga, Professor of Medicine, Section of Endocrinology, 

Department of Clinical and Experimental Medicine, University of Messina, Messina, Sicily, Italy.  

This dataset consists of blood serum levels of thyroid stimulating hormone (TSH), free T4 (FT4), 

anti-thyroid antibodies (TPOAb and TGAb) and/ or Levothyroxine (L-T4) taken at different time 

points for every patient.  The unit for time is month. The first measurement of those values for a 

patient is considered time zero (month). Half of our patients received treatment with L-T4 from 

the first visit to thyroid clinic in Sicily (those patients are referred to treated patients from time 

zero).  The anti-thyroid antibodies column has missing values for almost all patients.  For this 

research, we have received Institutional Review Board (IRB) approval from Marquette 

University.   

To be more specific about the dataset, 46 patients with autoimmune thyroiditis received 

no treatment (group1- always untreated, see Figures 1.5 and 1.6) because the levels of free T4 

within laboratory reference range, 51 patients with autoimmune thyroiditis received treatment 

with L-T4 from time zero (group2- treated patients from time zero, see Figures 1.6 and 1.7) and 



19 

 

 

the remaining patients received no treatment initially and then received treatment with L-T4 after 

they developed clinical hypothyroidism (group3, see Figures 1.8 and 1.9). For these groups, the 

duration of follow-up is varied up to some extent. In group1, the average duration of follow-up is 

approximately 24.5 months. In group2, the average duration of follow-up is approximately 32 

months.  In group3, the average duration of follow-up is approximately 28.5 months.  To gain 

insight into patient’s progression toward subclinical hypothyroidism or euthyroidism, we pick 

patient’s data from group1 (see Figure 1.11(M)).  To gain insight into patient’s progression 

toward clinical hypothyroidism, we pick patient’s data from group3 (see Figure 1.11(N)). Also, 

we separated group3 patient’s data into two parts, before treatment and after treatment in order to 

observe the course of the disease (see Figure 1.9). Overall, we observed that patients with 

autoimmune thyroiditis showed high variability in developing subclinical or clinical 

hypothyroidism.  In addition, we observed that the untreated patients mimic the abnormal 

function of the axis and treated patients mimic the normal operation of the axis as we expected. 

The data was collected from different laboratories across Sicily population under the 

approval of government of Italy. These different laboratories had established slightly different 

normal reference ranges and set points of the HPT axis according to the local adult population 

and the measurements are not comparable. So, in order to utilize the entire data set for analysis, it 

is important to scale TSH and FT4 values within the normal reference range adopted for this 

project.  For that, we introduce a simple proportion formula,  

            
   

   
     

          
    

   
   

where         are referred to TSH values in the reference interval                     mU/L 

respectively and           are referred to free T4 values in the reference interval    

              pg/mL respectively. Note         are referred to lower and upper reference 

limit of TSH. Similarly         are referred to lower and upper reference limit of free T4. For an 
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example of scaling, see Table 1.1 and 1.2 below. Let us consider a patient (#103) with normal 

reference range and measured TSH and free T4 values used in the lab. We will now employ the 

above formula to scale TSH and free T4 values into a standard range      –       mU/L and 

       pg/mL. Note: For patient 103,                          . 

Table 1.1 

Patient ID 

Number 

Normal 

Range 

TSH Standard 

Normal 

Range 

TSH 

            
      

        
     

103 0.35 – 5.5 1.4 0.4 – 2.5 0.8282 

103 0.35 – 5.5 1.65 0.4 – 2.5 0.93 

103 0.35 – 5.5 2.26 0.4 – 2.5 1.178 

 

Table 1.2 

Patient ID 

Number 

Normal 

Range 

Free T4 Standard 

Normal Range 

Free T4 

          
    

    
   

103 7 – 17 13.5 7 – 18 14.15 

103 7 – 17 13 7 – 18 13.6 

103 7 – 17 11.8 7 – 18 12.28 

 

2d and 3d-Scatter Plots 

We use two and three dimensional (2d and 3d) scatter plots to explore the autoimmune thyroiditis 

patients dataset.  More precisely, for group1 and group3 (untreated) patients, we use 2d and 3d 

scatter plots to see the abnormality in the function of the HPT axis, nonlinear relationships 
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between clinical variables and inter and intra - variability in developing hypothyroidism.  For 

group2 patients, we use scatter plots to see the normal operation of the HPT axis. 

  

 

 

Figure 1.5: The figures (A and B) show 45 patients with autoimmune thyroiditis from group1. 

Figure A shows all patient’s TSH versus free T4 values taken at different time points. Figure B 

shows patient’s log (TSH)(mU/L) versus free T4(pg/mL). All patients have anti-thyroid 

antibodies but untreated clinically because free T4 levels are normal. 2d plots show how each 

patient is different in the dataset. The solid red lines indicate the reference range of TSH. The 

dotted red line indicates the new upper reference limit of TSH. Note: Temporal component is not 

shown here. 

 

  

 

 

Figure 1.6: 3d plots (C and D) show that all patients from group1 have anti-thyroid peroxidase 

(TPOAb) and/or anti-thyroglobulin (TGAb) in their blood serum. Group1 patients are monitored 

but do not receive L-T4.  Figure C shows patient’s free T4 (pg/mL), TPOAb (U/mL) and TSH 

(mU/L). Figure D shows patient’s free T4 (pg/mL), TGAb(U/mL) and TSH(mU/L). 

 

C D 

A B 
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Figure 1.7: 2d plots (E and F) show treated patients with L-T4 from group2.  Group2 contains 51 

patients (treated from first visit to thyroid clinic – referred to treated patients from time zero). 

Figure E shows patients TSH versus free T4 taken at different time points. Figure F shows 

patient’s log (TSH) versus free T4.  Comparing Figures F and B, we see that group2 patients has 

better inverse log/linear relationship between log (TSH) (mU/L) and FT4(pg/mL) than group1 

patients. 

 

 
 

 

 

Figure 1.8: 3d plots (G and H) show treated patients from time zero from group2. All treated 

patients live with anti-thyroid peroxidase (TPOAb) and/or anti-thyroglobulin (TGAb) in their 

blood serum. Figure G shows patient’s free T4 (pg/mL), TPOAb (U/mL) and TSH(mU/L). Figure 

H shows patient’s free T4(pg/mL), TGAb(U/mL) and TSH(mU/L). 

 

G H 

E F 



23 

 

 

  

 

 

Figure 1.9: 2d plots (I and J) show patients from group3. Group3 contains 22 patients with 

autoimmune thyroiditis. Figure I shows how patient’s progress from euthyroidism to 

hypothyroidism both in terms of TSH and free T4. Figure J shows the data of 22 patients from 

group3 before treatment.  All patients in Figure J progress from euthyroidism to hypothyroidism 

while free T4 within laboratory reference range adopted for this project.  

 

  

 

 

Figure 1.10: 3d plots (K and L) show patients from group3.  It appears that group3 patients 

contain more anti-thyroid peroxidase antibodies rather than anti-thyroglobulin antibodies. Figure 

L shows group3 patients with TPOAb(U/mL) taken at different time points. Figure L shows 

group3 patients with TGAb(U/mL) taken at different time points. 

 

 

I J 

K L 
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Figure 1.11: 2d plots (M and N) show a patient from group1 and group3.  Figure M shows patient 

103 from group1 while Figure N shows patient 114 (before treatment) from group3.  

   

Statistical Test for Nonlinearity 

We will now investigate an inverse log/linear relationship in our dataset through a statistical test 

or model. For that, we first transform TSH values into logarithmic scale, which we call log     

(TSH).  And then, we will construct a linear regression model to evaluate the relationship 

between log (TSH) and free T4. If this model produces a linear relationship, then we conclude 

that there is a non-linear relationship between TSH and free T4.  For more details such as how to 

construct a linear regression model, see (Montgomery et al. 2006). We will use group1 patients 

and group3 patients before treatment dataset for this statistical test.  

We will employ Matlab curve fit toolbox to construct a linear regression model, and 

investigate the statistical quantity R2 which measures the proportion of explained variation in a 

dataset.  In statistics, R2 is a descriptive measure between 0 and 1. If R2 is close to 1, then the 

linear regression model fits the sample dataset better.  If R2 is close to 0, then the linear 

regression model fits the sample dataset poorly. On the other hand, the population measure, the 

Pearson’s correlation   measures the degree of linear relationship between two variables in the 

dataset.  It ranges between -1 and +1. A correlation of +1 means a perfect positive linear 

M N 
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relationship between two variables and -1 means a perfect inverse linear relationship. Note   is 

the estimate of   and the real connection between R2 and   is R2    .  

Figure 1.12 shows the linear regression model for group1 patients and group3 patients 

before treatment.  We found          ,            and this implies R2    .  Also we 

found p-value of t-test < 0.001. Thus, the statistical test confirms a linear relationship between log 

TSH and free T4. Hence, TSH and free T4 have a non-linear relationship.     

 

 

Figure 1.12: The 2d scatter plot showing a linear regression model and the statistical quantities 

(R
2
 and ρ).  It seems R

2
 = 0.3243, (p < 0.001) and Pearson’s correlation           negative. 

This indicates that there is a linear relationship between log (TSH) (mU/L) and free T4 (FT4) 

(pg/mL). Thus, TSH and free T4 have a non-linear relationship. 

 

1.8    Clinical Staging and Disease Progression 

In autoimmune thyroiditis the immunologic attack is very aggressive and destructive and the 

pathogenesis of the disease is strongly associated with some suspected genes (for instance, non-

MHC class II genes) and environmental factors (for instance, high levels of iodine) (Chistiakov, 

2005).  Every individual is likely to born with one of the predisposition genes in their body which 



26 

 

 

determines whether the individual will develop the clinical states, such as, subclinical or clinical 

hypothyroidism or euthyroidism (none) given an environmental stimulus. We will now discuss 

patient-specific clinical staging for autoimmune thyroiditis.  The staging is important and useful 

to plan treatment. 

Case1:  

Suppose patients with autoimmune thyroiditis (anti-thyroid antibodies are consistently present in 

the blood) do not develop any clinical consequences such as subclinical or clinical 

hypothyroidism, then the staging will be,  

Euthyroidism   Euthyroidism 

Case2: 

Suppose patients with autoimmune thyroiditis develop subclinical hypothyroidism, then the 

staging will be, 

Euthyroidism   Subclinical Hypothyroidism 

Case3: 

Suppose patients with autoimmune thyroiditis develop subclinical hypothyroidism and eventually 

become clinical hypothyroidism, then the staging will be, 

Euthyroidism   Subclinical  Clinical Hypothyroidism 

1.9    Summary 

In this chapter, we introduced the background material required for modeling the operation of the 

HPT axis in autoimmune thyroiditis.  The background material includes thyroid physiology, the 

normal operation of hypothalamus-pituitary-thyroid (HPT) axis, autoimmune (Hashimoto) 

thyroiditis, and the operation of the HPT axis in autoimmune thyroiditis, clinical tests and clinical 

staging.  In addition, we discussed autoimmune thyroiditis patient’s dataset used in this thesis.  

The dataset was obtained from Sicilian adult population, Italy through our clinical collaborator, 

Dr. Benvenga.  We separated the dataset into three groups, namely, group1-always untreated 
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patients, group2-treated patients with L-T4 (from the first visit to thyroid clinic (time zero)), and 

group3-untreated initially but treated after developed hypothyroidism and presented scatter plot 

analysis. We observed that group1 and group3 patients showed the abnormal operation of the 

HPT axis whereas the group2 patients showed the normal operation of the HPT axis. Finally, we 

established patient-specific clinical staging criteria for patients from group1 and group3 in order 

to describe their natural history of autoimmune thyroiditis.
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CHAPTER 2 – A MATHEMATICAL MODEL OF THE HPT AXIS  
 

We devote this chapter mainly to the construction of a mathematical model of the operation of the 

HPT axis in autoimmune (Hashimoto’s) thyroiditis. Recall from the previous Chapter that in 

autoimmune thyroiditis the status of the thyroid gland and the normal function of the HPT axis 

are interrupted. This model is primarily aimed at the middle - age women or adult patients group 

since most of these patients regulate free T4 successfully for several years in spite of an increase 

in TSH and the presence of anti-thyroid antibodies (TPOAb and TGAb) in their blood serum. We 

will first review other models of the thyroid- pituitary system aimed for regulating free thyroxine 

(T4). 

2.1    Literature Review 

One of the remarkable properties of the thyroid gland is to maintain the amount or concentration 

of free T4 within a stable range             .  For that, control mechanisms exist within the 

thyroid gland.  Here, we review some mathematical models from literature describing the 

regulation of thyroid hormones. In 1954, Danziger and Elmergreen (Danziger and Elmergreen, 

1954) developed a mathematical model based on thyroid and pituitary hormones in order to 

explain the mental disorder called periodic relapsing catatonia.   They proposed a set of nonlinear 

differential equations using Langmuir adsorption isotherm, i.e.,  

  

  
    

    

      
        

  

  
  

    

      
                        

where   and   are concentrations of TSH and thyroid hormone respectively at time   and 

                     are positive real constants.  This system of equations describes most of 

normal and malfunctions of the thyroid - pituitary system but the system fails to produce the
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 sustained oscillations of the hormone levels, which was believed to be the reason for periodic 

relapsing catatonia.   

In 1956, Danziger and Elmergreen (Danziger and Elmergreen, 1956) proposed another 

mathematical model to account for the sustained oscillations of the thyroid hormone levels, in 

addition to explaining the normal and abnormal operations of thyroid-pituitary system.  They 

assumed the pituitary gland secretes TSH, which activates an enzyme in the thyroid gland.   The 

rate of production of thyroid hormone is considered to be proportional to the concentration of that 

enzyme. Their second mathematical model was as follows, 

  

  
  

                            

                                       
  

  

  
                                                    

  

  
                                                    

where     and   are concentrations of TSH, an enzyme and thyroid hormone at time  .  The 

system is simply referred to thyroid-pituitary regulator.  There are two notable observations from 

this model apart from producing sustain oscillations, firstly they linearized the nonlinear terms 

and added a third differential equation and secondly, by varying specific model parameters, they 

explained the clinical conditions such as hyper - and hypothyroidism.  

