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ABSTRACT 
DETECTION AND FORECASTING OF SLUDGE BULKING  

EVENTS USING DATA MINING AND MACHINE  
LEARNING APPROACH 

 
 

Yuanhao Zhao, B.E. 
 

Marquette University, 2012  
 
 

Sludge bulking is the most notable cause of activated sludge plant failure (i.e. 
exceeding discharge permit quality limits) worldwide.  Numerous mathematical methods 
have been applied to detect and provide warning for the prevention of sludge bulking.  
However, these models often fail to reliably forecast sludge bulking events because they 
focus on the point-by-point “curve-fitting” strategy, while the number of bulking event 
data points is relatively small in comparison with the large amount of data in the time 
series.  Therefore, three machine learning approaches which focus on detecting the 
temporal pattern data before the sludge bulking events are considered in this study. 
 
      The main objective of this research is to apply machine learning and statistical 
methods to detect the hidden temporal patterns in the sludge volume index (SVI) data and 
related water-quality parameters occurring before high SVI values (sludge bulking) occur, 
and then the hidden temporal patterns can be used to forecast high SVI values in the 
future.  Three methods are applied in this research, the improved Time Series Data 
Mining (TSDM) method, the Hidden Markov Models (HMMs) method, and the 
combined method of Hidden Markov Models and multinomial logistic regression (MLR).  
 

The results and analysis show that the improved TSDM method and the HMMs 
method are capable to detect and predict sludge bulking events.  The improved TSDM 
method can have a sludge bulking event prediction accuracy between 60% and 100%.  
The HMMs method could provide warning information to the WWTP operators, even if 
the HMMs method only detects the first state of the pattern leading to sludge bulking.  
Once the first pattern state was detected, there was high probability (>80% in all cases, 
mostly > 90%) that sludge bulking would occur.  However, both of these methods have 
limitations because they are new methods applied to the sludge bulking problem.  For the 
combined method, although the results are not useful for the detection of sludge bulking, 
some wastewater quality parameters are found to have significant impact on the sludge 
bulking, i.e., sludge retention time (SRT) and effluent pH for all three batteries.
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CHAPTER 1 INDTRODUCTION  

1.1.  Sludge Bulking and Sludge Volume Index (SVI) 

 
The activated sludge process is the most commonly used process in the treatment 

of municipal and industrial wastewater.  In the process, air (or pure oxygen) is passed 

through a mixture of sewage and recycled sludge (known as activated sludge) to allow 

micro-organisms to break down the organic components of the sewage in an aeration tank. 

The effluent from the aeration tank is continually drawn off as new sewage enters the 

tank.  This effluent is known as mixed liquor because it is a mixture of wastewater and 

activated sludge that has grown in the aeration tank during the consumption of organic 

waste.  The activated sludge in the mixed liquor must then be settled in a sedimentation 

tanks so that the supernatant clear water can be separated from the sludge to pass on to 

further stages of treatment.  The general activated sludge process in a wastewater 

treatment plant is shown in Figure 1.1. 

 
Figure 1.1: General activated sludge process  
(after Encyclopadia Britannica, Inc., 2012.) 
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Sludge bulking (Sezgin et al., 1978) occurs when the sludge fails to separate out 

in the sedimentation tanks (secondary clarifier in Fig. 1.1), i.e. the sludge has poor 

settling characteristics.  Bulking is the term used to describe activated sludge that settles 

slowly and compacts poorly.  The sludge bulking problem was discovered more than 

seventy years ago, and it is the most notable cause of activated sludge plant failure (i.e. 

exceeding discharge permit quality limits) worldwide (Madoni et al., 2000).  Not only 

does the sludge bulking incur heavy penalties due to noncompliance with discharge 

permits, but it also results in severe, poor quality of discharged treated wastewater 

effluent, as well as the expensive cost of methods to remedy the bulking problem, e.g., 

addition of chemicals like inorganic coagulants and flocculants such as ferric chloride 

and alum, and installing additional aeration capacity.  Meanwhile, it also compacts poorly; 

after thickening, a unit weight of bulking sludge occupies a larger volume than an 

equivalent weight of normal sludge (Pipes, 1979). 

There are two types of bulking problem. One is nonfilamentous bulking which is 

caused by excess production of exopolysaccharides by bacteria.  However, this type of 

bulking is rare and is corrected by chlorination (Bitton, 2005).  The other one is 

filamentous bulking which is the most common form of sludge bulking.  The main cause 

of sludge bulking is the growth of filamentous bacteria.  Activated sludge flocs are made 

up of biological and nonbiological components.  The biological component consists of a 

wide variety of bacteria, fungi, and some metazoans.  The nonbiological component is 

made up of inorganic and organic particulates (Jenkins et al., 2004).  Filamentous 

microorganisms grow in long strands that have much greater volume and surface area 

than conventional floc and are very slow to settle.  As filamentous bacteria grow in the 
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sludge, the sludge settles less and less because the filamentous bacteria do not compress 

well.  

The Sludge Volume Index (SVI) (Forster, 1971) is an empirical measurement 

used to characterize the sludge bulking problem.  If sludge bulking occurs, the 

wastewater treatment process can generate a high SVI value and very turbid supernatant 

(i.e. effluent from the sedimentation tank with high suspended solids). However, the 

definition of “High SVI” is different for different wastewater treatment plants (WWTPs) 

and different research works. Some WWTPs claim that sludge bulking occurs when SVI 

is larger than 100 mL/g (Soyupak, 1989). Some different values for SVI are 150, 180, 

even 200 mL/g (Rensink, 1974).  In this thesis, the SVI value representing sludge bulking 

is set to 120 mL/g (lower value) and 150 mL/g (higher value) depending on different 

situations and analysis methods applied. 

1.2. Objectives 

Sludge bulking is an unusually complex process caused by a variety of variables, 

including wastewater characteristics, design limitations, and operational issues.  There is 

no scientifically robust evidence to reveal the detailed causes of sludge bulking problems, 

or a reliable method to forecast the occurrence of sludge bulking.  

Numerous methods have been applied to detect and prevent sludge bulking.  The 

most widely and reliable used method to detect filamentous bacteria which leads to 

sludge bulking is the Microscopic Examination Methods (Jenkins et al., 2004), which use 

a microscope, to observe the quantity and categories of the filamentous organisms. 

However, this method is costly and it cannot prevent sludge bulking effectively due to the 

long time needed for the identification process for the different kinds of filamentous 
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bacteria.   Some researchers have recommended some operational regulations for the 

WWTPs, i.e. restrain the organic loading and maintain the dissolved oxygen 

concentration, to try to reduce the likelihood of sludge bulking.  Although such 

recommendations could be useful for the operation of WWTPs, they cannot detect or 

predict the occurrence of sludge bulking problems. 

Over the years, researchers have applied numerous mathematical modeling 

approaches, such as various biological models, time series analysis, and artificial neural 

networks (Capodaglio et al., 1991), trying to analyze and model the SVI data to detect 

sludge bulking problems.  However, these models often fail to reliably forecast sludge 

bulking events.  The reason for the poor forecasting performance of these methods is the 

central focus of these methods is always on the general statistical characteristics of the 

entire data set, e.g., the point-by-point “curve-fitting” strategy,   

The main objective of this thesis is to apply machine learning and statistical 

methods to detect the hidden temporal patterns in the SVI data and related water-quality 

parameters before high SVI values (sludge bulking) occur, and then use the hidden 

temporal patterns to forecast high SVI values in the future.   

Three machine learning methods are applied in this thesis, the improved Time 

Series Data Mining (TSDM) method, the Hidden Markov Models (HMMs) method, and 

the combined method of Hidden Markov Models and Multinomial Logistic Regression 

Model.  For the TSDM method, an 8 year ammonia time series data is tested first, then 

the SVI data are tested to detect the temporal patterns and sludge bulking events.  For 

HMMs method, only the SVI data are tested to detect the possibility of temporal pattern 

states and the event state for each SVI point.  For the combined method, a multinomial 
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logistic regression model is applied to model the pattern states and event state from the 

HMM method with the SVI and other physical and chemical variables data.  

The significance of this research is all three methods focus on the detection of 

temporal patterns before the sludge bulking event instead of on the point-to-point time 

series prediction.  Once a predictive pattern is detected, no matter of the depth of our 

understanding and the validity of the definition of sludge bulking, future events could be 

predicted faster than by the previous methods.  Also, in the analyses of the results of the 

combined method, some variables in the wastewater treatment process are revealed to 

have a significant correlation with sludge bulking problems. 

1.3. Data Collection (Period I-Ammonia Test, Period II-SVI Test) 

All data were collected from the North Side Water Reclamation Plant (NSWRP) 

of the Metropolitan Water Reclamation District of Greater Chicago (MWRDGC).  There 

are four treatment batteries at the NSWRP, batteries A, B, C, and D.  Wastewater 

treatment plant data were collected daily from influent and effluent for each battery.  

1.3.1. Period I – Ammonia Test 

Prior to October 2010, the MWRDGC provided the outflow (effluent) data of the 

NSWRP from 2001 to 2008, which includes flow, temperature, Biochemical Oxygen 

Demand (BOD), Dissolved Oxygen (DO), and ammonia concentrations (NH3).  During 

this time, the ammonia concentration was made the object of testing and research. 

According to the permit limit for the effluent of the NSWRP, the ammonia concentration 

should not be higher than 2.5 mg/L.  Similar to the definition of the high SVI value for 

the sludge bulking problem, the event value (high ammonia concentration value) was set 
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to 2 mg/L in the analysis here.  

1.3.2. Period II – Sludge Volume Index (SVI) Test 

In October 2010, more detailed data on the effluent from the NSWRP, including 

SVI values, were obtained.  The detailed data included values for the 4 different 

treatment batteries (A, B, C, and D) from 2002 to 2009. The different SVI values of those 

4 treatment batteries then were used as the detection data set.  Also, in order to discover 

and detect the relationships and hidden patterns between other variables and the SVI data, 

some variables were selected for analysis as listed in Table 1. 

Table 1.1: Variables selected from NSWRP battery data for evaluation of the 
relation to sludge bulking (i.e. high SVI values) 

Abbreviation Description 

DO Dissolved Oxygen 

Temperature Water Temperature  

Flow Wastewater Influent Flow Rate  

F/M Food to Microorganisms Ratio 

RSSS Returned Sludge Suspended Solids 

MLSS Mixed Liquor Suspended Solids 

MLVSS Mixed Liquor Volatile Suspended Solids 

NH3 Ammonia  

BOD Biochemical Oxygen Demand 

COD Chemical Oxygen Demand 

pH pH value for effluent 

SRT Sludge Retention Time 

1.4. Scope of Work 

Three methods are applied in this thesis, the improved Time Series Data Mining 
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(TSDM) method, the improved Hidden Markov Models (HMMs) method, and the 

combined method of Hidden Markov Models and Multinomial Logistic Regression 

Model.  For the TSDM method, the ammonia data and the SVI data were studied to 

detect the hidden temporal patterns. The HMMs method was applied to the SVI data 

alone. The combined method used the SVI data and the data on other water quality  and 

WWTP operation variables.  

1.4.1. Improved Time Series Data Mining (TSDM) Method 

The improved Time Series Data Mining (TSDM) method was originally 

introduced by Mr. Hai Huang and Dr. Xin Feng at Marquette University (Feng and 

Huang, 2005).  The TSDM method focuses on predicting events by looking for the 

temporal patterns before the events happen in the time series.  The core of the TSDM 

method is identification of data clusters and optimization of the temporal patterns.  The 

method uses two-step optimization algorithms to find the temporal pattern clusters.  Once 

the temporal pattern clusters are found, the training step is complete.  Then the computer 

program will embed the test data into the phase space.  Once the data points in the 

reconstructed phase space fall into the clusters which contain the temporal patterns, the 

computer program will consider those data points as the patterns that can be used to 

forecast events.  

1.4.2. Improved Hidden Markov Models Method (HMMs) 

Hidden Markov Models (Rabiner, 1989) are statistical Markov models in which 

the system being modeled is assumed to be a Markov process with unobserved (hidden) 
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states.  HMMs are especially known for their application in temporal pattern recognition. 

The improved method was generated by Dr. Bansal and Mr. Wei at Marquette University 

and uses a Mixture of Gaussian function and an Expectation-Maximization (EM) 

algorithm to normalize the training data to obtain the threshold and transition 

probabilities for normal state (normal data) and abnormal states (pattern and event data), 

then the probabilities of each state are calculated by a Mixture-Gaussian probability 

model.  Once the threshold and the state probabilities for the training data are calculated 

by the HMM program, the program uses the Viterbi Algorithm to predict the probabilities 

of the hidden states for the test data. 

1.4.3. The Combined Method of Hidden Markov Models and Multinomial Logistic   
Regression Model (MLRM) 

 

A multinomial logistic regression (Combs-Orme, 2009) model is a regression 

model, which generalizes logistic regression by allowing more than two discrete 

outcomes.  It is a model used to predict the probabilities of the different possible 

outcomes of a categorically distributed dependent variable, given a set of independent 

variables. The combined method is an attempt to apply a multinomial logistic regression 

model to use other wastewater parameters to predict the probability of the states of the 

SVI data in the HMMs method.  In the training part, the SVI states data in the HMM 

method and the selected wastewater parameters are used to build the multinomial logistic 

regression model.  In the testing part, the multinomial logistic regression model is used to 

perform the SVI state forecasting.  
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CHAPTER 2 LETERATURE REVIEW ON SLUDGE BULKING STUDY 
 

2.1. The Problem of Sludge Bulking 

 
The sludge bulking problem has been noticed since the application of the 

activated sludge process in wastewater treatment in the 1920’s.  Heukelekian (1941) 

proposed the definition of “sludge bulking,” which is a “disease” of the sludge developed 

in the course of purification of sewage under unfavorable environmental conditions.  

Heukelekian (1941) also concluded some factors which could cause sludge bulking 

problems, including inadequate supply of oxygen, organisms involved in the activated 

sludge, and high concentration of food material.   

2.2. Causes of Sludge Bulking 

 
A large number of studies have been done on the relationship between sludge 

bulking and other variables in the activated sludge process.  Filamentous organisms have 

been known to cause sludge bulking in the activated sludge process, but there are many 

different kinds of organisms and each is sensitive to different environmental conditions 

(Jenkins et al., 2004).  Oxygen deficiency has been proposed as primarily responsible for 

sludge bulking (Bhatla, 1967).  The influence of pH and organic loading on filamentous 

bulking (sludge bulking) was investigated in 1970’s (Yasuda, 1976), and it had been 

found that a pH rage of 6-9 stimulates the growth of filamentous organism and cause the 

sludge bulking.  Furthermore, Kappeler and Gujer (1994) suggested that operating 

conditions and reactor design should be optimized in order to obtain better performance 

to avoid the possibility of sludge bulking.  Some key wastewater and process parameters 

that can be monitored have been considered to be related to sludge bulking, including 
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flow rate, pH, temperature, nutrient content, dissolved oxygen (DO), food to 

microorganism (F/M) ratio, and soluble biochemical oxygen demand (BOD) (Metcalf & 

Eddy, 2003).  Although the sludge bulking problem has been studied and investigated for 

many years, there is no robust scientific evidence and theory to explain the process, 

principles, and causes of sludge bulking. 

2.3. Non-mathematical Approaches 

 
Due to the hazards of sludge bulking to the operations of wastewater treatment 

plants, the methods of detection and prevention of sludge bulking are important for 

WWTPs.  Rensink (1974) recommended that WWTPs could restrain the organic loading 

(≤ 300 g BOD5/day/kg MLSS) to avoid high SVI values which are the sign of possible 

sludge bulking.  As previously mentioned, low DO concentrations could cause sludge 

bulking more easily.  It has been established in European WWTPs operation that the 

aeration tanks should be designed for and operated with a minimum DO concentration of 

2 mg/L (Chudoba, 1985).  The microscopic examination methods (Jenkins et al., 2004) 

are the most widely used techniques for identification of filamentous bulking organisms, 

including the Total Extended Filament Length (TEFL) Measurement Method, the 

Simplified Filament Counting Technique, the Nocardioform Organism Filament 

Counting Technique, etc.  Microscopic examination methods require  a microscope to 

observe the quantity and categories of the filamentous organisms that could lead to 

sludge bulking problems.  Due to the large amount of different species of filamentous 

organisms (nearly thousands), such methods cannot exactly and immediately detect the 

filamentous organisms.  Meanwhile, most of the filamentous organisms are still very 

poorly characterized, mainly due to the problems of cultivation and maintenance of 
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cultures (Martins et al., 2004).  Plus, the microscopic examination methods need to be 

done day by day which is costly and time-consuming for the wastewater treatment plant 

operators. 

2.4. Mathematical Approaches 

 
Scientists, engineers, and researchers have tried to apply numerous mathematical 

methods and computer tools to help improve wastewater treatment operations to prevent 

sludge bulking problems.  A prototype of computer-based design was developed by Kao 

et al (1983) to facilitate wastewater treatment plant operations.  But the design obtained 

from the method of Kao et al. (1983) needs to be more robust and complete.  The 

Activated Sludge Model No. 1 (ASM1) (Henze et al., 1987), is a major reference for 

design and operation of wastewater treatment plants.  ASM1 was improved as the 

Activated Sludge Model No. 2 (ASM2) in 1995 (Henze et al., 1995), and the Activated 

Sludge Model No. 3 (ASM3) in 1999 (Gujer et al., 1999).  All three activated sludge 

models were more focused on the biochemical parameters rather than the sludge related 

variables.  Besides, the ASMs do not cover all aspects of activated sludge systems, 

particularly impacts of different operational scenarios on the activated sludge microbial 

community, activated sludge settling problem (sludge bulking), etc. (Sin et al., 2006) 

 Some systems were proposed to help wastewater treatment plant operators to 

diagnose sludge bulking.  Hiraoka et al. (1988) developed a computer-based filamentous 

microorganisms identification support system.  It is an expert system, which was assumed 

to be applied by a field operator or expert who already has expert knowledge on 

filamentous organisms.  If people who do not have expert knowledge on filamentous 

organisms use this support system, it can only provide 50% chance of getting the correct 
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answer.  Meanwhile, it is still unclear how many kinds of filamentous organisms could 

cause sludge bulking, and only twenty-four types of filamentous organisms were 

considered by Hiraoka et al. (1988).   

