Marquette University

e-Publications@Marquette

Civil and Environmental Engineering Faculty Research and Publications

Civil, Construction, and Environmental Engineering, Department of

9-2016

Influent Wastewater Microbiota and Temperature Influence Anaerobic Membrane Bioreactor Microbial Community

Matthew Seib Marquette University, matthew.seib@marquette.edu

K. J. Berg Marquette University

Daniel Zitomer Marquette University, daniel.zitomer@marquette.edu

Follow this and additional works at: https://epublications.marquette.edu/civengin_fac

Part of the Civil Engineering Commons

Recommended Citation

Seib, Matthew; Berg, K. J.; and Zitomer, Daniel, "Influent Wastewater Microbiota and Temperature Influence Anaerobic Membrane Bioreactor Microbial Community" (2016). *Civil and Environmental Engineering Faculty Research and Publications*. 149. https://epublications.marquette.edu/civengin_fac/149

Influent Wastewater Microbiota and Temperature Influence Anaerobic Membrane Bioreactor Microbial Community

M.D. Seib

Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI

K.J. Berg

Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI

D.H. Zitomer Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI

Abstract: Sustainable municipal wastewater recovery scenarios highlight benefits of anaerobic membrane bioreactors (AnMBRs). However, influences of continuous seeding by influent wastewater and temperature on attached-growth AnMBRs are not well understood. In this study, four bench-scale AnMBR operated at 10 and 25 °C were fed synthetic (SPE) and then real (PE) primary effluent municipal wastewater. Illumina sequencing revealed different bacterial communities in each AnMBR in response to temperature and bioreactor configuration, whereas differences were not observed in archaeal communities. Activity assays revealed hydrogenotrophic methanogenesis was the dominant methanogenic pathway at 10 °C. The significant relative abundance of Methanosaeta at 10 °C concomitant with low acetoclastic methanogenic activity may indicate possible Methanosaeta-Geobacter direct interspecies electron transfer. When AnMBR feed was changed to PE, continual seeding with wastewater microbiota caused AnMBR microbial communities to shift, becoming more similar to PE microbiota. Therefore, influent wastewater microbiota, temperature and reactor configuration influenced the AnMBR microbial community. Keywords: Anaerobic digestion, Illumina, Microbial community

1. Introduction

Sustainable municipal wastewater recovery scenarios have highlighted anaerobic biotechnology with special attention being given to the anaerobic membrane bioreactor (AnMBR) (McCarty et al., 2011). AnMBR configurations have successfully achieved effluent with <40 mg/L chemical oxygen demand (COD) from dilute or municipal wastewaters at temperatures as low as 6 °C (Seib et al., 2016a and Smith et al., 2015). These results indicate that historical anaerobic biotechnology challenges including poor operation at low temperature with low strength wastewater, and high effluent organic concentration can be overcome (Lettinga et al., 2001).

While AnMBR technology shows great promise, remaining challenges require further investigation including high energy requirements for membrane operation (<u>Seib et al., 2016a</u>) and post treatment for nutrient and dissolved methane removal (<u>McCarty et al., 2011</u>), as well as lack of fundamental understanding of microbial communities responsible for system function (<u>Smith et al., 2015</u>). Microbial community composition is of particular interest since anaerobic bioprocesses historically have been operated as "black boxes" without accounting for the relationship between microbiology and process function (<u>McKeown et al., 2012</u>).

In engineered microbial systems, community structure and diversity are considered important factors to achieve process stability (<u>Briones and</u>

Bioresource Technology, Vol 216 (September 2016): pg. 446-452. <u>DOI</u>. This article is © Elsevier and permission has been granted for this version to appear in <u>e-Publications@Marquette</u>. Elsevier does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

Raskin, 2003 and Falk et al., 2009). Highly diverse communities which contain many unique members within different trophic groups (i.e. fermenting bacteria, syntrophic bacteria, methanogens, etc.) are functionally redundant which is important to maintain system function in the event of environmental stress (i.e. pH change, substrate change, toxicity, etc.) (Briones and Raskin, 2003 and Fernandez et al., 2000). Traditional characterizations of community diversity have included richness, evenness, and Shannon-Weaver index, which are broad measures indicating the number of unique members along with general distribution of members within the community (Stirling and Wilsey, 2001). Communities with higher richness and Shannon-Weaver index values are more diverse (Stirling and Wilsey, 2001). A high evenness score indicates unique community members are evenly distributed, which is beneficial for functional redundancy (Fernandez et al., 2000). Additionally, ordination techniques including nonmetric multi-dimensional scaling (NMDS) and principal component analysis (PCA) have been useful to compare microbial community differences in separate systems (Bialek et al., 2011 and Bocher et al., 2015).

Increased knowledge of key microbial players is important to understand the potential and limitations of microbially driven processes such as hydrolysis, fermentation, and methanogenesis (McKeown et al., 2012). Links between microbial community composition and function could be used to match inoculum biomass to specific operating conditions including temperature or waste type (McKeown et al., 2012). This information could also be used to warn of impending process upset by identifying adverse shifts in the microbial community before function significantly deteriorates (<u>Collins</u> <u>et al., 2006</u>).

While the importance of microorganisms in biological systems is evident, the body of knowledge describing microbial consortia in anaerobic wastewater reclamation systems is underdeveloped. To date, the majority of studies have focused on microbial communities in anaerobic digesters treating high strength waste. Less attention has been given to microbial community composition in anaerobic systems reclaiming dilute wastes such as municipal wastewater. However, previous studies have shown that microbial communities in otherwise similar conditions will vary due to selective pressures such as temperature and bioreactor configuration (Bialek

et al., 2011 and <u>O'Reilly et al., 2009</u>), bacterial communities are typically more even and diverse than archaeal communities in anaerobic systems (<u>Rivière et al., 2009</u>), and hydrogenotrophic methanogenesis becomes the dominant methanogenic pathway at psychrophilic temperatures (<u>McKeown et al., 2009</u>, <u>O'Reilly et al., 2009</u> and <u>Siggins et al., 2011</u>).

While several examples of low/ambient temperature AnMBRs have been previously described, only two studies have investigated the microbial community composition within the bioreactor (<u>Smith et al., 2013</u> and <u>Smith et al., 2015</u>). Both studies evaluated completely mixed submerged AnMBRs with gas sparging treating synthetic municipal wastewater, and concluded that biofilm formation on membranes was important to achieve high organic removal. Possible benefits of biofilms such as faster interspecies hydrogen transfer and enhanced syntrophism have already been described (<u>Lettinga et al., 2001</u>). The results of <u>Smith et al. (2015</u>) coupled with existing understanding of the benefits of biofilms highlights the need for further investigation of biofilm microbial consortia in AnMBRs and suggests that reactors relying on biofilm technology such as the fluidized bed reactor (FBR) or downflow floating filter reactor (DFF) may offer advantages over flocculant biomass (<u>Seib et al., 2016b</u>).

The impact of continuous inoculation of anaerobic bioreactors by wastewater microbiota also merits investigation. Municipal wastewater is microbially complex (McLellan et al., 2011) and temporal effects of wastewater microbiota on engineered process microbial community composition have been observed in the aerobic activated sludge process (Lee et al., 2015). Regarding anaerobic systems, no studies have been found which considered the effect of wastewater continuous inoculation on bioreactor anaerobic microbial community.

The objective of this study was to assess AnMBR configurations using different biofilm technologies while treating synthetic and real municipal primary effluent wastewater at low and moderate temperatures. Lab-scale reactors were operated to evaluate treatment performance and bioreactor microbial community composition at common wastewater temperatures (10 and 25 °C). To our knowledge no study currently exists that examines the microbial community structure within AnMBRs utilizing biofilm technology

while treating dilute primary effluent municipal wastewater at low temperatures.

2. Methods

2.1. AnMBR configurations

Two different AnMBR configurations utilizing different biofilm technologies and membrane types were used as previously described (<u>Seib</u> <u>et al., 2016b</u>). The first configuration was a downflow floating filter (DFF) bioreactor (2.3 L working volume) combined with a polymeric tubular membrane (1 L working volume). The DFF bioreactor contained buoyant plastic media to support biofilm formation (Aqwise, Herzliya, Israel). The polymeric membrane (polyvinylidene fluoride) had a nominal molecular weight cutoff of 100 kDa (~0.018 µm nominal pore size) (FP100, PCI Membranes, Fareham, UK). The second configuration was a fluidized bed reactor (FBR) (2.3 L working volume) combined with a ceramic membrane (1 L working volume). The FBR contained 0.6 mm × 1.7 mm (12 × 30 mesh) coconut-based granular activated carbon (GAC) (TIGG 5DC 1230, TIGG Corp, Oakdale, PA). The ceramic membrane was composed of aluminum oxide with a 0.05 µm nominal pore size (Type 1/16, Atech Innovations, Gladbeck, Germany).

2.2. Bioreactor inoculation and operational parameters

Each AnMBR configuration was duplicated and individual reactors were operated at different temperatures (10 and 25 °C), yielding a total of four systems (FBR10, FBR25, DFF10, DFF25). All AnMBRs were seeded with 2 g VSS/L of a mix of methanogenic biomass from five different sources as previously described (<u>Seib et al., 2016b</u>). For the first 320 days, all AnMBRs were fed synthetic primary effluent wastewater (SPE) as previously described (<u>Seib et al., 2016b</u>). After day 320, the feed to all AnMBRs was changed to real primary effluent wastewater (PE). PE was collected weekly from a local water reclamation facility (South Shore Water Reclamation Facility, Oak Creek, WI, USA) and stored at 4 °C before use (<u>Table 1</u>). After an initial startup period (day 1–79), total system hydraulic residence time (HRT) in all AnMBRs was 9 h from day 80 to 145. On day 146, HRT was adjusted to the minimum time necessary to achieve <10 mg/L BOD₅ in AnMBR permeate in each system. Membranes were operated with flux ranging from 5.9 to 7.4 L/m² h and chemically cleaned using NaClO and HNO₃ solutions when transmembrane pressure increased above 0.5 bar (<u>Seib et al., 2016b</u>).

er										
			Т	eating S	PE influe	ent	т	reating I	PE influe	nt
	SPE	PE	FBR25	FBR10	DFF25	DFF10	FBR25	FBR10	DFF25	DFF10
BOD₅	235 ± 3 5	160 ± 60	3 ± 1	8 ± 4	6 ± 3	8 ± 7	6 ± 3	6 ± 4	10 ± 7	10 ± 9
TCOD	480 ± 5 0	310 ± 11 0	14 ± 7	25 ± 15	25 ± 10	25 ± 13	29 ± 12	29 ± 16	44 ± 16	42 ± 19
NH3-N	17 ± 1. 5	21 ± 7.6	31 ± 2	31 ± 1	29 ± 1	31 ± 2	25 ± 6	25 ± 6	25 ± 5	25 ± 6
TKN	43 ± 2. 8	34 ± 6.7	36 ± 2	37 ± 2	35 ± 1	37 ± 2	29 ± 4	29 ± 5	28 ± 4	29 ± 6
PO ₄ ⁻³ -P	2.3 ± 0. 3	3.8 ± 1.7	3.9 ± 0. 3	3.9 ± 0. 3	3.1 ± 0. 4	3.7 ± 0. 4	4.3 ± 1. 6	4.0 ± 1. 4	3.6 ± 1. 4	3.8 ± 1. 7
Total P	5.0 ± 0. 4	5.1 ± 1.7	3.9 ± 0. 3	4.2 ± 0. 4	3.4 ± 0. 5	3.8 ± 0. 3	4.4 ± 1. 6	4.2 ± 1. 4	3.8 ± 1. 2	3.9 ± 1. 6
TSS <u>ª</u>	120 ± 4 0	106 ± 40	BD							
VSS ^a	115 ± 4	77 ± 25	BD							

Table 1	. Average i	nfluent and	effluent	parameters	during	SPE and	PE ope	eration.
Paramet	Tnflue	nt			Effluen	÷		

^aBD indicates result below method detection limit.

2.3. Analytical procedures

Influent and permeate BOD₅, TCOD, NH₃-N, TKN, PO₄⁻³, TP, TSS, and VSS concentrations were determined using standard methods (<u>APHA et al., 1999</u>). Bioreactor bulk liquid volatile fatty acid (VFA) concentrations were determined by gas chromatography with a flame ionization detector (FID) (Agilent 7890A, Santa Clara, CA, USA). Methane concentration in biogas was determined using gas chromatography with a thermal conductivity detector (TCD) (Agilent 7890A, Santa Clara, CA, USA).

2.4. DNA extraction

Biomass was collected for DNA analysis from each reactor on days 180, 200, 230, 250, and 355 and from the PE feed on day 355. Biomass

(~0.5 g) from each reactor was removed from the biocarrier and placed in 2 mL centrifuge tubes. Lysis buffer (120 mM phosphate buffer, pH 8.0, 5% sodium dodecylsulfate) was added to each sample and cells were lysed by performing three freeze-thaw cycles followed by a 90 min incubation at 70 °C. DNA was extracted using a FastDNA Spin Kit (MP Biomedicals, Santa Ana, CA, USA), and then stored at -20 °C until use.

2.5. DNA sequencing

PCR amplification using universal primers for the V4 variable region of 16 s rRNA (515F and 806R) was performed using the HotStarTag Plus Master Mix Kit (Qiagen, Valencia, CA, USA). PCR consisted of the following steps: 94 °C for 3 min followed by 28 cycles of 94 °C for 30 s, 53 °C for 40 s and 72 °C for 1 min, followed by a final elongation step at 72 °C for 5 min. Ampure XP beads (Beckman Coulter, Indianapolis, IN, USA) were used to purify PCR products. Purified PCR products were used to prepare a DNA library using the Illumina TruSeq DNA library preparation protocol. Sequencing was performed by a commercial laboratory (MR DNA, Shallowater, TX, USA) using an Illumina MiSeq v3 300 base pair sequencing platform (Illumina, San Diego, CA, USA) following manufacturer guidelines. Barcodes and primers were removed from Q25 filtered sequences and processed as previously described (Dowd et al., 2008). Briefly, data were refined by removing sequences <200 bp, sequences with ambiguous base calls, and sequences with homopolymers >6 bp. Denoised sequences were clustered into operational taxonomic units (OTUs) having 97% similarity. Singleton sequences and chimeras were removed. BLASTn was used to taxonomically classify OTUs against a curated database derived from GreenGenes, RDPII, and NCBI (CME, 2015, DeSantis et al., 2006 and NCBI, <u>2015</u>).

2.6. Microbial community analysis

Inter-AnMBR comparisons of richness (S), Shannon-Weaver diversity (H), and evenness (E) indices were performed using Illumina sequence results. Richness was calculated as the number of unique OTUs identified at the genus level from Illumina sequencing. Shannon-Weaver diversity index was determined as follows: $H = -\Sigma p_i \log(p_i)$, where p_i is the relative

abundance of genus i of the n genera detected in a sample (i = 1 to n) (<u>Falk</u> et al., 2009). Evenness was calculated as follows: E = H/In(S) (<u>Falk et al.</u>, 2009).

Ordination techniques including non-metric multi-dimensional scaling (NMDS) and principal component analysis (PCA) were used to compare AnMBR microbial communities. Using Ilumina sequencing data, NMDS using a Bray-Curtis similarity distance matrix was performed in R (version 3.2.0 (20015-04-16)) using the VEGAN and MASS packages. NMDS is considered well suited for environmental data because it does not assume a linear distribution (as in PCA) and is unaffected by null values among samples (<u>Ramette, 2007</u>). PCA was also performed using R. Sequencing results were also used to calculate Pearson's correlation coefficients comparing AnMBR and PE microbial communities.