In 1959, S. Roston (Roston, 1959) presented a mathematical model of endocrinological 

homeostasis. The model had no enzymatic reaction terms and periodic solutions but had the 

autonomous secretion term for both TSH and thyroid hormones (T3 and T4) from the pituitary 

and the thyroid.  In addition, he assumed i) thyroid hormones bound to serum proteins such as 

(thyroid binding globulin (TBG) and albumin), ii) the physiological volumes Vp , Vx in which 

TSH and thyroid hormones are dissolved are constant over a short period of time, and  iii) the rate 

of secretion of thyroid hormones is proportional to the rate at which TSH passes through the 

thyroid gland.  A mathematical model of S. Roston was as follows, 
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The notable features of this model are all the equations are stated in terms of amounts of TSH 

and thyroid hormones, which distributed homogeneously and instantaneously throughout the 

physiological volumes Vp , Vx and the parameter k1 represents the sensitivity of the pituitary 

gland to thyroid hormones inhibition. Note    is a physiologically standard value of thyroid 

hormones (in concentration units). In other words, the effect of the hypothalamus on the secretion 

of TSH from pituitary can be expressed by changes in the value of a model parameter (k1).   

In 1964, N. Rashevsky (Rashevsky, 1964) published a heterogeneous model of thyroid hormone 

regulator in a discussion of a mathematical theory of the effects of cell structure and diffusion 

processes on the homeostasis and kinetics of the endocrine system. The author kept all the basic 

assumptions of Danziger and Elmergreen (1956) and added the effects of the highly 

heterogeneous assumption of thyroid hormone regulator system.  

In 1965, Norwich and Reiter (Norwich and Reiter, 1965) published a homogenous model 

of thyroid hormone regulation involving a set of linear differential equations expressing the 

relationship between the rates of secretion of thyroxine and of TSH. Using their model, they were 

able to replicate the known behavior of thyroxine and TSH and made certain predictions which 

are amenable to experimental verification or disproval by existing techniques.  

In 1968, Joseph J. Distefano and Edwin B. Stear (DiStefano and Stear, 1968) published a 

model of thyroid hormone regulation including the hypothalamus. In 1976, P. Saratchandran, 

E.R. Carson and J. Reeve (Saratchandran et al. 1976) published an improved mathematical model 

of thyroid hormone regulation by the anterior pituitary gland which accounted for experimental 

data of TSH and thyroid hormones.  In 2008, Mike Degon (Degon et al. 2008) published a 

computational model of the human thyroid gland based on the clinical observation of changes in 
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the dietary iodine and the molecular-pathways in the thyroid gland. This model captures the 

known aspects of thyroid physiology.  

In the next section, we construct a nonlinear model of the operation of the HPT axis in 

autoimmune thyroiditis.  Note that this model is the first mathematical model in the literature to 

study the function of the HPT axis with abnormality in the thyroid gland.  

2.2    Construction of the model 

The model is constructed primarily for patients (especially middle-aged women, or adults) with 

autoimmune thyroiditis.  To construct a model, we first identify the key players in the disease. 

Second, we make assumptions about those key players. Third, we use those assumptions to 

construct the rate equations, which is our model. For patients with autoimmune thyroiditis, the 

key players are thyroid stimulating hormone, free T4, (unbound) anti-thyroid antibodies and the 

functional (active) size of the thyroid gland. Note thyroid stimulating hormone (TSH), free T4 

(FT4), anti-thyroid antibodies (Ab) and the functional size of the thyroid gland (T) varies with 

time in the presence of autoimmune thyroiditis. Also TSH, FT4 and Ab are measurable quantities 

in the clinical setting to diagnose autoimmune thyroiditis but not the functional size of the thyroid 

gland (T). The functional size can be computed using other key players which will be discussed 

later in this Chapter. We now make the following assumptions, 

Assumptions: 

1. Anti-thyroid antibodies attack the thyroid follicle cells whereby the gland stimulates 

more activity of the immune response.  

2. The damaged part of the gland is no longer functional (active) in secreting thyroid 

hormones.   

3. TSH stimulates the functional (active) part of the thyroid gland for growth and hormonal 

secretion. 
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4. TSH disappears from the blood through a non-specific excretion mechanism. 

5. TSH distributes uniformly throughout the functional part of the gland.  

6. The hypothalamus – pituitary function is intact. 

7. The blood concentration of iodine is sufficient for synthesis of hormonal production. 

8. The total TSH receptor concentration in the gland is approximately constant since the 

anti-thyroid antibodies (TPOAb and TGAb) do not attack the TSH receptors (Tamaki, 

1990).  

Let us now define the key players in autoimmune thyroiditis in terms of function of time and 

followed by the rate equations,  

          Concentration of thyroid stimulating hormone        at time   in blood  

          Concentration of free thyroxine         at time   in blood 

        the functional size of thyroid gland (active part of the gland)     at time   

         Concentration of (unbound) anti-thyroid antibodies        at time t in blood 

Rate Equation 2.1 

The rate of change of concentration of     is equated to the secretion rate of     minus the 

excretion rate of    .  That is, 

    

  
                  2 1  

where         and          are the secretion and excretion rate of     respectively. Although, 

it seems appropriate to include the interaction rate of     and the functional size of thyroid gland 

on the right hand side of equation (2.1), however we ignore this term by considering the physical 

nature of the problem that active areas in the thyroid gland getting smaller and smaller as the 

disease progress in the gland.   

We will first model the secretion rate with two terms; one accounts for the maximum 

secretion rate and another for inhibition rate. That is, 
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The term    represents a maximum secretion rate of TSH in the absence of     in the blood 

(Utiger, R.D. 1987). The next term represents the inhibition of maximum secretion rate of    . It 

depends on plasma concentration of    . This term is modeled by using Michaelis – Menten 

kinetics, which made use of a simple mechanism                      

                       

where          , and          represents the concentration of free T4, free T4 unbound 

receptors on the surface of the pituitary gland and/or the hypothalamus (as we remarked before, 

we considered the hypothalamus-pituitary gland as one unit for our work (see Figure 1.3)), and 

free T4-free T4 receptor bound molecules respectively. 

In general, Menten kinetics describes the relationship between the affinity constant (    

and total number of receptors (    on the surface of the pituitary gland and/or the hypothalamus 

(see (Matthews, 1993)).  The affinity constant      can be described as the concentration of     

required for 50% of maximal     inhibition.  Also note that total number of receptors 

corresponds to the maximum secretion rate of    .  

Properties of         

Since  

   

    
  

    

         
                  

Then, 

           
      

      
                 

Remark 
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            is at least twice continuously differentiable 

Therefore the secretion rate decreases/increases as concentration of     increases/decreases. 

We will now model the excretion rate of    .  By assuming that the excretion rate of 

    decreases at a rate proportional to the concentration of     in blood serum (i.e., to say     

excrete through non-specific mechanism - assumption 4). Thus, we write 

               

Remark: 

            

      
     

                 
     

            

Thus, 

    

  
    

      

      
               

Rate Equation 2.2 

We first derive the rate equation for thyroxine (T4) and then later convert    into free T4 in the 

equation using the fact that bound T4 and free T4 are proportional to each other. The rate of 

change of concentration of thyroxine      is equated to the secretion rate of    minus the 

excretion rate of   .  That is, 

   

  
                        

where           and        represents the secretion and excretion rate of    respectively. We 

will first model the secretion rate of    in equation     . To formulate the secretion rate term, we 

consider the active region of the thyroid gland (assumption 3). So, let the thyroid functional size 
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be   and size of a follicle   (constant).  Let the number of follicles be 
 

 
. Let    be the number of 

follicle receptors per follicle (constant, assumption 8). Then total number of follicle receptors 

is 
 

 
  . Let      and          be the free (unbound) receptors and bound receptors 

concentrations. Then          number of unbound receptors and             number 

of bound receptors, where   is the volume of the blood.  Also, observe that, 

                                                     

                
 

  
         

Using stoichiometry,   

         

  

 
  

        
  
             

              are binding, dissociation and production rate constants affiliated with this reaction.  

For this stoichiometry, the rate equations of          and    are, 

          

  
                                          

   

  
                  

Furthermore, using on equilibrium assumption on (2.5), we get  

          
  

     
                 

Substitute (2.4) into (2.7), we get 

          
  

     
      

 

  
             

That is, 

         
 
   
       

 
     

  
     

       

Substitute (2.8) into (2.6), we get 
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 Thus, 

                               

          
       

      
 

where, 

    
     

  
     

    

  
  

Properties of           

   Suppose         or       or    , then             

    Since 
   

  
 

     

      
   or  

   

    
 

     

         
   , then      for all         

We will now model the excretion rate of    in equation     . By assuming that the blood 

serum concentration of    excreted on the basis of first order kinetics, we get this term, 

             

Thus, 

   

  
 

        

        
              

Since physicians measure free T4       to monitor thyroid    secretion in patients with 

autoimmune thyroiditis, we describe (2.9) in terms of    .  By utilizing the fact that bound T4 

      is proportional to free T4     . That is,  

           

                 

where   is proportionality constant. 

We obtain, 
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where    
  

   
. 

Rate Equation 2.3 

The rate of change of the functional size (active part) of thyroid gland is equated to the growth 

rate minus the destruction rate of functional thyroid gland. 

  

  
                           

where           and          represent the growth rate and destruction rate of functional 

thyroid gland respectively.   

We will model the growth rate of the functional thyroid gland using two terms; one 

accounting for when     is available in the blood serum and another, when     is not available 

in the blood serum. When     is available in the blood serum, we assume that the growth rate is 

the proportion of concentration of     in blood serum to total number of receptors in the 

functional region. 

That is, 

    

                                                  
        

Furthermore, we will assume that the total number of receptors in the functional region of the 

thyroid gland is directly proportional to the functional size of the gland. That is, 

                                                              

Substitute (2.13) into (2.12), we get, 

   

    
        

Now, we let    
   

   
.  Therefore (2.13) becomes, 
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When TSH is not available in the blood serum (and from assumption (6)), we assume that the 

growth rate of the gland decreases at a physiologically standard constant rate  , that is, 

       

Thus, the growth rate of the functional gland is, 

             
   

 
    

where    represents the sensitivity of the thyroid gland to TSH stimulation. 

Properties of           

              does not exist. This implies that there is a singularity at    .  

                .   

We will now model the destruction rate of the functional size of the thyroid gland.  The 

destruction rate of the functional thyroid gland depends on the aggression of the anti-thyroid 

immune response. To model this term, we use anti-thyroid antibodies (TPOAb and TGAb) to 

stand in for immune response (assumption 1) and the functional size (T) for the active part of the 

gland. Therefore, the destruction rate of Ab is assumed to be the interaction rate of anti-thyroid 

antibodies and the functional size of the gland. So, we write 

                  

Properties of          

   if      or     then     . 

The rate equation of the functional size of the thyroid gland is, 
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Rate Equation 2.4 

The rate of change of concentration of unbound anti-thyroid antibodies is equated to the 

production rate of anti-thyroid antibodies due to the destruction of the functional size of thyroid 

gland minus the aging rate of anti-thyroid antibodies respectively.  That is, 

   

  
                         

where          and        represents the production rate of anti-thyroid antibodies due to the 

destruction of the functional size of thyroid gland and the aging rate of anti-thyroid antibodies 

respectively. We will model the production rate of anti-thyroid antibodies using the interaction 

term, that is,                  [Note – this is an important point in defining Hashimoto’s as 

an autoimmune disease, because it reflects our assumption 1 that anti-thyroid immune response 

attacks the thyroid follicle cells whereby the gland stimulates more activity of the immune 

response and that antibody acts as a marker of immune activity]. We will model the aging term 

using the first order kinetics, that is, anti-thyroid antibodies concentration decreases at a rate 

proportional to the levels of anti-thyroid antibodies in the blood (            ).  

Thus, 

   

  
                      

Hence, the four dimensional model (4d) is as follows, 

    

  
    

      

      
                            (2.2) 

    

  
 

        

        
                                   (2.10) 

  

  
    

   

 
                                (2.15) 

   

  
                                                (2.17) 
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with initial conditions associated with the model and the parameters are all positive, that is, 

                                 .  The equations (2.2), (2.10), (2.15) and (2.17) will be 

referred to as (2.2) – (2.17).    

Remark 

The right hand sides of the model       –        are continuous except when     and satisfy a 

local Lipschitz condition in   
 .  

Existence and Uniqueness Theorem 

We will now state the general theorem of existence and uniqueness for the initial value problem 

(Robinson, 2004, page 71).  

Theorem  

Consider the differential equation 

        

where   is a point in    and      is a vector field in   . Assume that both      and 
   

   
    are 

continuous for   in some open set U in   , and that    is a point in U.  

Then there exists a solution      defined for some time interval –       such that  

       .  Moreover, the solution is unique in the sense that if      and      are two such 

solutions with               then they must be equal on the largest interval of time about 

    where both solutions are defined.  Let         be this unique solution with           . 

The solution         depends continuously on the initial condition   . Moreover, let  

T > 0 be a time for which         is defined for      . Let     be any bound on the 

distance between solutions.  Then, there exists a     which measures the distance between 

allowable initial conditions, such that if              then         is defined for       

and  
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for      . In fact, the solution         is differentiable on the initial condition,   . 

Proof: see (Robinson, 2004, page 86 - 89) 

  

Let us now compare the necessary assumptions needed for the existence and uniqueness 

theorem to satisfy in our 4d model. In our model, we have, 

   

   
   
 
  

             and               

 

 
 
 

   
      

      
        

        

        
       

   
   

 
          

              

 
 
 

 

Note      and 
   

   
                are a continuous functions except possibly when    . 

Thus, we require a non-negative open region in    without     in order for the existence and 

uniqueness theorem to work in our 4d model and of course all the initial conditions are non-

negative,    contained within the open set     
 .  

We will now employ the model in an adult population, since they are the ones who 

develop this autoimmune thyroiditis most frequently. For a given adult group, the clinical 

variable normal values, ranges, units and sources are listed in Table 2.1.  Note that the normal 

value of TSH, FT4 and the functional size varies with person to person. So, we arbitrarily picked 

normal values from the reference ranges adopted for this dissertation.  The normal value of anti-

thyroid antibodies is zero. 