Martinez et al. (2006) developed a Decision Support System (DSS) that used 

chemical oxygen demand (COD) and phosphorus (P) measurements to develop control 

strategies for sludge bulking.  It only focused on the non-filamentous bulking which is 

caused by phosphorus deficiency (NFBPD), so it cannot be applied to filamentous 

bulking (sludge bulking).  Figure 2.1 demonstrates the control strategy.  

 
Figure 2.1: Flow diagram followed by the dynamic DSS to  

design the control strategy for NFBPD 
(after Martinez et al., 2006) 

  
In the case analyzed by Martinez et al. (2006), the DSS provided advice for 

solution of non-filamentous bulking by adding P chemicals to the treatment process.  
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However, after three days of continuous sludge bulking problems, the DSS made a 

conclusion that it faced an unidentified problem, which showed the DSS has a limitation 

when applied to actual operation.  

Chan and Koe (1991) developed a prototype expert system for diagnosing the 

sludge bulking problem, but their paper focused more on the expert system architecture 

than the sludge bulking problem. Besides, this expert system proposed by Chan and Koe 

(1991) contains 80 diagnosis rules.  

Chen and Beck (1993) described the development of a multi-species model of the 

activated sludge process, its application to the assessment of various operational 

strategies for the control of bulking, and its simplification for incorporation into an on-

line estimation scheme using a Kalman filter.  This on-line estimation scheme would be 

the first step in the development of an expert system. 

Ng et al. (2000) proposed the development of an expert system for sludge bulking 

control.  They generated a non-linear regression model, which used COD, MLVSS, pH, 

and the F/M ratio as the main factors.  A 15-day prediction example of the SVI data is 

shown in Figure 2.2 with Pearson’s correlation coefficient (R2) equal to 0.96.  However, 

the average error of the example was 31 mL/g comprising 15% of the average SVI value 

of 208 mL/g.  From the figure showing prediction results, it can be seen that the results 

failed to reflect the sudden arise of SVI (sludge bulking) in the first 4 days.  Also, they 

noted that unfortunately, for bulking control, the conventional approach to knowledge-

based expert system design is not easy. 
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Figure 2.2: Prediction result of the expert system of Ng et al. (2000) over 15 days 

 
Bayo et al. (2006) developed logistic regression models for the occurrence of 

bulking (defined by an SVI > 150 mL/g) and identified two statistically significant 

variables that appeared to be important to the occurrence of a higher SVI: season (a 

surrogate for temperature) and pH (under 7.5).  In the logistic regression, all the 

considered independent variables (pH, conductivity, temperature, season, settleable solids, 

total solids, COD, and BOD) were subdivided into groups (ranges).   

Belanche et al. (2000) developed a soft-computing time-delay method to predict 

sludge bulking, which applied heterogeneous neural networks (HNN), classical neural 

networks, probabilistic networks (PNN), and the k-nearest neighbors (KNN) algorithm.  

They found that a two-day delay was better than a one-day delay. The method had the 

classification ability of 70% - 73% and a prediction ability of 73%.  They made the 

conclusion that the poor performance of the method can be attributed almost entirely to 

the chaotic data.  

Capodaglio et al. (1991) applied autoregressive, moving average (ARMA) models 

to the SVI data, autoregressive transfer function (ARTF) models to relate SVI as a 
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function of the F/M ratio, and artificial neural network (ANN) models to relate SVI to 

time series of a number of parameters—BOD/N ratio, N/P ratio, mixed liquor 

temperature, mixed liquor DO, and F/M ratio.  From the 20-day prediction results of the 

paper shown in Figure 2.3, it can be seen that the results only showed the ability of 

following the trend of the SVI data line instead of sludge bulking prediction ability.  

From Figure 2.3, for the sludge bulking event, which is defined as SVI > 150 mL/g, there 

were 10 events of sludge bulking: 2 events were predicted by ARTF, 2 events were 

predicted by ARMA, and 4 events were predicted by ANN.  The best prediction ability 

model was obtained by ANN at only 40%. 

 
Figure 2.3: Observed and predicted SVI values during a 20-day test period  

(after Capodaglio et al., 1991) 

From this review of previous research, non-mathematical methods provide the 

strategies to prevent sludge bulking and methods to diagnose different kinds of 

filamentous bulking bacteria.  But non-mathematical methods cannot detect and prevent 

the occurrence of sludge bulking.  The foregoing mathematical approaches tried to focus 

on the prediction of the sludge bulking problem.  However, these approaches are based 
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on point-by-point prediction.  Although they demonstrate the ability to follow the trend of 

the SVI data, the forecasting ability of sludge bulking events of these approaches is poor.  

Further, the expert system approach needs expert knowledge of the sludge bulking 

problem, and it is restricted to the actual application to a specific wastewater treatment 

plant.  In this thesis, three machine learning approaches are applied to detect and predict 

sludge bulking problems. These machine learning approaches are ‘Black Box Methods,’ 

which only consider the input and output.  So they do not require expert knowledge of the 

sludge bulking problem.  Furthermore, these machine learning approaches focus on the 

detection of the patterns before the sludge bulking events, and they can save time and 

cost for the WWTP operation. 
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CHAPTER 3 MACHINE-LEARNING APPROACHES APPLIED IN THESIS 
 

3.1. Machine-Learning Approach 

 
The machine learning approach (Bishop, 2006), a branch of artificial intelligence, 

is a scientific discipline concerned with the design and development of algorithms that 

allow computers to evolve behaviors based on empirical data.  The machine learning 

approach is a combination of mathematics and computer science.  It studies and proposes 

algorithms that allow computer systems analyzing a data-related problem to improve 

automatically through experience, i.e. from training data (Grangier, 2008).  In this thesis, 

three machine learning approaches are applied to the study of sludge bulking, the 

improved Time Series Data Mining, Hidden Markov Models, and a Multinomial Logistic 

Regression Model.  These approaches learn from the training data set, and then are 

applied to detect the patterns in testing data and forecast possible future events.  For 

example, the Time Series Data Mining method is trained by the SVI data from 2002 to 

2006, and the method learns the information on the causes of high SVI values from the 

training data set.  Using the information gained from the learning process, the method can 

detect and predict the future high SVI values in testing data set of 2007.  

3.2. Improved Time Series Data Mining (TSDM) Model 

3.2.1. Introduction to Time Series Data Mining 

A time series is a sequence of data points.  Time series analysis is widely used in 

signal processing, econometrics, and mathematical finance.  Time series analysis 

comprises methods for analyzing time series data in order to extract meaningful statistical 

and other characteristics of the data.  Some models are developed for time series 
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forecasting to predict future values based on previously observed values.  

The framework of Time Series Data Mining (TSDM) (Povinelli and Feng, 2003) 

overcomes limitations (i.e. stationary and linearity requirements) of traditional time series 

analysis (i.e. Autoregressive Integrated Moving Average Model) techniques by adapting 

data mining concepts for analyzing time series.  The TSDM framework focuses on 

predicting events, which are important occurrences within the time series (e.g., the high 

SVI values characteristic of sludge bulking).  Consider a time series: 

 ! ! , ! = 0,1,… ,!  (3.1) 

where t is the time index and n is the total number of observations.  An event is defined 

by an event characteristic function: 

 ! ! = ! !!,!!!!,!!!!,… , !!   > ! (3.2) 

where C > 0 is a given constant, and g(t) is the event characteristic function.  For the 

sludge bulking problem, the event is considered as a SVI value larger than 150 mL/g, 

defined as: 

 ! ! = ! ! − 150.0 > 0 (3.3) 

which means that an SVI value larger than 150 mL/g is defined as an event. A temporal 

pattern is a time-ordered, fixed structure in the sequence data.  It occurs repeatedly and is 

closely correlated with the occurrences of critical events on the observed date, as shown 

in Figure 3.1.  Figure 3.1 shows the example of the conception of hidden temporal 

patterns and events.  Figure 3.1 illustrates the close correlation between the temporal 

patterns and the event.  The left graph displays a section of an individual time series with 

a 5-dimensional (5 data points) temporal pattern that is repeated three times.  The figure 

shows the occurrences of the event following the temporal pattern.  The right portion 

shows the similarity of the three 5D temporal patterns occurring before the events.  



19 
 

 

Figure 3.1: Example of Temporal Patterns and Events 

The improved Time Series Data Mining method was developed by Huang (2001) 

base on the work of Povinelli (1999) also reported in Povinelli and Feng (2003).  The 

improved TSDM method proposed a definition of a fuzzy set cluster which applied a 

Gaussian membership function to prevent the noisy data points from being included in 

the cluster.  Also, the improved TSDM method proposed a two-step optimization 

algorithm for data mining, which is discussed in section 3.2.2.3.  The two-step 

optimization algorithm can increase the efficiency of computing compared with the 

genetic algorithm used in the work of Povinelli and Feng. (2003). 

3.2.2. Main Components of the Improved TSDM method 

The improved Time Series Data Mining method has four main components : 

definition of the event threshold value (sludge bulking), determination of the phase space 

time-delay embedding dimension - Q, data mining and optimization (finding temporal 

pattern clusters in the training data set), and determination of the enlarge ratio of the 

temporal pattern cluster radius.  

 

Event 1 
Events2,3 
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I. Sludge Bulking Event Threshold Value 

As previously mentioned, the sludge bulking event is set by the case of the SVI 

larger than 150 mL/g. However, if the computer program fails to detect the hidden 

temporal patterns in the training data set, reduction of the event value to less than 150 

mL/g (e.g., 120 mL/g) should be considered. 

II. Time-Delay Embedding 

The time series data are transformed into a multi-dimensional Reconstructed 

Phase Space (RPS) (Montgomery et al., 2008) denoted by RQ, to represent the underlying 

dynamics, according to: 

 !! = (!!,  !!!!,  !!!!!,… , !!!(!!!)!,) (3.4) 

where j = 1, 2, … , n-(Q-1)τ, Q is the dimension of the vector !!, called the embedding 

dimension, and τ is a delay time (or time delay). The embedding dimension, Q, can be 

calculated by the false nearest neighbor method (Kantz and Schreiber, 2004).  For the 

time delay, τ, common sense should be used to choose τ, such as 1, 2, and 3. 

The false nearest neighbor procedure is a method to obtain the optimum embedding 

dimension for phase space reconstruction.  By checking the neighborhood of points 

embedded in projection manifolds of increasing dimension, the algorithm eliminates 

'false neighbors':  This means that points apparently lying close together due to projection 

are separated in higher embedding dimensions.  A natural criterion for catching 

embedding errors is that the increase in distance between two neighbored points is large 

when going from dimension d to d(Q)+1.  This criterion is stated by designating as a false 

nearest neighbor any neighbor for which the following is valid:  
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(3.5) 

 
Where t and  are the times corresponding to the neighbor and the reference point, 

respectively;  denotes the distance in phase space with embedding dimension d (Q), 

and  is the tolerance threshold.  These thresholds can be determined by the false 

nearest neighbor algorithm.  

In some cases, the calculated Q may not the best Q for prediction. In such a case, 

the analyst should try other embedding dimensions.  This transformation will make it 

possible to apply clustering and optimization algorithms to detect the significant temporal 

pattern vectors.  Takens (1981) showed that if Q is large enough, the phase space is 

homeomorphic to the state space that generated the time series. 

III. Data Mining and Optimization 

The core of the TSDM method is identification of data clusters and optimization 

of the temporal patterns.  The method uses two-step optimization algorithms: pre-

searching and gradient-based searching.  The first step, the pre-searching step uses the 

subtractive clustering method (Chiu, 1994), in which data points in the phase space are 

considered as the candidates for cluster centers.  Then the second step, the gradient-based 

searching algorithm uses gradient-based searching algorithms (Snyman, 2005) to further 

optimize the temporal pattern clusters obtained from the first step.  A clustering example 

is shown in Figure 3.2. The circles are the clusters found by the improved TSDM method, 

and the blue points are the temporal patterns. 
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Figure 3.2: Example of clustering on a phase space with τ=1 and Q=2 
 

IV. Radius Enlarge Ratio for Temporal Pattern Clusters 

Once the temporal pattern clusters are found, the training step is complete. Then 

the computer program will embed the test data into the reconstructed phase space. Once 

the data points in the reconstructed phase space fall into the clusters which contain the 

temporal patterns, the computer program will consider those data points as the temporal 

patterns which can be used to predict events. The cluster radius enlarge ratio is used to 

magnify the radius of the temporal pattern cluster because, in the reconstructed phase 

space, sometimes the temporal pattern points may not be in the cluster but near to the 

cluster. In such cases, the radius needs to be enlarged to contain those points. However, 

magnifying the radius will lead the temporal pattern clusters to contain points which are 

not part of the temporal patterns. So the radius enlarge ratio should be chosen carefully. 

Normally, it is set to between 1 and 2.  
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3.2.3. Process of the Improved Time Series Data Mining Model 

Figure 3.3 summarizes the process of the improved TSDM method.  
 

 
Figure 3.3: Process of the improved TSDM method (after Huang, 2001) 

 

3.3. Improved Hidden Markov Models (HMMs) 

3.3.1. Introduction to Hidden Markov Models (HMMs) 

Hidden Markov Models were first introduced by Baum and Petrie (1966). One of 

the first and most widely used applications of HMMs is in speech recognition (Huang et 

al., 1990). HMMs are finite models that describe a probability distribution over an 

infinite number of possible sequences. The improved HMMs applied in this thesis were 

developed by Dr. Bansal and his students at Marquette University, focusing on modeling 
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temporal patterns and event detection.  

It is assumed that the probability distribution depends on a hidden sequence of 

states.  Suppose the hidden sequence is !! , ! = 1,2,… ,! ,  where !! ∈ ! 

= {!!, !!,… , ! ∂ , ! ∂ !!}, a set of all possible states. State !! is set as the normal state, 

states {!!, !!,… , ! ∂ } are set as pattern states, and ! ∂ !! is set as the event state. Assume 

that !! , ! = 1,2,… .   follows a Markov model with the transition probability matrix: 
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 (3.6) 

where ( ).| 1 itjtij sZsZPp === −  

 To structure the temporal pattern and the event occurrence, the state space set ! is 

partitioned as ! = !!, !!, ! ∂ !! ,  where !! = (!!, !!,… , ! ∂ } is a sequence of the pattern 

states. In order to reflect the transition of a process from the normal state to the 

development of a pattern state and then to the event state, the transition matrix ! must 

take a special form:  

 ! =

1 − ! ! 0 ⋯ 0
      1 − !!   0 !! ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮
    1 − ! ∂ 0 ⋯ 0 ! ∂

1 − ! 0 ⋯ 0 !

 (3.7) 

Note that ! = ! !! = !! !!!! = !!) is the probability that at a given time ! the 

state would jump from the normal state to the beginning of the pattern state, but the 

probability is 0 that it would jump to the second or a higher pattern state. Once the state is 

in a pattern state, it moves to the next pattern state in a stepwise manner or it goes back to 

the normal state without completing the pattern. At the last pattern state, when the 
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process completes the pattern, it reaches the event state with probability  ! = !  (!! =

! ∂ !!|!!!! = ! ∂ ). It is also assumed that once the process reaches the event state, it 

remains in the event state with probability ! or it goes back to the normal state. The main 

point here is that the event occurs only when the pattern is completed, and if the pattern 

breaks down, the process goes back to the normal state before the event occurs.   

There are three main functions and algorithms in the improved HMMs. For the 

temporal pattern detection process, the Mixture of Gaussian function and Expectation-

Maximization (EM) algorithm are performed. For the prediction process, the Viterbi 

Algorithm is applied to predict the possibilities of the states. 

3.3.2. Main Functions in Hidden Markov Models (HMMs) and HMMs process 

It is assumed that the time series data follow the Gaussian model distribution.  For 

the training process, the Mixture of Gaussian function and EM algorithm are used to 

estimate the initial value of the training data, i.e. threshold for each state (normal, pattern, 

and event states) and transition probability matrix.  The computer software can obtain and 

learn the hidden patterns possibilities in training data set.  For the testing process, the 

Viterbi Algorithm is used to detect and predict the most probable state through the 

HMMs method. The general process is shown in Figure 3.4. 
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Figure 3.4: General Process of Improved HMMs 

3.3.3. Notable Parameters in the Improved Hidden Markov Models (HMMs) 
Method 

 
I. Length of Temporal Pattern – L 

As previously mentioned, the pattern dimension Q was introduced in the 

improved Time Series Data Mining method. For the improved HMMs, in most cases, the 

dimension of the pattern states may not be known. It is suggested to apply the false 

nearest neighbor method (Kantz and Schreiber, 2004) to find the length of the pattern 

states.  It can be considered that the length of temporal pattern L is equal to the pattern 

dimension Q.  In this thesis, the L value is calculated as 3, it means there are 3 states for 

the pattern state.  Also, the normal state and the event state should be considered for the 

total length of the data.  This means there are 5 states for the data. State 1 is the normal 

state (normal data), states 2, 3, and 4 are the pattern states, and state 5 is the event state. 