2.7. Methanogenic activity

Specific methanogenic activity (SMA) assays were performed using acetate and H_2/CO_2 while AnMBRs were fed SPE (day 300) and PE (day 355) at 10 °C. Biocarrier was removed from each AnMBR, placed in a serum bottle with basal nutrient medium and agitated in an anaerobic glove box to remove biomass from the biocarrier. Biocarrier was then removed and biomass was placed in 160 mL serum bottles, sparged with O₂-free gas (7:3 $v/v N_2/CO_2$), sealed with butyl rubber stoppers, and allowed to endogenously produce biogas for two days at 10 °C. Produced biogas was then removed and substrate (either acetate or H_2/CO_2) was added. SMA using acetate was performed for 40 days as described by Bocher et al. (2015) using biomass concentration of 1.5 to 1.8 g VS/L and 10 g/L calcium acetate at 10 °C. For SMA using H_2/CO_2 , biomass concentration was 0.2 g VS/L and serum bottle headspace was charged with 100 mL of a 4:1 mixture of H₂/CO₂ gas that had been previously cooled to 10 °C. Decrease in headspace pressure was monitored for 40 days using a glass syringe with wetted glass barrel to stoichiometrically determine hydrogenotrophic methane production.

3. Results and discussion

3.1. AnMBR organic removal and performance

All AnMBRs were assumed to achieve quasi-steady state after 320 days of SPE operation, since organic removal varied no more than $\pm 3\%$ in each system. Organic removal in all four AnMBRs was >94% while treating both SPE and PE, with average permeate $BOD_5 \leq 10 \text{ mg/L}$ in all systems (Table 1). Each AnMBR required a specific bioreactor HRT to achieve low permeate BOD₅, with FBR25 and DFF25 both operated at 4.2 h and FBR10 and DFF10 operated at 5.6 and 9.8 h, respectively. These values correspond to total system HRTs of 6, 6, 8, and 14 h for the FBR25, DFF25, FBR10, and DFF10 systems, respectively, considering membrane system volumes. Average permeate TCOD was ≤25 mg/L in all AnMBRs while treating SPE and ≤45 mg/L while treating PE. The increased average effluent TCOD when treating PE was likely due to a combination of higher amount of recalcitrant COD in the PE along with insufficient time for all AnMBRs to acclimate to the PE substrate. Bioreactor bulk liquid total VFA (as acetic acid) concentrations remained low throughout the study, averaging <40 mg/L in all AnMBRs during SPE operation and <15 mg/L during PE operation.

3.2. Microbial diversity and community structure

Diversity indices derived from sequencing analysis of the V4 region of 16S rRNA of biofilm biomass from each bioreactor (Tables S1 and S2) indicate communities dominated by a few OTUs in each AnMBR (Table 2). Analysis revealed greater richness, evenness, and Shannon-Weaver diversity values in the bacterial community of each AnMBR compared to the archaeal community, which is consistent with findings of previous anaerobic studies (Requeiro et al., 2012 and Rivière et al., 2009). All systems contained a similar number of bacterial and archaeal OTUs, with the exception of FBR10, which had fewer bacterial OTUs. Shannon indices were similar among all AnMBRs with an average index for all systems of 1.62 ± 0.08 for Bacteria and 0.56 ± 0.08 for Archaea. These are lower than values of 1.92 to 3.91 previously reported in mesophilic anaerobic studies treating wastes including swine wastewater and synthetic sulfate-rich wastewater (Briones et al., 2007 and Roy et al., 2009). Evenness scores were higher for bacterial communities compared to archaeal communities. Evenness scores were also similar among AnMBRs, with average scores of 0.27 ± 0.01 for Bacteria and 0.20 ± 0.03 for Archaea. Evenness scores found in previous mesophilic digestion studies ranged from 0.73 to 0.91, indicating more even distribution of OTUs detected in those studies (<u>Briones et al., 2007</u> and <u>Roy et al., 2009</u>). Diversity index scores for 10 °C and 25 °C systems were similar but were lower than scores previously reported for mesophilic systems.

•					
		FBR25	DFF25	FBR10	DFF10
Bacteria	Richness	384 ± 30	406 ± 10	330 ± 8	403 ± 18
	Evenness	0.28 ± 0.01	0.27 ± 0.01	0.27 ± 0.01	0.28 ± 0.01
	Shannon Index	1.64 ± 0.08	1.64 ± 0.05	1.52 ± 0.05	1.66 ± 0.09
Archaea	Richness	18 ± 3	18 ± 1	15 ± 1	16 ± 2
	Evenness	0.19 ± 0.02	0.19 ± 0.03	0.17 ± 0.01	0.23 ± 0.02
	Shannon Index	0.56 ± 0.06	0.55 ± 0.08	0.47 ± 0.04	0.64 ± 0.03

Table 2. Diversity indices for Bacteria and Archaea communities during SPEoperation.

A small group of 5 of over 700 bacterial OTUs identified, including *Clostridium, Bacteroides, Cytophaga, Geobacter*, and *Trichococcus*, comprised 31–43% of the total relative abundance in all reactors while treating SPE. This is consistent with analysis previously conducted on mesophilic anaerobic communities that describe the predominant bacterial composition in anaerobic systems being composed of only a few OTUs (<u>Harb et al., 2015</u> and <u>Rivière et al., 2009</u>). This was also observed among Archaea, with only three genera (*Methanosaeta, Methanobacterium*, and *Methanospirillum*) accounting for >80% of archaeal relative abundance in all AnMBRs while treating SPE.

Despite each reactor containing similar dominant OTUs, unique microbial fingerprints were observed in each system based on the most abundant bacterial OTUs. A comparison of the 20 most abundant OTUs, which represented >50% of the relative abundance in each system, showed distinct OTU distributions in all AnMBRs (Fig. S1). During SPE operation, the bacterial community in each AnMBR possessed a unique dominant OTU. For FBR10 and FBR25, an OTU most similar to *Clostridium* was dominant and accounted for >20% of all bacterial relative abundance. For the DFF reactors, an OTU most similar to *Geobacter* was dominant in DFF25, whereas DFF10 showed higher abundances of OTUs most similar to *Cytophaga* and *Trichococcus*. All of these genera are contained within the phyla Proteobacteria, Bacteroidetes, and Firmicuties, which have been described as being dominant in mesophilic anaerobic systems (<u>McKeown et al., 2009</u> and <u>Requeiro et al., 2012</u>) and have been shown to account for over

65% of relative abundance in a psychrophilic AnMBR treating synthetic domestic wastewater (<u>Smith et al., 2013</u>).

The microbiome within the PE fed to the AnMBRs significantly differed from community structures in the AnMBRs during SPE operation based on Pearson's correlation coefficient and community microbial fingerprint (Fig. <u>S1</u>). Comparison of Pearson's correlation coefficients revealed poor correlation between AnMBR bacterial communities during SPE operation and the PE bacterial community (r = 0.08 to 0.16). Microbial fingerprint analysis showed that OTUs most similar to *Arcobacter* represented 30% of the PE bacterial relative abundance, but these OTUs were $\leq 1\%$ of the relative abundance in all the AnMBRs during SPE operation. Other dominant OTUs in the PE included those most similar to *Bacteroides*, *Parabacteroides*, and *Aeromonas*. These four genera have previously been found to comprise a large portion of the bacterial community in municipal sewage (<u>Fisher et al.</u>, <u>2014</u> and <u>McLellan et al.</u>, 2011).

Bacterial communities in the AnMBR systems shifted after SPE feeding to AnMBRs ceased and real PE began to be fed (<u>Fig. S1</u>). This was due to introduction of organisms within PE fed to the AnMBRs. Specifically, an OTU most similar to *Arcobacter* appeared within AnMBRs in higher relative abundance during PE operation with higher increases in the 10 °C bioreactors.

No significant differences among the AnMBR archaeal populations were observed. A group of 28 unique archaeal OTUs was identified and over 80% of archaeal relative abundance was accounted for by three OTUs during both SPE and PE operation; these OTUs were most similar to *Methanosaeta*, *Methanobacterium*, and *Methanospirillum* (<u>Fig. S1</u>). Unlike the bacterial community composition, the archaeal community during PE and SPE feeding were not significantly different.

Hydrogenotrophic methanogen OTUs made up a larger portion of methanogen relative abundance in the 10 °C AnMBRs, which is consistent with previous observations of methanogen population shifts to favor hydrogen utilization under psychrophilic conditions (<u>Lettinga et al.,</u> <u>2001</u> and <u>Siggins et al., 2011</u>). OTUs most similar to hydrogenotrophic

methanogens made up 16–40% of archaeal relative abundance in the 25 °C systems, whereas these OTUs accounted for 27–58% of relative abundance at 10 °C. Among methanogens, the OTU most similar to *Methanosaeta* was the most dominant, accounting for at least 40% of archaeal relative abundance in all systems (<u>Fig. S1</u>). The facts that bioreactor bulk liquid VFA concentrations remained very low, *Methanosarcina* was virtually absent from all samples, and all AnMBRs were run at temperatures below the mesophilic optimum of 35 °C indicates that acetoclastic methanogenesis was achieved primarily by *Methanosaeta* spp. (<u>Bialek et al., 2011</u>).

A decrease in relative abundance of methanogens was seen over time at 10 °C in this 365 day study, which suggests that biofilms in all AnMBRs primarily contained psychrotolerant mesophilic methanogens as opposed to developing dominant putatively psychrophilic populations. Methanogens comprised 7–12% of total microbial relative abundance in the 25 °C AnMBRs, whereas only 2–5% methanogens were found at 10 °C. Previous psychrophilic anaerobic studies operating up to 300 days have concluded that reactors seeded with mesophilic biomass primarily contained psychrotolerant mesophilic methanogens rather than a population of psychrophilic methanogens (<u>Collins et al., 2006</u> and <u>Smith et al., 2013</u>). However, putatively psychrophilic microbial populations have been found in long term studies (>1200 days), indicating that psychrophilic organisms are present but require a very long time to establish in significant abundance (<u>McKeown et al., 2009</u>).

3.3. AnMBR microbial comparisons

Unique microbial communities existed in each AnMBR based on NMDS, Pearson's correlation, and PCA analysis despite similar values for gross evenness and diversity index. Cluster analysis using NMDS plots revealed distinct differences among the bacterial communities of AnMBRs during SPE operation (Fig. 1). The distinct grouping of bacterial profiles from each AnMBR indicate that selective pressures of bioreactor configuration and operational temperature cause differences in the microbial communities of reactors seeded with the same inoculum and fed identical substrate. This observation was also made by <u>Bialek et al. (2011)</u> who found methanogenic community profiles in different bioreactor configurations clustered using NMDS and by <u>O'Reilly et al. (2009)</u> who indicated that microbial community profiles are affected by temperature. However, in contrast to bacterial communities, the archaeal communities in this study did not cluster separately using NMDS (<u>Fig. 1</u>). Results from the archaeal fingerprints confirm this observation and indicates similar archaeal community structures for all AnMBRs during SPE operation (<u>Fig. S1</u>). Analysis using Pearson's correlation coefficient did not indicate that either bioreactor configuration or temperature had a more significant impact on community differences.

Fig. 1. Non-metric multidimensional scaling (NMDS) analysis of (A) Bacteria and (B) Archaea 16S rRNA sequencing profiles for each AnMBR. Ellipses represent clustering of each AnMBR biomass (95% confidence). During SPE operation samples were taken on day 180, 200, 230, and 250. Samples were taken during PE operation on day 355.

PCA also helps visualize how the most dominant bacterial and archaeal genera are represented among reactors (Fig. 2). For Bacteria, differences observed among OTUs most similar to the genera *Clostridium*, *Arcobacter*, *Geobacter*, *Trichoccous*, *Acinetobacter*, and *Cytophaga* in each AnMBR explain 73% of the variance observed within bacterial communities during operation with PE and SPE. Additionally, vectors representing specific bacterial OTUs aligned with the AnMBRs possessing the highest relative abundance of each OTU, indicating the microbial community differences across AnMBRs were attributed to a specific dominant OTU in each AnMBR. For Archaea, *Methanosaeta, Methanobacterium*, and *Methanospirillum* explain 99% of the variance observed among archaeal OTUs did not align with different AnMBRs, which reinforces observations made with NMDS and

analysis of community fingerprints that unique archaeal community structures did not emerge in each AnMBR.

Fig. 2. Principal components analysis (PCA) analysis of (A) Bacteria and (B) Archaea 16S rRNA sequencing profiles for each AnMBR. During SPE operation samples were taken on day 180, 200, 230, and 250. Samples during PE operation were taken on day 355.

3.4. Impact of continuous inoculation

Continuous inoculation by PE caused the community to change in each AnMBR. After wastewater containing a high abundance of *Arcobacter* began to be fed, its relative abundance increased in all bioreactors, ostensibly because reactors were being continuously inoculated (<u>Fig. S1</u>). During PE feeding, the bacterial community in all AnMBRs did not cluster with communities analyzed during SPE operation (<u>Fig. 1</u>). Additionally, *Arcobacter* relative abundance was the primary source of community variance among bioreactor biomass during PE operation, especially for the 10 °C AnMBRs (<u>Fig. 2</u>). Previous work has identified a similar change in microbial community composition within activated sludge systems due to the influent wastewater microbiota (<u>Lee et al., 2015</u>). Influent characteristics are also known to affect microbial community structure (<u>LaPara et al., 2002</u>). The relatively short operation period with PE during this study did not allow time to examine the long term effect of influent continual seeding on AnMBR bioreactor microbial community. Future work should examine the long term effect on microbial community structure once a steady state condition has been reached.

3.5. Methanogenic activity and substrate preference

Thermodynamically, hydrogen is a more favorable substrate than acetate at lower temperature (Lettinga et al., 2001). In contrast, acetoclastic methanogenesis has been described by some as the primary methanogenic pathway at low temperatures (Metje and Frenzel, 2007). However, hydrogenotrophic methanogenesis has also been observed in low temperature natural (Metje and Frenzel, 2007) and engineered environments (Bialek et al., 2011 and McKeown et al., 2009).

Methanogenic activity assays in this study revealed hydrogenotrophic methanogenesis became the primary methanogenic pathway at lower temperature (Fig. 3). Comparison of SMA at 10 °C for biomass from all AnMBRs shows hydrogen utilization was similar among all bioreactors during SPE operation but was higher in the FBR10 and DFF10 biomass compared to FBR25 and DFF25 biomass during PE operation. Additionally, while acetate utilization was observed during SPE operation, acetoclastic methanogenesis was not detected during PE operation. These results, combined with the higher relative abundance of hydrogenotrophic methanogens at 10 °C (Fig. S1) indicate that hydrogen utilization was the primary pathway for methanogenesis at 10 °C and prolonged low temperature operation increased biomass hydrogen utilization rate compared to biomass at 25 °C.

Fig. 3. Specific methanogenic activity (SMA) at 10 °C using acetate and H_2/CO_2 after treating SPE for 300 days (n = 6) and after treating PE for 35 days (n = 6 for H_2/CO_2 , n = 3–5 for acetate).