 

Table 2.1: Variable Normal Values, Ranges, Units and Sources 

Name Normal 

Value 

Normal Range Source Unit 

    1     –         Literature(Baloch et al. 2003)
      

    13       Literature(Baloch et al. 2003)
       

  0.015             Literature(Carle et al. 2009)   

   0        Dataset      
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2.3    Singularly Perturbed Structure to 4d Model 

We have observed that thyroid stimulating hormone (TSH) changes on the order of days in the 

blood, free T4 (FT4) changes on the order of weeks in the blood, and the functional size of 

thyroid gland (T) and anti-thyroid antibodies (Ab) changes either on the order of weeks or years, 

possibly depending on the person, the degree of the disease, age, gender, race and so many 

unknown factors.  Thus, there exists at least two different time-scales in the model. We impose 

this assumption of two time-scales present in our 4d model.  We will call TSH a fast state 

variable since it changes on the faster time scale and the rest of the variables (FT4, T, and Ab) are 

slow state variables since they change on the slower (common) time scale.  This in turn gives rise 

to a singularly perturbed structure to our model and also helps us to analyze the model effectively 

by reducing a dimension (see below for the introduction of singularly perturbed initial value 

problem).  The presence of this structure is seen in Chapter1 in the log-linear relationship 

between TSH and free T4. 

Divide (2.2) with   , then we get, 

 

  

    

  
 

   

   
 

      

           
                   (2.18) 

    

  
 

        

        
                                   (2.19) 

  

  
    

   

 
                                (2.20) 

   

  
                                                (2.21) 

Let 

   
 

   
    

Then, we obtain a singularly perturbed structure of our 4d model, 
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Note:  the singularly perturbed model equations numbers are all renamed ((2.18) – (2.21)).  The 

singularly perturbed 4d model is described on the order of intermediate slower time scale, more 

precisely, in terms of weeks (see parameter estimation section in Chapter 4). Also, we could have 

chosen    to define   instead of   . If    was our chosen candidate, the singularly perturbed 

model will be on the order of years (slower time scale). 

Introduction to Singularly Perturbed Initial Value Problem 

Let   denote the “slow” variables and   denote the “fast” variables, then standard autonomous 

singularly perturbed initial value problems are given as, 

 

  

  
                   

       

 
  

  
                           

 

where   a real parameter near a zero and        and       . Because of the presence of 

fast and slow states in the model, singular perturbation problem shows multi-time-scale behavior; 

therefore it is reasonable to analyze the slow and fast state variables on the order of different time 

scales. The original model breaks down into two related sub models, the reduced and boundary 

layer models. We will now show this analysis (see Tihonov, 1952; Hoppensteadt, 1966, and 

1971).  

First, by setting    , we see that the dimensions of state equations reduce from     

to  . Thus, the differential equation (2.22) will change to: 
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after dropping the initial condition        . We call problem (2.23) the reduced model. 

Second, by introducing the stretching transformation   
 

 
  to the problem (2.22) results in, 

  

  
                      

       
  

  
                    

 

Furthermore, by setting     yields 
  

  
   which in turn results in       , a constant 

solution.  We will now let      to obtain the following differential equation, 

 

               
  

  
                                                                                       

 

We call problem (2.25) the boundary layer model.  Thus, in summary, analysis of a 

singularly perturbed initial value problem involves two sub models: the reduced model, and the 

boundary layer model. The former is related to dynamics of the slow variables while the latter 

model reveals the dynamics of the fast variables where      becomes constant. 

For our work, we focus on the reduced model of the singularly perturbed initial value 

problem. Thus, we will now discuss an important theorem of Hoppensteadt (applied to 

autonomous system), where he proved that the solution of singularly perturbed model for small 

    approximates the solution of the reduced model on the time interval        if certain 

conditions on the functions         are satisfied.  

 

Hoppensteadt Theorem (Hoppensteadt, 1966) 

 

Preliminaries: 

Norm of a vector: (required to measure the distances between the solutions of the system) 
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Let             such that                            and let      and      

represent the restriction of    to    and    respectively.  Let us assume that   and   satisfy the 

following conditions. 

1) The reduced model (2.23) has a solution            for all time       . 

2) The functions                             . Here    denotes the matrix with 

components 
   

   
,             and similarly for       and   . 

3) There exists a bounded, twice continuously differentiable function        such that 

            for all       . Furthermore assume      is isolated in the sense that if 

          and            for some         imply             .  

With this assumption, the reduced model can be written in the more convenient form 

  

  
                                                 

4) The function    is continuous at         uniformly in         and          and 

            uniformly asymptotically stable solution. In this assumption, Hoppensteadt 

translated the equilibrium to the origin, but it can be applied to any equilibrium.   

5) The function    is continuous at     uniformly in           and          and its 

derivatives with respect to   and the components of   any   are bounded on   . 

6) Let    be the class of all continuous, strictly increasing, real-valued functions       

    with       ; and let   be the class of all nonnegative, strictly decreasing, 

continuous, real-valued functions     ,      . Let the zero solution of     is 

asymptotically stable. That is, if            is the solution of    , there exist     

and     such that                            for        and     . 

Theorem: 

Let the conditions (1) through (6) be satisfied. Then for sufficiently small           and     

the solution of the original model exists for     and this solution converges to the solution of 

the reduced model as      uniformly on all closed subsets of       . 

 

Remark 

If we remove the uniform condition from (4) and replace        by       from 

Hoppensteadt theorem, we obtain a similar theorem from Tikhonov (1952).  
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Now, from              , we have a reduced model, 

  
   

   
 

      

           
                              

    

  
 

        

        
                                          

  

  
    

   

 
                                       

   

  
                                                       

 

Since the algebraic equation has a unique root,    
    

           
, so we can write our model in 

the more convenient form,  

    

  
 

         

                       
                      (2.26) 

  

  
    

     

            
                               (2.27) 

   

  
                                                                        (2.28) 

The reduced model, (2.26) – (2.28) defines the vector field on the algebraic surface, also called 

slow manifold  
    

           
       .  So, the solution of the reduced model stays on the 

surface  
    

           
       .  We will use the reduced model in Chapter 4 for the stability 

analysis and the numerical simulations. 

2.4    Summary 

This chapter focused on the construction of a nonlinear model of the operation of the HPT axis in 

autoimmune (Hashimoto’s) thyroiditis.  Followed by the construction of the model, we stated and 

compared the existence and uniqueness theorem in non-negative region of four dimensional 

spaces. For this thesis, we chose an adult population and listed their normal values, ranges, units 



47 

 

 

 

and sources in a tabular format for all model variables, since patients with autoimmune thyroiditis 

are normally from adult populations rather than other populations. The model contains eleven 

parameters and four initial conditions. The model has singularly perturbed structure to it since the 

system has at least two different time scales, which in turn enables one to reduce a dimension of 

the 4d model. 
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CHAPTER 3 – NORMAL AXIS OPERATION 
 

In the previous chapter, we formulated a model which encompasses both normal and abnormal 

operation of the HPT axis.  In this chapter, we will look at the normal operation of the HPT axis 

operation.  For that, we assume there are no anti-thyroid antibodies in the system.  This can be 

done by setting the initial condition (state) of anti-thyroid antibodies to be zero in the singularly 

perturbed model in Chapter 2, solutions starting with         will always have        . 

Thus, the four dimensional (4d) singularly perturbed model becomes a 3d model.  The 3d model 

is, 

 

 
    

  
 

   

   
 

      

           
                      (2.29) 

    

  
 

        

        
                                   (2.30) 

  

  
    

   

 
                                            (2.31) 

3.1    Mathematical Analysis of the Singularly Perturbed (3d) Model 

Remark 

                                           

 

 
 
 
 

   

   
 

      

           
     

        

        
       

   
   

 
   

 

 
 
 
 

 

    the 3d initial value problem has a unique solution if                        (see 

Chapter 2).  
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Steady states  

For any    , one can solve for steady states by setting the right hand sides of each equation in 

the model,               equal to zero.  If we now solve for steady states which yields, a cubic 

polynomial for      suggesting that the model could predict three meaningful steady states. 

     
    

           
 

   
    

 
 

    
       

  

    
     

     
  

  
   

    
      

    
   

 

    
    

   

In Appendix B, we applied Descartes’ sign rule to the cubic polynomial and noticed that the cubic 

polynomial has one sign change and so therefore, the model has exactly one positive real steady 

state and other two steady states are either negative real or complex depending upon the model 

parameter values.  The existence of positive real steady state is a biologically meaningful state; 

we call this steady state the euthyroid state.  The existence of other two steady states either in the 

negative orthant or complex space is biologically meaningless.  For steady state analysis, we only 

consider the euthyroid state which is as follows (see Appendix B for solving the cubic 

polynomial), 

Let  

  
   

 

 
 

  
 

  
    

  
  

    
    

  
  

   
 

   
   

  
   

   
 

    
   

  
    

   
 

       
  

   
 

  
 

    
 

     
 

Then 

      
  

 
  

  

 
 

  

  
 

 
 

  
  

 
  

  

 
 

  

  
 

 
 

 
  

 
   

  

    
  



50 

 

 

 

     
    

           
 

   
    

 
 

Note: the euthyroid state depends on the model parameter values suggesting that this state is 

unique for each individual in the adult population.  Also, the euthyroid state is independent of the 

parameter   . 

Let  

     
     

            
      

     

            
      

              

              
  

                   
             

              
    

    

 
        

    

 
 

Then for  

               
             
             

        
  

We have the following theorem. 

Theorem 3.1 (Boundedness)  

The solutions of               with initial conditions in     
  are bounded for all    . 

Proof 

First, let us determine six faces,                                 

                   in   
  such that the faces trap solutions within a rectangular box   

and       where,   the unit outward normal vector to  . The 3d rectangular box is 

represented as follows, 

                                      

Second, let      and   be the unit normal vectors in the positive               directions. 

On         ,      and       requires 
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Along the edge          and          for any solution of               on that edge, 

     

   
 

      
    
  

 

         
   

    

  
         

 

  
 

 
      

    
  

 

         
                                  

      
    

  
   on edge          and         .  So the sign of the second derivative of 

    is determined by 
    

  
 on that edge. 

    

  
 

         

         
                                           

  
         

         
 

             

         
     

since      
             

              
 and          . Thus, 

     

       and     increases on that 

edge.  So the solution would move back into              . 

On         ,     and       requires 

                    

  
 
        

 

 
 

 
 

     

           
                                

Along the edge          and          for any solution of               on that edge, 

     

   
 

      
    
  

 

          

So the sign depends on 
    

  
. On          and          
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Thus 
     

       and     decreases on that edge. So the solution would move back into      

        . 

Therefore, the faces      
     

            
 and      

     

            
, where 

               

Consider now the faces          and         , where              . 

On         ,      and       requires 

                     

  
 
        

   
        

        
            

if and only if, 

        

             
                                            

We can now obtain the lower bound for     by choosing      as, 

     
              

                
 

              

             
 

On         ,     and       requires 

                   

  
 
        

 
        

        
           

if and only if, 

        

             
                                            

We can now obtain the upper bound for     by choosing      as, 

     
              

                
 

              

              
 

Therefore, the faces      
              

             
 and      

              

              
  where 
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Finally let us consider the faces      and      where         .  On     , 

     and       requires 

               

  
 
    

     
   

  
                        

Along the edge      and          for any solution of               on that edge, 

  
  

   
 

    
        

     
  

    
  

   
  
  

    

  
  

    
        

 

    

    
  
  

  

So the sign is determined by 
    

  
.  On the edge      and         , 

    

  
 

    

      
        

 
    

      
 

    

       
 

This is equal to zero if, in addition         , otherwise 
    

  
  , so   is increasing back into 

the range           except in one case.  To examine the remaining case, if          

     and         , as 
  

  
   and 

   

     . We look at  
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So the sign of  
   

        
        
        

is determined by 
     

   .  Consider the second derivative of     at 

              and         . 

     

   
 

      
    
  

 

         
   

    

  
         

 

  
 

 From the previous case, 
    

  
   and 

    

  
   on          and         .  So 

     

    

  at that point this means that   is increasing back into the range        . 

On     ,     and       requires 

             

  
 
    

    
   

  
    

     
   

    
                        

On the edge              , 

  
  

   
 

    
        

    

    
  
  

  

From the previous work, 
    

  
   when         , except when         .  Examining 

that case, 

  
  

   
 

    
        
        

    

     
   

  
  

Again from a previous case, we found 

     

      and as a result,   is decreasing at the point back into the range        . 

Therefore, the faces    
    

 
 and    

    

 
  where 

        

Thus,  
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Hence the proof 

  

Corollary 

As   in   
  is compact and invariant, there will be a steady state in   (Srzednicki, 1985).  Since 

  lies in the positive region and there is only one steady state in the positive region, it must be in 

 .  

Before we begin the analysis of the 3d model             , we will analyze the 

reduced model by setting     to gain insight into the dynamics on the algebraic surface 

   

   
 

      

           
       . 

3.2    Mathematical Analysis of the Reduced (2d) Model 

Let us consider the reduced model from                

    

  
 

         

                     
                           

  

  
    

     

            
                                  

Notice that the reduced (2d) model describes its dynamics on the algebraic surface (also called 

slow manifold for the reduced model in the literature of singular perturbation theory),  , which is 

as follows, 

               
   

   
 

      

           
         

One could imagine   (2d manifold) embedded in 3d space for   equal to zero.  Thus, we will first 

start with the mathematical (phase plane) analysis of (3.1) – (3.2) in the bounded region   
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contained on the algebraic surface,            and second, we will present the numerical 

simulations of the reduced model to support the analysis.  

Qualitative Behavior of the Trajectories 

Here, we are concerned about the qualitative behavior of the trajectories with initial conditions 

within the bounded region     . We will first start with an array of mathematical definitions 

that are required to construct trajectories within    .   

Consider the autonomous initial value problem, 

  

  
                         

                
  

  
                       

 

where          is continuously differentiable function and         
      

      
  as a vector 

field in   .  

Definition: Forward trajectory  

The forward trajectory through    is the set  

               

   

 

where         is the unique solution with initial condition    (see Chapter2 for general 

construction of  ). 