 

Training	  set	  
• Mixture-‐
Gaussian	  
model	  and	  EM	  
algorithm	  

Initial	  value	  (if	  
unreasonable,	  
reset	  by	  
analyst)	  

• Mixture	  -‐
Gaussian	  
Probability	  
Model	  

Tranining	  States	  
Transition	  	  
probablity	  
Matrix	  

• Viterbi	  
algorithm	  

Future	  state	  
probablities	  
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II. The Initial States Value for the SVI in Transition Matrix 

During the testing procedure for the HMMs method, one problem that was noted 

is that sometimes the thresholds found by the Mixture of Gaussians function were not 

reasonable.  For instance, sometimes the computer program found the threshold for the 

normal state of the SVI data was 120 mL/g, and the threshold for the event state of the 

SVI data was 80 mL/g.  For the sludge bulking problem, such conditions are not 

reasonable because the event state threshold value should be higher than the value of the 

normal state threshold. Also, once such a condition happened, the program failed to 

predict the future probabilities of the states.  So threshold values for different states were 

set by the analyst after the Mixture of Gaussians function to prevent such an unstable 

condition. In the improved HMMs computer programs, threshold values were set to [80, 

120, 120, 120, 200] which means [normal state value, pattern state point 1 value, pattern 

state point 2 value, pattern state point 3 value, event state value]. 

3.3. The Combined Method of Hidden Markov Models (HMMs) and Multinomial 
Logistic Regression (MLR) Model  

 

3.4.1. Introduction 

The improved TSDM and HMMs methods were applied to detect the temporal 

patterns and predict future sludge bulking events considering the SVI data alone. It may 

be useful that if sludge bulking events could be detected by measured values of other 

wastewater parameters. A Multinomial Logistic Regression (MLR) Model can predict the 

probabilities of the different possible outcomes of a categorically distributed dependent 

variable, given a set of independent variables. In the improved HMMs method, the 
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hidden states (normal, patterns, and event) can be obtained by the Viterbi Algorithm. This 

combination method tries to use other chemical or physical variables to predict the sludge 

bulking event state. 

Suppose a dependent variable has M categories. One value (typically the first, the 

last, or the value with the highest frequency) of the dependent variable is designated as 

the reference category (Menard, 2001).  In our case, the hidden states is the dependent 

variable, and it has five categories, normal state, pattern state 1, pattern state 2, pattern 

state 3, and event state.  And normal state is chosen as the reference category. 

For m = 2, 3, 4, and 5, the probability is calculated as: 

 ! !! = ! =   
exp  (!! ∗ !!)

1+ exp  (!! ∗ !!)!
!!!

 (3.8) 

            For the reference category (normal state), the probability is: 

 ! !! = 1 =   
1

1+ exp  (!! ∗ !!)!
!!!

 (3.9) 

where !!   is the observed outcome for the ith observation on the dependent variable, Xi is 

a vector of the ith observations of all the explanatory variables, and β j is a vector of all 

the regression coefficients in the jth regression.  From the foregoing equations, it can be 

seen that the multinomial logistic regression model measures the possibility of the hidden 

state for each SVI data value as a function of other wastewater quality parameters.   

3.4.2. The Combined Method Process 

There are many wastewater quality variables available from the data collected 

from the North Side Water Reclamation Plant (NSWRP) of the Metropolitan Water 

Reclamation District of Greater Chicago.  The first step is to choose some important 

variables that are considered to be highly correlated to the SVI data. Some statistical 
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analysis is chosen, like crosstab analysis, correlation function analysis, etc., to detect the 

important variables.  Several wastewater treatment quality parameters used in the 

combined method are listed in Table 1.1.  

The second step is the same as the training step of the improved HMMs method, 

to get the hidden states for each data point in the training data set. Then the hidden states 

and selected parameters are applied to build the multinomial logistic regression model.  

Finally, with the multinomial logistic regression model built in the second step, 

the method performs the sludge bulking event state prediction process by applying the 

data for the selected variables. Unlike the improved TSDM method and HMMs method, 

the prediction process is done considering other wastewater quality variables instead of 

the SVI data alone. Figure 3.5 demonstrates the general process of the combined method. 

 
Figure 3.5: General Process of Combined Method of HMMs and MLR Model 
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• Prediction	  
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CHAPTER 4 ANALYSIS ON DETECTION OF HIGH AMMONIA 
CONCENTRATION AND SLUDGE BULKING PROBLEMS USING THE 
IMPROVED TIME SERIES DATA MINING (TSDM) METHOD 
 

 
The general process of the improved TSDM method is described in Chapter 3.  

The application of the improved TSDM method to high ammonia concentrations and 

sludge bulking are described in this chapter.  The improved TSDM method computer 

programs were written by Mr. Hai Huang in the MATLAB at Marquette University.  

Later these programs were modified to make them more suitable for application to data 

from WWTPs.  

The application of the improved TSDM method to problems with WWTP 

operations includes three sections.  First, synthetic data created by the author is applied to 

the improved TSDM method, and the steps of the improved TSDM method are 

demonstrated.  After that, the ammonia data and the Sludge Volume Index (SVI) data for 

the North Side Water Reclamation Plant (NSWRP) are analyzed by the improved TSDM 

method.  The results are presented and discussed in the following sections.  

4.1. Synthetic Data Test and Discussion 

Seventeen hundred synthetic data points were generated by author.  The normal 

value points were generated randomly between 0 and 11.  Then the event value is defined 

as a time series x value is greater than 10, which means the event function is: 

 ! ! = ! ! − 10.0 > 0 (4.1) 

There are three values before each event value, and these pattern values were 

generated to follow a trend of down to up, e.g., 4.6, 4.0, and 4.3.  After that, the noise was 

generated which follows a standard normal distribution with a mean value of 0 and a 



31 
 

standard deviation value of 1, then the noise was added into the whole synthetic time 

series data.  For the original synthetic data without noise, the embedding dimension Q is 

three because there are three points before each event value.  However, after adding the 

noise into the synthetic data, the embedding dimension Q perhaps has another value. 

The SVI data, which is analyzed later in Section 4.4 of this chapter, has a large 

range of values.  For better similarity to the SVI data, the synthetic data are generated 

with a high standard deviation value.  Table 4.1 lists the parameters of the synthetic data, 

and a plot of the synthetic data and the event value line are shown in Figure 4.1.                            

Table4.1: Parameters of the Synthetic Data 
Total number 1700 

Mean 1.5373 
Standard 
deviation 2.6375 

Maximum value 13.3481 
Minimum value -2.7999 

Event value 10 
Number of 

events (≥10) 53 

 
Figure 4.1: Plot of the Synthetic Data 
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Two parameters of time series embedding, the time-delay, τ, and the embedding 

dimension, Q, need to be determined before the training process.  Normally, the time-

delay, τ, is set to 1, which is used to detect the temporal patterns before the next value.  

The embedding dimension Q can be calculated by the false nearest neighbor algorithm. In 

this synthetic data test, the Q is calculated as seven.  However, it should be noted that the 

time-delay and embedding dimension can be changed by the analyst to get the best 

conditions for the test. 

Another import parameter of the TSDM method is the radius enlarge ratio of the 

temporal pattern clusters.  It is used to magnify the radius of the temporal pattern cluster 

because, in the phase space, under some conditions, the temporal pattern points may not 

be in the cluster but near to the cluster.  In such cases, the radius needs to be enlarged to 

include those points.  However, magnifying the radius will lead the temporal pattern 

clusters to contain points which are not the temporal patterns.  So the radius enlarge ratio 

should be chosen carefully by several attempts.  Normally, it is set to between 1 and 2.  

The process of choosing the radius enlarge ratio is shown in the Section 4.1.2. 

4.1.1. Training Process 

From the total of 1700 data points in the synthetic time series, the first 1400 data 

points are used as the training time series to find the temporal pattern clusters applying 

the improved TSDM method.  The embedding dimension, Q, is calculated as seven, time-

delay, τ, is chosen as 1, and enlarge ratio of temporal pattern clusters radius is set to 1 

(the best value for the enlarge ratio will be discussed later).  The two-step optimization 

algorithm is used in the training process.  The first step takes all data points as the 

temporal pattern cluster center candidates.   The clusters are sorted according to their 
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objective function values, and the best clusters that found in the first optimization step are 

preserved for the second optimization step.  After that, the temporal pattern clusters in the 

training time series are found.  Tables 4.2 and 4.3 demonstrate the results of the first 

optimization step and second optimization step, respectively.  

Table 4.2: Cluster results of the first optimization step search for synthetic data 
Cluster 

No. Cluster Center Radius Cluster 
Size 

1 4.0558 4.2886 5.7595 -0.6967 1.1004 2.1821 0.4128 0.2000 1 
2 3.2776 4.6463 5.7994 1.4756 1.1135 0.4651 -0.0769 1.4151 2 
3 6.2625 3.5319 5.0101 -0.1189 0.2264 0.3374 -0.9423 0.2000 1 
4 6.4022 4.6818 2.9991 1.4035 0.7253 1.3274 -1.0846 0.2000 1 
5 2.9993 4.9595 5.2653 1.0672 1.1239 0.4290 0.1128 1.2744 2 
6 3.1020 3.5794 5.1845 0.7671 -0.7704 1.6204 0.0719 0.2000 1 
7 6.2637 3.0657 5.6251 2.5457 -0.4570 -0.1129 2.3735 0.2000 1 
8 3.2410 5.3776 4.1207 0.9234 1.0761 3.6834 0.0177 0.2000 1 
9 3.6634 6.0120 4.1233 1.2173 0.1461 1.4522 0.9289 0.2000 1 

10 3.2421 3.0379 4.0585 1.5284 1.1841 -1.3327 1.2251 0.2000 1 
11 4.9326 2.8724 4.4449 0.8712 -0.3952 1.5285 -0.5066 0.1930 1 
12 5.6213 3.5916 3.7823 0.1162 -0.1668 -0.7331 0.1944 0.2000 1 
13 5.3808 3.1553 6.0224 2.0271 -0.1939 0.2269 1.7574 0.2000 1 
14 3.3251 3.7732 4.9593 0.4437 0.2856 0.4157 0.3875 0.2000 1 
15 3.2915 3.0439 5.7947 0.1383 0.4993 -0.5338 0.5900 0.2000 1 

 
Table 4.3: Cluster results of the second optimization step search for synthetic data 

Cluster 
No. Cluster Center Radius Cluster 

Size 
1 3.3265 3.7669 5.7852 0.4437 0.2867 1.6204 0.4076 2.5554 16 
2 4.0556 3.5446 5.7943 0.1641 0.0891 0.3549 0.4127 2.5657 27 

From Table 4.2, it can be seen that 15 small temporal pattern clusters are detected 

by the first optimization step.  After the second optimization step, these 15 small clusters 

are combined into the two bigger clusters listed in Table 4.3.    

4.1.2. Testing Process 

The final 300 data points are applied as the testing time series data.  After 
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embedding the testing time series data into the same dimension phase space, the final 

cluster identification found five pattern points inside the temporal pattern cluster from the 

testing time series data meaning the improved TSDM method made five predictions 

based on these five temporal pattern points.  Figure 4.2 shows the results of the testing 

process. 

 
Figure 4.2: Testing Process Results for the Synthetic Data 

From Figure 4.2, it can be seen that four predictions are correct predictions. The 

correct percentage is 80%. However, there are 11 events in the testing time series data, so 

the accuracy percentage is 36.36%.  The reason for the low accuracy percentage is the 

radius of the temporal pattern clusters has not been magnified, so that not all temporal 

pattern points fell into the temporal pattern clusters.  So, the radius enlarge ratio needs to 

be set larger than 1. But the radius enlarge ratio should be chosen carefully because some 

points that are not temporal pattern points may fall into the enlarged temporal pattern 

cluster and it will reduce the correct percentage.  Table 4.4 demonstrates the relationship 



35 
 

of the radius enlarge ratio with the correct percentage and accuracy percentage.  From 

Table 4.4, it can be seen that with the increase of the radius enlarge ratio, the accuracy 

percentage is increased.  However, the correct percentage initially increased and then 

decreased with the increase of the radius enlarge ratio.  So the analyst needs to find the 

balance of the correct percentage and accuracy percentage to determine a suitable radius 

enlarge ratio.  For the synthetic data set, the best radius enlarge ratio is 1.6 because the 

improved TSDM method can obtain 100% accuracy percentage and an acceptable correct 

percentage of 73.33% which is better than that of 1.5 and 1.7.  For the ammonia and the 

SVI data tests this process is repeated to determine the appropriate radius enlarge ratio for 

the first data combination test. 

Table 4.4: Selection of Enlarge Ratio for Temporal Pattern Cluster Radius  

Enlarge 
ratio 

Total number 
of events 

No. of 
predictions 

Correct 
prediction 

Correct 
Percentage 

Accuracy 
Percentage 

1 11 5 4 80.00% 36.36% 
1.1 11 8 7 87.85% 63.64% 
1.2 11 10 9 90.00% 81.82% 
1.3 11 10 9 90.00% 81.82% 
1.4 11 11 9 81.82% 81.82% 
1.5 11 14 11 71.43% 90.91% 
1.6 11 15 11 73.33% 100.00% 
1.7 11 16 11 68.75% 100.00% 

4.2. Period I – Ammonia Test and Discussion 

Prior to obtaining the SVI data, ammonia data were used as the experiment 

subject.  Effluent ammonia data from the NSWRP from 2001 to 2008 were considered.   

The WWTP’s effluent ammonia limitation of 2.5 mg/L only applies from April to 

October, and, thus, only data from these months are considered.  The event was set as an 

ammonia concentration larger than 2.0 mg/L, which is less than 2.5 mg/L, as it was 
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known from discussions with the MWRDGC that the WWTP operators would like to 

prevent effluent concentrations from even getting near the permit limit.  

4.2.1. Ammonia Data Basic Analysis 

Eight years of ammonia data were obtained in period I.  Before May 1, 2001, no 

ammonia data were available from the NSWRP.  The missing data from April 2001are 

set to 0 in the test.  Table 4.5 shows some basic analysis of the ammonia data, including 

the number of events, the mean value, and the standard deviation for each test year of 

ammonia data.   

Table 4.5: Basic Analysis of Ammonia Data in each Test Year 

Year 
Number of 
data in the 

year 
Mean 

Standard 
deviation 

(STD) 

Number of 
Events   

(≥2 mg/L) 

   2001 214 0.3642 0.4468 2 
2002 214 0.5897 0.3803 1 
2003 214 0.8074 0.4864 6 
2004 214 0.8602 0.6321 13 
2005 214 0.8521 0.7703 7 
2006 214 0.5268 0.5105 6 
2007 214 0.3356 0.2788 0 
2008 214 0.1508 0.1387 0 

From Table 4.5, it can be seen that in the test year 2001, the standard deviation is 

larger than the mean value.  The reason is the ammonia data in April were set to 0 

because of the lack of data from the NSWRP in test year 2001.  The mean values for the 

test years of 2003 to 2005 are higher than the other years.  Meanwhile, there are more 

events in the test years of 2003, 2004, and 2005.  Finally, no events occurred in the test 

years of 2007 and 2008, so there is no need to do the test on these two years. 
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4.2.2. Training and Testing Process 

According to the previous basic ammonia data analysis, it is necessary to select 

the training data set and testing data set.  It is better to have more events in the training 

data set in order to let the TSDM programs better learn and generate the temporal pattern 

clusters.  So the data of test year 2004 is selected to be included in the training data set.  

Two combination sets of training and testing sets are applied: (a) training data set of 2001 

to 2004, testing data set of 2005; and (b) training data set of 2001 to 2005, testing data set 

of 2006.  

I. First Data Combination: Training data of 2001 to 2004, Testing data of 
2005 
 
According to the previous description of parameters of the improved TSDM 

method, the initial parameters need to be determined before the training and testing 

process.  The embedding dimension, Q, is calculated by the false nearest neighbor 

method as 4.  Time delay, τ, is set to 1 as to detect the temporal pattern 1 day before the 

event.  The cluster radius enlarge ratio is originally selected as 1, the best radius enlarge 

ratio for the ammonia test will be analyzed later. These parameters are listed in Table 4.6. 

Table 4.6: Initial Parameters 
Parameter Value 

Embedding dimension- Q 4 
Time delay τ 1 day 

Training Procedure Two step optimization algorithm 
Cluster radius enlarge 

ratio 1 

The resulting temporal pattern clusters found in the training process by two-step 

optimization are listed in Table 4.7.  From Table 4.7, it should be noted that some 

temporal pattern clusters have a small radius and few pattern points, and even have only 
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one point in them.  The radii of these temporal pattern clusters are very small, and from 

the phase space view, they are several points in the phase space.  These clusters are not 

effective because there will be a very small chance that the data points from the test time 

series data will fall into these clusters.  Clusters No. 6, No. 8, and No. 13 are more 

effective than the others, because of their larger size and inclusion of more pattern points.  

Especially cluster No. 13 has the largest radius and most temporal pattern points.  So 

clusters No. 6, No. 8, and No. 13 may be effective. 

Table 4.7: Temporal Pattern Clusters of Training Data in the First Data 
Combination 

Cluster 
No. Cluster Center Radius Cluster 

Size 
1 1.5500 0.6600 0.8400 1.1700 0.0377 1 
2 1.5100 1.6800 2.3200 1.2400 0.0103 1 
3 2.4300 2.6000 2.4700 2.1700 0.1274 1 
4 1.0400 0.7700 1.0000 1.0300 0.0295 1 
5 0.7700 0.6000 0.5600 0.7100 0.0128 1 
6 2.1358 1.5125 1.7500 1.7498 0.4050 4 
7 1.2100 0.3000 3.1500 2.4300 0.1874 1 
8 2.0823 1.4086 1.7504 1.7500 0.4084 4 
9 1.3500 1.0900 0.4500 1.2700 0.0500 1 

10 2.4700 2.1700 1.3200 1.7100 0.0173 1 
11 0.3300 0.2800 0.3700 0.2100 0.0106 1 
12 1.2600 1.0800 0.5700 0.3900 0.0394 1 
13 2.4456 2.6000 2.3009 1.4488 0.8620 15 
14 0.9300 1.0900 1.6200 0.9200 0.0297 1 
15 1.2400 1.1500 1.1200 0.9600 0.0379 1 
16 1.2400 0.8900 1.1800 1.5600 0.0223 1 
17 0.5000 0.2700 1.4300 1.4400 0.0143 1 
18 0.7700 0.8500 0.7400 1.3500 0.0113 1 
19 1.3200 1.7100 1.6500 2.0900 0.0070 1 
20 0.8000 0.1900 1.5800 1.0100 0.0575 1 

After the training process, the test time series data are embedded into the phase 

space with same embedding dimension.  If any data point falls into one of the three 
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temporal pattern clusters, the improved TSDM method will make a prediction.  The result 

is shown in Figure 4.3 and Table 4.8. 