The role of Methanosaeta detected in each AnMBR is unclear. Methanosaeta is commonly found in methanogenic biomass and is known to be important in forming biofilms in bioreactors such as the upflow anaerobic sludge blanket reactor (<u>Nelson et al., 2012</u>). However, the high relative abundance of *Methanosaeta* in all systems does not correlate to the extremely low or nonexistent methanogenic activity measured with acetate at 10 °C. The primary explanation for high Methanosaeta detection may stem from the molecular methods used which relied on sequencing analysis of DNA rather than RNA. DNA-based methods can be biased in that intracellular and extracellular DNA may be included from inactive members within a community (Smith et al., 2015). High detection of *Methanosaeta* coupled with little acetoclastic methanogenic activity suggests that *Methanosaeta* was present but may not have been active. Another possibility is that Methanosaeta may have been using a substrate other than acetate. While *Methanosaeta* spp. have been considered to be exclusively acetoclastic since they are not known to use H₂ or formate, a recent study has indicated that *Methanosaeta* may be able to reduce CO_2 to CH_4 via direct interspecies electron transfer in conjunction with Geobacter (Rotaru et al., 2014). In this study, Geobacter bacterial relative abundance in the 25 °C AnMBRs varied from 5 to 20%, whereas they were only 1.0-2.3% in the 10 °C systems. The presence of Geobacter and Methanosaeta coupled with low methanogenic

acetate utilization suggests that *Methanosaeta* may play a role other than acetate utilizer in low temperature anaerobic systems. The possibility of functionally significant, cold temperature *Methanosaeta- Geobacter* direct interspecies electron transfer warrants investigation. Further work utilizing RNA or functional gene-based sequencing methods (such as mcrA) would also be useful to characterize the role of *Methanosaeta* in similar fixed-film anaerobic systems.

4. Conclusions

Unique bacterial communities developed in AnMBRs due to reactor configuration and temperature, but the same was not observed for Archaea. Hydrogenotrophic methanogenesis was dominant at 10 °C, whereas acetoclastic methanogenesis was low or not detected. A shift in AnMBR microbial community occurred when real wastewater was fed due to continuous seeding with influent wastewater microbiota. Future work should determine the influence of long term continuous seeding by wastewater microbiota on bioreactor communities.

Acknowledgements

The authors thank Xylem, Inc. for assisting with project development and for providing materials, funding, and technical support throughout this study. This article was also developed under STAR Fellowship Assistance Agreement no. FP-91766901-0 awarded by the U.S. Environmental Protection Agency (EPA). It has not been formally reviewed by EPA. The views expressed in this article are solely those of the authors and EPA does not endorse any products or commercial services mentioned in this article.

References

 <u>APHA et al., 1999</u>. APHA, AWWA, WEF. Standard Methods for the Examination of Water and Wastewater. (20th ed) American Water Works Association (1999)
 <u>Bialek et al., 2011</u>. K. Bialek, J. Kim, C. Lee, G. Collins, T. Mahony, V. O'Flaherty. Quantitative and qualitative analyses of methanogenic community development in high-rate anaerobic bioreactors. Water Res., 45 (2011), pp. 1298–1308 <u>http://dx.doi.org/10.1016/j.watres.2010.10.010</u>

- Bocher et al., 2015. B.T.W. Bocher, K. Cherukuri, J.S. Maki, M. Johnson, D.H. Zitomer. Relating methanogen community structure and anaerobic digester function. *Water Res.*, 70 (2015), pp. 425–435 <u>http://dx.doi.org/10.1016/j.watres.2014.12.018</u>
- Briones and Raskin, 2003. A. Briones, L. Raskin. Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. *Curr. Opin. Biotechnol.*, 14 (2003), pp. 270–276 http://dx.doi.org/10.1016/S0958-1669(03)00065-X
- Briones et al., 2007. A.M. Briones, B.J. Daugherty, L.T. Angenent, K.D. Rausch, M.E. Tumbleson, L. Raskin. Microbial diversity and dynamics in multi- and single-compartment anaerobic bioreactors processing sulfate-rich waste streams. *Environ. Microbiol.*, 9 (2007), pp. 93–106 <u>http://dx.doi.org/10.1111/j.1462-2920.2006.01119.x</u>
- CME, 2015. CME, 2015. RDP [WWW Document]. URL: <<u>http://rdp.cme.msu.edu</u>>.
- <u>Collins et al., 2006</u>. G. Collins, S. McHugh, S. Connaughton, A.-M. Enright, A. Kearney, C. Scully, T. Mahony, P. Madden, V. O'Flaherty. New low-temperature applications of anaerobic wastewater treatment. *J. Environ. Sci. Health. A. Tox. Hazard. Subst. Environ. Eng.*, 41 (2006), pp. 881–895 <u>http://dx.doi.org/10.1080/10934520600614504</u>
- DeSantis et al., 2006. T.Z. DeSantis, P. Hugenholtz, N. Larsen, M. Rojas, E.L. Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu, G.L. Andersen. Greengenes, a chimerachecked 16S rRNA gene database and workbench compatible with ARB. *Appl. Environ. Microbiol.*, 72 (2006), pp. 5069–5072 http://dx.doi.org/10.1128/AEM.03006-05
- Dowd et al., 2008. S.E. Dowd, T.R. Callaway, R.D. Wolcott, Y. Sun, T. McKeehan, R.G. Hagevoort, T.S. Edrington. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). *BMC Microbiol.*, 8 (2008), p. 125 <u>http://dx.doi.org/10.1186/1471-2180-8-125</u>
- Falk et al., 2009. M.W. Falk, K.G. Song, M.G. Matiasek, S. Wuertz. Microbial community dynamics in replicate membrane bioreactors – natural reproducible fluctuations. *Water Res.*, 43 (2009), pp. 842–852 <u>http://dx.doi.org/10.1016/j.watres.2008.11.021</u>
- Fernandez et al., 2000. A.S. Fernandez, S.A. Hashsham, S.L. Dollhopf, L. Raskin, O. Glagoleva, F.B. Dazzo, R.F. Hickey, C.S. Criddle, J.M. Tiedje. Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. *Appl. Environ. Microbiol.*, 66 (2000), pp. 4058–4067 <u>http://dx.doi.org/10.1128/AEM.66.9.4058-4067.2000</u>

- <u>Fisher et al., 2014</u>. J.C. Fisher, A. Levican, M.J. Figueras, S.L. McLellan. Population dynamics and ecology of arcobacter in sewage. *Front. Microbiol.*, 5 (2014), pp. 1–9 <u>http://dx.doi.org/10.3389/fmicb.2014.00525</u>
- Harb et al., 2015. M. Harb, Y. Xiong, J. Guest, G. Amy, P.-Y. Hong. Differences in microbial communities and performance between suspended and attached growth anaerobic membrane bioreactors treating synthetic municipal wastewater. *Environ. Sci. Water Res. Technol.*, 1 (2015), pp. 800–813 <u>http://dx.doi.org/10.1039/C5EW00162E</u>
- LaPara et al., 2002. T.M. LaPara, C.H. Nakatsu, L.M. Pantea, J.E. Alleman. Stability of the bacterial communities supported by a seven-stage biological process treating pharmaceutical wastewater as revealed by PCR-DGGE. *Water Res.*, 36 (2002), pp. 638–646 <u>http://dx.doi.org/10.1016/S0043-1354(01)00277-9</u>
- Lee et al., 2015. S.-H. Lee, H.-J. Kang, H.-D. Park. Influence of influent wastewater communities on temporal variation of activated sludge communities. *Water Res.*, 73 (2015), pp. 132–144

http://dx.doi.org/10.1016/j.watres.2015.01.014

- Lettinga et al., 2001. G. Lettinga, S. Rebac, G. Zeeman. Challenge of psychrophilic anaerobic wastewater treatment. *Trends Biotechnol.*, 19 (2001), pp. 363–370 <u>http://dx.doi.org/10.1016/S0167-7799(01)01701-2</u>
- <u>McCarty et al., 2011</u>. P.L. McCarty, J. Bae, J. Kim. Domestic wastewater treatment as a net energy producer-can this be achieved? *Environ. Sci. Technol.*, 45 (2011), pp. 7100–7106 <u>http://dx.doi.org/10.1021/es2014264</u>
- McKeown et al., 2009. R.M. McKeown, C. Scully, A.-M. Enright, F.A. Chinalia, C. Lee, T. Mahony, G. Collins, V. O'Flaherty. Psychrophilic methanogenic community development during long-term cultivation of anaerobic granular biofilms. *ISME J.*, 3 (2009), pp. 1231–1242 <u>http://dx.doi.org/10.1038/ismej.2009.67</u>
- <u>McKeown et al., 2012</u>. R.M. McKeown, D. Hughes, G. Collins, T. Mahony, V. O'Flaherty. Low-temperature anaerobic digestion for wastewater treatment. *Curr. Opin. Biotechnol.*, 23 (2012), pp. 444–451 <u>http://dx.doi.org/10.1016/j.copbio.2011.11.025</u>
- McLellan et al., 2011. S.L. McLellan, S.M. Huse, S.R. Mueller-Spitz, E.N.
 Andreihcheva, M.L. Sogin. Diversity and population structure of sewage derived microorganisms in wastewater treatment plant influent. *Environ. Microbiol.*, 12 (2011), pp. 378–392 <u>http://dx.doi.org/10.1111/j.1462-2920.2009.02075.x.Diversity</u>
- <u>Metje and Frenzel, 2007</u>. M. Metje, P. Frenzel. Methanogenesis and methanogenic pathways in a peat from subarctic permafrost. *Environ. Microbiol.,* 9 (2007), pp. 954–964 <u>http://dx.doi.org/10.1111/j.1462-2920.2006.01217.x</u>
- NCBI, 2015. NCBI, 2015. National Center for Biotechnology Information [WWW Document]. URL: ">http://www.ncbi.nlm.nih.gov/>.

- <u>Nelson et al., 2012</u>. M.C. Nelson, M. Morrison, F. Schanbacher, Z. Yu. Shifts in microbial community structure of granular and liquid biomass in response to changes to infeed and digester design in anaerobic digesters receiving foodprocessing wastes. *Bioresour. Technol.*, 107 (2012), pp. 135–143 <u>http://dx.doi.org/10.1016/j.biortech.2011.12.070</u>
- <u>O'Reilly et al., 2009</u>. J. O'Reilly, C. Lee, G. Collins, F. Chinalia, T. Mahony, V. O'Flaherty. Quantitative and qualitative analysis of methanogenic communities in mesophilically and psychrophilically cultivated anaerobic granular biofilims. *Water Res.*, 43 (2009), pp. 3365–3374 <u>http://dx.doi.org/10.1016/j.watres.2009.03.039</u>
- <u>Ramette, 2007</u>. A. Ramette. Multivariate analyses in microbial ecology. *FEMS Microbiol. Ecol.*, 62 (2007), pp. 142–160 <u>http://dx.doi.org/10.1111/j.1574-6941.2007.00375.x</u>
- <u>Regueiro et al., 2012</u>. L. Regueiro, P. Veiga, M. Figueroa, J. Alonso-Gutierrez, A.J.M. Stams, J.M. Lema, M. Carballa. Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters. *Microbiol. Res.*, 167 (2012), pp. 581–589
 - http://dx.doi.org/10.1016/j.micres.2012.06.002
- <u>Rivière et al., 2009</u>. D. Rivière, V. Desvignes, E. Pelletier, S. Chaussonnerie, S. Guermazi, J. Weissenbach, T. Li, P. Camacho, A. Sghir. Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. *ISME J.*, 3 (2009), pp. 700–714 <u>http://dx.doi.org/10.1038/ismej.2009.2</u>
- <u>Rotaru et al., 2014</u>. A.-E. Rotaru, P.M. Shrestha, F. Liu, M. Shrestha, D. Shrestha, M. Embree, K. Zengler, C. Wardman, K.P. Nevin, D.R. Lovley. A new model for electron flow during anaerobic digestion: direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. *Energy Environ. Sci.*, 7 (2014), p. 408 <u>http://dx.doi.org/10.1039/c3ee42189a</u>
- <u>Roy et al., 2009</u>. C.S. Roy, G. Talbot, E. Topp, C. Beaulieu, M.F. Palin, D.I. Massé. Bacterial community dynamics in an anaerobic plug-flow type bioreactor treating swine manure. *Water Res.*, 43 (2009), pp. 21–32 <u>http://dx.doi.org/10.1016/j.watres.2008.09.034</u>
- Seib et al., 2016a. M.D. Seib, K.J. Berg, D.H. Zitomer. Low energy anaerobic membrane bioreactor for municipal wastewater treatment. *J. Membr. Sci.*, 514 (2016), pp. 450–457 http://dx.doi.org/10.1016/j.memsci.2016.05.007
- Seib et al., 2016b. M.D. Seib, K.J. Berg, D.H. Zitomer. Reduced energy demand for municipal wastewater recovery using an anaerobic floating filter membrane bioreactor. *Environ. Sci. Water Res. Technol.*, 2 (2016), pp. 290–297 <u>http://dx.doi.org/10.1039/C5EW00244C</u>
- <u>Siggins et al., 2011</u>. A. Siggins, A.M. Enright, V. O'Flaherty. Low-temperature (7 °C) anaerobic treatment of a trichloroethylene-contaminated wastewater:

microbial community development. *Water Res.*, 45 (2011), pp. 4035–4046 <u>http://dx.doi.org/10.1016/j.watres.2011.05.013</u>

- Smith et al., 2013. A.L. Smith, S.J. Skerlos, L. Raskin. Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater. *Water Res.*, 47 (2013), pp. 1655–1665 <u>http://dx.doi.org/10.1016/j.watres.2012.12.028</u>
- Smith et al., 2015. A.L. Smith, S.J. Skerlos, L. Raskin. Anaerobic membrane bioreactor treatment of domestic wastewater at psychrophilic temperatures ranging from 15 °C to 3 °C. *Environ. Sci. Water Res. Technol.*, 1 (2015), pp. 56–64 <u>http://dx.doi.org/10.1039/C4EW00070F</u>
- <u>Stirling and Wilsey, 2001</u>. G. Stirling, B. Wilsey. Empirical relationships between species richness, evenness, and proportional diversity. *Am. Nat.*, 158 (2001), pp. 286–299 <u>http://dx.doi.org/10.1086/321317</u>

Appendix A. Supplementary data

Influent wastewater microbiota and temperature influence anaerobic membrane bioreactor microbial community

M.D. Seib^{a*}, K.J. Berg^a, D.H. Zitomer^a

^a Department of Civil, Construction and Environmental Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI 53233, USA

Supporting Materials

Supporting Figures (Figure S1)

Supporting Tables (Table S1 and S2)

Email address: matthew.seib@marquett.edu

^{*} Corresponding author at: Department of Civil, Construction and Environmental Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI 53233, USA

Figure S1: Biofilm community structure at the genus level for A.) Bacteria and B.) Archaea during operation with SPE (day 250) and PE (day 355). Relative abundance is shown for the 20 most abundant genera classified in the domain Bacteria and for the 10 most abundant genera classified in the domain Archaea, respectively.