Definition: Positively Invariant Set 

A set   is said to be a positively invariant set if      then           

Definition:              

The             of        is  

                                                                    . 
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Definition: Stable Manifold 

For an equilibrium state   , the stable manifold of the equilibrium state is given by  

                                 

Before we use all the above definitions; we will do linear stability analysis of the euthyroid state. 

Linear Stability Analysis 

This section is concerned with the stability of an equilibrium (euthyroid) state for the system (3.1) 

– (3.2).   First, note that the euthyroid steady state stays on the slow manifold within the bounded 

region    .  Second, we will test the local and global nature of this state on the slow manifold 

using the reduced system.  Recall again from Chapter 2, the reduced system defines the vector 

field only on the slow manifold. 

Consider the reduced system,  

    

  
 

        

                     
                         

  

  
    

     

            
                                     

 

Lemma 3.1 

The euthyroid state           of             is locally asymptotically stable on the slow 

manifold. 

Proof 

We linearize the model,             near the euthyroid state           . The Jacobian matrix 

at a general point         is, 
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Evaluating the Jacobian at          , we get 

            

 
 
 
 
  

          
 

            
 
   

     

      

 
     

   

    

    

   
 
 
 
 

 

Thus, the linearized system can be written as, 

 

  

  
  

  

             
 
 
  

Observe that, 

          
   

  
    

          
 

            
     

and      

     
          

   

            
 
 

     

  
 

        
   

            
   

Thus, the linear system is asymptotically stable.  Hence the euthyroid state           is locally 

asymptotically stable.  Furthermore, since the eigenvalues of matrix            are the roots of 

the characteristic equation 

                   

and the roots are  

 

     
                           

 
    

We have three cases, 

Case1: 
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Suppose                   , then the eigenvalues of   are real.  However, 

                                              

     
                           

 
    

Thus, the euthyroid state is a stable node.   

Case2: 

Suppose                   , then the eigenvalues of   are complex with negative real part, 

therefore the euthyroid state is a stable focus.  

Case3 

Suppose                      then the eigenvalues of   are equal with negative real part 

      

 
 therefore the euthyroid state is a degenerate stable node. 

Remark 

For our system,  

                    
   

  
     

          
 

            
 
 

 

 
         

   

            
 

We call the left hand side as                    for simplicity. For illustration, we use 

parameter values from Table A2 (see Appendix A – parameter estimation) except for   . If 

             then,     and then the euthyroid state is a stable node.  If          

    , then    , and then the euthyroid state is a stable focus.  If      or            ,    

is approximately zero, therefore the euthyroid state is a degenerated stable node (see Figure 3.1).   
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Figure 3.1: For the values in Table A2, but with    varying, the figure shows how    changes the 

changes the nature of the euthyroid steady state.  Note that the euthyroid state is independent of 

  .  

  

Basin of Attraction for the Euthyroid State  

In this section, we will show that the euthyroid state is an attractor for the set of points on the 

slow manifold.  We show this by employing Dulac’s Criterion and the Poincare - Bendixson 

theorem on the slow manifold.  Recall that the euthyroid state is located within the bounded 

region,     . 

Dulac’s Criterion (Robinson, 2004) 

This method is based on Green’s theorem, which rules out the possibility of closed orbit in the 

planar region. This method works only in 2d space (manifold).  In our case, the planar region is 

the algebraic surface (slow manifold) and the reduced (2d) model             is defined at all 

points on the slow manifold. 
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Theorem: (Dulac’s Criterion) 

Consider the differential equation        where         
      

      
  be a continuously 

differentiable vector field defined on simply connected subset      in the plane. If there exists 

a continuously differentiable, real-valued function        such that 

        
     

  
 

     

  
         has one sign throughout  , then there are no closed orbits 

lying entirely in  . 

Theorem (Poincare-Bendixson) (Robinson, 2004) 

Consider a differential equation       on   . Assume that   is defined on all of   .  Assume that 

a forward trajectory                is bounded. Then       either     contains a steady state 

or      is a periodic orbit. 

Remark 

Let   
  and   be two open sets in   

 . A homeomorphism   from   
  to   is a continuous map 

onto  , which has a continuous inverse   from   to   
 . It follows that   is one to one (i.e., if 

            then      . 

Remark 

We will first use Dulac’s criterion to rule out the possibility of closed orbit in the bounded region 

on the slow manifold and next, by using the Poincare-Bendixson theorem (on the slow manifold), 

we conclude all trajectories of the system       –       converge to the euthyroid state. 

Lemma 3.2 

The euthyroid state           of the reduced system             is an attractor for the set of 

points      contained in the slow manifold   . 
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Proof 

Let         and    . We already have constructed the bounded region       (slow 

manifold) for our reduced (2d) model.  

       
  

    
 

  

  
  

   
           

                      
    

      

            
                         

This implies there are no closed orbits in the bounded region      (slow manifold).  Since 

the bounded region     is compact and positive invariant, therefore, we conclude from the 

Poincare-Bendixson theorem that all trajectories of the system       –       converge to the 

euthyroid steady state.   

  

Theorem 3.2 

For any given initial condition                 in     is on the slow manifold, there exists a 

unique trajectory starting at the initial state which approaches the euthyroid steady 

state           as    . That is, 

   
     

                                              

Proof 

We have shown in Theorem 3.1,   is a bounded region, so     is a bounded region on the slow 

manifold.  This means any trajectories of reduced (2d) model       –       starting in      at 

time    will stay there for all future time        and we have also shown that there are no closed 

orbits in     but the euthyroid state by using Dulac’s criterion.  From Lemma 3.1, and 3.2, we 

see that the euthyroid state is locally asymptotically stable and attracts all trajectories starting 

in    .  Thus,                  
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Theorem 3.3 

For any     and initial condition                          , there exists a unique 

trajectory starting at the initial state which approaches to the euthyroid state                

in  . 

 That is, 

   
     

                                                             

Proof 

We prove this theorem by relating the trajectories of the reduced (2d) model       –       and 

the 3d model               through the Hoppensteadt theorem (see Chapter 2). Hoppensteadt’s 

theorem says that for sufficiently small      and initial condition                         in 

 , the trajectory of the 3d model               exists for      and that trajectory converges 

to the trajectory of the reduced 2d model       –       as      uniformly on all closed subsets 

of     .  Note: in our case,   
 

  
        is a fixed small number and does not converge 

to zero, so the trajectories of the 3d model and 2d model do not converge.  But, the   

         , must be the euthyroid steady state for both the reduced (2d) and 3d model (see Figure 

3.9).  This means that the distance between the trajectories of the reduced (2d) model and the 3d 

model in   must be decreasing in order to share the same            .  In addition,   is 

positively invariant and contains the euthyroid steady state which is locally asymptotically stable 

(see Chapter 4).  Thus, our result follows                   .  

3.3    Numerical Simulations of the Reduced (2d) Model 

We have done the mathematical analysis of the two dimensional reduced system in the bounded 

region on the slow manifold.  In this section, we will present the numerical simulations of the 



64 

 

 

 

reduced 2d model to confirm our mathematical analysis (see Figures 3.2, 3.3, 3.4, 3.5, 3.6 and 

3.7).  For numerical simulations, we pick an imaginary normal individual, whose normal    , 

free T4 and the functional size are given in Table A1, in other words, euthyroid state of this 

individual is given in Table A1(see Appendix A). For this individual, the parameter values are 

estimated and listed in Table A2 (see Appendix A) however, we use             
  

      
  in 

order to confirm our analysis. We start the 2d system with different clinical initial states and 

investigate the dynamics of our imaginary individual.  For all our simulations, we use ode15s 

solver from Matlab suite (see Chapter 4 for specific details).    

 

 

Figure 3.2: The plot of free T4 and the thyroid functional size     as a function of time of a 

simulated individual. Note the thyroid functional size     is in milliliters. We start the reduced 

(2d) model at the initial state             
  

  
          , having free T4 and   within the 

reference range (normal), and using parameter values from the Table A2 in Appendix A except 

for   . Here                      . The 2d reduced system predicts that the imaginary 

individual probably develops a goiter before the monitored values asymptotically approaches the 

euthyroid state    
  

  
          in approximately 60 days.  
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Figure 3.3:  The phase plane view of the previous time series plot. Note the thyroid functional 

size     is in milliliters. Here                      . The reduced 2d system 

asymptotically approaches the euthyroid state    
  

  
         . 

 

 

Figure 3.4: Note the thyroid functional size     is in milliliters. We start the reduced (2d) model 

at the initial state              
  

  
          , having free T4 above the upper reference limit 

of free T4 and T normal (hashitoxicosis), and using parameter values from the Table A2 in 

Appendix A except for   . Here                      . The 2d reduced system predicts 

that the imaginary individual asymptotically approaches the euthyroid state    
  

  
          in 

approximately 60 days.  
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Figure 3.5: The phase plane view of Figure 3.4.  Note the thyroid functional size     is in 

milliliters and                      . The reduced 2d system asymptotically approaches 

the euthyroid state    
  

  
          from hashitoxicosis state    

  

  
         . 

 

 

Figure 3.6: Note the thyroid functional size     is in milliliters. We start the reduced (2d) model 

at the initial state             
  

  
          , having free T4 below lower reference limit of 

free T4 and T normal (clinical hypothyroidism), and using parameter values from the Table A2 in 

Appendix A except for   . Here                      .  The 2d reduced system predicts 

that the imaginary individual asymptotically approaches the euthyroid state    
  

  
          in 

approximately 60 days.  
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Figure 3.7: The phase plane view of Figure 3.6. Note the thyroid functional size     is in 

milliliters and                      . The reduced 2d system asymptotically approaches 

the euthyroid state    
  

  
          from clinical hypothyroidism state   

  

  
         . 

 

3.4    Numerical Simulations of the Singularly Perturbed (3d) Model 

To present numerical simulations of the 3d model, we will use the original 4d model, (2.2) – 

(2.17) by setting the initial condition of anti-thyroid antibodies to be zero (that is,      ). We 

use ode15s from Matlab suite for all our simulations (see Chapter 4 for specific details).  We 

illustrate the mathematical analysis of the 3d model through our simulations. For that, we use our 

imaginary individual’s variable and parameter values from Table A1 and Table A2 in Appendix 

A.  Also, we use             
  

      
. 
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Figure 3.8: Note the thyroid functional size    is in milliliters. We start the original (4d) model at 

the initial state                      
  

 
   

  

  
           , having TSH, free T4 outside 

the reference range (clinical hypothyroidism), T and Ab normal, plus using the parameter values 

from Table A2 in Appendix A except for   . Here                      . The 4d 

system predicts that the imaginary individual asymptotically approaches the euthyroid 

state    
  

 
   

  

  
            in approximately 60 days. Also, observe that TSH quickly 

approaches the euthyroid state suggestive of the existence of a fast-time-scale for TSH. 

 

 

Figure 3.9: 3d phase space view of Figure 3.8. Note the thyroid functional size     is in milliliters 

and                      .  The reduced 2d system asymptotically approaches the 

euthyroid state    
  

  
          from clinical hypothyroidism state   

  

  
         .  Using the 

algebraic equation,    ,     is computed for the 2d system. The 4d system asymptotically 
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approaches the euthyroid state    
  

 
   

  

  
            from clinical hypothyroidism state 

    
  

 
   

  

  
           .  Note: the reduced 2d system approximates the 4d system. Also,  

  
 

  
        is a small fixed value. 

 

3.5    Summary 

This chapter focused on the dynamics of the normal operation of the HPT axis. For that, we have 

excluded the anti-thyroid antibodies (stand in for anti-thyroid immune response) from the system 

which gave rise to the 3d model. We used the singularly perturbed 3d model in order to reduce a 

dimension of the 3d model and to study the dynamics of the HPT axis on the algebraic surface 

(plane) in an effective manner.  Thus, the reduced 2d model described all its dynamics in the 

plane, in fact, the algebraic surface (also called slow manifold).  In addition, we constructed a 

bounded region in the slow manifold so that if a solution starts within the bounded region at 

time   , it stays there for all future time     .  Finally, we proved that the euthyroid state is 

locally asymptotically stable on the algebraic surface and an attractor for the set of values in the 

bounded region (D).  This is the main result for this Chapter.  We have also presented numerical 

simulations of reduced 2d model             and original 4d model,       –        to confirm 

the mathematical analysis of this Chapter. 
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CHAPTER 4 – ANALYSIS OF DYNAMICS OF 4d MODEL 
 

In this chapter, we present an analysis of the full 4d model which includes investigating the local 

stability of euthyroid state and diseased steady state.  Along with this, we present numerical 

simulations to support stability analysis of the full 4d model. In addition, we present bifurcation 

analysis to determine the qualitative behavior of the system, that is, the structural stability of the 

model as a parameter changes in the system. 

The 4d model is as follows, 

 
    

  
 

   

   
 

      

           
                           

    

  
 

        

        
                                          

  

  
    

   

 
                                       

   

  
                                                       

Remark 

                                            

 

 
 
 
 
 

   

   
 

      

           
     

        

        
       

   
   

 
          

              

 
 
 
 
 

 

    Note that the 4d initial value problem has unique solutions if                  

            (see Chapter 2). 
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4.1    Mathematical Analysis of the Singularly Perturbed (4d) Model 

We begin the analysis of 4d model by examining the steady states of the system. For every    , 

we can find equilibrium states. Setting the left hand side of (2.21) equal to zero yields      

or         . When     , we obtain the euthyroid state (steady state – see Chapter 3 and 

Appendix B), that is,  

      

Let  

  
   

 

 
 

  
 

  
    

  
  

    
    

  
  

   
 

   
   

  
   

   
 

    
   

  
    

   
 

       
  

   
 

  
 

    
 

     
 

Then 

      
  

 
  

  

 
 

  

  
 

 
 

  
  

 
  

  

 
 

  

  
 

 
 

 
  

 
   

  

    
  

     
    

           
 

   
    

 
 

The euthyroid state is located in a hyper plane (      , reasonable initial conditions for the 

system of differential equations are                                            

                          in numerical simulations to investigate the local stability of 

euthyroid state in patients with autoimmune thyroiditis. 