 
Figure 4.3: Testing Result of Ammonia in 2005 with Radius Enlarge Ratio as 1 

 
Table 4.8: Testing Result of Ammonia in 2005 

Testing 
Year 

Total 
number 

of 
events 

Number of 
detected 
patterns 

Correct 
predictions 

Correct 
Percentage 

Accuracy 
percentage 

2005 7 1 0 0% 0% 
 
 From Figure 4.3 and Table 4.8, it can be seen that one event was incorrectly 

predicted by the improved TSDM method.   Also, the total number of events is 7, and the 

accuracy percentage is only 0%.  However, the radius enlarge ratio is 1which means the 

temporal pattern clusters may not include those pattern points located slightly outside of 

the clusters in the phase space.  So the selection process for a better radius enlarge ratio 

was performed.  Table 4.9 lists the results for the selection of the radius enlarge ratio.  

The radius enlarge ratio is chosen as 1.9 according to the results in Table 4.9, because it 

has the highest correct percentage and highest accuracy percentage.   
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Table 4.9: Selection of Radius Enlarge Ratio for Ammonia Test 

Enlarge 
ratio 

Total number 
of events 

No. of 
predictions 

Correct 
prediction 

Correct 
Percentage 

Accuracy 
Percentage 

1 7 1 0 0% 0% 
1.1 7 1 0 0% 0% 
1.2 7 1 0 0% 0% 
1.3 7 1 0 0% 0% 
1.4 7 1 0 0% 0% 
1.5 7 1 0 0% 0% 
1.6 7 2 0 0% 0% 
1.7 7 4 0 0% 0% 
1.8 7 5 1 20% 14.29% 
1.9 7 6 2 33.33% 28.57% 
2.0 7 7 2 28.57% 28.57% 
2.1 7 2 2 25% 28.57% 

Figure 4.4 shows the test result of 2005 with the radius enlarge ratio as 1.9.  From 

Figure 4.4, it can be seen that only two high ammonia concentration events were detected 

and predicted by the improved TSDM method.  From the prediction point of view, the 

accuracy percentage is not acceptable for the WWTP.  However, from the prevention 

point of view, it can be found that some false positive detection points occurred prior to 

an actual event, and those false positive points are still useful for the prevention of the 

high ammonia concentrations. 
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Figure 4.4: Testing Result of Ammonia in 2005 with Radius Enlarge Ratio as 1.9 

 
 
II.      Second Data Combination: Training data of 2001 to 2005, Test data of 2006 
  

After the first data combination test, the second data combination test was 

performed.  Also, the initial parameters need to be determined before the training and 

testing process.  The embedding dimension, Q, is calculated by false nearest neighbor 

method as four.  Time delay, τ, is set to one to detect the temporal pattern 1 day before 

the event.  The cluster radius enlarge ratio is set to1.9 as per the previous section. 

 The resulting temporal pattern clusters found in the training process are listed in 

Table 4.10.  From Table 4.10, comparing with the test of the first data combination, the 

radii of the second data combination temporal pattern clusters are smaller.  Also, no 

cluster has more than three temporal pattern points.   This result means that it is highly 

unlikely that the test time series data points will fall into these temporal pattern clusters. 
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Table 4.10: Temporal Pattern Clusters of the Training Data in the Second Data 
Combination 

Cluster No. Cluster Center Radius Cluster 
Size 

1 6.16 1.49 1.16 1.49 0.2 1 
2 1.49 1.16 1.49 1.85 0.0632 1 
3 2.1 0.81 0.91 1.44 0.0466 1 
4 1.55 0.66 0.84 1.17 0.0379 1 
5 1.51 1.68 2.32 1.24 0.0148 1 
6 2.43 2.6 2.47 2.17 0.1274 1 
7 1.04 0.77 1 1.03 0.0297 1 
8 0.77 0.6 0.56 0.71 0.0129 1 
9 0.97 1.56 1.67 1.29 0.0376 1 

10 1.94 1.58 1.75 1.75 0.0261 1 
11 1.21 0.3 3.15 2.43 0.1001 1 
12 1.35 1.09 0.45 1.27 0.0501 1 
13 2.47 2.17 1.32 1.71 0.0016 1 
14 0.33 0.28 0.37 0.21 0.0076 1 
15 1.26 1.08 0.57 0.39 0.0286 1 
16 2.4330 2.5771 2.4640 2.17 0.4754 2 
17 0.93 1.09 1.62 0.92 0.0298 1 
18 2.1712 1.3200 1.7423 1.75 0.2591 3 
19 1.24 1.15 1.12 0.96 0.0389 1 
20 1.24 0.89 1.18 1.56 0.0298 1 

 Figure 4.5 and Table 4.11 demonstrate the testing result of second data 

combination.  From Figure 4.5 and Table 4.11, it can be seen no events can be predicted 

because no temporal pattern was detected by the TSDM method.  As previously 

discussed the reason for this result is that the temporal pattern clusters in the training step 

are too small to let the test time series points fall into them.  

 



43 
 

 
Figure 4.5: Testing Result of Ammonia in 2006 

 
Table 4.11: Testing Result of Ammonia in 2006 

Testing 
Year 

Total 
number 

of 
events 

Number of 
detected 
patterns 

Correct 
predictions 

Correct 
Percentage 

Accuracy 
percentage 

2006 6 0 0 0% 0% 

4.3. Improvement of the TSDM Process by Modifying the Initial Parameters 

 
From the previous ammonia test, the test results are not acceptable.  Two aspects 

are considered as possible causes for the poor results.   

First, the ammonia data might be chaotic, and there are not enough events in the 

training data set for the improved TSDM method to learn and find the temporal pattern 

clusters.  Although the event value can be reduced to 1.5 or 1.2 mg/L to get more events, 

such values are far below the permit limits of the WWTP, and so operators do not try to 

avoid these values.  

Second, the initial parameters of the improved TSDM method can be modified 
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before the training and testing process.  The radius enlarge ratio is 1.9, which is suitable 

for the improved TSDM method.  Another parameter that can be modified is the 

embedding dimension, Q.  Although the embedding dimension, Q, is calculated by the 

false nearest neighbor method in the training process, the analyst can change the Q value 

artificially.  According to Huang (2001), if the radius of the temporal pattern clusters is 

too small after the training process, this is a sign that the embedding dimension, Q, is too 

high. 

Since the Q in the second data combination test is four, and the cluster size of all 

the clusters is small. The Q in the second data combination test is changed to three and 

two to check whether the results will be better.  

Table 4.12 and Figure 4.6 show the training and testing results when Q is changed 

to three in the second data combination test.  From Table 4.12 and Figure 4.6, it can be 

seen that the temporal pattern clusters are still small, and the testing result is still not 

acceptable.  Only one point was predicted, and this prediction point was incorrect.  So Q 

is changed to 2 and the second data combination test was redone. The results are shown 

in Table 4.13 and Figure 4.7.  The training and testing results with Q = 2 for the second 

data combination test are still not acceptable.  The temporal pattern clusters are very 

small, and it is hard for the testing time series data to fall into these temporal pattern 

clusters.  Besides, only one incorrect point is predicted.  From the foregoing discussion, it 

can be concluded that the ammonia data are chaotic and lack sufficient events for the 

improved TSDM method to learn and detect the temporal patterns so that useful warning 

information on high ammonia concentrations can be made. 
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Table 4.12: Temporal Pattern Clusters in the Second Data  
Combination Test with Q = 3 

Cluster NO Cluster Center Radius Cluster 
Size 

1 6.16 1.49 1.16 0.2 1 
2 1.49 1.16 1.49 0.0632 1 
3 2.1 0.81 0.91 0.0466 1 
4 1.55 0.66 0.84 0.0379 1 
5 2.43 2.6 2.2886 0.0148 1 
6 1.51 1.68 2.32 0.1274 1 
7 1.04 0.77 1 0.0297 1 
8 0.77 0.6 0.56 0.0129 1 
9 0.97 1.56 1.67 0.0376 1 

10 2.4309 2.6 2.2856 0.0261 1 
11 1.94 1.58 1.75 0.1001 1 
12 1.21 0.3 3.15 0.0501 1 
13 1.35 1.09 0.45 0.0015 1 
14 2.47 2.17 1.32 0.0076 1 
15 0.33 0.28 0.37 0.0286 1 
16 1.26 1.08 0.57 0.4754 2 
17 2.17 1.32 1.71 0.0298 1 
18 0.93 1.09 1.62 0.2591 3 
19 1.24 1.15 1.12 0.0389 1 
20 1.24 0.89 1.18 0.0298 1 

 
 

 
Figure 4.6: Testing Result of Ammonia in 2006 for the Second  

Data Combination Test with Q = 3 
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Table 4. 13: Temporal Pattern Clusters in the Second Data  
Combination Test with Q = 2 

Cluster NO Cluster Center Radius Cluster 
Size 

1 6.16 1.49 0.2 1 
2 1.49 1.16 0.0141 1 
3 2.1 0.81 0.0022 1 
4 2.47 2.5328 0.3064 3 
5 1.55 0.66 0.0018 1 
6 2.47 2.5364 0.3074 3 
7 1.51 1.68 0.0006 1 
8 1.04 0.77 0.0052 1 
9 0.77 0.6 0.0050 1 

10 0.97 1.56 0.0002 1 
11 1.94 1.58 0.0336 1 
12 2.47 2.5363 0.3073 3 
13 1.21 0.3 0.0022 1 
14 1.35 1.09 0.0076 1 
15 1.26 1.08 0.0020 1 
16 2.17 1.32 0.0222 1 
17 0.93 1.09 0.0038 1 
18 1.24 1.15 0.0037 1 
19 1.24 0.89 0.0021 1 
20 0.77 0.85 0.0006 1 
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Figure 4.7: Testing Result of Ammonia in 2006 for the Second  

Data Combination Test with Q = 2  
 

4.4. Period II – Sludge Volume Index Test 

The SVI data were provided by the MWRDGC for the NSWRP in October 2010.  

Also, some wastewater treatment chemical and physical parameters were included in the 

database, i.e. preliminary and solids data (total wastewater flow, air flow, total solids, 

etc.), treatment operational data for each battery (return flow, etc.), nitrogen analysis data, 

and some lab analysis data.  There are four treatment batteries at the NSWRP, and data 

for each battery are available from 2002 to 2009.  As previously mentioned, the event 

value of sludge bulking is set by a SVI value greater than 150 mL/g.  
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Table 4.14: Initial Analysis of the SVI data for each treatment battery 
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 Table 4.14 demonstrates an initial analysis of the SVI data for each treatment 

battery.  From Table 4.14 some information can be found.  2005 has more sludge bulking 

events than other years, and it has the highest mean SVI value.  Battery D is least affected 

by sludge bulking problems, compared to the other three batteries, especially, no sludge 

bulking events happened from 2006 to 2009 in Battery D.  Battery B has more sludge 

bulking events than the other batteries.  For this reason, the SVI data in Battery B was 

first studied in the sludge volume index test.  Then the tests for batteries A and C are 

performed.  Battery D will not be analyzed. 

4.4.1. Results of SVI Test for Battery B 

Because test year 2005 has most sludge bulking events, it is better to include the 

SVI data of 2005 in the training set, so the improved TSDM method can analyze more 

events to detect and learn the temporal patterns.  Four different data combination tests 

were performed: (A) Training set: 2002 to 2005, Testing set: 2006; (B) Training set: 2002 

to 2006, Testing set: 2007; (C) Training set: 2002 to 2007, Testing set: 2008; (D) 

Training set: 2002 to 2008, Testing set: 2009.  

I. SVI Test of Data Combination A for Battery B 
 

Table 4.15 lists the initial parameters of the first data combination test.  

Embedding dimension, Q, is calculated by false nearest neighbor method as three.  Time 

delay is chosen as 1 to look for the 1 day ahead prediction.  Cluster radius enlarge ratio is 

firstly set as 1.  The selection process for the radius enlarge ratio will be performed later 

like the selection process in the ammonia test. 
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Table 4.15: Initial Parameters  
Parameter Value 

Embedding dimension- Q 3 
Time delay τ 1 day 

Training Procedure Two step optimization algorithm 
Cluster radius enlarge 

ratio 1 

   Table 4.16 shows the result of temporal pattern clusters found in the training 

process.  The testing results are shown in Table 4.17 and Figure 4.8.  In Table 4.16, it can 

be seen that all clusters only have one temporal pattern, and the radii are all very small.  

According to the discussion in Section 4.3, such a condition means the embedding 

dimension Q is large.  Also, from Table 4.17 and Figure 4.8, no temporal pattern is found 

from the training results.   

Table 4.16: Temporal Pattern Clusters of Training Data  
in the First Data Combination 

Cluster 
No. Cluster Center Radius Cluster 

Size 
1 301 243 222 0.2 1 
2 243 222 154 0.2 1 
3 203 163 137 0.2 1 
4 227 212 181 0.2 1 
5 174 190 166 0.2 1 
6 221 233 188 0.2 1 
7 222 154 159 0.2 1 
8 188 152 95 0.2 1 
9 204 345 301 0.2 1 

10 280 203 163 0.2 1 
11 212 181 187 0.2 1 
12 154 159 141 0.2 1 
13 233 188 152 0.2 1 
14 162 201 162 0.2 1 
15 198 124 146 0.2 1 
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Table 4.17: Testing Result of SVI in 2006 for Battery B with Q = 3 

Testing 
Year 

Total 
number 

of 
events 

Number of 
detected 
patterns 

Correct 
predictions 

Correct 
Percentage 

Accuracy 
percentage 

2006 4 0 0 0 0 
 

 
Figure 4.8: Testing Result of SVI in 2006 for Battery B with  

Radius Enlarge Ratio equal to 1 and Q = 3 

For method improvement purposes, the embedding dimension is reset to two. 

Table 4.18 shows the training result of temporal pattern clusters by changing Q to 2.  

Four large temporal pattern clusters are found by the improved TSDM method, clusters 

Nos. 1, 2, 5, and 6.  Each of them has more than 80 temporal pattern points. From the 

phase space view, the centers of these clusters are really close and these clusters have 

almost the same radius.  So the analyst can consider them as one big cluster. 
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Table 4.18: Temporal Pattern Clusters of the Training Data for  
Battery B in First Data Combination with Q =2 

Cluster 
No. Cluster Center Radius Cluster 

Size 

1 222.0000 190.0000 53.1174 86 
2 222.0000 190.1546 53.1526 86 
3 301.0000 243.0000 0.2000 1 
4 243.0000 222.0000 0.2000 1 
5 222.0000 189.5308 52.7910 84 
6 222.0040 190.0000 53.1918 87 
7 203.0000 163.0000 0.2000 1 
8 227.0000 212.0000 0.2000 1 
9 174.0000 190.0000 0.2000 1 

10 221.0000 233.0000 0.2000 1 
11 222.0000 154.0000 0.2000 1 
12 188.0000 152.0000 0.2000 1 
13 204.0000 345.0000 0.2000 1 
14 280.0000 203.0000 0.2000 1 
15 212.0000 181.0000 0.2000 1 

Testing results are shown in Table 4.19 and Figure 4.9.  It can be seen that the 

results are better by changing the embedding dimension to 2.  The method could detect 

one event, and the accuracy percentage is 25%, which is not very high.  However, from 

Figure 4.9, it can be seen the only predicted sludge bulking event in 2006 is detected after 

the occurrence of the sludge bulking problem.  This means the sludge bulking problem 

was not detected efficiently at the first event point.   

Table 4.19: Testing Result of SVI in 2006 for Battery B with Q = 2 

Testing 
Year 

Total 
number 

of 
events 

Number of 
detected 
patterns 

Correct 
predictions 

Correct 
Percentage 

Accuracy 
percentage 

2006 4 1 1 100% 25% 
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Figure 4.9: Testing Result of SVI in 2006 for Battery B with Q = 2 

It should be noted that the radius enlarge ratio was set to 1.  As previously 

mentioned, the radius enlarge ratio needs to be carefully selected like in the ammonia test.  

Table 4.20 shows the selection for the radius enlarge ratio for the SVI tests.  It can be 

seen that 2.1 is the best radius enlarge ratio for the SVI test, because the accuracy 

percentage is 100% and correct percentage is the highest.  For the rest of the SVI test, the 

radius enlarge ratio is chosen as 2.1. 