	Real			FBR10					FBR25		
Conuc	PE	EDD	EDD	EDD	EDD	EDD	EDD	EDD	EDD	EDD	EDD
Genus		10		10			75 25	75 25	75 25	25	25
	FL_J	180	200	230	250	355	180	200	230	250	25_
clostridiu	0.01	0.28	0.10	0.18	0.08	0.21	0.08	0.09	0.04	0.09	0.08
m	6967	710	944	375	474	106	768	918	228	493	564
	42	2	7	1	9	100	8	4	6	4	8
geobacter	0.00	0.01	0.01	0.03	0.17	0.01	0.00	0.04	0.05	0.02	0.01
5	1769	478	820	834	586	955	923	587	629	279	473
	11	7	4	3	8	5	4	6	4	5	7
trichococc	0.01	0.01	0.16	0.02	0.08	0.01	0.07	0.02	0.02	0.00	0.02
us	2222	306	080	587	400	219	539	066	044	798	930
	97	5	5	6	7	5		5	9	1	9
cytophaga	0.00	0.03	0.05	0.03	0.03	0.05	0.10	0.04	0.04	0.04	0.09
	6304	868	160	766	358	165	924	886	763	837	754
	48	2	5	4	9		8	4	1	7	2
methanos	0.00	0.03	0.02	0.07	0.07	0.04	0.00	0.07	0.13	0.00	0.01
aeta	2541	414	332	586	087	534	842	295	217	9//	425
bactoroido	09	/	/	9	4	4	0.02		0 0 0 0 0 0	<u> </u>	0 02
Dacteroide	0.07	0.00	540	0.05	0.01	725	244	308	0.02	0.05	0.03
5	5	207	7	433	237	1	244	200	4	990 6	2
arcobacter	0.30	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.21	0.06
arcobacter	1923	235	346	227	333	264	716	441	114	826	385
	51	1	5	2	2	1	4	9	3	4	1
bellilinea	0.00	0.05	0.01	0.06	0.01	0.05	0.00	0.02	0.00	0.01	0.00
	0788	941	855	618	575	201	534	436	773	699	453
	06	7	1	6	1	1	2	9	3	9	2
acinetobac	0.02	0.00	0.01	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00
ter	2869	308	264	259	820	445	073	355	429	842	567
	83	3	8		5	9	2	3		9	2
lactococcu	0.01	0.03	0.04	0.00	0.01	0.02	0.04	0.00	0.00	0.00	0.00
S	2801	613	978	860	963	433	//2	267	209	504	954
dogulfomio	96	8	6	2	0.00		9	4	6	1	5
desulfomic	2000	0.03	105	0.00	0.00	612	0.04	740	692	224	0.05
TODIUITI	2090	012	792	520	202 8	3	300	1	1	1	525
aeromona	0.08	0.00	0.00	0.00	0.01	0.00	0.00	0 00	0 00	0.02	0.00
s	3019	169	365	398	534	207	764	821	555	589	807
5	72	6	1	9	5	8	7	1	3	505	6
syntrophu	0.00	0.00	0.01	0.04	0.02	0.00	0.00	0.03	0.03	0.00	0.01
S	0546	925	716	104	905	904	821	347	169	459	138
	82		5	4	2	9	3	1	4	3	6
longilinea	0.00	0.02	0.01	0.03	0.01	0.01	0.00	0.01	0.01	0.00	0.00
	0546	311	715	580	260	964	524	013	114	565	597
	82	2	2	8	1	1	5	2	8	7	4

Table S1: Relative abundance of the top 98% most abundant genera in FBR10, FBR25, and the real primary effluent (Real PE) detected across all samples analyzed.

levilinea	0.00	0.01	0.02	0.02	0.01	0.01	0.01	0.01	0.00	0.00	0.00
	0385	415	4/3 Q	003	3//	088	413	531	830	403	883
solitalea	0.00	0.02	0.01	0.00	0.00	0.02	0.01	0.01	0.01	0.00	0.01
Solitaiea	0627	004	403	958	613	649	541	941	667	945	144
	23	1	4	6	2	6	8		3	1	1
methanob	0.00	0.00	0.01	0.03	0.00	0.01	0.00	0.00	0.00	0.00	0.00
acterium	0691	945	726	513	931	226	560	742	655	478	488
	56	5	4		1	7	4		3	9	9
desulfobul	0.00	0.01	0.00	0.02	0.00	0.01	0.00	0.03	0.01	0.01	0.02
bus	1511	350	795	512	554	160	425	806	993	701	040
fucibactor	/9	<u> </u>	/	8	4	3	1	/	<u> </u>	3	9
Tusibacter	0.00	405	690	487	0.01	398	658	227	360	366	961
	31	7	5	6	3	6	4	227	9	9	4
parabacte	0.04	0.00	0.01	0.00	0.00	0.01	0.02	0.01	0.01	0.02	0.03
roides	9374	607	116	191	243	245	175	248	324	804	174
	38	7	3	2	6	4	3		4	6	
spirochaet	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.02	0.04	0.01
а	0627	702	638	616	956	539	891	875	701	025	546
1 16 11	23	7	6	4	3	7	6	1	5	6	5
desulfovib	0.00	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.01	0.04	0.00
rio	3795	525	221	540	621 3	640 8	941	619	745	147	6/3
syntropho	0.00	0.01	0.00	0.02	0.01	0.01	0.00	0.02	0.01	0.00	0.00
rhabdus	0418	283	678	794	129	307	227	303	524	299	594
	15	4	2		9	5	7	8	3	6	7
dehalococ	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
coides	0257	824	570	712	798	663	194	742	635	166	245
	33	8	5	3	1	8	6		8	6	8
shewanell	0.01	0.00	0.00	0.00	0.01	0.00	0.03	0.00	0.00	0.00	0.00
а	1161	073	220	332	502	327	245	144	112	5/2	196
cyntropho	5	<u> </u>	3	5	<u> </u>	0.01	0.00	4	4	/	4
monas	0.00	524	492	160	528	480	276	635	524	446	214
monus	73	9	5	8	9	7	1	3	8	7	3
anaeropha	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.01
ga .	0418	201	018	436	309	232	870	624	069	672	093
	15	7	5	3	4	3	3	6		1	3
composti	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
monas	0209	706	874	851	726	583	550	227	202	429	413
u u a liu ila a at	08	1	9	9	/	1	/	2	/	9	4
prolixidact	0.00	644	0.00	102	0.00	0.00	0.01	0.00	0.00	0.00	202
CI	<u> </u>	Q Q	702	102	20	200	555	22	Q 003	1	1
pelobacter	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.01
perebucco	0997	283	030	181	331	317	808	505	277	418	583
	14	9	9	5	8	5	8	3	2	7	6
phascolarc	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
tobacteriu	1785	485	529	405	228	796	826	839	465	172	756
m	2	6	7	9	2	6	8	9	1		8

rikenella	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
	79	2	7	2	8	1	9	8	1	9	1
acidobacte	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00	0.00
rium	0257	501	199	644	180	744	158	186	855	372	403
	33		2	3	6	7	7	4	2	5	8
caldithrix	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.01
	0402	274	688	430	182	441	721	737	652	214	161
	07	9	1	8		6	2	6		2	9
sulfurovu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
m	0836	457	795	245	781	492	557	231	329	392	624
paludibact	0.01	0.00	/	2	0.00		0.00	0.00	0.00		9
paiuuibact	5712	551	207	426	0.00	1.01	522	500	240	222	0.00
ei	95	1	297	420	6	4	300	9	240	555	7
smithella	0.00	0 00	0.00	0.00	0.00	0.00	0.00	0 00	0.01	0.00	0 00
onnenena	0176	151	509	716	428	124	222	565	506	026	256
	91	6	9	2	4	1	2		3	6	8
methanos	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
pirillum	0112	073	517	500	269	059	372	243	384	078	609
	58	2	3	1	9	2	7	6	5	4	8
pedobacte	0.00	0.00	0.01	0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00
r	0289	492	171	037	044	114	432	178	098	819	571
	49		9	4	8	1	7	3	6	1	4
eubacteriu	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
m	3187	1/4	616	1/8	2/5	301	597	528	885	639	392
proteocate	94	/	0 00	/	0 00		/		/	9	/
lla	2734	260	601	347	425	304	634	287	291	113	230
na	09	8	4	7	6	5	9	5	5	4	230
ornithiniba	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
cillus	0160	913	471	804	175	759	254	450	106	138	195
	83	4	5	8		1		7	9	6	
leptospira	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.00
	0160	165	273	146	424	282	241	656	060	190	561
	83	7	5	8	2	9	5		6	2	7
candidatu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S	1190	476	534	356	197	398	288	187	537	331	335
cloacimon	13	6	6		4	3	5	1	3	8	1
as	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
aninobact	0.00	635	247	184	440	686	208	244	104	236	120
enum	91	9	7	8	4	9	200	8	1	550	125
auaaenhei	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
mella	0241	019	013	195	021	018	024	337	023	011	020
	24	3	6	5		8	8	7	6	2	6
treponem	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
a	0225	158	371	279	289	155	574	475	547	330	869
	16		3	8	8	9	2	8		4	4

acetobact erium	0.00 1367	0.00 056	0.00 670	0.00 117	0.00 523	0.00 034	0.00 321	0.00 177	0.00 240	0.00 236	0.00 281
	04	5	7	7	6	6	6		2	6	6
pelotomac	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ulum	01/4	050	094	054	138	031	063	275	294	9//	445
chlorobiu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
m	0209	092	118	052	382	069	136	866	110	277	508
	08	5	8	6	2	3	6	3	6	2	2
thermana	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
erovibrio	0128	014	033	09	935	015	038	208	438	043	061
	66	1	4	0.00	0.00	9	6	4	7	4	8
ruminococ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 417	0.00	0.00
cus	23	470	544	414	240 4	8	244	972 9	417 Q	205	- 300 - 7
anaeromy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
xobacter	0128	172	297	101	364	181	375	162	284	086	846
	66	1		1		8	4		6	8	
fusobacter	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ium	5178	037	155	048	466	027	335	185	413	065	291
naonihacill	68	3	9	5	2	4	4	8	/	8	2
paeriibaciii	0.00	0.00	0.00	100	63	0.00	196	0.00	0.00	0.00	0.00
us	0205	1	257	4	05	9	9	004	8	6	4
synergiste	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S	1640	606	529	088	515	534	365	096	102	219	280
	45	4	7	7	2		8	7	7	8	2
pedospha	9.64	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
era	97E-	093	311	250	236	101	18/	606	881	121	432
anaeromu	0.00	0 00	9	/	0 00	0.00	/	4	0.00	0 00	0 00
sa	6288	0.00	384	077	371	207	191	072	065	131	134
	4	1	9	6		8	2	8	2	6	6
blastopirel	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
lula	0128	024	158	321	890	024	110	242	326	014	140
	66	4	4	4	5	5	4	3	2		1
syntropho	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.8E	0.00
Dacter	66	107	556	440	333 7	120	100	1//	54	-05	120
anaerovor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ax	0321	158	632	081	415	116	528	057	258	127	32
	66		4	7	8	9	6	8	2	4	
zoogloea	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	1785	047	276	029	131	030	474	875	653	474	912
Vorrucomi	2	5	0.00		6	3	8	<u> </u>	9	/	0.01
crohium	0.00	149	252	123	0.00	207	147	0.01	0.00 416	365	0.01
Crobian	74	149	5	3	07	8	7	6	5	5	5
flavobacte	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
rium	0466	165	641	055	224	203	626	097	447	149	293
	4	7		4		5	6	9		8	9

sulfurospir illum	0.02 5732	0.00 016	0.00 065	0.00 178	0.00 214	0.00 020	0.00 077	0.00 28	0.00 240	0.00 849	0.00 342
	57	7	6	7	2	2	3		2	9	
acidamino	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
Dacter	0498 57	307	8	061	219	307	149	052	3	049	200
chondrom	4.82	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
yces	49E-	169	308	079	21	154	216	075	206	030	149
	05	6	1			4	7	3	8	8	7
deferribac	8.04	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
ter	14E-	052	048	177	268	054	053	141	462	030	049
anaorolino	2.21	/	3	3		8	8	9	3	8	4
anderonne	66F-	0.00	257	307	376	0.00	107	218	367	0.00	239
u	05	9	4	5	6	3	7	5	9	4	200
ornatilinea	3.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	66E-	235	231	376	554	187	100	114	180	047	052
	05	1	4	8	4	6	8	2	5	6	2
leptolinea	9.64	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	97E- 05	152	210	425	364	137	113	381	224	050	107
holophaga	4.82	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
noiophaga	49E-	430	357	040	088	399	421	092	165	305	682
	05	4	6	2	2	8		9	2	2	6
pseudomo	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
nas	5519	033	085	031	035	059	604	198	213	687	527
	96	4	4	9	0.00	2	6	4	8	5	4
sulfuricurv	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
um	47	122	929 - 4	031	005	202	129	100	2	220	2
chitinopha	8.04	0.00	0.00	0.00	0.00	0.01	0.00	0.00	9.72	0.00	0.00
ga	14E-	74	082	016	016	121	020	030	E-05	191	057
	05		9	6	8	3	7	1		8	7
methanoli	9.64	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
nea	97E-	075	12	417	226	111	063	242	585	035	181
dahalahaa	05	8	0.00	0.00	8	1	5	3	8	0.00	3
terium	4.02 49F-	303	201	0.00	359	313	182	267	206	0.00	120
certain	05	2	7	2	8	2	2	4	8	6	9
desulfomo	6.43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
nile	31E-	028	107	238	428	018	075	743	619	085	076
	05	3	7	3	4	8	9	3	2	4	9
rubrobact	8.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
er	14E-	264	242	315	316	163	114 6	185	209	029	112 6
nedomicro	8.04			0 00	4			0 00		4	
bium	14F-	14	217	497	453	189	117	178	209	085	175
5.0	05	- '	8	3	6	1	3	3	6	4	8
terribacillu	6.43	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00
s	31E-	021	143	033	410	098	514	018	013	050	608
	05	8	6	2	2	1	1	8	9	4	4

methanob revibacter	0.00	0.00	0.00 136	0.00 245	0.00 141	0.00 147	0.00	0.00 345	0.00 342	0.00	0.00 156
revibuccei	82	9	1	2	4	2	5	3	9	8	6
thiobacillu	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S	0160 83	055 2	584 1	037 4	084	144 3	726	042 7	05	422 9	858 4
thioalkalib	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acter	0128 66	379	179 4	019 4	035	588 8	274 7	022 6	038 9	112	318 6
hespellia	0.00	0.00	0.00	0.00	9.8E	0.00	0.00	0.00	0.00	0.00	0.00
	0144 75	236 4	678 2	012 5	-05	131 3	346 4	018 8	055 5	061 6	152 5
cetobacter	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ium	5600	045	049	015	032	014	114	301	294	519	458
	37		5	2	2	4	6	3	3	5	7
methyloph	8.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
aga	14E-	250	195	374	078	193	074	121	111	061	089
rhodooval	0.00	5	5	0.00	4	4	5	8	1	6	3
	9231	0.00	125	0.00	0.00	0.00	205	200	238	502	64
us	56	1	125	5	8	5	205	9	230	7	07
enterobac	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ter	3959	014	047	016	063	018	128	090	073	376	115
	92	1		6		8	4	4	6	7	4
dechlorom	0.00	0.00	0.00	8.31	0.00	0.00	0.00	0.00	0.00	0.00	0.00
onas	4133	032	112	E-05	025	036	183	311	236	614	541
	29	1	6		2	1	6	4		7	1
streptococ	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
cus	0807	168	148	038	064	101	149	091	116	193	181
occillocpin	68	3	5	8	4	0.00	1	/	0.00	2	3
Schosph	100/	0.00	300	0.00	0.00	0.00	263	0.00	118	1/17	734
a	27	4	7	9	4	3	6	0.54	110	141	8
solirubrob	9.64	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acter	97E-	074	061	440	257	082	017	168	066	014	017
	05	5	9	5	6	3	9	2	6		9
cloacibacill	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
us	0418	060	454	024	060	059	411	021	033	050	421
	15	4	2	9	2	2	3	3	3	4	6
planctomy	9.64	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ces	97E-	024	194	062	093	014	320	349	362	056	346
alkalibacto	0.00	4	3	3	8	4		0.00	3	0.00	
r	0.00	212	177	288	196	132	0.00	105	0.00	0.00	0.00
1	66	212	1//	200	190	8	2	5	9	8	4
thermoan	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
aerobacte	0176	046	220	012	025	166	738	150	465	084	609
r	91	2	3	5	2		4	7	1		8
acetivibrio	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0128	179	086	166	218	155	122	154	211	036	239
	66	9	6	2	4	9	8	4		4	