Next, consider a possible equilibrium when     . This requires          and 

substitution of this equilibrium value into the right hand sides of the equation        ,        and 

      , that leads to a steady state in the system, which we call a diseased state,   
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Remark 

If the expression  
      

  
      is true, then the diseased (steady) state is located in the 

negative orthant, that is,      .   

Positively Invariant (Bounded) Region 

We constructed a bounded region in the previous chapter using    ,     and   when the initial 

state of anti-thyroid antibodies is set to zero       . But, now we will establish a bounded 

region in 4d space for the full model when the initial state of anti-thyroid antibodies is not set to 

zero.  Recall the definitions of      and      from the previous chapter – the particular faces 

of the rectangular box  . 

Let 

     
     

            
      

     

            
      

              

              
  

     
             

              
    

                             

        
    

    

 
   

                    .  

Then for  
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Theorem 4.1 

If     
    

 
 

  

  
, the solutions of        –        that start in    at    will remain in    for 

all time     . 

Proof 

We construct eight hyper planes in   
  such that the planes trap solutions within a rectangular box 

   and       where,   the unit outward normal vector to    on seven of the hyper plane 

faces of the box   .  That is, 

                                                 

In autoimmune thyroiditis, we can choose the lower bound for anti-thyroid antibodies     , that 

is,       (the hyper plane).  If a trajectory reaches     , then an argument similar to that in 

Chapter 3 where shows the trajectory stays within the following box, 

                                      

where    
    

 
.  Second, let        , and l be the unit normal vectors in the positive           

and    directions.  In the third case, we established bounds for        , and   in Chapter 3, but 

the lower bound for   is affected in the presence of anti-thyroid antibodies (  ) in the system. 

Thus, we construct a new lower bound for   and upper bound for   , 

On     ,      and       requires 

               

  
 
    

      
   

  
               

if and only if 
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By choosing          (minimum value) and         (maximum value), we can obtain 

the lower bound for  , that is, 

    
                             

        
 

But, note that solutions on the edge,                           have 

  

  
   

So, along the edge,                           for any solution of         –        

on that edge, 

  
  

   
 

    
        
      

     
  

    
  

   
  
  

    

  
     

   

  
     

  

  
 

    
        
      

 

    

    
  
  

        
   

  
 

So the sign  
   

        
        
      

is determined by 
    

  
 and 

   

  
.  We see 

   

  
        

  

  
    and 

    .  On that edge         , and 
    

  
   if         , otherwise 

    

  
   for 

             .  For         , suppose 
    

  
   and 

  
  

   
 

    
        
      

   

Therefore, when     ,          and       ,      is increasing back into the 

range        .  Thus, 

                             

        
   

    

 
 

Consider now the hyper plane        where         . 
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On       ,     and       requires 

 

                

  
 
      

                

if and only if, 

  
   

  
                  

By choosing       
    

 
 (maximum value), we know for sure that the anti-thyroid antibodies 

(Ab) are bounded as long as the following inequality satisfies, 

    

 
 

   

  
 

Thus, we conclude that           . 

Hence the proof 

  

Corollary 

As    in    is compact and invariant, there will be a steady state in    (Srzednicki, 1985). Since 

   lies in the positive region and there is only one steady state (euthyroid state) in the positive 

region, it must be in   . Also, the diseased state is not in the positive region as long as the 

expression  
      

  
      is true.  Thus, the model suggests that the necessary condition for 

the diseased steady state to emerge into the positive region, in fact in the box, is  
      

  
    

 .  In addition, we observed that necessary condition becomes true as    (positive parameter) 

changes in the system (see bifurcation analysis below).   

Theorem 4.2 

When      there is only one steady state (euthyroid state) in the positive octant.  
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Proof 

The proof of this theorem follows from the following definition which relates the euthyroid state 

and diseased steady state.  

Definition 

When 
      

  
    , the second steady state (diseased state) of the system         –         

has     .  So it must coincide with the euthyroid state in the positive quadrant if  

   
   

    
 

   

    
 

Let   
  be the unique value of    where,   

   
              

    
 

In addition, we have observed      
 , 

  
  

  

  
             

    

 
                   

Note: This critical parameter can be uniquely determined for every individual in the adult 

population. 

Remark 

  
  is independent of the parameters           because the euthyroid state is independent of those 

parameters. 

Local Stability of Euthyroid State 

To prove the euthyroid state is locally stable in 4d space. We need Lemma 4.1. 

Lemma 4.1 

Let     be real roots of          .  If     then           (quadratic 

inequality) 
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Proof 

Since                   ,  

If     , both         and         then          . 

  

Theorem 4.3 

The euthyroid state is locally asymptotically stable in         –        if  

     
            

     
 

  
 

                 
          

 
 

where 

  
   

         
           

      
   

      
       

      
             

      
 

 

Proof 

We will prove this theorem by using the Routh-Hurwitz criteria on our 4d model. We first state 

the Routh-Hurwitz theorem, along with the stability condition for 3d case and then prove our 

claim.  

Routh-Hurwitz Theorem (see Hurwitz, 1895; Routh, 1877; Edelstein-Keshet, 1988) 

Given a characteristic polynomial       
       

          , define   matrices as 

follows: 
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where the       term in the matrix    is 

 
     

 
 

 
                            

        
                                              

  

Then the real parts of the roots are negative if and only if the determinants of all Hurwitz matrices 

are positive: 

                         

May (1973) summarizes these conditions for the cases        . For our problem, we 

will use the case    , which is as follows, 

                   

Let us now consider the Jacobian matrix of full 4d model of (2.18) – (2.21) at euthyroid state  

   

1

2
2 1

3 1 3 1
42

11

5 5 1
6 1 6 12

1 1

7 1 7 1 8

1
0 0

( 4 )

0
( )( )

0

0 0

a

a

d

dd

k k

k k FT

k k T k TSH
k

k TSHk TSH

k k TSH
k Ab k T

T T

k Ab k T k

 

 
 


 
 

 
 

 
   

 
  

 

By utilizing   
 

  
 and evaluating       

    

  
            

    

           
, then the Jacobian 

becomes, 
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2 2
2 1

2

1

3 1 3 1
42

11

5 5
6 1

1 1

7 1 8

0 0

- 0
( )( )

0 - -

0 0 0 -

a

d

dd

k TSH
k

k k

k k T k TSH
k

k TSHk TSH

k k N
k T

T T

k T k

 
 

 
 
 

 
 
 
 
 
 

 

For this Jacobian matrix, the eigenvalues can be found by solving the characteristic 

equation             .  Note that the euthyroid state is asymptotically stable if and only if all 

the eigenvalues of Jacobian matrix have negative real parts.  For this Jacobian matrix, the 

characteristic equation is, 

                           
   

  
 

 
  

     
 

    
 

      

         
 
   

   

  
  

     

         
      

We can immediately see that if  

    
  

  
 

   

    
   

  

then one of the eigenvalues              has negative real part and clearly if      
 , there 

is a zero eigenvalue in the direction of anti-thyroid antibodies. 

Let us now consider the equation in the square bracket, 

                
   

  
  

  
     

 

    
 

      

         
 
   

   

  
  

     

         
     

Rewriting the above, 

      
           

where  
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Substituting   
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Note that           and      since all the parameters are positive and the euthyroid state 

is located in non-negative orthant   
 .  By Routh-Hurwitz condition, the remaining three roots of 

characteristic equation will have negative real parts if and only if  

                      

Clearly               are true, since all parameters are nonnegative. We will now examine 

the condition          . Consider, 

          
     

 

  
 

 

         
     

 

  

       
             

 
  

         
        

      
      

      
 

 
  

      
   

 

      
      

      
 

Divide by        , 
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We want          . By Lemma 4.1, this inequality becomes true if  

     
 

  
 

                 
          

 
       

where 

  
   

         
           

      
   

      
       

      
             

      
 

 

Hence the proof 

  

Remark 

For the given parameters values in Table A2, we see that the above inequality       is satisfied 

and thus          .  

Observation 

If       
  and inequality       are true, then all four eigenvalues of euthyroid state have 

negative real parts.  If       
  but inequality       is true, then the eigenvalue of euthyroid state 

in anti-thyroid antibodies (Ab) direction becomes zero. Therefore, the euthyroid steady state loses 

its stability to the diseased steady state. In fact, in general, when      
  the euthyroid and 

diseased states merge with each other and exchange stability in the direction of anti-thyroid 

antibodies (see bifurcation analysis section below).  Thus, there is a bifurcation at      
  , but 

we do not know exactly what kind of bifurcation it is at this point. 

If       
   but inequality       holds, then the eigenvalue of euthyroid state in anti-

thyroid antibodies direction will have positive real part and the other eigenvalues of euthyroid 

state have negative real parts and therefore the euthyroid state becomes unstable only in the 

direction of anti-thyroid antibodies. Thus, we conclude that    is a bifurcation parameter for the 

euthyroid steady state. Next, we will study the local stability of the diseased state for        
 . 
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4.2    Mathematical Analysis of the Reduced (3d) Model 

Recall that, for        
  , the necessary condition  

      

  
      for the diseased steady state 

emerge into the box    becomes true. Thus, we have a diseased state in the positive orthant,   
 , 

in fact in   .  We will use Routh – Hurwitz criterion to study the local stability of the diseased 

state.  But, for this, we will use the reduced model from singularly perturbed 4d system – since 

we focus on the operation of the HPT axis in autoimmune thyroiditis and the active part of the 

axis (the hypothalamus-pituitary function is intact) let us reduce a dimension of the 4d model (see 

Chapter 2).  Thus, the reduced (3d) model defines the problem of interest and of course we 

assumed that   is zero, although it is   
 

  
       . Note that the reduced (3d) model is the 

approximation of the singularly perturbed 4d model in a slower time scale. By setting    , we 

obtained the reduced (3d) model (see Chapter 2), which is as follows, 

    

  
 

         

                       
                      (2.26) 

  

  
    

     

            
                              (2.27) 

   

  
                                                                       (2.28) 

Notice that the reduced model describes all its dynamics on the algebraic surface (slow manifold). 

We will call this slow manifold as   , that is, 

                   
   

   
 

      

           
         

One could imagine    (3d manifold) embedded in 4d space for   equal to zero (see Figure 4.3 

and 4.4).  
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Theorem 4.4 

If       
  , the necessary condition  

      

  
      for the diseased state in    becomes true 

and then the diseased state in system        –        is locally asymptotically stable. 

Proof 

We will now apply Routh-Hurwitz criteria and analyze the local stability of the diseased state. As 

a first step, let us compute the Jacobian matrix at the diseased state, which is,  

   

 

  
 

            

                      
   

      

                     
 

       

            

       

            
         

            

  
 

 

Evaluate    with    
  

  
,     

    

    
 
      

  
   , and      

    

           
 ,then the Jacobian 

becomes 
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Remark 

If    
   

    
 then          . 

The eigenvalues of the diseased state can be found by solving the characteristic 

equation             , which is, 

      
           

where, 

      
            

 

               
 
 

    

  
 
      

  
    

    
 

  
      

   
      

  
 
      

  
    

            
 

             
 
 
      

  
    

  
         

  
 

 
        

       

               
 
 

          
   

               
      

      

  
    

          
      

  
    

              
 

             
 
 
      

  
    

Since 
      

  
                      .  We will now check May’s remaining 

condition          .    
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Notice that  
      

  
       Therefore, the condition           is true for any given a set 

of positive model parameter values and thus the diseased state is always locally asymptotically 

stable once it appears in the positive orthant.  

  

4.3    Numerical Simulations 

The numerical simulations of the four dimensional (4d) system results in trajectories in 4d state 

space (actually 5d with time).  In order to visualize the trajectories of the 4d system, when 

plotting we suppress time and the results of two or more of the four variables.  For numerical 

simulations, we will use the original 4d system      –       , unless there is a need to use the 

singularly perturbed system         –        or the reduced system        –       .   

    

  
    

      

      
                            (2.2) 

    

  
 

        

        
                                   (2.10) 
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                                (2.15) 

   

  
                                                (2.17) 

Since the system       –        contains two different time scales, the Runge - Kutta 

methods such as ode23, ode45 in Matlab suite may not be the best choice for numerical 

approximations.  Recall from Chapter 2 that the two-time scale issue was due to the presence of 

fast and slow variables in the 4d system. This means that a portion of the trajectory varies rapidly 

and the remaining portion of the trajectory varies slowly in 4d state space.  Also, if we use the 

singularly perturbed system         –        for simulations in Matlab, again Runge-Kutta 

methods do not work well since it contains a small parameter     in front of the derivative of 

   .  These systems       –        and         –        are referred to stiff systems in the 

numerical analysis literature. Therefore, we will now introduce the concept of stiff systems, the 

definition of stiffness, and a possible way to avoid stiffness using the ordinary differential 

equation solver in Matlab suite. Next, we will discuss some existing mathematical methods to 

eliminate stiffness in the singularly perturbed system.  

Stiffness 

Stiffness is an important concept in the numerical solution of ordinary differential equations 

which depends on the differential equation, the initial condition, and the numerical method.  

Basically, it affects efficiency, accuracy and graphical output of a computed solution.  Generally 

speaking, whenever there involves a quickly changing dynamics in some components but not the 

others, there is stiffness. 

Definition: Stiff Systems 

Let        be a constant matrix and       .  A linear differential system  
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 is said to be stiff if and only if 

1. For all    the real part of each eigenvalue    of       is negative 

2. (Stiffness ratio) 
         

         
   

Remark 

A general nonlinear problem  

  

  
         

is said to exhibit stiffness if the eigenvalues of the Jacobian matrix      
  

  
 behave in a similar 

fashion.  This is because near a particular solution        we may regard  

                 
          

  
                       

Define                .  Then   solves the system  

                 

To tackle stiffness in differential equations using the Matlab suite, we employed the 

standard differential equation solver ode15s.  ODE15s can solve both non-stiff and stiff initial 

value problems, and differential algebraic equations (DAEs). ODE15s is a variable order method 

solver (Shampine and Reichelt, 1997) – it changes the step size when stiff solutions are 

encountered.  Note that the code ode15s is a quasi-constant step size implementation of the 

numerical differentiation formulas in terms of backward differences. The quasi-constant step size 

means that the formulas used are those for a constant step size and the step size is held constant 

during an integration step.  The syntax of this solver for an initial value problem is, 

                                       

Here      is the name of a function that defines the differential equation.  The interval of 

integration is                   and the initial conditions are   .  The code obtains the 

number of equations by measuring the length of the vector   . The vector         is optional 
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and it is built by means of the function        that accepts name-value pairs. The most 

commonly used options are relative (    ) and absolute (    ) tolerances associated with the 

error control. The default value of relative and absolute error tolerances are      and      

respectively.  Throughout our simulations, the default values of relative and absolute error 

tolerances are used.   