Table 4.20: Selection of Radius Enlarge Ratio for SVI Test 

Enlarge 
ratio 

Total number 
of events 

No. of 
predictions 

Correct 
prediction 

Correct 
Percentage 

Accuracy 
Percentage 

1 4 1 1 100% 25% 
1.1 4 1 1 100% 25% 
1.2 4 1 1 100% 25% 
1.3 4 2 1 50% 25% 
1.4 4 3 2 66.67% 50% 
1.5 4 4 2 50% 50% 
1.6 4 4 2 50% 50% 
1.7 4 5 3 60% 75% 
1.8 4 5 3 60% 75% 
1.9 4 5 3 60% 75% 
2.0 4 5 3 60% 75% 
2.1 4 6 4 66.67% 100% 
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Figure 4.10: Testing Result of SVI in 2006 for Battery B with Q = 2 

 

 
Figure 4.11: Pattern Plot for Testing Result of SVI in 2006  

for Battery B with Q = 2 
 

Figure 4.11 shows the enlargement of the detected patterns and prediction period 

of time in Figure 4.10.  From Figure 4.11, it can be seen that once the pattern was 
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detected, the prediction point was found by the improved TSDM method.  However, 

some results of interest should be noted.  First, the patterns and the prediction events are 

overlap.  Second, the first prediction point is a effective prediction point, meaning the 

improved TSDM method can provide warning information for sludge bulking problems.  

II. SVI Test of the Data Combination B for Battery B 
 

Like the test of data combination A, the embedding dimension is calculated as 

three in combination B.  Still, no large temporal pattern cluster was found by the 

improved TSDM method.  So Q is set as 2.  Table 4.21 lists the results of the training 

process for Q = 2.  The improved TSDM method with Q = 2 found four large temporal 

pattern clusters that can effectively be considered a single large pattern cluster.   

Table 4.21: Temporal Pattern Clusters of the Training Data for Battery B for Data 
Combination B with Q =2 

Cluster	  
No.	   Cluster	  Center	   Radius	   Cluster	  Size	  

1	   222.0011	   190.0000	   52.4163	   86	  
2	   222.0000	   189.9844	   52.0768	   86	  
3	   301.0000	   243.0000	   0.2000	   1	  
4	   243.0000	   222.0000	   0.2000	   1	  
5	   222.0000	   189.0897	   52.3449	   86	  
6	   222.0000	   189.2123	   52.3090	   86	  
7	   203.0000	   163.0000	   0.2000	   1	  
8	   227.0000	   212.0000	   0.2000	   1	  
9	   174.0000	   190.0000	   0.2000	   1	  
10	   221.0000	   233.0000	   0.2000	   1	  
11	   222.0000	   154.0000	   0.2000	   1	  
12	   188.0000	   152.0000	   0.2000	   1	  
13	   204.0000	   345.0000	   0.2000	   1	  
14	   280.0000	   203.0000	   0.2000	   1	  
15	   212.0000	   181.0000	   0.2000	   1	  

Testing results are shown in Table 4.22 and Figure 4.12.  Figure 4.13 shows an 

enlargement of the pattern and prediction period of time in Figure 4.12.  From Figure 
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4.13, it can be seen there are two sludge bulking periods, day 262 - 270 and day 320 - 330.  

Both sludge bulking periods were detected by the improved TSDM method, so the 

accuracy percentage is 100% which is a very high value.  However, it should be noted 

that several prediction events in both periods are false positive predictions.  From the 

prediction point of view, these false positive prediction points are not useful, and the 

correct percentage is 35.71%.  But from the WWTP operator point of view, these false 

positive points can provide warning information for the impending sludge bulking, 

considering they also have high values near to the event line.  This warning information 

may allow both sludge bulking periods to be prevented by the improved TSDM method. 

Table 4.22: Testing Result of Battery B in 2007 with Q = 2 

Testing 
Year 

Total 
number of 

events 

Number of 
detected 
patterns 

Correct 
predictions 

Correct 
Percentage 

Accuracy 
percentage 

2007 10 28 10 35.71% 100% 
 

 
Figure 4.12: Testing Result of SVI in 2007 for Battery B with Q = 2 
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Figure 4.13: Pattern Plot for Testing Result of SVI in 2007 for Battery B with Q = 2 

III. SVI Test of Data Combination C for Battery B 

Again, the improved TSDM method cannot yield a good result with Q = 3, so Q is 

set to 2.  Table 4.23 lists the results of the training process.  Again the four large temporal 

pattern clusters can effectively be considered a single large pattern cluster. 

Table 4.23: Temporal Pattern Clusters of the Training Data for Battery B  
In Data Combination C with Q = 2  

Cluster 
No. Cluster Center Radius Cluster 

Size 

1 221.2982 188 51.0512 99 
2 222 187.9883 51.3325 100 
3 301 243 0.2 1 
4 243 222 0.2 1 
5 203 163 0.2 1 
6 227 212 0.2 1 
7 221.9990 188 51.3031 100 
8 221.6069 188 51.2184 99 
9 174 190 0.2 1 

10 221 233 0.2 1 
11 222 154 0.2 1 
12 188 152 0.2 1 
13 204 345 0.2 1 
14 280 203 0.2 1 
15 212 181 0.2 1 
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Table 4.24 and Figure 4.14 show the test result of SVI in 2008.  Figure 4.15 

shows an enlargement of pattern and prediction period of time in Figure 4.14.  It should 

be noted that there are several prediction points before the sludge bulking event.  

Although they are false positive predictions, they do provide warning information that 

could prevent the sludge bulking before it happens.   

Table 4. 24: Testing Result of Battery B in 2008 with Q = 2 

Testing 
Year 

Total 
number 

of 
events 

Number of 
detected 
patterns 

Correct 
predictions 

Correct 
Percentage 

Accuracy 
percentage 

2008 8 19 8 42.21% 100% 
 

 
Figure 4.14: Testing Result of SVI in 2008 for Battery B with Q = 2 
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Figure 4.15: Pattern Plot for Testing Result of SVI in 2008 for Battery B with Q = 2 
 

IV. SVI Test of Data Combination D for Battery B 

 
Table 4.25 lists the results of the training process.  Again the four large temporal 

pattern clusters can be effectively considered as a single large pattern cluster.  Table 4.26 

and Figure 4.16 show the testing results of SVI in 2009.  Figure 4.17 shows an 

enlargement of the pattern and two prediction periods of time in Figure 4.16.  The first 

sludge bulking period from day 100 to day 110 can be effectively prevented by the 

warning information from Figure 4.17.  But the second sludge bulking period cannot be 

prevented because the second point of the first pattern is already higher than 150 mL/g. 
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Table 4.25: Temporal Pattern Clusters of Training Data in  
Data Combination D for Battery B with Q =2  

Cluster 
No. Cluster Center Radius Cluster 

Size 

1 221.0000 187.3783 50.4337 105 
2 221.0000 187.0016 50.4361 107 
3 301.0000 243.0000 0.2000 1 
4 243.0000 222.0000 0.2000 1 
5 203.0000 163.0000 0.2000 1 
6 227.0000 212.0000 0.2000 1 
7 221.2012 187.0000 50.4990 106 
8 221.0000 186.9829 50.6703 111 
9 174.0000 190.0000 0.2000 1 
10 221.0000 233.0000 0.2000 1 
11 222.0000 154.0000 0.2000 1 
12 188.0000 152.0000 0.2000 1 
13 204.0000 345.0000 0.2000 1 
14 280.0000 203.0000 0.2000 1 
15 212.0000 181.0000 0.2000 1 

 
Table 4.26: Testing Result of Battery B in 2009 with Q = 2 

Testing 
Year 

Total 
number 

of 
events 

Number of 
detected 
patterns 

Correct 
predictions 

Correct 
Percentage 

Accuracy 
percentage 

2009 5 23 4 17.39% 80% 
 

 
Figure 4.16: Testing Result of SVI in 2009 for Battery B with Q = 2 
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Figure 4.17: Pattern Plot for Testing Result of SVI in 2009 for Battery B with Q = 2 

4.4.2. Results of SVI Test for Battery A 

Table 4.27 shows the initial parameters for the improved TSDM method applied 

to data for Battery A.  The initial parameters are same as the test of Battery B except the 

embedding dimension was set to Q = 2 which yields better results than Q = 3.  
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Table 4.27: Initial Parameters  

Parameter Value 
Embedding dimension- Q 2 

Time delay τ 1 day 
Training Procedure Two step optimization algorithm 

Cluster radius enlarge 
ratio 2.1 

Three different data combination tests are performed: (A) Training set: 2002 to 

2005, Testing set: 2006; (B) Training set: 2002 to 2006, Testing set: 2007; (C) Training 

set: 2002 to 2007, Testing set: 2008.  No sludge bulking events occurred in 2009 (Table 

4.13) and no testing process can be performed for 2009.  Figures 4.18, 4.20, and 4.22 and 

Table 4.28 show the testing results for three data combination tests.  It can be seen that 

the sludge bulking events can be effectively detected by the improved TSDM method. 

Also, from Figures 4.19, 4.2,1 and 4.23, it can be seen that warning information can be 

provided by the improved TSDM method in 2007 and 2008, but not in 2006.  From the 

prevention point of view, the sludge bulking periods in 2007 and 2008 can be effectively 

prevented using the results of the improved TSDM method. 

 
Figure 4.18: Testing Result of Battery A in 2006 with Q = 2 
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Figure 4.19: Pattern Plot for Testing Result of SVI in 2006 for Battery A with Q = 2 

 

 
Figure 4.20: Testing Result of Battery A in 2007 with Q = 2 
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Figure 4.21: Pattern Plot for Testing Result of SVI in 2007 for Battery A with Q = 2 

 

 
Figure 4.22: Testing Result of Battery A in 2008 with Q = 2 
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Figure 4.23: Pattern Plot for Testing Result of SVI in 2008 for Battery A with Q = 2 

 
Table 4.28: Testing Result of SVI for Battery A with Q = 2 

Training set 
data 

Testing 
Year 

Total 
number of 

events 

Number of 
detected 
patterns 

Correct 
predictions 

Correct 
Percentage 

Accuracy 
percentage 

2002-2005 2006 3 3 2 66.67% 66.67% 
2002-2006 2007 4 13 4 30.77% 100% 
2002-2007 2008 1 17 1 5.88% 100% 

4.4.3. Results of SVI Test for Battery C 

The initial parameters of the improved TSDM method are same as in Table 4.27. 

Two different data combination tests are performed: (A) Training set: 2002 to 2005, 

Testing set: 2006; (B) Training set: 2002 to 2007, Testing set: 2008.  No sludge bulking 

event occurred in 2007 and 2009 (Table 4.13).  Figures 4.24 and 4.25 and Table 4.29 

show the testing results for two data combination tests.  Unfortunately, no prediction 

point is found by the improved TSDM method for Battery C as shown in Figures 4.24 

and 4.25.  
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Figure 4.24: Testing Result of Battery C in 2006 with Q = 2 

 

 
Figure 4.25: Testing Result of Battery C in 2008, Q = 2 

 
Table 4. 29: Testing Result of SVI for Battery C, Q = 2 

Training 
set data 

Testing 
Year 

Total 
number 

of 
events 

Number 
of 

detected 
patterns 

Correct 
predictions 

Correct 
Percentage 

Accuracy 
percentage 

2002-
2005 2006 3 0 0 0% 0% 

2002-
2007 2008 8 0 0 0% 0% 
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I. Method Performance Improvement for Testing of Battery C 

According to Section 4.3, if the testing results are not acceptable, the analyst 

should consider reducing the embedding dimension, Q, to get better testing results.  In the 

previous testing for Battery C, Q is 2, which cannot be reduced any further.   

Another approach is to reduce the event value to enlarge the number of temporal 

pattern points in the training process.  So the event value is set to 120 mL/g, and then the 

improved TSDM method was rerun.  Figures 4.26 to 4.29 and Table 4.28 show the results 

of the improvement approach.  From Figures 4.26 to 4.29, it can be seen that the 

prediction results are better after reducing the event value to 120 mL/g.  Meanwhile, the 

accuracy percentage gets higher for both testing years of 2006 and 2008.  Even when the 

event value is set to 120 mL/g instead of 150 mL/g, it does have a possible useful 

warning effect for sludge bulking problems for the WWTP.  Also, the sludge bulking 

period in test year 2006 and 2008 can be prevented because the TSDM method can 

provide warning information because of the high false positive prediction points before 

the occurrence of sludge bulking. 

 
Figure 4.26: Testing Result of Battery C in 2006 with Q = 2 and  

event value = 120 mL/g 
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Figure 4.27: Pattern Plot for Testing Result of SVI in 2006 for Battery C  

with Q = 2 and event value = 120 mL/g 
 

 
Figure 4.28: Testing Result of Battery C in 2008 with Q = 2 and  

event value = 120 mL/g 
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Figure 4.29: Pattern Plot for Testing Result of SVI in 2008 for Battery C with Q = 2 

and event value = 120 mL/g 
 

Table 4.30: Improved Testing Results of Battery C with event value = 120 mL/g 

Training 
set data 

Testing 
Year 

Total 
number 

of events 

Number of 
detected 
patterns 

Correct 
predictions 

Correct 
Percentage 

Accuracy 
percentage 

2002-
2005 2006 4 27 3 11.11% 75% 

2002-
2007 2008 25 56 25 46.64% 100% 

4.5. Discussion and Conclusions 

From the results presented in this chapter, it can be concluded that the improved 

Time Series Data Mining method can be applied to the sludge bulking problem for 

WWTPs.  However, the results do not mean that the improved TSDM method can be 

applied to all data directly.  Several aspects of the TSDM method should be considered 

and modified during the process of the actual application of the TSDM method to get the 

best results. 

First, the embedding dimension, Q, must be carefully determined.   From the 
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synthetic data test, the Q value can be calculated by the false nearest neighbor method (Q 

= 7), and the TSDM method can determine training temporal pattern clusters and 

prediction results using the calculated Q.  But in the SVI data test, the calculated Q = 3 

did not yield good results.  So a modification for Q was required.  From the training and 

testing results after reducing Q, better results could be obtained.  The accuracy 

percentage was as high as 100%, which is a very high quality prediction accuracy 

percentage.     

Second, the radius enlarge ratio for the temporal pattern clusters must also be 

carefully selected.  From the analysis of the training process for the synthetic data, it can 

be seen that the enlarge ratio is crucial for the accuracy of the testing process.  A large 

enlarge ratio will lead to a lower correct percentage, and a small enlarge ratio will lead to 

inadequate cluster sizes.  So the enlarge ratio should be determined by several tests to 

generate a balanced situation.   

 Third, the data applied in the method must include a sufficient number of events 

for training purposes.  From results presented in this chapter, it can be seen that the test of 

the synthetic and the SVI data could be acceptable.  However, for the ammonia data test, 

even when the embedding dimension, Q, and enlarge ratio are modified, acceptable result 

could not be obtained.  Another approach to improve the results is to lower the events 

value, which is shown as an example in the testing process of the SVI data of Battery C.  

However, it should be noted that the event value for the ammonia data is set to 2 mg/L, 

which is already a value lower than the permit limit of the WWTP.  It is not meaningful if 

the event value of ammonia is set smaller than 2 mg/L.  So the only explanation is the 

ammonia data are too chaotic for the improved TSDM method to yield useful results 
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when the event value is set to 2 mg/L.   

In the meantime, warning information for the detection and prevention of sludge 

bulking periods is also a notable result of the improved TSDM method.  As previously 

discussed, detecting the temporal pattern before the first point of the sludge bulking 

period is very important, because the pattern can provide warning information to the 

WWTP operator.  It should be noted that not all sludge bulking periods for 3 Batteries are 

effectively predicted or indicated by pattern identification.  In test year 2006 for Batteries 

A and C, the improved TSDM method failed to provide warning information for the 

sludge bulking event, because the SVI value has a sudden jump to the event line.  For 

instance, for Battery A in test year 2006, the sludge bulking event happened with a 

sudden jump in the SVI value from 130 to 200 mL/g.  Such a sudden jump in the SVI 

value cannot be detected by the improved TSDM method because no such jump 

happened previously in the training data for the improved TSDM method to learn. 

Overall, the improved TSDM method can be applied to the real-world WWTP 

data.  Because of the dynamic features of the real-world data, the components of the 

improved TSDM method should be modified as necessary to get good results.  The short 

coming of the improved TSDM method is that an event can only be predicted by a 

completed pattern.  From previous analysis, if the final point of a pattern is higher than 

the event value, the TSDM method fails to provide warning information to the WWTP 

operator.  The HMMs method is introduced in next chapter, and it does not need a 

completed pattern to predict an event.  
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CHAPTER 5 ANALYSIS AND DETECTION OF SLUDGE BULKING 
PROBLEMS USING THE HIDDEN MARKOV MODELS (HMMs) METHOD 
 
 

The principles and the general process of Hidden Markov Models (HMMs) 

method were described in Chapter 3.  This chapter shows the results of the application of 

the HMMs method to the SVI data, and a discussion of these results also is made.  As 

previously mentioned, some important parameters of the HMMs method should be set 

and modified before and during the process of training the HMMs to the SVI data.  The 

determination of these parameters is given in each section.  

5.1. Introduction 

 
As previously mentioned in Table 4.13, Battery D has the fewest sludge bulking 

events, and it does not have any sludge bulking problems from 2006 to 2009.  Thus, the 

SVI data for Battery D will not be tested for the HMMs method.  So the HMMs method 

is applied to the SVI data of Batteries A, B, and C.   

Like the improved TSDM method, the HMMs method also needs to learn the 

patterns and events in the training data set.  So the SVI data of 2005 is selected to be 

included into the training data set for each battery.  Also, if no sludge bulking event 

occurred in a certain year, the SVI data of this year will not be tested for sludge bulking, 

but the SVI data of this year will still be added into the training data set.   

Before the testing process, several important components of the HMMs method 

should be considered: i.e. the length of pattern and the initial value for each state.  

 The length of pattern can be determined by the false nearest neighbor method as 

in the improved TSDM method.  For example, the length of pattern is calculated as three 

for the SVI data in Battery A.  At the same time, the normal state and event state should 
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be considered.  So there are five states for the HMMs method. State 1 is the normal state, 

which means normal values for the SVI data.  States 2, 3, and 4 are the pattern states; 

they demonstrate the pattern values for the SVI data.  State 5 is the event state data which 

represents an event value.   