ruminiclos tridium	0.00 0932	0.00	0.00 078	0.00 239	0.00 043	0.00 106	0.00 055	0.00 110	0.00 062	0.00 147	0.00 120
desulfosno	1.60	9	0.00	0 00	0.00	0 00	2	0.00	0.00	0.00	9
rosinus	83E- 05	281 3	149 7	020 8	058 8	408 4	154 6	0.00 051 5	055 5	240 8	233 5
tolumonas	0.01 7707 23	1.28 E-05	8.66 E-05	0.00 011 1	0.00 051 8	2.89 E-05	5.52 E-05	0.00 066 5	0.00 065 2	0.00 375 3	0.00 134 6
chloroflex us	4.82 49E- 05	0.00 030 8	0.00 070 5	0.00 263 2	0.00 231	0.00 026	0.00 015 2	0.00 305 1	0.00 215 2	7E- 05	0.00 026 1
faecalibact erium	0.01 8157 55	7.71 E-05	4.95 E-05	4.16 E-05	4.2E -05	2.89 E-05	4.14 E-05	0.00 079 1	0.00 112 4	0.00 228 2	0.00 182 7
streptomy ces	6.43 31E- 05	0.00 059 1	0.00 097 8	0.00 196 7	0.00 281 4	0.00 052	0.00 052 4	0.00 183 3	0.00 166 6	0.00 021	0.00 048 1
desulfobac ter	0.00 0273 41	0.00 010 3	0.00 132 4	0.00 013 9	0.00 016 8	0.00 017 3	0.00 111 8	0.00 143 1	0.00 490 1	0.00 218 4	0.00 365 3
kushneria	0.00 0321 66	6.42 E-05	0.00 043 3	0.00 013 9	0.00 481 6	0.00 013	0.00 012 4	8.79 E-05	0.00 052 8	5.6E -05	6.87 E-05
pelosinus	0.01 4973 14	0.00 068 1	0.00 028 5	0.00 038 8	8.4E -05	0.00 046 2	0.00 015 2	0.00 046 5	0.00 034 7	0.00 179 2	0.00 072 8
aminomon as	3.21 66E- 05	0.00 065 5	0.00 021	0.00 088 7	0.00 491 4	0.00 056 3	9.66 E-05	0.00 060 3	0.00 036 1	0.00 014	5.49 E-05
moorella	4.82 49E- 05	0.00 027	0.00 084 2	0.00 202 2	0.00 085 4	0.00 020 2	0.00 015 2	0.00 334	0.00 273 5	8.4E -05	0.00 038 5
desulfofab a	0.00 0209 08	6.42 E-05	0.00 131 2	0.00 049 9	0.00 099 4	7.22 E-05	0.00 096 6	0.00 167	0.00 483 1	0.00 012 6	0.00 087 9
symbiobac terium	8.04 14E- 05	0.00 164 4	0.00 076 7	0.00 061	0.00 067 2	0.00 225 1	0.00 063 5	0.00 189 6	0.00 277 7	0.00 035	0.00 068 7
anaerofust is	8.04 14E- 05	0.00 305 8	0.00 049 5	0.00 148 2	0.00 103 6	0.00 254	0.00 013 8	0.00 070 3	0.00 076 4	0.00 060 2	0.00 020 6
thermogy mnomona s	6.43 31E- 05	0.00 082 2	0.00 037 1	0.00 105 3	0.00 067 2	0.00 053 4	0.00 033 1	0.00 199 6	0.00 438 7	0.00 014	0.00 100 3
lutispora	4.82 49E- 05	0.00 018	0.00 179 4	0.00 077 6	0.00 127 4	0.00 023 1	0.00 133 9	0.00 065 3	0.00 101 3	0.00 016 8	0.00 105 8
serratia	0.01 2399 88	5.14 E-05	8.66 E-05	1.39 E-05	2.8E -05	7.22 E-05	0.00 015 2	0.00 040 2	0.00 068	0.00 410 3	0.00 162 1

subdoligra nulum	0.01 2657	7.71 E-05	4.95 E-05	6.93 E-05	4.2E -05	4.33 E-05	5.52 E-05	0.00 077	0.00 102	0.00 296	0.00 173
mycoplas	9.64	0.00	0.00	0.00	0.00	0.01	0.00	8 0.00	0.00	8	0.00
ma	97E- 05	273 6	034 7	029 1	032 2	065	019 3	052 7	020 8	156 8	044
propionige nium	0.01 6404 52	7.71 E-05	6.19 E-05	9.7E -05	7E- 05	0	6.9E -05	0.00 011 3	0.00 018	0.00 112	0.00 033
ignavibact erium	6.43 31E- 05	0.00 060 4	0.00 078	0.00 130 2	0.00 095 2	0.00 070 7	0.00 055 2	0.00 219 7	0.00 170 8	0.00 028	0.00 056 3
methano methylovo rans	6.43 31E- 05	0.00 039 8	0.00 104	0.00 072	0.00 155 4	0.00 036 1	0.00 031 7	0.00 129 3	0.00 258 2	0.00 029 4	0.00 076 9
caloramat or	3.21 66E- 05	0.00 165 7	0.00 099	0.00 095 6	0.00 085 4	0.00 230 9	0.00 077 3	0.00 071 6	0.00 081 9	0.00 07	0.00 085 2
methanoc ulleus	8.04 14E- 05	0.00 134 9	0.00 092 8	0.00 138 5	0.00 081 2	0.00 128 4	0.00 033 1	0.00 054	0.00 066 6	0.00 015 4	0.00 026 1
desulfuro monas	3.21 66E- 05	0.00 018	0.00 054 5	0.00 085 9	0.00 049	0.00 017 3	0.00 034 5	0.00 581 3	0.00 292 9	0.00 088 2	0.00 178 5
arthrobact er	0.00 0128 66	0.00 159 3	0.00 061 9	0.00 157 9	0.00 018 2	0.00 109 7	0.00 029	0.00 164 5	0.00 048 6	0.00 071 4	0.00 031 6
acholeplas ma	1.60 83E- 05	0.00 093 8	0.00 050 7	0.00 031 9	0.00 011 2	0.00 063 5	0.00 017 9	0.00 246 1	0.00 780 2	0.00 016 8	0.00 178 5
pirellula	3.21 66E- 05	0.00 041 1	0.00 071 8	0.00 084 5	0.00 154	0.00 047 6	0.00 031 7	0.00 051 5	0.00 123 6	0.00 011 2	0.00 039 8
ralstonia	8.04 14E- 05	0.00 015 4	0.00 063 1	0.00 048 5	0.00 298 2	0.00 017 3	0.00 024 8	0.00 072 8	0.00 141 6	2.8E -05	0.00 030 2
caldanaer obacter	3.21 66E- 05	0.00 059 1	0.00 138 6	1.39 E-05	0.00 022 4	0.00 028 9	0.00 157 3	0.00 017 6	0.00 055 5	0.00 053 2	0.00 465 6
thermoan aerobacul um	4.82 49E- 05	7.71 E-05	0.00 055 7	0.00 074 8	0.00 071 4	0.00 010 1	0.00 055 2	0.00 187 1	0.00 187 4	0.00 016 8	0.00 071 4
candidatu s solibacter	1.60 83E- 05	0.00 045	0.00 089 1	0.00 044 3	0.00 064 4	0.00 047 6	0.00 089 7	0.00 094 2	0.00 201 3	0.00 030 8	0.00 155 2
acidovora x	0.00 2798 42	0.00 012 8	0.00 132 4	6.93 E-05	8.4E -05	0.00 024 5	0.00 299 5	0.00 074 1	0.00 084 7	0.00 266	0.00 188 2
haliangiu m	3.21 66E- 05	0.00 043 7	0.00 065 6	0.00 033 2	0.00 058 8	0.00 054 8	0.00 067 6	0.00 124 3	0.00 145 8	0.00 130 2	0.00 138 7

azospirillu m	3.21 66E-	0.00	0.00 080	0.00 031	0.00 044	0.00 158 7	0.00 075	0.00 163	0.00 198	0.00 030	0.00 083
leptolyngb ya	4.82 49E-	0.00	0.00 040	0.00	0.00	0.00 191	0.00 023	0.00 202	0.00	0.00	0.00 145
desulfocal dus	6.43 31E- 05	3.85 E-05	0.00 040 8	0.00 040 2	4 0.00 439 6	4.33 E-05	0.00 013 8	0.00 228 5	0.00 266 5	4 8.4E -05	0.00 017 9
desulfone ma	4.82 49E- 05	2.57 E-05	0	9.7E -05	0.00 067 2	1.44 E-05	0	6.28 E-05	0.00 020 8	4.2E -05	6.87 E-05
blastomon as	3.21 66E- 05	0.00 027	0.00 048 3	0.00 042 9	0.00 07	0.00 030 3	0.00 078 7	0.00 069 1	0.00 083 3	0.00 079 8	0.00 304 9
carboxydo cella	1.60 83E- 05	0.00 036	0.00 225 2	0.00 023 5	0.00 044 8	0.00 057 7	0.00 247 1	0.00 012 6	0	0.00 018 2	0.00 119 5
chlamydia	3.21 66E- 05	0.00 025 7	0.00 092 8	0.00 018	0.00 039 2	0.00 017 3	0.00 070 4	0.00 203 4	0.00 162 4	0.00 130 2	0.00 144 2
aminivibri o	0	0.00 055 2	0.00 030 9	0.00 184 2	0.00 054 6	0.00 072 2	0.00 011	0.00 043 9	0.00 030 5	9.8E -05	6.87 E-05
gaiella	3.21 66E- 05	0.00 107 9	0.00 023 5	0.00 077 6	0.00 033 6	0.00 089 5	0.00 026 2	0.00 046 5	0.00 054 1	0.00 053 2	0.00 028 8
nitrosovibr io	0.00 0257 33	0.00 046 2	0.00 027 2	0.00 116 4	0.00 071 4	0.00 047 6	0.00 037 3	0.00 075 3	0.00 094 4	0.00 039 2	0.00 083 8
desulfatife rula	3.21 66E- 05	1.28 E-05	0.00 014 9	2.77 E-05	4.2E -05	1.44 E-05	0.00 016 6	0.00 262 4	0.00 358 2	0.00 121 8	0.00 293 9
cellulosilyt icum	8.04 14E- 05	0.00 061 7	0.00 064 4	0.00 115	0.00 067 2	0.00 037 5	0.00 060 7	0.00 138 1	0.00 026 4	0.00 021	0.00 020 6
veillonella	0.00 2026 44	0.00 070 7	0.00 030 9	0.00 037 4	0.00 028	0.00 076 5	0.00 030 4	0.00 054	0.00 023 6	0.00 091	0.00 037 1
caldilinea	0	0.00 064 2	0.00 044 6	0.00 119 1	0.00 035	0.00 053 4	6.9E -05	0.00 042 7	0.00 065 2	8.4E -05	0.00 022
methylote nera	0.00 0257 33	3.85 E-05	0.00 084 2	2.77 E-05	5.6E -05	0.00 021 6	0.00 127	0.00 071 6	0.00 058 3	0.00 334 6	0.00 207 4
cloacibact erium	0.00 2219 43	0.00 018	0.00 027 2	0.00 018	0.00 016 8	0.00 014 4	0.00 019 3	0.00 120 5	0.00 102 7	0.00 07	0.00 065 9
methano massiliicoc cus	1.60 83E- 05	8.99 E-05	0.00 018 6	0.00 121 9	0.00 012 6	0.00 021 6	2.76 E-05	0.00 110 5	0.00 030 5	9.8E -05	2.75 E-05

coxiella	3.21 66E-	0.00 048	0.00 073	0.00 040	0.00 054	0.00 082	0.00 042	0.00 101 7	0.00 038	0.00 014	0.00 041
candidatu s	4.82 49E-	0.00 034 7	0.00	0.00 016	7E- 05	0.00 040	0.00 136	8.79 E-05	6.94 E-05	0.00	0.00
ma	05	/	0	0		4	0			0	4
dethiobact er	3.21 66E- 05	0.00 034 7	0.00 034 7	0.00 141 3	0.00 159 6	0.00 034 6	0.00 016 6	0.00 036 4	0.00 030 5	7E- 05	0.00 019 2
aquabacte rium	0.00 3280 9	7.71 E-05	0.00 022 3	4.16 E-05	7E- 05	0.00 010 1	0.00 053 8	0.00 119 3	0.00 098 6	0.00 119	0.00 111 2
pelagicocc us	1.60 83E- 05	0.00 176	0.00 032 2	0.00 015 2	0.00 014	0.00 134 2	0.00 022 1	7.53 E-05	0.00 026 4	0.00 050 4	9.61 E-05
intestinim onas	4.82 49E- 05	0.00 018	0.00 082 9	0.00 023 5	0.00 114 8	7.22 E-05	0.00 146 3	6.28 E-05	0.00 020 8	5.6E -05	0.00 108 5
sedimenti bacter	0.00 0128 66	0.00 087 4	0.00 064 4	2.77 E-05	5.6E -05	0.00 093 8	0.00 153 2	0.00 012 6	0.00 018	0.00 042	0.00 061 8
blautia	0.00 6288 4	6.42 E-05	3.71 E-05	2.77 E-05	5.6E -05	0.00 010 1	5.52 E-05	0.00 023 9	0.00 034 7	0.00 086 8	0.00 079 7
fibrobacte r	9.64 97E- 05	0.00 066 8	0.00 032 2	0.00 027 7	0.00 022 4	0.00 043 3	0.00 038 6	0.00 013 8	0.00 026 4	0.00 116 2	0.00 133 2
desulforeg ula	8.04 14E- 05	6.42 E-05	0.00 017 3	5.54 E-05	0.00 015 4	5.77 E-05	0.00 013 8	0.00 052 7	0.00 195 7	0.00 270 2	0.00 223 9
halothioba cillus	6.43 31E- 05	0.00 025 7	0.00 078	9.7E -05	0.00 019 6	0.00 024 5	0.00 234 6	0.00 028 9	0.00 031 9	0.00 015 4	0.00 054 9
beggiatoa	0	0.00 025 7	0.00 043 3	0.00 052 6	0.00 165 2	0.00 023 1	0.00 030 4	0.00 026 4	0.00 019 4	4.2E -05	0.00 027 5
lysobacter	8.04 14E- 05	0.00 010 3	0.00 016 1	6.93 E-05	0.00 058 8	0.00 013	9.66 E-05	0.00 013 8	0.00 027 8	0.00 28	0.00 044
acidithiob acillus	0	0.00 018	0.00 099	0.00 048 5	0.00 019 6	0.00 021 6	0.00 017 9	0.00 011 3	0.00 047 2	2.8E -05	0.00 035 7
robinsonie Ila	3.21 66E- 05	0.00 057 8	0.00 032 2	0.00 023 5	0.00 021	0.00 056 3	0.00 048 3	0.00 070 3	0.00 030 5	0.00 061 6	0.00 038 5
gracilibact er	4.82 49E- 05	0.00 025 7	0.00 027 2	0.00 088 7	0.00 063	0.00 010 1	0.00 042 8	0.00 113	0.00 062 5	0.00 012 6	0.00 017 9