Next, we will discuss some mathematical methods to solve stiff systems.  Suppose the 

assumptions of Hoppensteadt theorem are satisfied, particularly assumption (3), that is, the 

algebraic system     has a unique root        with the Jacobian matrix remains strictly 

stable (see Chapter 2), then the reduced problem should be computationally simple since 

complications of stiffness have been eliminated (Dahlquist 1969; Dahlquist and Soderlind, 1982 ; 

Aiken 1985). In our case, the reduced system is as follows, 

    

  
 

         

                       
                      (2.26) 

  

  
    

     

            
                              (2.27) 

   

  
                                                                       (2.28) 

This reduced system (2.26) – (2.28) can be simulated in Matlab using Runge-Kutta 

methods because the solutions of the reduced system are on the same time scale (slow). But we 

found that using ode15s reduces the computational time. Thus, we prefer using ode15s in this 

system to present simulations in            phase space.  

Next, we will discuss another interesting alternative procedure described in (O’Malley, 

R.E, 1988).  Consider the algebraic system     from problem (2.23) from Chapter 2.  

That is,  
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Differentiate     with respect to  . Then, we get, 

  

  

  
   

  

  
   

That is, 

  

  
  

  

  
         

Thus, we have a new set of       differential equations with initial conditions, 

  

  
                                                     

 
  

  
  

  

  
                                       

Note that these equations eliminated the stiffness because the initial condition has been chosen on 

the algebraic surface,              which in turn eliminated the fast dynamics of the problem 

(2.22). Moreover, the trajectories of this system lie completely on the surface (slow manifold). 

Therefore Runge-Kutta methods work well on this system.    

Now, let us rewrite our singularly perturbed system,         –       .  First, consider the 

algebraic system 

                  
  

   
 

      

           
        

Differentiate with respect to  , 

 

    

    

  
     

    

  
   

  

  
    

   

  
   

This yields, 

    

  
  

    

    
 
    

  
 

Thus,  
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                                      (4.3) 

  

  
    

   

 
                                (4.4) 

   

  
                                                (4.5) 

Note that we could use this system, (4.2) – (4.5) instead of         –        for initial condition 

chosen on the algebraic surface,                    . This one requirement actually avoids 

the fast dynamics of the singularly perturbed system and also forces the trajectories to stay on the 

manifold for all    .  But as we remarked in the introduction of the numerical simulations that 

we use the original system, (2.2) – (2.17) wherever it is possible, so let us choose the initial 

condition of TSH from the algebraic surface and use the original system instead of (4.2) – (4.5). 

Also from Hoppensteadt theorem, we know that the trajectories of the original system stay near or 

on the algebraic surface,     for all       . That is, 

    

  
    

      

      
                                   (2.2) 

    

  
 

        

        
                                   (2.10) 

  

  
    

   

 
                                (2.15) 

   

  
                                                (2.17) 

We use this model to present numerical simulations in              and             state 

space.  
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4.3.1    Numerical Simulations of the 4d Model, (2.2) – (2.17) 

All numerical simulations are done using parameters from the Table A2 in Appendix A– we will 

just alter the parameter   .  For the parameter values from Table A2, we obtained   
  

       
 

     
.  We will first look at the case when       

  and investigate the behavior of anti-

thyroid antibody concentrations (Ab) by choosing the initial state exactly at the euthyroid state 

except for anti-thyroid antibodies, that is                                  . Note: in 

euthyroid state,       but we chose       in order to use the 4d model. We present 

simulations both through time series plots and phase-space diagrams in 3d space.  For phase-

space diagrams, we mainly use Hoppensteadt’s theorem that the trajectories of the model stay 

near the slow manifold (surface)     for all time     if we take initial states near or on the 

surface. We use           ,           ) and              phase space diagrams to 

illustrate the results.   

We arbitrarily pick the value of              
  and fix it in the 4d system and then 

simulate the model for approximately 2 years.  In all our Figures below, the red dot represents the 

euthyroid steady state, the green dot represents diseased steady state, the black dot represents the 

initial state of the system, and the yellow surface represents slow manifold for    .  Figure 4.1 

illustrates the 4d system time series plot in which we can see that anti-thyroid antibody 

concentration decreases from the initial state (             ) and approaches zero in 

approximately 350 days while other variables remain at the steady state. Figures 4.2, 4.3 and 4.4 

illustrate the 4d system in                      ) and              phase space.  As we 

see in Figure 4.2, 4.3 and 4.4, the 4d system moves from the initial state to the euthyroid state for 

      
  and the parameter values from Table A2.  Note that in Figure 4.3 and 4.4, the dynamics 

of 4d system is shown near the slow manifold.  In addition, Figure 4.3 and 4.4 shows, the red and 
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black dots on the slow manifold, but not the green dot for       
  and the parameter values from 

Table A2.  

Next, we arbitrarily pick the value of             
  and fix it in the 4d system and 

then simulate the model for approximately 2 years. This will help us to demonstrate the euthyroid 

steady state is no longer attracting the trajectories, but the diseased steady state will emerge into 

the rectangular box for that particular     and attract all trajectories with any initial conditions in 

the box or positive orthant.  Figures 4.5, 4.6, 4.7 and 4.8 illustrate the 4d system moves from the 

initial state to the diseased steady state.  Figure 4.5 and 4.6 shows the red and green dots on the 

slow manifold for       
 .  Note in Figures 4.5 and 4.6, the initial state and euthyroid 

state                , is taken to be the same but not in Figures 4.7 and 4.8.   Again, as we noted 

before, we used parameter values from Table A2 to generate all figures 4.5, 4.6, 4.7 and 4.8.  To 

generate Figure 4.8, we used the reduced (3d) model, (2.26) – (2.28) instead of the 4d system, 

(2.2) – (2.17).   

 

Figure 4.1: Note the thyroid functional size (   is in milliliters. The 4d system, (2.2) – (2.17) with 

the initial condition                 for the parameter values from Table A2, predicts that Ab 

concentration asymptotically approaches zero in approximately 350 days while other variables 

remain at steady state.  This means that the anti-thyroid antibodies did not affect the function of 

the HPT axis.  
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Figure 4.2: For              
  and the parameter values from Table A2, the 4d system, (2.2) 

– (2.17) moves from the initial state                                  to euthyroid steady 

state               . Note the thyroid functional size (   is in milliliters. 

 

 

Figure 4.3:  If the initial state                                    is taken on the slow 

manifold, not at euthyroid state, then the 4d system, (2.2) – (2.17) for the parameter values from 

Table A2, predicts that the trajectory converges to euthyroid state. This suggests the euthyroid 

state is asymptotically stable. Since       
 , the diseased steady state is not on the surface. Note 

the thyroid functional size (   is in milliliters. 
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Figure 4.4: We started the 4d system, (2.2) – (2.17) from                =                 
    and the numerical solutions of the system approaches euthyroid state. Since       

 , the 

diseased steady state is located in the negative octant, so we did not plot the green dot 

(representing diseased state).  

 

We will now investigate the dynamics of the 4d system, (2.2) – (2.17) by arbitrarily 

choosing       
                  

 

     
 .  

 

Figure 4.5: For the initial state                , the 4d system (2.2) – (2.17) for the parameter 

values from Table A2 predicts that Ab concentration asymptotically approaches 6800 in 

approximately 2 years while other variables start at euthyroid state.  Note the thyroid functional 

size (   is in milliliters. 
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Figure 4.6: For the initial state                 and              
 , the 4d system (2.2) – 

(2.17) for the parameter values from Table A2 predicts that euthyroid state becomes unstable, and 

the trajectory approaches the diseased state.  

 

 
 

Figure 4.7: If the initial state                                  ) is taken on the level 

curve, not at euthyroid state, then the 4d system, (2.2) – (2.17) for the parameter values from 

Table A2, predicts that the trajectories approaches the diseased state (subclinical hypothyroidism) 

while euthyroid state becomes unstable and shows saddle-type behavior. Note the thyroid 

functional size (   is in milliliters. 
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4.3.2    Numerical Simulation of the Reduced (3d) Model 

Stability of Diseased Steady State 

We now present the numerical simulations to support that the diseased steady state is stable when 

it is in the positive orthant. For this simulation, we use the reduced system, (2.26) – (2.28) with 

parameter values from Table A2 and visualize the trajectories in            phase space.  

 

Figure 4.8: This figure shows the stability of diseased steady state, the initial state was chosen at 

                       . The reduced system, (2.26) – (2.28) approaches the diseased state 

via euthyroid state. Note the saddle-like behavior near the euthyroid state. Here,           
   

 . Note the thyroid functional size (   is in milliliters. 

 

4.4     Bifurcation Analysis 

General Introduction 

Bifurcation analysis is in general used for analyzing the qualitative behavior of steady states, 

periodic orbits or some other invariant objects, such as a homoclinic or hetroclinic orbit, as 

parameters are varied in the system. The usual definition of bifurcation is that a qualitative 
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change occurs in the topological nature of the solution, when a parameter passes through a critical 

value.  That is, the phase portraits or vector field of the dynamical system before and after the 

bifurcation are not topologically equivalent. There are two important classes of bifurcations in 

literature, namely local and global. Local bifurcations focus on changes that take place near a 

steady state or periodic orbit. This is what we will describe here.  In our 4d system, we analyze 

the qualitative behavior of the steady states as    changes in the system – local bifurcation. There 

are several types of local bifurcations that exist in the literature (Strogatz, 1994, Perko, 1991).  

Qualitative behavior of the system is typically visualized via a bifurcation diagram. A bifurcation 

diagram is a plot which gives a steady state solution as a function of a control parameter.  This 

plot consists of branches that are either solid or dotted lines representing the locations of stable or 

unstable steady states of the system.  Importantly, this diagram shows the long-term system 

behavior as a control parameter is varied.  Next, we will discuss the transcritical bifurcation since 

our 4d system undergoes this bifurcation. 

 

Definition: Transcritical Bifurcation 

A transcritical bifurcation is a local bifurcation in which two steady states of a model involves in 

exchange of stabilities between them. 

 

Example 

Consider the 1d system         . This 1d system has two steady states     and    . 

For    , the steady state     is stable and     is unstable. For    , there is only one 

steady state     which is structurally unstable. For    , there are two steady states, but     

is unstable and     is stable (see Figure 4.9). 
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Figure 4.9: A bifurcation diagram shows a transcritical bifurcation for a range of values  . The 

local bifurcation takes place at            . 

 

4.4.1    Bifurcation Analysis of the 4d Model – Varying the Parameter    

Why    is a control parameter? 

The parameter    in the model is chosen to be a control parameter since the stability analysis of 

the 4d system and the biology of the autoimmune thyroiditis suggested this control parameter. 

From the biological point of view, the parameter    is involved in the production rate of anti-

thyroid antibodies and it is one of the suitable candidates to choose for bifurcation analysis.  Also, 

the biology of the autoimmune thyroiditis suggests that parameters           are potential 

candidates for bifurcation analysis. 

Bifurcation Diagrams 

We will now present the bifurcation diagrams of our 4d system which will help us to see the long 

- term system behavior as    varied. Basically, the bifurcation diagrams depict the complete 

picture of all possible states of the system for large range of values for   . For our 4d system, the 

bifurcation diagrams are drawn by plotting the euthyroid steady state and the diseased steady state 
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for range of values for   .  We observed that when we solve for the steady states in the 

introduction of Chapter 4, the euthyroid state is independent of    and the diseased steady state 

dependent of   .  Furthermore, we observed that the stability nature of the steady states changes 

as    varied.  

Figures 4.10, 4.11, 4.12 and 4.13 shows how the steady states change as the parameter    

is varied.  Stable and unstable steady states are drawn as solid and dotted lines respectively.  In 

particular, Figure 4.10 shows how the anti-thyroid antibodies steady state changes as    varies in 

the model from 0 to 7.  Figure 4.11 shows how free T4 steady state changes as    varies in the 

model from 0 to 7.  Figure 4.12 shows how TSH steady state changes as    varies in the model 

from 0 to 7.  Figure 4.13 shows how the functional size of the thyroid gland steady state changes 

as    varies in the model from 0 to 7.  All these figures illustrates that the euthyroid state is stable 

for the range of values of    from 0 up to   
 .  More precisely, when        

        , the 

euthyroid state is stable.  That is, the real parts of the eigenvalues of euthyroid state are negative 

between 0 and up to   
 .  When      

  , the euthyroid state is unstable.  That is, when     is 

bigger than   
 , the real parts of the eigenvalues of euthyroid state are negative except in the 

direction of anti-thyroid antibodies for the parameter values in Table A2.  Note   
  is the 

bifurcation point where the system undergoes an exchange of stability.  In other words, the 

trajectories of the 4d system before and after   
  are different. A further important clinical 

value,   
  , will be defined in this discussion. All pictures are drawn with parameter values from 

Table A2, except for    is varied. 
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Figure 4.10: This bifurcation diagram illustrates how the anti-thyroid antibodies steady state 

concentrations     changes as    varies in the model from 0 to 7. Note that the bifurcation 

occurs at      
        .  

 

 

Figure 4.11: This bifurcation diagram shows how free T4      steady state concentrations 

changes as    varies from 0 to 7.  Observe that the bifurcation occurs at      
  and when    

  
      , we see a patient would have clinical hypothyroidism (see the baseline value of free T4, 

shown as a solid magenta line). 
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Figure 4.12: This bifurcation diagram shows how     steady state concentrations changes as    

varies from 0 to 7. Also, observe that the bifurcation occurs at      
  and when      

  , 

resulting in clinical hypothyroidism. Thus, the model suggests that at   
  , TSH upper reference 

limit is 2.3 mU/L (approximately). The diseased steady state is still inside the box. 