The initial values for each state can be determined by the analyst.  As previously 

mentioned, the reason why these values need to be set is sometimes the thresholds found 

by the Mixture of Gaussian function are not reasonable, e.g., maybe the SVI value of the 

event state is less than that for the normal state.  So the analyst needs to check the values 

and reset them if they are unreasonable.  In most cases, the initial values need to be reset, 

and they have been set to [80, 120, 120, 120, 200] which means [normal state value, 

pattern state point 1 value, pattern state point 2 value, pattern state point 3 value, event 

state].  These values were chosen carefully by the author based on the different tests for 

many times.  Besides, the values for the normal and pattern states are reasonable, under 

normal operations most SVI values are around 80 mL/g and in the lead in to sludge 

bulking (pattern states) SVI value are about 120 mL/g.  Although the initial value of the 

event state is higher than 150 mL/g, the HMMs method will adjust the event state value 

in the testing process.  

5.2. Analysis of Test Results for Battery A  
 
 
From Table 4.13, it can be seen that no sludge bulking event happened in 2009.  

Three tests will be performed for Battery A: first, training set 2002 to 2005, testing set 

2006; second, training set 2002 to 2006, testing set 2007; and third, training set 2002 to 

2007, testing set 2008.   
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5.2.1. Training set: 2002 to 2005; Testing set 2006 

First, the length of pattern and initial value for each state need to be set. The 

length of the pattern state is calculated as three, so the total number of states is five. The 

initial value needs to be reset, so they are [80, 120, 120, 120, 200]. 

The transition probability matrix estimated in the training process is shown in Eq.  

5.1.  Note that the probability of a jump from normal state to the first pattern state is 

0.0179 which is not a high probability.  However, if the first pattern state is detected, the 

probabilities for continuing through the pattern states are 0.9998 and 0.9379, these are 

high values.  Last, if the final pattern state occurs, the probability at a jump from pattern 

states to the event state is 0.9599.  Combining the probabilities there is a 90.01% chance 

that once the first pattern state is detected the process will continue on to the event state.  

This means that the occurrence of the pattern state might comprise very valuable warning 

information for WWTP operators. 

 

0.9821 0.0179 0 0 0
0.0002 0 0.9998 0 0

ˆ 0.0621 0 0 0.9379 0
0.0401 0 0 0 0.9599
1 0 0 0 0

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

P  (5.1) 

 
Figure 5.1 shows the testing result of 2006 for Battery A.  In Figure 5.1, the red 

line is the prediction line.  It can be seen that the red line is straight when the HMMs 

method considered these values as normal state points.  There was a sudden jump when 

the HMMs method detected the pattern and event state points. 
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Figure 5.1: Testing result of 2006 for Battery A 

  Figure 5.2 demonstrates the pattern state points and event state point in testing 

data set of 2006.  From Figure 5.2, it can be seen the sludge bulking event can be 

predicted, and the pattern points are detected before the event point.  However, it should 

be noted that the values of the latter two pattern state points are higher than 150 mL/g.  

From the prediction point of view, the first of the pattern state points (which is less than 

150 mL/g) can be detected by the HMMs method, indicating the warning ability of the 

HMMs method.  From the WWTP operator point of view, if the HMMs method can find 

even first pattern state value, it can make the WWTP operator aware that there will be a 

high chance (90% probability for this battery) that the sludge bulking problem will 

happen according to the probabilities listed in the transition probability matrix.   For the 

test year of 2006, the sludge bulking problem is detected effectively. 
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Figure 5.2: Predicted Pattern and Event Points in 2006 for Battery A 

5.2.2. Training set: 2002 to 2006; Testing set 2007 

In this data set, the length for the pattern states and initial values for each state are 

same as those in Section 5.2.1.  The length of pattern state is three, and initial value for 

each state was set to [80, 120, 120, 120, 200]. 

Eq. 5.2 lists the transition probability matrix estimated in the training process.  

The probability of a jump from normal state to the pattern state is 0.0162, which is not a 

high value.  But the probabilities of a jump to the next pattern states and the event state 

are very high.  Combining the probabilities there is a 91.7% chance that once the first 

pattern state detected the process will continue on to the event state. 

 

0.9838 0.0162 0 0 0
0.0006 0 0.9994 0 0

ˆ 0.0492 0 0 0.9508 0
0.0352 0 0 0 0.9648
1 0 0 0 0

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

P  (5.2) 

Figure 5.3 shows the testing result of 2007 for Battery A.  Figure 5.4 
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demonstrates the pattern state points and event state point in the testing data set of 2007.  

From Figure 5.3, it can be seen that the HMMs method made several event detections.  

These predicted events are concentrated on the period that the sludge bulking problem 

happened.  Three events in Figure 5.4 were predicted by the HMMs method.  The first 

and third ones are not true sludge bulking events.  Only the second one is a true sludge 

bulking event.  Technically, the prediction accuracy percentage is 33.33%.  However, 

from the sludge bulking prevention point of view of the operator of the WWTP, the SVI 

data from day 260 to day 270 can be considered as a single long term sludge bulking 

event.  For this reason, although the first event prediction is not correct, the beginning of 

the long term sludge bulking is predicted successfully by this first event.  

 
Figure 5.3: Testing result of 2007for Battery A 
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Figure 5.4: Predicted Pattern and Event Points in 2007 for Battery A 

5.2.3. Training set: 2002 to 2007; Testing set 2008 

The length of patterns and initial values for each state again were set to the same 

values as per Section 5.2.1. 

The transition probability matrix estimated during the training set process is 

shown in Eq. 5.3.  The probability of a jump from the normal state to the first pattern 

state is 0.0171, which is not a high value.  But the probabilities of a jump to the next 

pattern states and the event state are very high.  Combining the probabilities there is a 

90.7% chance that once the first pattern state is detected the process will continue on to 

the event state. 

 

0.9829 0.0171 0 0 0
0.0004 0 0.9997 0 0

ˆ 0.0349 0 0 0.9651 0
0.0597 0 0 0 0.9403
1 0 0 0 0

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

P  (5.3) 

Figure 5.5 shows the testing result of 2008 for Battery A.  Figure 5.6 
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demonstrates the pattern state points and event state point in the testing data set of 2008.  

From Figure 5.5, it can be clearly seen that the sludge bulking event around day 150 can 

be detected by the HMMs method.  Also, from Figure 5.6, it should be noted that the 

sludge bulking event around day 150 is predicted as a pattern state by the HMMs method.  

This means these three detected sludge bulking events are false positive prediction points.  

However, from the sludge bulking prevention point of view, the first false positive event 

happened before the real sludge bulking event, which means the long term sludge bulking 

might be prevented because this result can warn the WWTP operator to check the 

operation condition of the plant and give a warning of potential sludge bulking.   

 
Figure 5.5: Testing result of 2008 for Battery A 
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Figure 5.6: Detected Pattern and Predicted Event Points in 2008 for Battery A 

5.3. Analysis of Test Results for Battery B  
 
 
Four tests were performed for Battery B: first, the training set is from 2002 to 

2005, the testing set is 2006; second, the training set is from 2002 to 2006, the testing set 

is 2007; third, the training set is from 2002 to 2007, the testing set is 2008; and last, the 

training set is from 2002 to 2008, the testing set is 2009. 

5.3.1. Training data set: 2002 to 2005; Testing data set 2006 
 
 
First, the length of pattern and initial value for each state need to be set. The 

length of pattern state is calculated as three, so the total number of states is five. The 

initial value for each state needs to be reset, so they are set to [80, 120, 120, 120, 200]. 

The transition probability matrix that estimated during the training process is 

shown in Eq. 5.4.  The probability of a jump from normal state to pattern state is 0.0238, 

which is not a high value.  It demonstrates that most of the SVI data are normal state 

points.  But the probabilities of a jump to the next pattern states and the event state are 
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very high.  Combining the probabilities there is an 80% chance that once the first pattern 

state is detected the process will continue on to the event state. 

 

0.9762 0.0238 0 0 0
0.0028 0 0.9972 0 0

ˆ 0.0106 0 0 0.9894 0
0.1890 0 0 0 0.8110
1 0 0 0 0

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

P  (5.4) 

 
Figure 5.7 shows the testing result of 2006 for Battery B, and Figure 5.8 shows 

the pattern state points and event state point in the testing data set of 2006.  Figure 5.7 

demonstrates the HMMs method is capable to detect the patterns for the sludge bulking 

event, and make a prediction for the highest SVI value.  However, the prediction result 

has a problem in that the first detected pattern state point on day 149 is already a sludge 

bulking event prior to the event.  The HMMs method failed to detect the patterns and 

sludge bulking event before the event occurred.  But it should be noted that the cause of 

this problem is the same as found in the Section 5.2.1, that there is a sudden jump in the 

SVI value from day 148 to 149.  So it can be concluded that the HMMs method lacks the 

capability to detect the states of a sudden jump values in SVI values to the event state. 
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Figure 5.7: Testing result of 2006 for Battery B 

 

 
Figure 5.8: Predicted Pattern and Event Points in 2006 for Battery B 

5.3.2. Training set: 2002 to 2006; Testing set 2007 

First, the length of pattern and initial value for each state were set to the same 

values as in Section 5.3.1.  The initial values for each state need to be reset, so they are 

[80, 120, 120, 120, 200]. 
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The transition probability matrix estimated during the training process is shown in 

Eq. 5.5.  The probability of a jump from normal state to pattern state is 0.0232, which is 

not a high value.  This demonstrates that most of the SVI data are normal state points.  

But the probabilities of a jump to the next pattern states and the event state are very high.  

Combining the probabilities there is an 86.14% chance that once the first pattern state is 

detected the process will continue on to the event state.  

 

0.9768 0.0232 0 0 0
0.0040 0 0.9960 0 0

ˆ 0.0079 0 0 0.9921 0
0.1282 0 0 0 0.8718
1 0 0 0 0

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

P  (5.5) 

Figure 5.9 shows the testing result of 2007 for Battery B, and Figure 5.10 shows 

the pattern state points and event state points in the testing data set of 2007.  From 

Figures 5.9 and 5.10, it can be seen that the HMMs method made several sludge bulking 

event predictions.   Two long term sludge bulking events were predicted by the HMMs 

method as shown in Figure 5.10.  Technically, the prediction accuracy percentage is 

33.33%.  However, from the sludge bulking prevention point of view of the WWTP 

operator, both two long term sludge bulking events can be predicted.  For this reason, 

although the first event prediction is not correct, the beginning of the long term sludge 

bulking is predicted successfully by this first false positive event. 
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Figure 5.9: Testing result of 2007 for Battery B 

 

 

 
Figure 5.10: Predicted Pattern and Event Points in 2007 for Battery B 
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5.3.3. Training set: 2002 to 2007; Testing set 2008 

First, the length of pattern and initial value for each state were set to the same 

values as in Section 5.3.1. 

The transition probability matrix estimated during the training process is shown in 

Eq. 5.6.  The probability of a jump from normal state to pattern states is 0.0224, which is 

not a high value, and this also demonstrates that most of the SVI data are normal state 

points.  The probabilities of a jump to the next pattern states and the event state are very 

high.  It means if the HMMs method detects the first point of the pattern states, there is a 

high probability (88.67%) that sludge bulking (event state) will occur.   

 

0.9776 0.0224 0 0 0
0.0016 0 0.9984 0 0

ˆ 0.0087 0 0 0.9913 0
0.1039 0 0 0 0.8961
1 0 0 0 0

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

P  (5.6) 

Figure 5.11 shows the testing result of 2008 for Battery B.  Figure 5.12 

demonstrates the pattern state points and the event state point in the testing data set of 

2008.  The sludge bulking events can be detected by the HMMs method.  The first 

prediction point is a false positive result. However, in the next two days, a sludge bulking 

event occurred after the first false positive result.  So this false positive result could send 

warning information to the WWTP operator to check the plant operation systems to avoid 

sludge bulking problems. 
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Figure 5.11: Testing result of 2008 for Battery B 

 

 
Figure 5.12: Predicted Pattern and Event Points in 2008 for Battery B 

5.3.4. Training set: 2002 to 2008; Testing set 2009 

First, the length of patterns and initial values for each state were set to the same 

values as in Section 5.3.1. 
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The transition probability matrix estimated during the training process is shown in 

Eq. 5.7.  The probability of a jump from the normal state to the first pattern state is 

0.0231, which is not a high value.  This also reveals that most of the SVI data are normal 

state points.  The probabilities of a jump to the next pattern states and the event state are 

very high.  This means if the HMMs method detects the first point of the pattern state, 

there is a high probability (91.4%) that sludge bulking (event state) will occur.   

 

0.9769 0.0231 0 0 0
0.0003 0 0.9997 0 0

ˆ 0.0039 0 0 0.9961 0
0.0826 0 0 0 0.9174
1 0 0 0 0

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

P  (5.7) 

Figure 5.13 shows the testing result of 2008 for Battery B.  Figure 5.14 

demonstrates the pattern state points and event state point in the testing data set of 2009.  

From Figures 5.13 and 5.14, it can be seen that the sludge bulking events can be detected 

by the HMMs method.  However, as previously discussed, several false positive points 

were detected before the sludge bulking event occurred, these false positive points still 

can warn the WWTP operator of an impending sludge bulking will happen considering 

these false positive prediction points are nearly to 150 mL/g.  However, there are several 

false positive points after the highest SVI value, and these values are not useful for the 

WWTP operator. 
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Figure 5.13: Testing result of 2009 for Battery B 

 

 

 
Figure 5.14: Predicted Pattern and Event Points in 2009 for Battery B 
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5.4. Analysis of Test Results for Battery C  

For Battery C, from Table 4.13, sludge bulking problems only happened in 2006 

and 2008.  In this section, only the SVI data for 2006 and 2008 were tested.   

5.4.1. Training set: 2002 to 2005; Testing set 2006 

First, the length of pattern and initial values for each state need to be set. The 

length of the pattern state is calculated as 3, so the total number of states is 5. The initial 

values need to be reset, so they were set to [80, 120, 120, 120, 200]. 

The transition probability matrix estimated during the training process is shown in 

Eq. 5.8.  The probability of a jump from normal state to the first pattern state is 0.0173 

which means most of the SVI data stay in the normal state.  But the probabilities of a 

jump to the next pattern states and the event state are very high.   Combining the 

probabilities there is a 90.48% chance that once the first pattern state is detected the 

process will continue on to the event state. 

 

0.9827 0.0173 0 0 0
0.0037 0 0.9963 0 0

ˆ 0.0376 0 0 0.9624 0
0.0563 0 0 0 0.9437
1 0 0 0 0

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

P  (5.8) 

Figure 5.15 shows the testing result of 2006 for Battery C.  Figure 5.16 

demonstrates the pattern state points and event state point in the testing data set of 2006.  

From Figures 5.15 and 5.16, it can be seen that the HMMs method can predict the highest 

SVI value which is a sludge bulking event, but two event level SVI values are considered 

as pattern state points.  The HMMs method detected the first pattern state point 

effectively, that reveals there is a high possibility for sludge bulking problems to occur.  
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So the HMMs method can warn the WWTP operator of possible impending sludge 

bulking.  

 
Figure 5.15: Testing result of 2006 for Battery C 

 

 
Figure 5.16: Predicted Pattern and Event Points in 2006 for Battery C 

5.4.2. Training set: 2002 to 2007; Testing set 2008 

First, the length of pattern and initial value for each state were set to the same 
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values as in Section 5.4.1.  

The transition probability matrix estimated during the training set process is 

shown in Eq. 5.9.  As previously mentioned, the probability of a jump from normal state 

to pattern state is 0.0194 which means most of the SVI data stay in the normal state.  But 

the probabilities of a jump to next pattern states and the event state are very high.  

Combining the probabilities there is a 96.7% probability that once the first pattern state 

detected the process will continue on to the event state. 

 

0.9806 0.0194 0 0 0
0.0035 0 0.9965 0 0

ˆ 0.0053 0 0 0.9947 0
0.0249 0 0 0 0.9751
1 0 0 0 0

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

P  (5.9) 

Figure 5.17 shows the testing result of 2008 for Battery C.  Figure 5.18 

demonstrates the pattern state points and event state point in the testing data set of 2008.  

From Figure 5.17, it can be seen that the HMMs method can predict the sludge bulking 

event in 2008 for Battery C.  In Figure 5.18, it can be seen that there are three false 

positive prediction points before the sludge bulking occurred.  From the prediction 

accuracy point of view, these false positive predictions are not useful.  However, from the 

WWTP operator point of view, since the HMMs method kept detecting pattern states and 

event states points and these state points are all high SVI values, the predictions should 

make the operator aware that sludge bulking may be impending. 
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Figure 5.17: Testing result of 2008 for Battery C 

 

 
Figure 5.18: Predicted Pattern and Event Points in 2008 for Battery C 

5.5. Discussion 

From the results for the three batteries, it can be concluded that the HMMs 



93 
 

method can detect the patterns and predict the events for sludge bulking.  However, from 

the testing results, several issues should be noticed. 

First, for the SVI data of 2006 for each battery, the HMMs method only detect the 

highest SVI value, and considered the other events (SVI > 150 mL/g) as pattern states.  

All three batteries have the same result.  However, by looking at the SVI data in 2006 for 

the three batteries, it should be noted that there was a sudden jump of the SVI data.  For 

instance, the SVI data of day 157 in Battery A was 122 mL/g, and the SVI data of day 

158 is 203 mL/g.  There was as increase of 66.39% from day 157 to day 158 for the SVI 

data.  The HMMs method only can detect the event after a complete pattern, so that’s the 

reason the HMMs method detected the SVI data of day 158 as a pattern state.  Meanwhile, 

it should be mentioned that such a sudden jump only happened in SVI data once in all 8 

years of SVI data for each battery.   