lactivibrio	1.60 83E- 05	0.00 033 4	0.00 018 6	0.00 109 4	0.00 091	0.00 026	0.00 011	0.00 051 5	0.00 016 7	0.00 021	0.00 015 1
sacchariba cter	0	0.00 016 7	3.71 E-05	0.00 315 8	5.6E -05	5.77 E-05	2.76 E-05	7.53 E-05	2.78 E-05	7E- 05	2.75 E-05
peredibact er	9.64 97E- 05	0.00 098 9	0.00 034 7	0.00 036	0.00 071 4	0.00 070 7	0.00 031 7	0.00 047 7	0.00 020 8	0.00 019 6	0.00 023 3
microbulbi fer	0	1.28 E-05	0	0.00 026 3	0.00 081 2	0	1.38 E-05	0.00 057 8	0.00 290 1	1.4E -05	1.37 E-05
desulfotig num	9.64 97E- 05	0	1.24 E-05	1.39 E-05	2.8E -05	0	5.52 E-05	0.00 013 8	0.00 427 6	0.00 025 2	0.00 324 1
maricaulis	0	0.00 164 4	0.00 052	2.77 E-05	5.6E -05	0.00 160 2	0.00 031 7	0	4.16 E-05	0.00 032 2	0.00 015 1
rhizobium	0.00 0144 75	0.00 020 6	0.00 078	0.00 011 1	0.00 050 4	0.00 011 5	0.00 107 7	0.00 011 3	0.00 019 4	0.00 014	0.00 053 6
acidamino coccus	0.00 4278 04	0	6.19 E-05	0	7E- 05	2.89 E-05	5.52 E-05	0.00 041 4	0.00 059 7	0.00 124 6	0.00 072 8
thermaero bacter	1.60 83E- 05	0	1.24 E-05	0.00 016 6	0.00 051 8	1.44 E-05	0	0.00 425 6	0.00 058 3	4.2E -05	4.12 E-05
simplicispi ra	0.00 2090 77	6.42 E-05	0.00 022 3	8.31 E-05	0.00 012 6	4.33 E-05	0.00 045 5	0.00 046 5	0.00 063 9	0.00 120 4	0.00 112 6
turicibacte r	0.00 0498 57	0.00 127 2	0.00 030 9	0.00 018	0.00 011 2	0.00 106 8	0.00 015 2	0.00 016 3	0.00 016 7	0.00 065 8	0.00 012 4
helicobact er	0.00 0128 66	0.00 077 1	0.00 014 9	0.00 027 7	0.00 042	0.00 067 8	0.00 011	0.00 032 6	0.00 034 7	0.00 056	0.00 022
rhodopirell ula	1.60 83E- 05	6.42 E-05	0.00 032 2	0.00 047 1	0.00 100 8	1.44 E-05	0.00 015 2	0.00 016 3	0.00 070 8	0	0.00 022
desulfatigl ans	1.60 83E- 05	1.28 E-05	7.43 E-05	6.93 E-05	0.00 180 6	0	0.00 022 1	5.02 E-05	0.00 094 4	4.2E -05	4.12 E-05
pseudoxa nthomona s	0.00 0112 58	3.85 E-05	0.00 068 1	5.54 E-05	0.00 054 6	7.22 E-05	0.00 106 3	0.00 012 6	0.00 05	0.00 026 6	0.00 129 1
polyangiu m	0	0	0	0.00 024 9	0.00 029 4	0	0	0.00 172	0.00 423 4	2.8E -05	2.75 E-05
barnesiell a	0.00 0884 56	0.00 024 4	0.00 027 2	5.54 E-05	0.00 030 8	0.00 033 2	0.00 138	0.00 01	0.00 013 9	0.00 037 8	0.00 024 7

byssovora x	0	5.14 E-05	0.00 026	0.00 037 4	0.00 030 8	0.00 021 6	0.00 034 5	2.51 E-05	5.55 E-05	5.6E -05	0.00 024 7
anaerovibr io	4.82 49E- 05	0.00 084 8	0.00 033 4	0.00 041 6	0.00 019 6	0.00 059 2	0.00 031 7	0.00 021 3	6.94 E-05	0.00 023 8	0.00 016 5
comamon as	0.00 1238 38	0.00 011 6	0.00 023 5	4.16 E-05	0.00 026 6	0.00 011 5	0.00 056 6	0.00 030 1	0.00 045 8	0.00 042	0.00 034 3
dyella	6.43 31E- 05	2.57 E-05	7.43 E-05	0.00 022 2	0.00 065 8	1.44 E-05	5.52 E-05	0.00 023 9	0.00 05	2.8E -05	4.12 E-05
solobacter ium	1.60 83E- 05	0.00 028 3	0.00 016 1	0.00 034 6	0.00 033 6	0.00 031 7	0.00 012 4	2.51 E-05	0.00 015 3	4.2E -05	4.12 E-05
dialister	0.00 1495 71	0.00 050 1	0.00 019 8	0.00 018	0.00 016 8	0.00 030 3	0.00 020 7	0.00 057 8	0.00 027 8	0.00 061 6	0.00 046 7
alistipes	0.00 3924 22	2.57 E-05	2.48 E-05	5.54 E-05	7E- 05	2.89 E-05	1.38 E-05	0.00 023 9	0.00 033 3	0.00 095 2	0.00 063 2
devosia	1.60 83E- 05	3.85 E-05	0.00 045 8	0	0.00 036 4	4.33 E-05	0.00 078 7	1.26 E-05	0.00 019 4	4.2E -05	0.00 098 9
bifidobact erium	0.00 3457 81	1.28 E-05	1.24 E-05	1.39 E-05	0	4.33 E-05	0	0.00 047 7	0.00 073 6	0.00 084	0.00 072 8
alkaliflexu s	0	0.00 019 3	8.66 E-05	0.00 022 2	0.00 053 2	0.00 026	0.00 030 4	0.00 033 9	0.00 122 2	5.6E -05	0.00 044
prochloroc occus	4.82 49E- 05	0.00 056 5	0.00 087 9	0.00 013 9	7E- 05	0.00 039	0.00 030 4	0.00 016 3	0.00 018	0.00 011 2	0.00 037 1
methylom onas	4.82 49E- 05	3.85 E-05	8.66 E-05	1.39 E-05	5.6E -05	2.89 E-05	0.00 04	0.00 023 9	0.00 026 4	0.00 287	0.00 170 3
fluviicola	0	0.00 051 4	0.00 048 3	8.31 E-05	4.2E -05	0.00 033 2	0.00 069	0.00 016 3	0.00 016 7	0.00 032 2	0.00 046 7
haliscome nobacter	1.60 83E- 05	3.85 E-05	3.71 E-05	9.7E -05	0.00 067 2	2.89 E-05	6.9E -05	5.02 E-05	0.00 012 5	4.2E -05	0.00 015 1
sterolibact erium	0	3.85 E-05	0.00 012 4	8.31 E-05	0.00 018 2	0	0.00 026 2	0.00 045 2	0.00 038 9	4.2E -05	0.00 026 1
desulfitob acterium	3.21 66E- 05	3.85 E-05	3.71 E-05	0.00 012 5	0.00 015 4	2.89 E-05	4.14 E-05	0.00 170 7	0.00 197 1	0.00 035	0.00 039 8
calditerric ola	3.21 66E- 05	0.00 030 8	0.00 060 6	0.00 030 5	0.00 029 4	0.00 026	0.00 063 5	0.00 031 4	0.00 015 3	0.00 012 6	0.00 030 2

waddlia	0	2.57 E-05	8.66 E-05	8.31 E-05	0.00 144 2	1.44 E-05	4.14 E-05	0.00 041 4	0.00 081 9	1.4E -05	4.12 E-05
lachnoclos tridium	0.00 2846 67	0.00 012 8	0.00 011 1	0.00 011 1	8.4E -05	5.77 E-05	0.00 019 3	0.00 023 9	0.00 029 2	0.00 060 2	0.00 035 7
prevotella	0.00 5001 77	1.28 E-05	4.95 E-05	0	1.4E -05	2.89 E-05	2.76 E-05	7.53 E-05	4.16 E-05	0.00 040 6	0.00 013 7
sphingoba cterium	0.00 0739 81	0.00 024 4	0.00 023 5	6.93 E-05	0.00 035	0.00 033 2	8.28 E-05	0.00 013 8	0.00 086 1	0.00 032 2	0.00 034 3
phycispha era	1.60 83E- 05	1.28 E-05	7.43 E-05	8.31 E-05	0.00 067 2	0	0.00 016 6	0.00 070 3	0.00 043	0.00 011 2	0.00 188 2
desulfocap sa	0	5.14 E-05	0.00 038 4	0	0.00 026 6	1.44 E-05	0.00 037 3	0.00 042 7	0.00 088 8	0.00 018 2	0.00 097 5
thauera	0.00 0788 06	1.28 E-05	1.24 E-05	0	0	0	1.38 E-05	0.00 182	0.00 149 9	0.00 063	0.00 060 4

Table S2: Relative abundance of the top 98% most abundant genera	a in
DFF10 and DFF25 detected across all samples analyzed.	

			DFF10					DFF25		
Genus	DFF	DFF	DFF	DFF	DFF	DFF	DFF	DFF	DFF	DFF
	10_	10_	10_	10_	10_	25_	25_	25_	25_	25_
	180	200	230	250	355	180	200	230	250	355
clostridiu	0.10	0.04	0.22	0.10	0.08	0.04	0.24	0.07	0.20	0.06
m	283	844	753	027	194	876	310	967	153	545
	5	0.17	1	6	3	3	5	4	0.00	0.10
geobacter	0.03	0.1/	0.01	0.01	0.04	0.22	0.01	0.00	0.03	0.19
	243 Q	121	019 7	703 8	087 4	5	235	884 Q	026 8	685
trichococc	0.03	0.04	0.01	0.18	0.02	0.05	0.01	0.20	0.05	0.04
us	551	317	401	195	511	356	782	924	570	402
40	5	7	8	195	5	4	2	6	6	
cytophaga	0.05	0.03	0.04	0.04	0.05	0.02	0.04	0.05	0.02	0.02
, , , ,	734	180	423	186	574	692	618	692	178	497
	7	4	3	1	3	2	6	1	9	7
methanos	0.07	0.03	0.04	0.01	0.05	0.03	0.02	0.00	0.04	0.04
aeta	505	198	125	074	886	713	795	670	730	550
	7		4	6	7	9	6	8	5	4
bacteroide	0.04	0.00	0.06	0.02	0.06	0.00	0.08	0.02	0.02	0.01
S	001 Q	816	852	799	627	844	324	407	498	354
arcohacter	0.00	0.00	0 00	0.00	0 00	0 00	0 00	0.00	0.00	0.01
dicobacter	448	740	762	406	186	411	233	585	223	041
	7	1		8	3	5	4	7	3	2
bellilinea	0.06	0.01	0.07	0.01	0.06	0.01	0.05	0.00	0.06	0.01
	368	572	703	062	190	371	743	907	921	169
	9	7	5	6	1	6	1		1	3
acinetobac	0.01	0.11	0.00	0.01	0.00	0.07	0.00	0.10	0.00	0.01
ter	127	016	636	034	675	447	776	823	323	513
	3	/	6	5	3	2	8		3	2
lactococcu	0.01	472	0.01	0.02	0.00	0.00	0.04 452	0.05	0.01	120
5	211	4/2	6	5	400	430	433 8	247	00J 4	3
desulfomic	0.00	0.00	0.02	0.02	0.00	0 00	0.04	0.02	0 00	0.00
robium	550	690	646	888	508	576	207	183	311	739
	2	6	8		6	8	3	9	6	1
aeromona	0.00	0.04	0.00	0.00	0.00	0.09	0.00	0.00	0.00	0.05
S	672	327	355	382	914	272	166	981	564	760
	2	2	9	7	2	5	5		9	1
syntrophu	0.03	0.01	0.01	0.00	0.03	0.01	0.00	0.00	0.03	0.01
S	947	737	367	952	189	396	687	661	135	528
Less attracts	9	0.01	3	8	6	2	1	3	9	0.01
longilinea	0.05	0.01	0.02	0.01	0.04	0.00	0.01	0.00	0.04	0.01
	133 0	143 6	123 6	043 o	206 0	/98	945 1	/41 6	042 2	124 o
lovilinea	0 02	0.01		0 03	0 0 2	4 0.01	4 0.01	0 20 0	<u> </u>	0 01
ic viinea	338	631	105	745	0.02	396	356	470	565	014
	6	7	8	8	001	2	2	4	9	2

Bioresource Technology, Vol 216 (September 2016): pg. 446-452. <u>DOI</u>. This article is © Elsevier and permission has been granted for this version to appear in <u>e-Publications@Marquette</u>. Elsevier does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Elsevier.

solitalea	0.01	0.02	0.03	0.02	0.02	0.01	0.03	0.01	0.00	0.00
	331	261	531	028	064	049	335	456	586	875
	8	7	1	8	5	8	8	5	9	3
methanob	0.04	0.00	0.01	0.01	0.04	0.00	0.01	0.01	0.04	0.00
acterium	033	939	502	513	538	724	266	467	903	900
accentant	5	5	1	6		5	1	5	2	0
deculfabul	0.02	0.00		0 01	9	0.00		0.00	<u> </u>	9
desulfobul	0.02	0.00	0.01	0.01	0.02	0.00	0.00	0.00	0.02	0.00
bus	351	808	020	014	348	655	881	681	498	366
	3	7	8	4	2	9	3	8	3	8
fusibacter	0.00	0.00	0.01	0.01	0.00	0.00	0.02	0.01	0.00	0.01
	312	625	161	148	189	779	854	106	535	506
	3	2	9	2	8		4	9		4
narabacto	0.00	0.00	0 00	0.01	0.00	0.00	0.00	0.01	0.00	0.00
raidas	206	E20	202	101	110	420	726	0.01	127	407
rolues	200	539	393	191	410	429	/20	004	137	407
	1	1	6		2	1	2	6	6	3
spirochaet	0.01	0.01	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.01
а	176	159	099	608	236	914	538	401	649	000
	4	6	2	9	5	4	6	5	3	7
desulfovib	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.01	0.00	0.01
rio	534	963	820	803	574	612	582	100	453	177
	224	100	1	6	5/4	5	502	0		1//
ay watawa wala a	0.01	4	1	0	0.01	0.01	0	0 00	2	4
syntropho	0.01	0.01	0.01	0.00	0.01	0.01	0.00	0.00	0.01	0.01
rhabdus	837	331	299	247	957	088	488	135	592	06
	6	8	9	6	3	5		4		
dehalococ	0.02	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.03	0.00
coides	433	653	870	305	252	573	641	214	190	613
	7	9	2	1	3	3	4	1	5	6
shewanell	0.00	0.02	0 00	0 00	0 00	0.01	0 00	0 00	0 00	0 04
Shewahen	252	255	100	202	2/1	501	0.00	2/1	266	210
a	233	555	109	202	241	791	004	7	500	210
	/	8	/	1	0.01	4	9	/	2	0
syntropho	0.00	0.00	0.02	0.00	0.01	0.00	0.01	0.00	0.01	0.00
monas	956	328	113	298	373	395	147	222	258	547
	1	6	6	4	8	7	3		3	6
anaeropha	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00
ga	645	491	519	408	605	348	406	984	325	470
5-	3	3		9	3	2	4	1	9	7
composti	0.00	0.00	0.01	0 00	0.01	0.00	0.01	0.00	0 00	0.00
monac	0.00	400	0.01	700	0.01	460	245	0.00	561	400
monas	099	400	090	/90	000	409	245	200	501	400
		3		9	/	5	2	3		0
prolixibact	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
er	342	386	774	047	259	318	897	858	149	401
	5		6	9	2	3	6	1	3	9
pelobacter	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.00
	242	425	392	388	250	297	403	391	144	298
	6	9		8	8	2	1	9	1	1
phacolarc	0 00	0 00	0.01	0 00	0.00	0 00	0 01	0 00		
priascolarc	0.00	0.00	427	701	0.00	0.00	0.01	0.00	1.00	0.00
topacteriu	020	328	437	701	595	211	047	001	199	310
m		6	8	2	5		8	3	3	9
rikenella	0.00	0.00	0.01	0.01	0.00	0.00	0.01	0.00	0.00	0.00
	152	121	792	021	131	098	694	788	088	183
	2	2	2	1		5		9	3	4
acidobacte	0.01	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00
rium	266	312	633	167	198	242	426	094	488	248
	200	6	555 F	207	200	7	720	F	200	2 10
1	0	0	5	5	5		1	5	L 2	∠