 

 

 

Figure 4.13: This bifurcation diagram shows how the functional size of thyroid gland     changes 

as    varies from 0 to 7. Also, observe that the bifurcation occurs at      
 .  
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The bifurcation diagrams depicted the qualitative behavior of our 4d model as     varied 

in the system. We found that bifurcation occurred at the numerical value of    
        

 

     
 

for the parameter values from Table A2. In addition, we found that when    increases above the 

value 5.2 results in transition to clinical hypothyroidism. Thus, we called this critical value   
   

and it would be where hypothyroidism takes place. In summary, for       
 , the euthyroid state 

is stable and therefore patients with autoimmune thyroiditis do not develop the consequences of 

autoimmune thyroiditis (such as subclinical and clinical hypothyroidism). For       
 , 

bifurcation occurs, meaning, the disease steady state and euthyroid state merge each other, so the 

patients with autoimmune thyroiditis likely to develop the consequences of the disease in the 

future as     changes further. Finally, for       
  , the euthyroid state becomes unstable and 

patients with kinetic parameter in Table A2 with        
  have autoimmune thyroiditis and 

eventually develop hypothyroidism. More precisely, we found that when    is between   
  and 

   
   results in subclinical hypothyroidism and        

   results in clinical hypothyroidism.  Also, 

we observed that the bifurcation diagrams predicted the proper upper limit for TSH (2.3) mU/L, 

which indicates the validation of the 4d system for Table A2 values.  

4.5    Summary  

This chapter mainly focused on the stability and bifurcation analysis of 4d system. We derived 

conditions for the euthyroid steady state to be stable and unstable in 4d space in the presence of 

anti-thyroid chronic immune response. We found that    is a bifurcation parameter. The 4d 

system undergoes a transcritical bifurcation as    changes in the system which results in diseased 

steady state to emerge in a rectangular box.  We have proved that this disease steady state is 

locally asymptotically stable.  Next, in order to find out the nature of the diseased steady state, 

whether subclinical or clinical hypothyroidism, we preformed bifurcation analysis in the 4d 

system.  This analysis showed that if       
 , the patients with autoimmune thyroiditis do not 
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develop any consequences of the disease and if    
         

   the patients with autoimmune 

thyroiditis develop subclinical hypothyroidism.  If        
  , the patients with autoimmune 

thyroiditis and eventually develop clinical hypothyroidism.  This is our main result for this 

chapter.  In addition, through bifurcation analysis, we found that the upper TSH reference limit 

is     mU/L by using the parameter values from Table A2.  Note that for numerical simulations 

and bifurcation analysis, we used the parameter values from Table A2.  This means to say that 

each patient’s    
  and   

   is different because patient’s euthyroid steady state (set point) is 

different. 
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CHAPTER 5 – CLINICAL STAGING AND DISEASE PROGRESSION 
 

The goal of this project is to provide a patient-specific description of the natural history of 

autoimmune thyroiditis through a mathematical model. What does this mean? It means to 

determine the natural course of subclinical or clinical hypothyroidism through a model for each 

patient. By using a staging criterion for autoimmune disease patients, we can describe this natural 

clinical course.  We will first start this chapter with the summary of results of analyzing the 

operation of the HPT axis from the previous chapters.  

 In Chapter 1, we have observed that the hypothalamus-pituitary function is intact and the 

thyroid-pituitary function is interrupted in diseased patients. We have used the dataset to 

show the motivation of this mathematical modeling project and, in addition, established a 

patient-specific clinical staging criterion for diseased patients. The staging criterion has 

three cases, namely euthyroidism   euthyroidism, euthyroidism   subclinical 

hypothyroidism and euthyroidism   subclinical   clinical hypothyroidism. 

 In Chapter 2, we have constructed a higher dimensional non-linear model for patients 

with autoimmune thyroiditis. The model takes the form of a singularly perturbed initial 

value problem. This is the main tool for the analysis of a model, which is elaborated in 

this chapter.   

  In Chapter 3, we looked at the special case of the model, that is, the absence of anti-

thyroid chronic immune response in a singularly perturbed initial value problem– it 

mimics the normal axis operation. 

 In Chapter 4, we have presented the stability analysis of a singularly perturbed initial 

value problem. We found that    is a bifurcation parameter. As this parameter changes up 

to the critical value   
  , the individuals with autoimmune thyroiditis do not develop the 

consequences of autoimmune thyroiditis, but above the critical value,   
  , the individuals 
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with autoimmune thyroiditis develop subclinical hypothyroidism. Furthermore, we found 

another critical value   
  , where patients eventually develop clinical hypothyroidism.  

We will now use    values to relate clinical staging defined in Chapter 1 and along with 

that, the numerical simulations are presented to support our staging both via time series plots and 

phase space. In time series plots, we will show     values since the hypothalamus-pituitary 

function are normal and therefore,     values are more reliable in autoimmune thyroiditis 

patients. But, in phase-space both     and free T4       will be presented unless there is a need 

for other clinical variables    and      The main reason for presenting only     and free 

T4      in phase-space is because these two hormones are measured regularly in the clinical 

setting and for treating patients. Thus, after presenting numerical simulations the dataset will be 

used subsequently for validating the model prediction. 

Case 1 

Suppose       
  , then patients with autoimmune thyroiditis do not develop any clinical 

consequences (subclinical or clinical hypothyroidism) and thus a staging will be, 

Euthyroidism   Euthyroidism 

Case 2 

Suppose   
        

    then patients with autoimmune thyroiditis develop the subclinical 

hypothyroidism. Thus, a staging will be, 

Euthyroidism   Subclinical Hypothyroidism 

Case 3 

Suppose       
    then patients with autoimmune thyroiditis develop subclinical hypothyroidism 

and eventually become clinical hypothyroidism. Thus, a staging will be, 

Euthyroidism   Subclinical  Clinical Hypothyroidism 
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5.1    Numerical Simulations for Clinical Charts 

For numerical simulations, we use a full model with Ode15s solver in Matlab 7.1.1.0 suite.  

Case 1: Let us pick arbitrarily ten different    values, less than   
  and the initial state of the 

system is at the euthyroid state except for anti-thyroid antibodies, that is,                   

               .  

 

Figure 5.1: This figure shows Case 1: euthyroidism   euthyroidism chart. Note: The solid red 

lines illustrate the normal reference range for TSH. The dotted red line chosen for this project as 

an upper TSH reference limit. The green solid line indicates that the 4d system, (2.2) – (2.17) 

approaches the euthyroid (steady) state for ten different    values less than   
 . The initial state of 

the 4d system is                                 .  The parameter values are all from 

Table A2 in Appendix A.   

 

Case 2: Let us arbitrarily pick six different    values                               between   
   

(2.3412) and up to   
        and the initial state of the system is at the euthyroid state except for 

anti-thyroid antibodies, that is,                                . We use parameter values 

from Table A2 to generate the euthyroidism   subclinical hypothyroidism chart (see Figure 5.2). 
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Figure 5.2: This figure shows euthyroidism   subclinical hypothyroidism chart. Note that all 

    solutions go to subclinical diseased steady state. We simulated the 4d system, (2.2) – (2.17) 

with the initial state                 and the parameter values from Table A2 with six different 

   values between    
   =2.3412 and up to   

      .  

   

 

Figure 5.3: 2d view of euthyroidism   subclinical hypothyroidism chart. We simulated the 4d 

system with the initial state                 and the parameter values from Table A2 but 

different    values, between    
   =2.3412 and up to   

      . The curve in this picture is 

parameterized by six different    values, that is,                             . For every 

      
  , we have a diseased steady state (subclinical), that is shown in the picture with a green 

dot. The euthyroid state is shown in the picture with a red dot. 
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Figure 5.4: log      versus freeT4      view of the previous Figure 5.3. 

 

Case3: Let us pick arbitrarily eleven different     (5.5, 6.8, 8.14, 9.4, 10.7, 12.1, 13.4, 14.7, 16, 

17.3, 18.7) values greater than   
      , and the initial state of the system is at the euthyroid 

state except for anti-thyroid antibodies, that is,                                 .  We use 

parameter values from Table A2 to generate the euthyroidism   subclinical   clinical 

hypothyroidism chart (see Figure 5.4). 

 

Figure 5.5: This figure shows the euthyroidism → subclinical → clinical hypothyroidism chart. 

To generate this picture, we picked eleven different    values greater than    
   and then 

simulated the 4d system with initial condition                . The parameter values are all 

from Table A2. 
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Figure 5.6: 2d view of euthyroidism → subclinical → clinical hypothyroidism chart. We 

simulated the 4d system with the initial state                 and the parameter values from 

Table A2 but different    values. The curve in this picture is parameterized by eleven different    

values greater than   
  .  For every       

   , we have a diseased steady state (clinical 

hypothyroidism), that is shown in the picture with a green dot. The euthyroid state is shown in the 

picture with a red dot. Note an individual progress to clinical hypothyroidism via subclinical 

hypothyroidism. 

 

 

Figure 5.7: log      versus freeT4      view of the previous Figure 5.6. 

 

We will now combine euthyroidism → subclinical hypothyroidism and euthyroidism → 

subclinical → clinical hypothyroidism charts and present it as one complete chart. 



110 

 

 

 

 

Figure 5.8: Clinical staging chart. This chart can be used to determine the natural course of 

subclinical or clinical hypothyroidism or euthyroidism by moving the graph up and down 

according to the patient’s set point (see Validation of Model with Data Section). Note we 

simulated all these curves with different    values in the 4d system using an imaginary 

individual’s table parameter values from Appendix A.  

 

 

Figure 5.9: Combing Figures 5.7 and 5.4 yields the above parameterized curve. This 

parameterized curve belongs to an imaginary individual that we picked for this project (see 

Appendix A). Since the model (2.2) – (2.17) is patient-specific, each patient has their own curve 

depending on their parameter values and the normal value of the HPT axis.  The euthyroid state is 

shown in the picture with a red dot and diseased steady states are shown with green dots. 
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5.2    Discussion of using Patient’s Dataset 

We will first discuss how one could determine the euthyroid steady state from patient’s dataset 

and next, we will depict how many data points of a patient are required to describe the natural 

clinical course of subclinical, clinical hypothyroidism or euthyroidism. Euthyroid steady state 

means the set point (normal value) of the HPT axis in the clinical setting. The clinical definition 

of the set point is a value of TSH and free T4, within the normal reference range of TSH       

              and free T4             .  Normally, the set point varies between 

individuals due to inter and intra variations in the adult population. Suppose if a patient has 

several values for TSH and free T4 (of course at different time points) within the reference range, 

then our best guess for the euthyroid steady state (set point) is the first data point.  

Needless to say, with one data point (say just euthyroid state or set point) of TSH and free 

T4, it will be very hard to describe the patient’s clinical course of subclinical, clinical 

hypothyroidism or euthyroidism. With two data points of TSH and free T4 at different time 

points, one could describe the clinical course using the chart but may not be the better description. 

With three or more data points of TSH and free T4 at different time points, one could provide a 

better description of patient’s clinical course of subclinical, clinical hypothyroidism or 

euthyroidism using the chart.  Therefore, we need at least three or more data points in order to use 

the chart effectively and make some conclusion about the eventual value (diseased steady state) 

of TSH. 

In section 5.1, we generated clinical charts using an imaginary individual’s table values 

from Appendix A. Recall that our imaginary individual’s euthyroid steady state (set point) is 

                .  Although the euthyroid steady state varies between individuals, the 

dynamics of the clinical variables (TSH and free T4) do not change (see Figure 5.11 and 5.12) so 

instead of calculating the parameter values for every patient and simulate their own dynamics. 

We will just move the clinical chart up and down according to the euthyroid steady state (first 
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data point) of the patient (see Figure 5.11) in order to describe the patient’s natural history of 

autoimmune thyroiditis. 

5.3    Validation of Model with Dataset 

Let us consider a patient (#99) from group1 (always untreated patients dataset) for model 

validation. We will use euthyroidism   euthyroidism chart for this patient. Patient’s initial 

(euthyroid) state is taken to be the first data point of TSH. That is,         .  

 

Figure 5.10: This figure illustrates patient (#99) natural history of euthyroidism in euthyroidism 

  euthyroidism chart. It seems patient’s     value remains at the euthyroid steady state for 40 

months.  This patient’s euthyroid state for     value is      mU/L   
 

Let us now consider a patient (#103) from group1 (always untreated patients) and a patient (#114) 

from group3 (untreated initially and then received treatment after developed hypothyroidism, see 

Chapter1) for model validation. For patient (#103), we will use euthyroidism   subclinical 

hypothyroidism chart.  For patient (#114), we will use the complete clinical staging chart from 

Figure 5.8.  In practice, one could move the clinical staging chart up and down according to the 

initial (euthyroid) state of the patient, but for numerical simulation one cannot. So, we will choose 

the initial state of both patient (#103 and #114) and compute all the parameters as outlined in 

Appendix A and simulate the 4d system. The initial state for patient (#103 and #114) is taken to 

be the first data point of TSH, free T4, anti-thyroid antibodies and the functional size of the 
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thyroid gland.  The functional size is chosen in the manner of Appendix A.  So, the initial state 

for patient (#103) is                                         .  Similarly the initial state 

for patient (#114) is                                         .  The model parameter 

values are listed in the following Table 5.1 to generate the charts (see Figures 5.11, 5.12).  Also 

Figure 5.13 and 5.14 illustrate the 2d curve of the patient (#103 and #114) respectively.  From 

Figures 5.11, and 5.13, we could see that the patient (#103) developed subclinical 

hypothyroidism.  From Figures 5.12 and 5.14, we could see that the patient (#114) eventually 

developed clinical hypothyroidism via subclinical hypothyroidism.   