Second, sometimes the HMMs method cannot detect the event state points.  The 

probability of the event state in the transition probability matrix is set to 0, because the 

transition probability matrix did not converge for the event state.  Also, it was found that 

the results of the HMMs method are sensitive to the initial value for each state which 

needs to be set before the testing process.  For example, for the testing process of Battery 

B in 2008, at first the transition probability matrix did not converge on the probability for 

the event state as shown in the following equation. 

 

0.9375 0.0625 0 0 0
0.0842 0 0.9158 0 0

ˆ 0.0165 0 0 0.9835 0
1 0 0 0 0
1 0 0 0 0

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

P  (5.10) 
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After modifying the initial value for the event state to 250 mL/g from 200mL/g and 

rerunning the HMMs method several times, the probability of the event state was found 

by the HMMs method as shown in Eqn. 5.6.  Such results reveal that the HMMs method 

is still a developing method, and these limitations need to be investigated in the future. 

Finally, this chapter focuses on the detection and prevention of the sludge bulking 

problem.  From the prediction accuracy point of view, the false positive event points 

yielded by the HMMs method are not useful, because they are all below 150 mL/g.  

However, from the sludge bulking prevention point of view, these points are meaningful 

and useful.  They are at a high SVI level, nearly to the sludge bulking event line of 150 

mL/g.  Those false positive points can send warning information to the WWTP operator.  

Also, even with the late prediction of event state, the detection of the first pattern state 

also can send warning information.  As previously discussed, once the first pattern state 

was detected, there was high probability (>80% in all cases, most >90%) the event state 

(sludge bulking) would be occured.  So the WWTP operator could apply some 

approaches to prevent the occurrence of sludge bulking if this warning information is 

received.  
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CHAPTER 6 ANALSIS FOR THE APPLICATION OF THE COMBINED 
METHOD OF HIDDEN MARKOV AND MULTINOMIAL LOGISTIC 
REGRESSION (MLR) MODEL  
 
 

In Chapter 4 and Chapter 5, the improved TSDM method and HMMs method 

were applied to find hidden patterns to detect the sludge bulking problem.  These two 

methods were applied to the SVI data itself.  It may be meaningful and useful if the 

sludge bulking problem can be detected or predicted using data on other wastewater 

quality parameters.  In the literature review in Chapter 2, it is discussed that some studies 

had discovered certain wastewater quality parameters might impact the sludge bulking 

problem.    

In this chapter, first some wastewater quality parameters that have previously 

been proposed to have more impact on the sludge bulking problem than other parameters 

are selected for analysis.  Second, the selected parameters and the SVI states data that 

obtained by the HMMs method are applied to build the multinomial logistic regression 

model.   The built multinomial logistic regression model is applied to predict the future 

SVI data pattern and event states using other wastewater quality parameters.  The 

performances of the combined method for different batteries are reported, and the results 

are presented and discussed from different aspects. 

6.1. Selection of Wastewater Quality Parameters 

 
In Chapter 2, some studies concluded that the following wastewater quality 

parameters have more impact on the sludge bulking problem than other parameters 

including  dissolved oxygen (Bhatla, 1967), pH and organic loadings (Yasuda, 1976), 

food to microorganism (F/M) ratio, and soluble biochemical oxygen demand (BOD) 
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(Metcalf & Eddy, 2003).  For the data available from the NSWRP, there are four types of 

data:  preliminary and solids data (total wastewater flow, air flow, total solids, etc.), 

treatment operational data for each battery (return flow, MLSS, etc.), nitrogen analysis 

data, and lab analysis data.  Each of these data includes more than ten kinds of data, so 

more than 40 kinds of data are available.  It is better to select chemical and physical 

wastewater quality parameters that are related to the wastewater treatment process.  The 

parameters selected to test in this thesis are: the F/M ratio, sludge retention time (SRT), 

detention time, temperature, effluent pH, RSSS, MLSS, influent NH3, effluent NH3, 

influent DO, effluent DO, and influent BOD. 

6.2. Preliminary Analysis of the SVI Data and Other Wastewater Quality 
Parameters 

 
 
6.2.1. Identification of Normal and Abnormal States for Other Wastewater Quality 

Parameters by the HMMs method 
 
 

Similar to the application of the HMMs method to the SVI data, the HMMs 

method is applied to find the normal state and abnormal state for other wastewater water 

quality parameters.  The normal state means the hidden state for the parameters when the 

sludge bulking does not happen; the abnormal state means the hidden state for the 

parameters when the sludge bulking happens.  State 1 represents the normal state, and 

state 2 represents the abnormal state.   

However, it is hard to define the threshold value of normal and abnormal states 

for every parameter.  First, there is no exact definition for the abnormal value for some 

parameters.  For example, no research has been done on the relationship of sludge 

bulking and ammonia.  Further the value range of ammonia when the sludge bulking 
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happens is unknown.  Second, for different wastewater treatment plants, the abnormal 

value for some parameters may vary.  For example, temperature and influent wastewater 

flow rate vary among different wastewater treatment plants.   

In this thesis, two criteria are used to determine the threshold value for normal 

and abnormal states: the first is the common knowledge and research studies in 

wastewater treatment technology; the second is the Mixture-Gaussian and EM algorithm 

functions in the HMMs method.  However, it should be noted that the second criterion is 

only used under the condition of the failure of the first criterion.         

After testing by the HMMs method, the proposed values for the normal state and 

the abnormal state for several wastewater quality parameters in Battery A are determined 

as listed in Table 6.1. 

Table 6.1: Proposed values of normal and abnormal state for some wastewater 
quality parameters in Battery A 

Parameters 
Threshold Value 

Normal State Abnormal State 
Influent Flow 85 MGD 55 MGD 

Influent Ammonia 8 mg/L 15 mg/L 

Effluent Ammonia 0.5 mg/L 2 mg/L 

F/M ratio 0.05 0.02 
BOD5 100 mg/L 140 mg/L 

Influent DO 8 mg/L 1 mg/L 
Effluent DO 8 mg/L 5 mg/L 

After the determination of the normal and abnormal states, the cross tabulation 

and the correlation function analysis for SVI states data and other wastewater quality 

parameters were analyzed. The goal is trying to find what parameters are highly 

correlated with the SVI data. 
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6.2.2. The Correlation Function and Cross-tabulation Analysis for Hidden States of 
the SVI and Other Parameters Data 

 
 

There are 5 states for the SVI data, state 1 represents the normal state, states 2 to 4 

represent the pattern states, and state 5 represents the event state.  There are two states for 

the other wastewater quality parameters, state 1 for the normal state, and state 2 for the 

abnormal state.  After the testing by the HMMs method, the cross-tabulation and the 

correlation analyses were performed for the hidden states of the SVI and other 

wastewater quality parameters as listed in Table 6.2.   

Table 6.2: Cross-tabulation and correlation analysis for the hidden states of the SVI 
and other parameters in Battery A from 2002 to 2009 

Parameter 
Cross-tabulation with SVI states Correlation  

State 1 2 3 4 5 R P 

F/M Ratio 
1 1 0 0 0 0 

0.0123 0.5072 
2 1899 166 166 166 524 

Detention 
Time, hr 

1 1013 32 38 43 197 
0.069 0.0002 

2 1088 81 75 70 285 

RSSS 
1 73 11 11 11 1 

0.0634 0.0006 
2 1639 227 227 227 495 

MLSS 
1 678 48 50 47 273 

-0.0311 0.0926 
2 1177 83 81 84 401 

Influent 
Ammonia, 

mg/L 

1 1888 139 141 142 492 
0.069 0.0002 

2 57 12 10 9 32 
Effluent 

Ammonia, 
mg/L  

1 122 11 10 9 1933 
0.0937 0 

2 12 3 4 5 813 
Influent 

DO, mg/L 
1 784 55 52 56 248 

0.0803 0 
2 910 148 151 147 371 

Effluent  
DO, mg/L 

1 854 111 111 114 465 
0.0195 0.2914 

2 569 128 128 125 317 
Influent 
BOD, 
mg/L 

1 1840 84 81 78 702 
0.0707 0.0001 

2 66 5 8 11 47 

It should be noted that these wastewater quality parameters were analyzed 
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separately.  As discussed in Chapter 5, the HMMs method has a stability problem which 

could cause the transition probability matrix to be different for different wastewater 

quality parameters tests and the classification of SVI data into different states may vary 

among HMM runs.  Hence, the number of values in states 1-5 vary in Table 6.2 for the 

comparison with the states of the other wastewater quality and operational parameters.  

From Table 6.2, for the cross tabulation analysis, it can be seen that no strong 

evidence shows which parameter has a strong correlation with the SVI states, and the 

data of the cross tabulation is very chaotic.  For example, in the normal state (state 1) for 

the SVI data, the HMMs method considered most of the influent ammonia at the same 

time as the normal state (1888 points).  But in the pattern states and event state for the 

SVI data, the HMMs method still considered most of the influent ammonia at the same 

time period as the normal state.  A similar problem can be seen from effluent ammonia 

and influent BOD.  It can be concluded that the results of the cross-tabulation analysis 

were not acceptable, and it did not provide useful information.  For the correlation 

function analysis, also no strong evidence could be found regarding parameter has a 

strong correlation with the SVI. The R-values of all parameters are less than 10%.  From 

the statistical point of view, these R-values are very low and unacceptable.  However, if 

the R-values are arranged from higher to lower, and the P-values (significance) are 

considered, some wastewater quality parameters were found to have higher correlation 

than others, such as detention time, effluent ammonia, influent ammonia, influent DO, 

and influent BOD.   

Due to the weak results of the foregoing analysis, a time delay was considered in 

the retesting of the cross-tabulation and the correlation function analyses.  Considering 
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the wastewater treatment process is a biological and chemical reaction process, it is 

possible that the other parameters will influence the SVI data with a time delay.  So a 

time delay was considered for the other wastewater quality parameters, such as 1, 2, 3, 4, 

5, 6, etc. days.  Then the cross-tabulation and the correlation function analysis were 

repeated. Unfortunately, the results with the time delay were not better than the result 

with no lag, and in some cases even worse. The cross-tabulation results were chaotic, and 

the R-values for the correlation function were no greater than 0.10.  So it can be 

concluded that a time lag is not an important consideration. 

6.2.3. The Correlation Function of Hidden States for Wastewater Quality 
Parameters and the SVI in 3 Conditions 

As previously mentioned, no parameter was found have a strong correlation with 

the SVI data.  However, during the previous analysis, the whole data set (SVI and other 

wastewater quality parameters) was used.  So the idea to only consider the data in the 

pattern states and event state for the SVI data and the other parameters was formulated.  

Three different conditions were set for data extraction for the pattern states and event 

states.  The entire data extraction process was performed by the HMMs method. 

Condition A: Pattern states and event state in the SVI data, parameter data for the 
same time 
 

The pattern states and event state for the SVI data first were found, and then the 

corresponding SVI data were extracted for the pattern states and event state.  Then the 

wastewater quality parameters data for the same time were extracted.  In this case two 

sets data are obtained and their length should be the same. 

Condition B: Event state in the SVI data, parameter data for the same time 

The event state for the SVI data first were found, then the corresponding SVI data 
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for the event state were extracted. After that, the parameter data were extracted for the 

same time.  These two data sets should have the same length. 

Condition C: Event state in the SVI data, parameter data for the same time with a 
time delay 
 

The procedure of this condition is the same as for condition 3; the difference is 

that a time delay is added. Different time delays were tried, from 1 to 20 days. Again, as 

previously mentioned, the time delay has little impact. For this reason, a time delay of 3 

was chosen for illustration in the following summary of results. 

I. Correlation function analysis for the 4 conditions 

After the extraction process for the four conditions, the correlation analysis was 

done as summarized in Table 6.3. 

Table 6.3: Correlation function analysis for three conditions in Battery A 
Correlation with SVI  

Condition 
F/M ratio Detention time Effluent NH3  

R P R P R P 
A -0.0034 0.9433 0.069 0.0324 0.1617 0 
B 0.0028 0.9796 0.1808 0.0109 0.233 0 

C, lag = 3 0.0423 0.1853 0.1674 0.3672 0.2635 0 

Condition 
Influent DO Effluent DO Influent BOD 
R P R P R P 

A -0.1258 0.002 -0.1604 0 0.0486 0.2452 
B -0.2602 0 -0.3231 0 0.0625 0.1003 

C, lag = 3 -0.1443 0.0001 -0.3277 0 0.0441 0.3012 

Condition 
Temp Effluent PH Influent NH3 

R P R P R P 
A 0.0611 0.0623 -0.0595 0.0894 0.0626 0.0085 
B 0.146 0.0002 -0.026 0.1656 0.2118 0.0033 

C, lag = 3 0.1447 0.0003 -0.0987 0.0013 0.1563 0.3386 

From Table 6.3, the R-values for the wastewater quality parameters are all no 

higher than 0.35.  From the statistical point of view, this is not a useful result.  However, 

if the R-values were checked for different conditions, it can be found that the R-value in 
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condition B is better than the others, that means the wastewater quality parameters data 

have stronger correlation with SVI event states data.  Such important numbers were 

underlined and bold in Table 6.3.  Meanwhile, considering the significance (P value), it 

should be noted that several parameters have higher statistical correlation than the others, 

such as influent DO, effluent DO, influent ammonia, effluent ammonia, and temperature. 

6.3. Analysis of the Combined Method for Batteries A, B and C 

Several categories of wastewater quality parameters are considered to have impact 

on the sludge bulking problem, according to the analysis in the last section.   From the 

HMMs method, the state of each SVI data can be obtained.  And there are five states for 

the SVI data: 1 for the normal state; 2, 3, and 4 for the pattern states; 5 for the event state.  

The training SVI states data and the training data of selected wastewater quality 

parameters are used as the training set to build the multinomial logistic regression (MLR) 

model.  Then the MLR model uses the test data of selected wastewater quality parameters 

to predict the probability of the SVI states.   

From Table 4.13 in Chapter 4, 2005 has more sludge bulking events than other 

years, so 2005 is still selected to be included into the training data set.   Battery B has 

more sludge bulking events than other batteries.  For this reason, the SVI data in Battery 

B was first studied in the test.  Then the tests for Batteries A and C are performed.  

Battery D will not be analyzed because o sludge bulking events happened from 2006 to 

2009 in Battery D.  The test is firstly performed using MATLAB to illustrate the result 

for each battery in different test years.  However, the MATLAB can only show the 

analysis output and do not give details of the MLR model.  So the SPSS was used to 

show the details of the MLR model of the test. 
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6.3.1. Analysis of Battery B Using MATLAB 

Four different data combination tests were performed: (A) Training set: 2002 to 

2005, Testing set: 2006; (B) Training set: 2002 to 2006, Testing set: 2007; (C) Training 

set: 2002 to 2007, Testing set: 2008; and (D) Training set: 2002 to 2008, Testing set: 

2009. 

I. Analysis of Data Combination A for Battery B 

Unlike the improved TSDM and HMMs methods, no initial parameter values 

need to be set before applying the MLR model in MATLAB.  The hidden state of each 

SVI data from 2002 to 2005 is obtained by the HMMs method.  Then the MLR model 

was built for the hidden states data and selected wastewater quality parameters data from 

2002 to 2005.  Once the model is built, the test data of wastewater quality parameters in 

2006 will be input to the model to calculate the future state data for each SVI value in 

2006. 

It should be noted that there are five states for the SVI data, one to five.  To better 

illustrate the predicted SVI data in the figure, each state value will be multiplied by 35.  

These new values are called simulated state SVI value.  So the new simulated state value 

for state 1 is 35 mL/g, for state 2 is 70 mL/g, for state 3 is 105 mL/g, for state 4 is 140 

mL/g, and for state 5 is 175 mL/g.  The simulated state SVI value for state 5 is larger than 

150 mL/g, which is an event value for the sludge bulking problem.  The simulated state 

SVI value for state 4 is 140 mL/g, which is nearly to 150 mL/g to arouse the attention of 

the operator of the WWTP to avoid the sludge bulking problem.  These simulated SVI 

values are listed in Table 6.4.  Figure 6.1 shows the test results of SVI in 2006 for Battery 

B by the combined method.  The red line is the simulated SVI data line, which is 

predicted by the multinomial logistic regression model in the combination method.  From 
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Figure 6.1, it is clear that the prediction result is not useful.  No sludge bulking problem 

was detected or warned.  Also, numerous false positive predictions are included in the 

result.     

Table 6. 4: Simulated SVI value for each state 

State Simulated SVI  value 
(mL/g)  

1 35 
2 70 
3 105 
4 140 
5 175 

 
Figure 6.1: Test Result of SVI in 2006 for Battery B 

II. Analysis of Data Combination B for Battery B 
 
The process is the same as in Section 6.3.1.1.  Figure 6.2 shows the test result for 

Battery B in 2007.  The first two predicted events are false positive events.  After that, the 

predicted events on day 269 and day 272 are true events, but they are detected after the 

sludge bulking problem has occurred.  So the combined method failed to detect and 

prevent the sludge bulking problem in this case. 
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Figure 6.2: Test Result of SVI in 2007 for Battery B 

III. Analysis of Data Combination C for Battery B 

The process is the same as in Section 6.3.1.1.  Figure 6.3 shows the test result for 

Battery B in 2008.  From the figure, it can be seen that the predicted SVI values are all 

false positive results and no sludge bulking problem could be detected. 

 
Figure 6.3: Test Result of SVI in 2008 for Battery B 

IV. Analysis of Data Combination D for Battery B 

The testing process is the same as in Section 6.3.1.1.  Figure 6.4 shows the test 

result for Battery B in 2009.  Also, from the figure, it can be seen that the predicted SVI 

values are all false positive results and no sludge bulking problem could be detected. 
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Figure 6.4: Test Result of SVI in 2009 for Battery B 

6.3.2. Analysis of Battery A Using MATLAB 

From the previous analysis of test results of Battery B, it can be seen the 

prediction results of the combined method are not useful.  However, Battery A is still 

used to test the application of the combined method.  Three different data combination 

tests are performed: (A) Training set: 2002 to 2005, Testing set: 2006; (B) Training set: 

2002 to 2006, Testing set: 2007; and (C) Training set: 2002 to 2007, Testing set: 2008.  