caldithrix	0.00 359	0.00 334	0.00 166	0.00 985	0.00 337	0.00 228	0.00 210	0.00 492	0.00 194	0.00 285
	9	9	2	0.01	0.00	6	5	8	8	9
sulfurovu	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00 100
	6	4	1	4	245	8	8	6	8	9
paludibact	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
er	104	224	282	216	235	167	533	414	229	273
	6	9	2	8	4	1	7	1	8	8
smithella	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	753 1	146	304	258	838 6	67	2	176	3	/32
methanos	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
pirillum	274	749	092	645	348	733	044	470	368	907
	3	6	5		2	3	1	8	6	6
pedobacte	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00
r	042	236	218	55/	038	098	347	053	033	075 E
eubacteriu	0 00	0.00	0.00	/	0.00	0.00	0.00	0.00	0 00	0.00
m	107	0.00	147	659	112	079	189	411	361	272
	8	6	4	8	8	1	3			4
proteocate	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
lla	889	689	149	333	371	427	233	448	554	775
o mithinih o	5	0.00	0.00	2	3	3	4	8	5	5
cillus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	305	0.00	0.00
cinus	9	8	6	4	3	9	5	5	7	131
leptospira	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	242	381	199	286	217	247	163	148	148	296
	6	2	1	4	9	9	2			7
candidatu	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00
s	1	200	508	625	8	150	552	259	8	202
as	-	-		Ŭ	0	5	5	0	0	2
aminobact	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00
erium	326	245	580	231	280	283	488	193	394	256
	6	6	5	5	9	1	0.00	7	7	2
guggennei	0.02	7.97 E-05	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00
mena	5	L-05	2	4	4	6	8	9	5	2
treponem	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
а	448	354	299	335	648	321	190	201	188	484
	7	1	5	9		8	9	5	3	2
acetobact	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.01	0.00	0.00
erium	157	155	1	288	142 Q	307	070	281	099 0	300
pelotomac	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ulum	099	079	042	053	150	119	050	023	085	147
	9	7	3	5	6	6	6	6	7	
chlorobiu	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
m	212	271	023	085	204 E	961	093	066	063	586 7
thermana	0 00		0 00	0 00	0 00	9	0.00	1 0 00	0 00	/
erovibrio	017	792	020	018	019	489	024	033	059	530
	4	7	4	7	6	4	5	1	7	7

ruminococ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
cus	290	173	492	353	204	170	473	198	497	236
	1	9	3	3	6	6	3	4	3	0.00
anaeromy	0.00	0.00	0.00	0.00	492	0.00	0.00	0.00	0.00	0.00
XUDacter	2//	5	7	327 Q	402	1	215	7	104 Q	1
fusobacter	0.00	0.01	0 00	0 00	0.00	0 00	0 00	0.00	0 00	0 00
ium	114	134	037	165	226	99	034	560	128	770
	2		6	9	3		3	6	6	1
paenibacill	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
us	469	221	061	892	423	274	088	858	544	915
	3	7	2	6	1	3	1	1	1	7
synergiste	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
S	069	266	780	507	079	170	448	492	122	145
	8	4	9	2	2	6	8	8	1	7
pedospha	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
era	394	480	150	265	624	327	146	108	181	323
anaoromu	0 00	1	0 00	0.00	9	1	9	0.00	0 00	/
sa	123	231	0.00	405	0.00	211	122	647	312	745
30	7	3	9	5	2	211	4	2	9	8
blastopirel	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
lula	765	507	026	103	596	471	027	096	834	397
	8	2	7		9	3	7		9	9
syntropho	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
bacter	540	496	276	285	488	307	102	173	394	264
	7				3	7	8	2	7	3
anaerovor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ax	150	373	211	869	097	304	151	637	153	261
	6	2	7	9	4	2	8	7	2	6
zoogioea	0.00	0.00	0.00	0.00	0.00	0.00 16E	0.00	0.00	0.00	0.00
	1	220	050	401 Q	000	3 102	000	203	090	222
verrucomi		0 00	0.00	0.00		0.00	0.00	0.00	0 00	0.00
crobium	383	142	233	266	244	0.00	228	143	176	0.00
0.02.0	7		6	3	5		5	3	6	4
flavobacte	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
rium	093	342	189	891	060	298	199	514	042	256
	5	9	7	3	2	9	1	9	9	2
sulfurospir	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
illum	141	089	031	056	168	105	021	025	128	144
	1	3	4	2	8	5	2	2	6	3
acidamino	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
bacter	065	296	161	3//	039	232	403	444	063	446
chandrom	0.00	/	5	4	9	1	1	0.00	0.00	4
VCPS	242	542	442	880	253	357	161	0.00 472	123	345
yces	6	3	2	6	6	557	6	4	4	3
deferribac	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ter	258	591	042	064	152	902	08	042	146	646
-	4	7	3	2		1		5	7	
anaeroline	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
а	415	354	149	137	482	571	097	116	272	565
	4	1		8		5	9	5	7	1

ornatilinea	0.00 320 3	0.00 303	0.00 274 4	0.00 144 5	0.00 333 5	0.00 313	0.00 176 3	0.00 140 1	0.00 596	0.00 276 5
leptolinea	0.00 304 4	0.00 216 9	0.00 189 7	0.00 180 7	0.00 421 7	0.00 240 9	0.00 125 7	0.00 198 4	0.00 564 9	0.00 244 1
holophaga	0.00 084	0.00 154 7	0.00 472	0.00 279 7	0.00 085 5	0.00 068 6	0.00 349 3	0.00 244 1	0.00 024 7	0.00 074 2
pseudomo nas	0.00 033 3	0.00 114 8	0.00 017 2	0.00 119 1	0.00 025 2	0.00 174 1	0.00 018	0.00 168 5	0.00 023 4	0.00 087 7
sulfuricurv um	0.00 019	0.00 062 2	0.00 087 8	0.00 301 1	0.00 025 2	0.00 091 4	0.00 130 6	0.00 292 9	0.00 031 2	0.00 095 8
chitinopha ga	3.17 E-05	6.38 E-05	0.00 644 4	0.00 013 4	7.71 E-05	5.28 E-05	0.01 728 3	0.00 012 6	0.00 015 6	5.39 E-05
methanoli nea	0.00 561 3	0.00 339 7	0.00 177 2	0.00 060 2	0.00 750 3	0.00 184 6	0.00 066 9	0.00 044 1	0.00 272 7	0.00 207 7
dehalobac terium	0.00 266 4	0.00 137 2	0.00 174	0.00 121 8	0.00 145 7	0.00 219 8	0.00 251 3	0.00 100 8	0.00 486 9	0.00 240 1
desulfomo nile	0.00 466 1	0.00 197 8	0.00 015 7	0.00 104 4	0.00 217 9	0.00 365 8	0.00 021 2	0.00 070 9	0.00 411 6	0.00 213 1
rubrobact er	0.00 320 3	0.00 237 7	0.00 349 7	0.00 117 8	0.00 293 5	0.00 267 3	0.00 192 6	0.00 099 2	0.00 380 5	0.00 191 5
pedomicro bium	0.00 293 3	0.00 151 5	0.00 224 2	0.00 095	0.00 408 4	0.00 16	0.00 111	0.00 069 3	0.00 416 8	0.00 165 9
terribacillu s	0.00 087 2	0.00 078 2	0.00 025 1	0.00 074 9	0.00 326 5	0.00 049 2	0.00 070 2	0.00 094 5	0.00 159 7	0.00 434 3
methanob revibacter	0.00 269 5	0.00 319	0.00 145 8	0.00 115 1	0.00 694 2	0.00 200 5	0.00 101 2	0.00 100 8	0.00 153 2	0.00 160 5
thiobacillu s	0.00 030 1	0.00 051	0.00 025 1	0.00 298 4	0.00 058 8	0.00 103 8	0.00 018	0.00 259 8	0.00 081 8	0.00 080 9
thioalkalib acter	0.00 014 3	0.00 054 2	0.00 125 4	0.00 380 1	0.00 010 5	0.00 045 7	0.01 044 5	0.00 195 2	0.00 015 6	0.00 028 3
hespellia	0.00 011 1	7.97 E-05	0.00 301 1	0.00 706 6	4.9E -05	1.76 E-05	0.00 272 5	0.00 656 6	6.49 E-05	0.00 010 8
cetobacter ium	0.00 012 7	0.00 019 1	0.00 014 1	0.00 014 7	8.41 E-05	0.00 012 3	0.00 026 1	0.00 031 5	0.00 033 8	0.00 036 4
methyloph aga	0.00 439 2	0.00 095 7	0.00 224 2	0.00 088 3	0.00 373 4	0.00 075 6	0.00 128 9	0.00 059 8	0.00 341 5	0.00 113 3

	1			1	1	1			1	
rhodocycl	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.6E	0.00
us	017	027	026	156	022	028	019	137	-05	041
	4	1	7	6	4	1	6			8
enterobact	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
er	046	180	040	034	022	262	011	042	018	379
Ci	010	2	Q Q	034 Q	1	202	1	5	2	575
daablaram	0.00	2	0 00	0 00	4	0.00	4	J	2	0.00
decniorom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	9.09	0.00
onas	014	068	048	242	014	047	029	105	E-05	035
	3	6	6	2		5	4	5		1
streptococ	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
cus	058	038	045	091	039	047	169	102	070	124
	7	3	5		2	5	7	3	1	1
oscillospir	0.00	0 00	0 00	0 00	0 00	0 00	0.00	0 00	0 00	0 00
oscinospii	0.00	0.00	0.00	274	016	0.00	0.00	106	0.00	0.00
a	4	075	0.50	5/4	1	000	005	190	1	4
	4	/	2	/	1	0	2	0	1	4
solirubrob	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acter	451	070	141	028	425	109	083	048	316	134
	9	2	1	1	2		2	8	8	9
cloacibacill	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
us	014	030	084	559	015	026	060	519	044	022
	3	3	7	4	4	4	4	6	1	q
planctomy	0.00	0.00	,	0 00	0.00	0 00	0 00	0.00		0 00
planetonity	104	1.00	0.00	0.00	1.00	0.00	0.00	120	0.00	0.00
ces	104	156	051	314	131	093	014	130	027	091
	6	3	/	5		2	/	/	3	/
alkalibacte	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
r	114	092	235	139	096	135	173	122	274	110
	2	5	2	2	7	4		8		6
thermoan	0.00	0.00	0.00	0.00	0.00	0.00	9.79	0.00	0.00	0.00
aerohacter	020	067	025	032	015	051	F-05	018	010	064
ucrobucter	6	007	1	1	1	031	L 05	010	1	7
a cativilaria	0 00	0.00	1 0 00			0.00	0.00	9		,
acecivibrio	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	105
	158	148	097	066	101	165	1/9	052	097	195
	5	3	2	9	6	3	5		4	6
ruminiclos	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
tridium	398	017	058	064	573	047	133	047	093	056
		5		2		5	8	2	5	6
desulfospo	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
rosinus	015	041	076	115	010	087	430	116	014	087
10511105	015	5	8	1	5	۵ <i>۵</i>	- 30 - 0	5	2	7
talumanaa	0.00	6.20	6 27	0.27	4 DF	9	5			/
tolumonas	0.00	0.38	0.27	9.37	4.2E	0.00	0.53	0.3E	6.49	0.00
	012	E-05	E-05	E-05	-05	014	E-05	-05	E-05	044
	7					1				5
chloroflex	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
us	206	134	043	033	344	137	019	017	263	178
	1		9	5	7	2	6	3	6	
faecalibact	4.76	3.19	4.7F	0.00	3.5F	8.79	4.9F	6.3F	3.9F	2.7F
erium	F-05	F-05	-05	013	-05	E-05	-05	-05	-05	-05
Chun	L 05	L 05	05	1	05	L 05	05	05	05	05
atuantana	0.00	0.00	0.00	4	0.00	0.00	0.00	0.00	0.00	0.00
screptomy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ces	220	102	084	042	231	100	045	045	270	144
	4	3	7	8	2	2	7	7	1	3
desulfobac	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	6.49	0.00
ter	022	031	022	444	021	019	016	297	E-05	016
	2	9		3	7	3	3	6		2

kushneria	0.00	0.00	6.27 E-05	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	1	-33	L 05	6	7	2	1	9	3	55
pelosinus	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	036	011	047	025	027	019	055	034	033	010
	5	2		4	3	3	5	6	8	8
aminomon	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7.87	0.00	0.00
as	072	279	089	016	083	332	071	E-05	074	362
maaralla	9	1	4	1	4	4	8	0.00	0.00	8
moorella	201	122	0.00	0.00	278	0.00	0.00	0.00	107	0.00
	201	8	6	9	370	030	3	2	8	9
desulfofab	0.00	0.00	0.00	0.00	0.00	0.00	8.16	0.00	0.00	0.00
a	079	309	014	077	107	158	E-05	063	061	141
-	3	4	1	6	9	3				6
symbiobac	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
terium	095	092	127	056	069	093	189	061	045	085
	1	5		2	4	2	3	4	4	
anaerofust	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
is	155	022	200	028	084	024	243	034	172	040
	4	3	/	1	1	6	2	6	/	5
thermogy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
c	105	2	5	034 8	5	5	5	6	087	007 4
lutispora	0 00	0 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
lucioporu	057	153	022	207	0.38	147	027	165	277	152
	1	1		4	5	7	7	3	9	4
serratia	0.00	9.57	6.27	0.00	7.01	8.79	4.9E	0.00	7.79	0.00
	015	E-05	E-05	013	E-05	E-05	-05	011	E-05	013
	9			4						5
subdoligra	3.17	1.59	0	6.69	2.8E	1.76	8.16	6.3E	2.6E	2.7E
nulum	E-05	E-05	0.00	E-05	-05	E-05	E-05	-05	-05	-05
mycoplas	0.00	0.00	0.00	0.00	9.81	0.00	0.00	0.00	7.79	0.00
IIId	1	2	5	1	E-05	038	6	3	E-05	1
propioniae	793	0.00	9.41	5 35	6 3F	, 8 79	6 5 3	6 3F	7 79	0 00
nium	F-05	033	E-05	E-05	-05	E-05	E-05	-05	F-05	0.32
		5								4
ignavibact	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
erium	118	121	116	111	142	093	063	050	105	071
	9	2		1	9	2	6	4	2	5
methano	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
methylovo	069	172	050	081	108	131	053	058	059	176
rans	8	3	2	6	6	9	9	3	/	/
caloramat	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
01	1	079	007 8	000	5	000 8	197	047	051	000 8
methanoc	0 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 00	0.00
ulleus	126	047	122	048	154	036	130	037	290	033
	8	8	3	2	1	9	6	8	9	7
desulfuro	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
monas	053	060	048	025	060	047	016	017	022	047
	9	6	6	4	2	5	3	3	1	2