Table 5.1: Parameter Estimated Values, and Units 

Name Patient (#103) 

Estimated Value 

Patient (#114) 

Estimated Value 

Unit 

   5000 5000   

     
 

   16.6355 16.6355  

   
 

   100 100   

        
 

   0.099021 0.099021  

   
 

   1 1   

      
 

   1 1   

     
 

   0.035 0.035  

   
 

   0.039 0.074034   

  
 

   0.0083 0.0147   

 
 

  58.516 96.505   

  
 

 

Note: the parameters                 are the same numbers as in Appendix A.  To generate the 

chart, Figure 5.11, we used six different    values                               between   
   

(2.485) and   
       .  Note    

  and   
   values changed a bit for patient (#103).  Similarly to 
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generate the complete clinical chart in Figure 5.12, we used fourteen different    values,  

                                                                . For patient (#114),    
  

       and   
       . 

  

Figure 5.11: This figure illustrates patient (#103) natural course of subclinical hypothyroidism in 

euthyroidism   subclinical hypothyroidism chart. It seems this patient’s TSH value continuously 

increases as time increases. By looking at 3 data points in this chart, we could predict that TSH 

cannot go beyond     mU/L at least for 40 months. Thus, this patient may have chance to become 

subclinical hypothyroidism throughout his life time unless there is some triggering event that 

changes the nature of the immune response and thus   . 

 

  

Figure 5.12: This figure shows the natural history of patient (#114). This patient reaches clinical 

hypothyroidism via subclinical hypothyroidism. Note this patient’s TSH value increases 

continuously but did not exceed   mU/L in 40 months.  
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Figure 5.13: To generate this 2d picture, log      (mU/L) versus free T4      (pg/mL), we 

simulated the 4d system with patient (#103) parameter values from Table 5.1. Here    was      

and the initial (euthyroid) state was                                           . Note: 

the diseased steady state is located within the normal free T4 reference range.  So, the model 

predicts that the patient (#103) may remain in subclinical hypothyroidism unless the immune 

response of this patient changes in the future. 

 

 

 

Figure 5.14: To generate this 2d picture, log      (mU/L) versus free T4     )(pg/mL), we 

simulated the 4d system with patient (#114) parameter values from Table 5.1.  Here    was      

and the initial (euthyroid) state was                                          .  Note: 

the diseased steady state is not located within the normal free T4 reference range. So, the model 

predicts that the patient (#114) will definitely become a clinical hypothyroidism patient in the 

future. 
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5.4    Results and Summary 

In this chapter, we related a patient-specific clinical staging with a model. We mainly presented 

charts, namely, euthyroidism   subclinical hypothyroidism chart and euthyroidism   subclinical 

  clinical hypothyroidism chart and a combined chart involving only TSH and time (months), 

because in autoimmune thyroiditis, the hypothalamus-pituitary function is intact.  These charts 

can be used in thyroid clinics to predict the natural clinical course of subclinical or clinical 

hypothyroidism in autoimmune patients.  For that, we need at least three data points of TSH with 

respect to three different time points.  This means, in simple language, that a doctor, using the 

TSH test, may be able to distinguish between those who will not develop thyroid problems and 

those who may become thyroid patients.  Furthermore, the doctors will be able to treat sooner 

those destined for autoimmune thyroiditis related diseases. In addition, we presented the 

parameterized curve involving free T4 and TSH phase space. 

From the mathematical viewpoint, the goal of this project is to identify a curve based on 

TSH that an autoimmune patient follows as time changes. This curve predicts whether a patient 

progress to subclinical or clinical hypothyroidism diseased state.  If this curve is known, then 

patient diseased dynamics is known to physicians and thereby plans for treatment (free T4 

replacement) can be developed based on TSH test results. For a physician’s convenience, we 

simulated a lot of curves for different    values in the clinical staging chart (see Figure 5.8).  This 

may help physicians to visualize patient’s TSH curve over time. This charting method for test 

results of TSH could be used to predict the ultimate level of thyroid destruction, and thyroid 

hormone production. 

Future Work 

 Examine the relationship between the high levels of TSH in autoimmune patients and 

follicular thyroid cancer initiation.   

 Relating genetics of this disease to model results.   
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Appendix A 

Parameter used for Simulations. 

To illustrate the general results in this dissertation, we would like parameter values consistent 

with our data and the literature.  We remark in chapter 2 that the system (2.2) – (2.17) has eleven 

parameters, some of them are available from the literature, some are calculated, and some are 

determined experimentally using equilibrium value of an adult individual to match the expected 

behavior of a normal thyroid.  We will now reveal how the example parameter values are 

estimated. Suppose a normal adult has an equilibrium value of                 

              , then the unknown parameter values of this adult can be computed around the 

equilibrium value. 

Consider the equation (2.2), 

    

  
    

      

      
          

The first term accounts for the secretion rate of     and the second term accounts for the 

excretion rate of    . It has three parameters namely               .    

The parameter    is available from the medical literature (Faglia, 1987). It is greater 

than              . For this study, we will choose               and fix this number 

for all adults in the population.  The meaning of    is the largest possible secretion rate of thyroid 

stimulating hormone       from the pituitary in the absence of free thyroxine      . 

Biologically, this condition means clinical hypothyroidism (myxoedema).  

The parameter    is calculated using     chemical half-life (about 1 hour) in equation 

(2.2). The biological meaning of    is the rate at which     disappears from the blood.  

Neglecting the secretion rate in (2.2), gives  
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The solution of this rate equation is, 

                   

where        is the initial value of     in the blood.  The half-life is the time that concentration 

of a quantity takes to fall to 50% of the initial value in the blood.  Using     half-life, we obtain, 

 

 
                           

That is, 

   
     

      
             

The parameter value of    can be computed experimentally by using the equilibrium 

value of    . Thus, set 

    

  
    

and solve for    which yields    
         

        
.  Utilizing the equilibrium value and the parameter 

values, that is,                ,            ,                  and    

            . We determined the value of   , that is,             . 

Consider the equation (2.10), 

    

  
 

        

        
        

The first term accounts for the secretion rate of free    and the second one for the excretion rate 

of free   . It has three parameters namely               . 

The parameter    is calculated similar to    by using the chemical half-life of free   . 

The half-life of free    is about 7 days.  Thus,    is found to be             .  

The parameter    is calculated using both the equilibrium and limiting argument. First, 

set 
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This gives 

    
        

             
 

     

    
   
       

 

Since     quickly approaches the equilibrium value in the blood, so we will take a limit of the 

above equation, that is, 

   
     

       
     

     

    
   
   

    
 

     

   
                              

From this limiting equation, we can solve for   ,  

 
     

   
    

   
     

 
 

We can further use           and                 to obtain         
  

        
. 

The parameter    is computed experimentally similar to   . By setting 

    

  
                    

               

      
 

Note that: if          , then     . To avoid this situation, I picked     a little bit greater 

than 
     

 
           

  

        
 . And then use             ,           ,           

and                . This gives a value of               . 

Consider the equation (2.15), 

  

  
    

   

 
           

The first term accounts for the growth rate of the active thyroid gland and the second account for 

the destruction rate of the functional thyroid gland. The equation has again three parameters 

namely        and  .  Now, setting  
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and using          ,             ,           . The value of   
   

 
 is calculated to 

be           . Note that the euthyroid state (steady state) in Chapter 3 or Chapter 4 is 

independent of the parameters           . So we could pick any value for    and   . The value 

of     and    does not change the stability of the euthyroid state. Thus, we will pick      

and     . 

Consider the equation (2.17), 

   

  
               

The first term accounts for the production rate of anti-thyroid antibodies due to the destruction of 

active thyroid gland and second term accounts for aging rate of anti-thyroid antibodies.  This 

equation has two parameters namely    and   .   

The parameter    is an important parameter in the model. We used the value of this 

parameter to describe the natural clinical course of subclinical or clinical hypothyroidism in adult 

population. We studied this parameter in detail in Chapter 4.  Thus, the reader should refer to 

Chapter 4. 

The parameter    is calculated using the half-life (about 20 days) of anti-thyroid 

antibodies in equation (2.17).  The biological meaning of    is the rate at which anti-thyroid 

antibodies disappears from the blood.  This parameter can be calculated just like    and   .  

Thus,    
      

  
           . 

Table A1 list the imaginary individual’s variable values, range, units and sources. 

Similarly Table A2 lists the parameter values for that particular imaginary individual. 

Table A1: Variable Normal Values, Ranges, Units and Sources 

Name Normal 

Value 

Normal Range Source Unit 

    1     –         Literature(Baloch etal. 2003)
      

    13       Literature(Baloch etal. 2003)
       

  0.015             Literature(Carle etal. 2009)   
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Table A2: Parameter Estimated Values, Ranges, Units, and Sources 

Name Estimated 

Value 

Normal 

Range 

Source Unit 

              Literature (Faglia, 1987)   

     
 

               Literature (Greenspan and 

Gardner,  2001) 

 

   
 

          Simulation   

        
 

                Literature(Greenspan and 

Gardner,  2001) 

 

   
 

         Simulation   

      
 

         Simulation   

     
 

             Literature  

   
 

              Calculation/Simulation   

  
 

              Simulation   

 
 

           Calculation   

  
 

 

 

 

 

 

 

 

 

 

 

   0        Dataset      
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Appendix B 

Solving Cubic Equation 

In this Appendix, we will outline a method to solve a cubic equation (see Selby, 1969). Suppose a 

cubic equation is given in the form              , then we will solve for   by 

substituting 

    
 

 
      

into the cubic equation and reduce to the form, 

          

where,  

    
  

 
 

and 

    
  

 
 

   

  
 

For solution let   and   

   
  

 
  

  

 
 

  

  
 

 
 

 

and 

   
  

 
  

  

 
 

  

  
 

 
 

 

then the values of   will be given by, 
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     ,  
 

 
      

   

 
      ,  

 

 
      

   

 
        

 

Now, we can of course convert from the   solutions to the   solutions using the equation (c1). 

If       are real, then: 

If 
  

 
 

  

  
  , there will be one real root and two conjugate imaginary roots 

If 
  

 
 

  

  
  , there will be three real roots of which at least two are equal 

If 
  

 
 

  

  
  , there will be three real and unequal roots 

 

Descartes’ Rule of Signs (Murray, 2002) 

Consider the polynomial in the general form, 

       
                

where the coefficients   ,            are all real and     .  Let M be the number of sign 

changes in the sequence of coefficients               , ignoring any which are zero. Descartes’ 

Rule of Signs says that there are at most M roots of     , which are real and positive, and further, 

that there are M, M-2 or M-4,… real positive roots.  By setting      and again applying the 

rule, information is obtained about the possible real negative roots.  Together these often give 

invaluable information on the sign of all roots, which from a stability point of view is usually all 

we need. 

Example: While solving for the euthyroid steady state, we encountered the cubic polynomial of 

the form, 
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Note: M=1, because the equation      has only one sign change in the sequence of coefficients 

        
  

    
     

  
  

   

    
   

    
   

 

    
    

 .  Therefore, by Descartes’ rule there is exactly one 

real positive root.   If we now set        , the equation      becomes, 

         
  

    
       

  
  

   

    
   

    
   

 

    
    

        

That is, 

        
  

    
       

  
  

   

    
   

    
   

 

    
    

        

There are two sign changes in the sequence of coefficients and so there are either two or zero real 

negative roots.  
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Appendix C 

Data Sets 

File Name File Description 

NewData.xslx 119 Hashimoto’s thyroiditis patients raw dataset 

NOPT.mat 

This file contains patient’s identification number (Id), time (Time), 

thyroid stimulating hormone (TSH), free thyroxine (FT4), and anti-

thyroid antibodies (TPOAb and TGAb). There are 119 Hashimoto’s 

thyroiditis patients in this dataset. It is created from NewData.xslx file. 

group1scaled.mat 

Always untreated patient’s dataset is created from NOPT.mat file. 

This dataset contains Id, Time, TSH, FT4, TPOAb and TGAb.  Note: 

group1 patient’s TSH and FT4 values are all scaled to normal 

reference range of TSH:               and FT4:             . 

group2scaled.mat 

Treated patients from time zero is created from NOPT.mat file.  This 

dataset contains Id, Time, TSH, FT4, TPOAb and TGAb.  Note: 

group2 patient’s TSH and FT4 values are all scaled to normal 

reference range of TSH:               and FT4:             . 

group3scaled.mat 

Untreated patients initially and then received treatment with 

Levothyroxine after developed hypothyroidism.  This dataset is 

created from NOPT.mat file.  It contains Id, Time, TSH, FT4, TPOAb 

and TGAb.  Note: group3 patient’s TSH and FT4 values are all scaled 

to normal reference range of TSH:               and FT4:    
         . 

group3scaleduntreated.mat Group3 patients’ dataset before treatment.  It is created from 

group3scaled.mat file 

patient99.mat 
Patient #99 data is extracted from group1scaled.mat file (always 

untreated patients dataset).  
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patient103.mat 
Patient #103 data is extracted from group1scaled.mat file (always 

untreated patients dataset). 

patient114.mat Patient #103 data is extracted from group3scaleduntreated.mat file. 

 

Matlab Files 

File Name File Description 

scatterplots.m This Matlab file contains codes for all scatter plots in Chapter 1. 

normal_operation.m This Matlab file contains codes for simulating the reduced 2d model in 

Chapter 3. 

norm_operation.m This Matlab file contains codes for simulating 3d model when Ab set to zero 

in Chapter 3. 

Disr_feed.m Using this Matlab file, one could generate all figures in Chapter 4. Note that 

     and    value changes for different arguments. 

bifurcation.m Using this file, one could generate all bifurcation diagrams in Chapter 4. 

euthyroid.m Using this file, one could generate euthyroidism   euthyroidism chart in 

Chapter 5. 

subclinicalhypo.m Using this file, one could generate euthyroidism   subclinical 

hypothyroidism chart and the parameterized curve (by   ) in Chapter 5. 

clinicalhypo.m Using this file, one could generate euthyroidism   subclinical   clinical 

hypothyroidism chart and the parameterized curve (by   ) in Chapter 5. 

completechart.m Using this file, one could generate the complete euthyroidism   subclinical 

  clinical hypothyroidism chart and the parameterized curve (by   ) in 

Chapter 5. 
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patient103.m Using this file, one could generate patient #103 clinical chart and the curve in 

TSH- FT4 phase plane.  

patient114.m Using this file, one could generate patient #114 clinical chart and the curve in 

TSH- FT4 phase plane. 

 

All files are available in the following Url: 

http://www.mscs.mu.edu/~stevem/bala_files.html 
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