No sludge bulking event occurred in 2009 (Table 4.13) and no testing process can be 

done for 2009.   

Figures 6.5 to 6.7 show the test results for Battery A.  From these 3 figures, only 

2006 (Figure 6.5) has a better result.  There is a predicted event before the sludge bulking 

event in Figure 6.5 that could provide warning information that could prevent the sludge 

bulking problem in 2006.  Figures 6.6 and 6.7 only show false positive results. 
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Figure 6.5: Test Result of SVI in 2006 for Battery A 

 
Figure 6.6: Test Result of SVI in 2007 for Battery A 

 
Figure 6.7: Test Result of SVI in 2008 for Battery A 
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6.3.3. Analysis of Battery C Using MATLAB 

Two different data combination tests were performed: (A) Training set: 2002 to 

2005, Testing set: 2006; and (B) Training set: 2002 to 2007, Testing set: 2008.  No 

sludge bulking event occurred in 2007 and 2009 (Table 4.13).  Figures 6.8 and 6.9 show 

the test results for Battery C.  The result in 2006 (Figure 6.8) is chaos, and it has too 

many false positive results.  From Figure 6.9, it can be seen that all the events predicted 

in 2008 are false positive results. 

 
Figure 6.8: Test Result of SVI in 2006 for Battery C 

 

 
Figure 6.9: Test Result of SVI in 2008 for Battery C 
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6.3.4. Analysis of Battery B Using SPSS 
 
The SPSS is statistical software package that can run the MLR model.  The SPSS 

can also demonstrate what wastewater quality parameters have strong influence on the 

SVI state.  According to the previous analysis, it can be seen that the combined method 

has poor performance in detecting and predicting sludge bulking problems.  Unlike the 

operation process in MATLAB, the operation process in SPSS will use all the state SVI 

data and all wastewater quality parameters data in Battery B (2002-2009) to build the 

MLR model.  With the built MLR model, then SPSS can reverse the operation to predict 

the state for each SVI data value.  The goal of this whole process is to check the accuracy 

of the SVI state value predicted by the MLR model.   

The procedure of MLR model can be found in Chapter 3.  Table 6.5 lists the result 

for Battery B obtained by SPSS.  The overall correct percentage is 70.6%, which seems 

to be an acceptable result.  However, it should be noted that the correct percentage of 

state 1 is 99.4%, which leads to the overall correct percentage as 70.6%.  Also, the 

correct percentage for the pattern states (2, 3, and 4) and event state (5) is very low.  The 

correct percentage for the pattern states are all 0, and the correct percentage for the event 

state is only 1.8%.  These results show that the MLR model fails to correctly detect 

sludge bulking problems. 
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Table 6.5:  Test Results of State for the SVI  Data for Battery B using SPSS 

Observed state 

Predicted state 

1 2 3 4 5 Percent Correct 

1 2050 0 0 0 13 99.4% 

2 61 0 0 0 1 .0% 
3 58 0 0 0 4 .0% 

4 62 0 0 0 0 .0% 

5 661 0 0 0 12 1.8% 

Overall Percentage 99.0% .0% .0% .0% 1.0% 70.6% 

Table 6.6 lists the output of the estimation of selected wastewater quality 

parameters in the MLR model.  The first category (state 1) was chosen as the reference 

set, so there is no output for state 1.  From the ᵦ values in the Table 6.6, the equations for 

the MLR model can be obtained.  Z2 = !! ∗ !!  can be expressed as equation 6.1 where 

the subscript I refers to the different wastewater quality parameters. 

 Z2 = !! ∗ !!= -9.11 - 0.99*(Flow rate) +0.13*(Air 

flow rate)-28.648(F/M ratio)-2.07*(Detention 

time)+0.02*(SRT)+0.19*(Influent 

NH3)+0.22*(Effluent NH3)+0.06*(Influent 

DO)+0.02*(Influent 

BOD)+0.04*(Temp)+1.09*(Effluent pH) 

 (6.1) 

Similar as for state 2, the Zj for the states 3, 4, and 5 can be obtained from the 

Table 6.6.  With the Zj for each state, the probability for each state can be obtained.  For 

example, the probability for the state 4 is: 

 
! !! = 4 =   

exp  (!!)
1+ exp !! + exp !! + exp !! + exp !!

 (6.2) 

With all the calculated probabilities for each group of selected wastewater quality 

parameters, the highest probability for the state number was chosen as the detected state.  
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For instance, if the probability of state 4 is higher than that for the other states, so the 

MLR model will consider the state of the SVI value is state 4.   

From Table 6.6, it can be seen that some quality parameters have significance 

relations (sig.<0.05) with the event state, including wastewater flow rate, detention time, 

F/M ratio, influent BOD, temperature, SRT, and effluent pH.  

Table 6.6:  MLRM Output of Estimation of Wastewater Quality  
Parameters in Battery B 

Parameters 

State 
2 3 4 5 

!! Sig. !! Sig. !! Sig. !! Sig. 

Intercept -9.11 0.62 4.54 0.80 2.58 0.89 17.08 0.00 

Flow rate -0.09 0.26 -0.13 0.12 -0.04 0.64 -0.07 0.00 

Air Flow rate 0.13 0.19 0.05 0.55 0.05 0.56 0.01 0.59 

F/M ratio -28.64 0.62 -31.50 0.66 -100.05 0.17 -40.15 0.00 

Detention 
time -2.07 0.06 -2.05 0.07 -1.66 0.14 -1.52 0.00 

SRT 0.02 0.62 -0.01 0.85 -0.06 0.37 -0.09 0.00 

Influent NH3 0.19 0.11 0.12 0.33 0.16 0.19 0.02 0.50 
Effluent 

NH3 0.22 0.48 0.13 0.69 0.35 0.20 -0.08 0.29 

Influent DO 0.06 0.79 0.01 0.98 -0.30 0.26 -0.08 0.12 
Influent 

BOD 0.02 0.24 0.01 0.64 0.02 0.18 0.02 0.00 

Temp 0.04 0.26 0.03 0.41 0.03 0.46 0.03 0.00 

Effluent  pH 1.09 0.54 0.41 0.81 -0.19 0.92 -1.21 0.00 

6.3.5. Analysis of Battery A Using SPSS 
 
All the SVI state data and all wastewater quality parameters data for Battery A 

(2002-2009) were used to build the MLRM by SPSS.  The analysis process is the same as 

described in Section 6.3.4.  Table 6.7 lists the test results for Battery A.  From the table, it 

can be seen that the prediction accuracy of the event state is still very low at only 1.8%. 
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Table 6.7: Test Results of State for the SVI  Data for Battery A by SPSS 

Observed state 

Predicted state 

1 2 3 4 5 Percent Correct 

1 2050 0 0 0 13 99.4% 

2 61 0 0 0 1 .0% 

3 58 0 0 0 4 .0% 

4 62 0 0 0 0 .0% 

5 661 0 0 0 12 1.8% 

Overall Percentage 99.0% .0% .0% .0% 1.0% 70.6% 

Table 6.8 lists the output of the estimation of the selected wastewater quality 

parameters in the MLR model.  From Table 6.8, it can be seen that some wastewater 

quality parameters have significant realtions (sig.<0.05) with the event state, including 

influent BOD, influent and effluent ammonia, SRT, detention time, F/M ratio and 

effluent pH. 

Table 6.8:  Output of Estimation of Wastewater Quality Parameters in Battery A 

Parameters	  

State	  
2	   3	   4	   5	  

!!	   Sig.	   !!	   Sig.	   !!	   Sig.	   !!	   Sig.	  

Intercept -10.324 0.364 -8.84 0.444 -15.725 0.185 7.447 0.051 

Effluent pH 1.363 0.266 1.264 0.307 1.01 0.44 -1.268 0.002 

Influent BOD 0.014 0.155 0.025 0.008 0.026 0.005 0.014 0 

Effluent 
ammonia -0.144 0.513 -0.175 0.433 -0.304 0.18 -0.263 0.001 

SRT -0.006 0.868 -0.001 0.967 0.005 0.878 -0.07 0 

F/M -31.283 0.441 -62.224 0.122 -78.629 0.045 -28.143 0.039 

Flow 0.007 0.872 0.007 0.876 0.087 0.033 -0.001 0.948 

Air flow -0.052 0.221 -0.042 0.35 -0.006 0.895 0.028 0.124 

Detention time -0.349 0.562 -0.639 0.322 0.035 0.953 -0.443 0.041 

Influent NH3 0.118 0.172 0.102 0.241 0.152 0.076 0.087 0.006 

Influent DO -0.455 0.011 -0.51 0.006 -0.675 0 -0.028 0.55 

temp -0.011 0.643 -0.009 0.694 -0.024 0.288 0.01 0.208 



113 
 

6.3.6. Analysis of Battery C Using SPSS 

The SVI state data and wastewater quality parameters data for Battery C (2002-

2008) are used to run the MLR model by SPSS.  The year of 2009 is not included 

because no sludge bulking event happened in year 2009 and there is no need to contain a 

test year without events.  The analysis process is the same as described in Section 6.3.4.  

Table 6.9 lists the test results for Battery C.  From the table, it can be seen that the 

prediction accuracy of the event state is still low at only 16.2%.  

Table 6.9: Test Results of State for the SVI  Data for Battery C by SPSS 

Observed 
Predicted 

1 2 3 4 5 Percent Correct 
1 1737 0 0 0 42 97.6% 
2 18 0 0 0 1 .0% 
3 18 0 0 0 1 .0% 
4 18 0 0 0 1 .0% 
5 604 0 0 0 117 16.2% 
Overall Percentage 93.7% .0% .0% .0% 6.3% 72.5% 

Table 6.10 lists the output of the estimation of selected wastewater quality 

parameters in the MLR model.  From Table 6.10, it can be seen that some wastewater 

quality parameters have significant relations (sig.<0.05) with the event state, including 

pumped air flow rate, SRT, influent and effluent ammonia, influent DO, influent BOD, 

and effluent pH. 
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Table 6. 10:  Output of Estimation of Wastewater Quality Parameters in Battery C 

Parameters	  

State	  
2	   3	   4	   5	  

!!	   Sig.	   !!	   Sig.	   !!	   Sig.	   !!	   Sig.	  

Intercept 10.379 0.607 1.993 0.928 13.915 0.499 18.563 0 

Flow rate -0.019 0.787 0.025 0.737 -0.052 0.493 -0.011 0.45 

Air Flow 0.074 0.216 0.058 0.384 0.014 0.833 0.032 0.018 

F/M 1.877 0.983 24.229 0.702 23.116 0.768 18.986 0.14 

Detention 
time 0.311 0.548 0.199 0.818 0.04 0.95 -0.114 0.504 

SRT -0.013 0.833 -0.015 0.801 0.002 0.921 -0.027 0.041 

Influent NH3 -0.129 0.432 0.069 0.655 -0.039 0.805 0.093 0.004 

Effluent NH3 0.118 0.781 0.1 0.794 0.153 0.703 -0.284 0.005 

Influent DO -0.712 0.033 -0.758 0.029 -0.406 0.2 -0.265 0 

Influent BOD -0.021 0.403 -0.01 0.61 -0.011 0.596 -0.006 0.088 

Temp -0.042 0.307 -0.028 0.498 -0.017 0.679 0.01 0.22 

Effluent pH -1.578 0.499 -1.288 0.609 -1.928 0.423 -2.861 0 

6.4. Discussion and Conclusion 

 
As previously mentioned, the sludge bulking problem is an extremely complex 

process.  The previous research in the literature described in Chapter 2 focused on one or 

two wastewater quality parameters.  So the idea for this chapter is that the sludge bulking 

could be related with more than 2 wastewater quality parameters.  Most of the former 

prediction research used the point by point prediction of SVI values.  The improved 

TSDM method and the HMMs method studied in this thesis all focus on predicting 

sludge bulking events defined by high SVI data values considering only the SVI time 

series data.  The combined method studied in this chapter could use other selected 

wastewater quality parameters to detect the pattern states and event state that are obtained 

from the HMMs method.   

In previous research on sludge bulking considering the SVI data and other 

wastewater quality parameters, some parameters have been found to have more impact on 
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sludge bulking than other parameters.  These wastewater quality parameters are:  influent 

DO, effluent DO, influent and effluent ammonia, temperature.  These parameters are 

selected to be used to test the combined method.  

The test results of the combined method are not useful for sludge bulking 

detection.  From the application of the combined method using MATLAB and SPSS, the 

pattern states basically cannot be detected.  And the accuracy of detection for the event 

state is lower than 20%, which is not useful to predict and prevent the sludge bulking 

problems.  However, from the output of the SPSS, some wastewater quality parameters 

can be considered as parameters significantly related to sludge bulking.  For Battery B, 

these parameters are wastewater flow rate, detention time, F/M ratio, influent BOD, 

temperature, SRT, and effluent pH. For Battery A, these parameters are SRT, influent and 

effluent ammonia, influent DO, and effluent pH. For Battery C, these parameters are 

pumped air flow rate, SRT, influent and effluent ammonia, influent DO, influent BOD, 

and effluent pH.  From the output of all three batteries, some common parameters can be 

found, i.e. SRT and effluent pH.    In conclusion, these parameters should be studied 

further in the analysis of sludge bulking.
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CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS  
 
 
This thesis focused on the detection and analysis of sludge bulking problems by 

application of three machine learning methods: the improved Time series Data Mining 

(TSDM) method, the Hidden Markov Model (HMMs) method, and a method combining 

the Hidden Markov and Multinomial Logistic Regression Models.  The results and 

analysis are presented in the previous chapters. The improved TSDM method and the 

HMMs method show their capability to detect and predict sludge bulking events.  These 

two methods have the notable advantage of focusing on detecting the temporal patterns 

for the events instead of point to point prediction.  Such an advantage has more efficiency 

and could provide warning information to the WWTP operator.  However, they are still 

new methods, which mean they are not perfect and they need to be improved in the future.   

The combined method demonstrates some useful information on the relationship between 

the SVI data and other wastewater quality parameters, though the combined method 

cannot effectively detect sludge bulking events at this time. 

The improved TSDM method can have a sludge bulking event prediction 

accuracy between 60% and 100%, where a sludge bulking event is defined by a SVI 

value higher than 150 mL/g. Nearly all the long term sludge bulking period events can be 

detected except for that in 2006 for Batteries A and C. The sludge bulking event that 

occurred in 2006 was distinguished by a sudden jump in the SVI values, no similar jump 

happened before in the training data set to allow the TSDM method to learn how to detect 

such events.  The analysis of the improved TSDM method reveals that it is a new method, 

and it has some special requirements for application to sludge bulking event prediction.   

For instance, some parameters of the improved TSDM method should be chosen 
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carefully before the testing process, e.g., the phase space embedding dimension, the 

enlarge radius for temporal pattern clusters, and the event value.  For example, the event 

value could be reduced if the number of sludge bulking events in the training set data is 

not sufficient for the improved TSDM method to learn to find the temporal pattern 

clusters, e.g., as was done for the SVI tests of Battery C. 

For the HMMs method, it should be noted that the advantage of this method is to 

detect the pattern states and event state separately.  The improved TSDM method needs 

to detect the patterns by consistent SVI points.  But the HMMs method detects the pattern 

state for each SVI point.  This means the HMMs method could provide warning 

information to the WWTP operators, even if the HMMs method only detects the first 

state of the pattern.  From the results and analysis presented in Chapter 5, once the first 

pattern state was detected, there was high probability (>80% in all cases, mostly > 90%) 

the event state (sludge bulking) would be occurred.  It was also demonstrated that the 

HMMs method has capability and effectiveness to detect sludge bulking and provide 

warning information for impending sludge bulking events to the WWTP operators.  

Similar to the improved TSDM method, the HMMs method also has some parameters 

that need to be set before the testing process, e.g., initial value for each state.  It also has 

some short comings including a stability problem.  For example, the event state 

probability in the transition probability matrix cannot correctly converge, and such 

problem makes the HMMs method fails to predict the event state for the SVI data.  Such 

a problems need to be investigated and improved in future research. 

For the combined method, the new idea is to combine the HMM method and a 

Multinomial Logistic Regression Model.  Although the testing results showed the 
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combined method was not effective in predicting sludge bulking events, it did provide 

useful information on the relation between the SVI data and some other wastewater 

quality parameters that have significant impact on the sludge bulking, i.e., sludge 

retention time (SRT), and effluent pH for all three batteries.   

The improved TSDM method and HMMs method both demonstrate an ability to 

be applied to real world sludge bulking data.  These methods could be useful for the 

WWTP operators possibly using both methods at the same time.  Applying both methods 

could provide a double check on the possibility for impending sludge bulking and 

increase the detection and prediction accuracy.  Applying both methods can also reduce 

the short comings for these two methods, i.e. the stability problem in the HMMs method 

and the need for a complete pattern for the TSDM method.  Also, it is recommended that 

both methods should be run several times to obtain a comprehensive result, and this 

procedure could reduce the risk of failing to detect sludge bulking events.  The training 

set used for both methods needs to include a sufficient number of events to properly train 

the methods, so it is recommended that at least 45 events should be included in the 

training data set. 

In this thesis, the improved TSDM method and the HMMs method were applied 

to detect the temporal patterns in the SVI data alone.  Since some wastewater quality 

parameters have been found to have a significant impact on the sludge bulking problem.  

It is meaningful to detect the temporal patterns relations to sludge bulking in these 

wastewater quality parameters in future research. 
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