arthrobact er	0.00 212 5	0.00 081 3	0.00 103 5	0.00 058 9	0.00 213	0.00 033 4	0.00 062	0.00 015 7	0.00 081 8	0.00 039 1
acholeplas ma	0.00 036 5	9.57 E-05	0.00 053 3	0.00 022 8	0.00 048 3	7.03 E-05	0.00 049	0.00 020 5	0.00 013	9.44 E-05
pirellula	0.00 209 3	0.00 161 1	0.00 022	0.00 038 8	0.00 177 9	0.00 130 1	0.00 073 4	0.00 025 2	0.00 135	0.00 091 7
ralstonia	0.00 093 5	0.00 132 4	0.00 025 1	0.00 073 6	0.00 117 7	0.00 116 1	0.00 022 8	0.00 034 6	0.00 159 7	0.00 126 8
caldanaer obacter	7.93 E-05	0.00 035 1	0.00 056 4	0.00 311 8	4.2E -05	0.00 017 6	0.00 029 4	0.00 116 5	9.09 E-05	0.00 027
thermoan aerobacul um	0.00 179 2	0.00 129 2	9.41 E-05	0.00 028 1	0.00 228 4	0.00 068 6	0.00 019 6	0.00 028 3	0.00 075 3	0.00 106 5
candidatu s solibacter	0.00 061 8	0.00 132 4	0.00 042 3	0.00 097 7	0.00 064 5	0.00 080 9	0.00 066 9	0.00 074	0.00 033 8	0.00 086 3
acidovora x	9.51 E-05	0.00 022 3	7.84 E-05	0.00 029 4	7.71 E-05	0.00 019 3	0.00 011 4	0.00 039 4	6.49 E-05	0.00 022 9
haliangiu m	0.00 092	0.00 090 9	0.00 083 1	0.00 097 7	0.00 108 6	0.00 035 2	0.00 019 6	0.00 033 1	0.00 040 3	0.00 079 6
azospirillu m	0.00 039 6	0.00 079 7	0.00 058	0.00 042 8	0.00 034 3	0.00 056 3	0.00 096 3	0.00 029 9	0.00 020 8	0.00 079 6
leptolyngb ya	0.00 023 8	0.00 051	0.00 185	0.00 042 8	0.00 013 3	0.00 021 1	0.00 138 7	0.00 020 5	0.00 010 4	0.00 018 9
desulfocal dus	0.00 020 6	0.00 079 7	1.57 E-05	0.00 020 1	0.00 051 8	0.00 044	6.53 E-05	0.00 015 7	0.00 071 4	0.00 070 1
desulfone ma	7.93 E-05	0.00 435 4	0	0	2.1E -05	0.00 543 4	3.26 E-05	3.15 E-05	5.19 E-05	0.00 315 6
blastomon as	0.00 063 4	0.00 076 6	0.00 022	0.00 119 1	0.00 044 1	0.00 047 5	0.00 014 7	0.00 045 7	0.00 081 8	0.00 040 5
carboxydo cella	0.00 017 4	0.00 030 3	0.00 022	0.00 219 5	9.81 E-05	0.00 052 8	0.00 016 3	0.00 151 2	0.00 019 5	0.00 048 6
chlamydia	0.00 023 8	0.00 087 7	0.00 015 7	0.00 087	0.00 047 6	0.00 036 9	0.00 022 8	0.00 039 4	0.00 041 6	0.00 041 8
aminivibri o	0.00 196 6	0.00 020 7	0.00 122 3	0.00 013 4	0.00 208 1	0.00 026 4	0.00 044 1	9.45 E-05	0.00 114 3	0.00 021 6
gaiella	0.00 185 5	0.00 020 7	0.00 076 8	0.00 014 7	0.00 151 3	0.00 022 9	0.00 109 3	0.00 017 3	0.00 087	0.00 027

nitrosovibr io	0.00 069 8	0.00 038 3	0.00 032 9	0.00 024 1	0.00 114 9	0.00 040 4	0.00 039 2	0.00 017 3	0.00 033 8	0.00 078 2
desulfatife rula	0.00 011 1	4.78 E-05	4.7E -05	0.00 020 1	4.2E -05	5.28 E-05	1.63 E-05	7.87 E-05	1.3E -05	1.35 E-05
cellulosilyt icum	0.00 079 3	0.00 031 9	0.00 047	0.00 036 1	0.00 094 6	0.00 031 7	0.00 022 8	0.00 031 5	0.00 071 4	0.00 058
veillonella	0.00 034 9	0.00 012 8	0.00 062 7	0.00 091	0.00 038 5	0.00 015 8	0.00 078 3	0.00 034 6	0.00 059 7	9.44 E-05
caldilinea	0.00 104 6	0.00 055 8	0.00 070 6	0.00 020 1	0.00 212 3	0.00 029 9	0.00 034 3	6.3E -05	0.00 079 2	0.00 036 4
methylote nera	6.34 E-05	0.00 015 9	0.00 014 1	0.00 021 4	0.00 012 6	0.00 029 9	0.00 016 3	0.00 022	0	0.00 014 8
cloacibact erium	0.00 020 6	0.00 039 9	0.00 015 7	0.00 038 8	0.00 018 9	0.00 065 1	0.00 029 4	0.00 022	9.09 E-05	0.00 099 8
methano massiliicoc cus	0.00 142 7	0.00 017 5	0.00 051 7	9.37 E-05	0.00 307 5	5.28 E-05	0.00 022 8	0	0.00 136 3	0.00 013 5
coxiella	0.00 027	0.00 023 9	0.00 032 9	0.00 101 7	0.00 039 9	0.00 022 9	0.00 078 3	0.00 080 3	0.00 068 8	0.00 014 8
candidatu s phytoplas ma	0.00 031 7	4.78 E-05	0.00 032 9	0.00 215 5	0.00 064 5	8.79 E-05	0.00 044 1	0.00 108 6	7.79 E-05	9.44 E-05
dethiobact er	0.00 066 6	0.00 015 9	0.00 045 5	0.00 016 1	0.00 046 9	0.00 047 5	0.00 045 7	0.00 014 2	0.00 126	0.00 052 6
aquabacte rium	4.76 E-05	0.00 022 3	3.14 E-05	0.00 022 8	3.5E -05	0.00 010 6	4.9E -05	0.00 028 3	2.6E -05	9.44 E-05
pelagicocc us	0.00 012 7	0.00 041 5	0.00 158 4	0.00 070 9	0.00 012 6	0.00 021 1	0.00 140 4	0.00 022	1.3E -05	9.44 E-05
intestinim onas	0.00 046	0.00 082 9	6.27 E-05	0.00 058 9	0.00 025 2	0.00 077 4	0.00 019 6	0.00 017 3	0.00 031 2	0.00 074 2
sedimenti bacter	1.59 E-05	0.00 011 2	0.00 050 2	0.00 095	5.6E -05	0.00 017 6	0.00 135 5	0.00 058 3	5.19 E-05	8.09 E-05
blautia	3.17 E-05	1.59 E-05	7.84 E-05	5.35 E-05	1.4E -05	0	3.26 E-05	6.3E -05	1.3E -05	1.35 E-05
fibrobacte r	0.00 044 4	0.00 012 8	0.00 056 4	0.00 033 5	0.00 053 9	0.00 019 3	0.00 088 1	9.45 E-05	0.00 027 3	0.00 039 1
desulforeg ula	6.34 E-05	0.00 019 1	3.14 E-05	0.00 014 7	9.11 E-05	0.00 019 3	1.63 E-05	1.57 E-05	7.79 E-05	0.00 010 8

halothioba	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
cillus	4	1	5	7	3	9	4	005	4	5
beggiatoa	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	055	057	040	033	044	054	014	028	071	079
hun a han aha u	5	4	8	5	1	5	7	3	4	6
lysobacter	0.00	0.00	6.27 E-05	0.00	0.00	0.00	0.00	4.72 E-05	0.00	0.00
	7	5	L-05	7	4	4	4	L-05	9	3
acidithiob	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
acillus	107	049	029	042	156	015	016	029	077	029
	8	4	8	8	2	8	3	9	9	7
robinsonie	0.00	0.00	108	0.00	0.00	0.00	0.00	0.00	5.19 E-05	0.00
IIa	5	5	2	9	7	6	1	9	L-05	3
gracilibact	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
er	068	030	028	022	043	063	029	015	064	036
	2	3	2	8	4	3	4	7	9	4
lactivibrio	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	8	3	6	020	040	8	040 8	2	2	8
sacchariba	0.00	4.78	9.41	0	0.00	5.28	8.16	3.15	0.00	2.7E
cter	217	E-05	E-05		083	E-05	E-05	E-05	157	-05
	2				4				1	
peredibact	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
er	039	022	040 8	041	055	022	068	028	028	035 1
microbulbi	0.00	0.00	0	2.68	0.00	0.00	0	0	0.00	0.00
fer	063	121	, C	E-05	074	061	Ū	, C	010	052
	4	2			3	5			4	6
desulfotig	3.17	1.59	0	1.34	7.01	1.76	0	3.15	2.6E	8.09
num	E-05	E-05	0.00	E-05	E-06	E-05	0.00	E-05	-05	E-05
maricaulis	9.51 F-05	1.59 E-05	189	0.00	5.0⊑ -05	5.28 F-05	0.00	0.00	3.9⊑ -05	4.05 E-05
	2 05	2 05	7	8	00	2 00	6	5	00	2 00
rhizobium	0.00	0.00	9.41	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	022	039	E-05	088	015	065	024	088	044	036
	2	9	4 75	3	4	1	5	2	1	4
	0.00	0.00	4.7E	4.01 E-05	6.3E	5.28 F-05	1.63 E-05	7.87 F-05	6.49 E-05	6.74 E-05
coccus	7	9	05	L 05	05	L 05	L 05	L 05	L 05	L 05
thermaero	0.00	0.00	3.14	0	0.00	0.00	0	1.57	0.00	0.00
bacter	022	030	E-05		021	054		E-05	048	033
	2	3	2.4.4	0.00	2.45	5	2.26	0.00	2.05	7
simplicispi	3.17 E-05	0.00	3.14 E-05	0.00	2.1E	0.00	3.26 E-05	0.00	3.9E	0.00
1a	L-03	5	L-03	4	-05	6	L-03	7	-05	5
turicibacte	6.34	9.57	0.00	0.00	4.2E	5.28	0.00	0.00	7.79	4.05
r	E-05	E-05	098	016	-05	E-05	135	011	E-05	E-05
			8	1			5			
helicobact	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
e	3	9	2	1	3	9	6	3	.3	5
			_	-		-		,		

rhodopirell ula	0.00 058 7	0.00 062 2	7.84 E-05	0.00 025 4	0.00 061 6	0.00 035 2	8.16 E-05	0.00 018 9	0.00 111 7	0.00 047 2
desulfatigl ans	1.59 E-05	0.00 124 4	1.57 E-05	0.00 030 8	4.2E -05	0.00 095	0	9.45 E-05	0.00 010 4	0.00 144 3
pseudoxa nthomona s	4.76 E-05	0.00 022 3	3.14 E-05	9.37 E-05	0.00 030 8	0.00 128 4	4.9E -05	0.00 028 3	9.09 E-05	0.00 031
polyangiu m	6.34 E-05	6.38 E-05	1.57 E-05	0	0.00 019 6	0.00 015 8	1.63 E-05	1.57 E-05	9.09 E-05	0.00 024 3
barnesiell a	6.34 E-05	0.00 063 8	3.14 E-05	9.37 E-05	9.81 E-05	0.00 049 2	0.00 032 6	0.00 022	9.09 E-05	0.00 089
byssovora x	0.00 020 6	0.00 063 8	0.00 020 4	0.00 107 1	0.00 038 5	0.00 045 7	0.00 016 3	0.00 058 3	0.00 046 7	0.00 111 9
anaerovibr io	0.00 034 9	6.38 E-05	0.00 059 6	0.00 074 9	0.00 022 4	0.00 012 3	0.00 060 4	0.00 045 7	0.00 050 6	5.39 E-05
comamon as	0.00 014 3	0.00 057 4	0.00 017 2	0.00 024 1	0.00 021	0.00 061 5	3.26 E-05	0.00 026 8	0.00 014 3	0.00 053 9
dyella	0.00 039 6	0.00 076 6	3.14 E-05	0.00 010 7	0.00 084 8	0.00 107 3	0	9.45 E-05	0.00 070 1	0.00 101 1
solobacter ium	0.00 092	0.00 065 4	0.00 043 9	0.00 028 1	0.00 080 6	0.00 058	0.00 029 4	0.00 026 8	0.00 024 7	0.00 040 5
dialister	0.00 017 4	1.59 E-05	0.00 028 2	0.00 028 1	9.11 E-05	3.52 E-05	0.00 040 8	0.00 018 9	0.00 016 9	6.74 E-05
alistipes	4.76 E-05	3.19 E-05	1.57 E-05	2.68 E-05	2.8E -05	0	4.9E -05	6.3E -05	1.3E -05	1.35 E-05
devosia	3.17 E-05	0.00 051	9.41 E-05	0.00 091	1.4E -05	0.00 086 2	4.9E -05	0.00 045 7	2.6E -05	0.00 062
bifidobact erium	1.59 E-05	3.19 E-05	0	0	3.5E -05	1.76 E-05	1.63 E-05	1.57 E-05	1.3E -05	4.05 E-05
alkaliflexu s	7.93 E-05	0.00 055 8	0.00 054 9	0.00 026 8	0.00 020 3	0.00 040 4	8.16 E-05	0.00 022	2.6E -05	0.00 043 2
prochloroc occus	0.00 014 3	0.00 025 5	0.00 034 5	0.00 058 9	0.00 014	5.28 E-05	0.00 075 1	0.00 045 7	0.00 014 3	0.00 020 2
methylom onas	4.76 E-05	1.59 E-05	4.7E -05	0.00 020 1	1.4E -05	1.76 E-05	0	0.00 012 6	2.6E -05	2.7E -05
fluviicola	0.00 022 2	7.97 E-05	0.00 065 9	0.00 052 2	0.00 021	0.00 014 1	0.00 068 5	0.00 023 6	5.19 E-05	0.00 018 9
haliscome nobacter	6.34 E-05	0.00 111 6	1.57 E-05	4.01 E-05	1.4E -05	0.00 133 6	0	3.15 E-05	2.6E -05	0.00 213 1

sterolibact	0.00	0.00	9.41 E-05	0.00	0.00	0.00	6.53 E-05	0.00	1.3E	0.00
chun	7	2	2 05	6	1	3	L 05	2	05	6
desulfitob	4.76	0.00	0.00	2.68	4.2E	0.00	0.00	1.57	5.19	0.00
acterium	E-05	014 4	018 8	E-05	-05	022 9	011 4	E-05	E-05	024 3
calditerric	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ola	028	028	025	032	014	035	018	018	026	032
	5	7	1	1		2		9		4
waddlia	0.00	0.00	0	1.34	0.00	0.00	9.79	0	0.00	0.00
	017	102		E-05	016	072	E-05		015	059
	4	1			1	1			6	3
lachnoclos	0.00	9.57	6.27	6.69	8.41	0.00	0.00	6.3E	3.9E	2.7E
tridium	011	E-05	E-05	E-05	E-05	015	018	-05	-05	-05
	1					8				
prevotella	1.59	0	0	1.34	7.01	0	1.63	0	1.3E	0
	E-05			E-05	E-06		E-05		-05	
sphingoba	4.76	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.3E	0.00
cterium	E-05	025	031	012	011	022	035	014	-05	037
		5	4		2	9	9	2		8
phycispha	9.51	0.00	0	4.01	0.00	0.00	0	0	7.79	0.00
era	E-05	049		E-05	014	029			E-05	036
		4			7	9				4
desulfocap	0.00	0.00	0.00	0.00	0.00	0.00	3.26	0.00	7.79	0.00
sa	020	023	012	034	018	036	E-05	023	E-05	028
	6	9	5	8	2	9		6		3
thauera	3.17	3.19	0	2.68	7.01	0	0	1.57	0	1.35
	E-05	E-05		E-05	E-06			E-05		E-05