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	  Figure 3-11. The axonemes with 3-5AAA, 1-5AAA and 1-5AN mutations are 

deficient in phosphorylation. Western blots of the 6% SDS-PAGE revealed hypo-

phosphorylated RSP3 in the axonemes of RSP3 and LC8 mutants. The tagged RSP3 

defective in the last three LC8-binding motifs migrates as double bands, contrary to the 

smear in the WT control and 1-2AAA strain (upper panel). The untagged RSP3 

polypeptides in pf27 and fla14-3 axonemes were less abundant than WT RSP3 and 

migrated as double bands as well (bottom panel). The upper RSP3 band (dot) in RSP3 

mutant or LC8 mutant fla14-3 was recognized by a phosphor-threonine-proline 

monoclonal antibody, whereas the lower band (line) was not. Both RSP3 bands in pf27 

were not recognized by the antibody. 
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Summary 

This dissertation set out to test the hypothesis that LC8 directly binds to RSP3 to 

promote the assembly of the RS complex. The findings from independent approaches 

confirmed this hypothesis and revealed multiple effects from this interaction: 

 

1) There are multiple LC8 binding sites at the N-terminal region of RSP3. 

Sequence analysis of RSP3 revealed that there are five TQT-like LC8-binding motifs at 

the N-terminus of RSP3 (Figure 3-1A). This is unusual since ICs in axonemal dynein 

contain only one site and the IC in the cytoplasmic dynein that drives IFT has two sites 

(Rompolas et al., 2007).  Like other LC8-binding sequences, this region in RSP3 is 

predicted to be disordered in contrast to the C-terminus of RSP3 that is largely helical 

with strong propensity to form coiled coils (Figure 3-1B). 

2) Multiple LC8s bind directly to RSP3 N-terminus. RSP3 N-terminus and LC8 

from trypsin-treated axonemes co-migrated in the native gel as two RS sub-particles 

(Figure 3-2).  This finding also supported the prediction that the RSP3 N-terminus 

contains multiple LC8-binding sites to directly interact with LC8.  This finding was 

substantiated by in vitro co-purification of S-tagged RSP3 N-terminus and His-LC8 by 

either Ni-NTA or S-agarose affinity matrixes (Figure 3-3).  Densitometry indicates that 

the first 160 a.a- fragment of the dimeric RSP3 could directly associate with at-least 3 

LC8 dimers. 

3) RSP3 N-terminus is phosphorylated and forms homo-dimers. The two RSP3 

N-terminal 1-170 a.a. constructs expressing His-tag or Cys-tag RSP3 in axonemes 



	   98	  

migrated in SDS-PAGE as monomers and dimers (Figure 3-5).  This indicated that the 

region that binds to multiple LC8 exists as a homodimer.  The monomeric polypeptide 

from both constructs also migrated as multiple bands.  This suggests that at least some 

phosphorylated residues in RSP3 reside in the N-terminal region that binds LC8. 

4) LC8 binding promotes docking of the RSP3 N-terminus. In presence of LC8, 

more RSP3 N-terminus fragments can be reconstituted to the spoke-less axoneme pf14 

than in the absence of LC8.  This suggests that association with LC8 enhances the 

binding of RSP3 N-terminus to axonemes (Figure 3-4). 

5) Pull down of RSP3 N-terminus contains LC8 and the putative RS docking 

proteins. The LC8, RSP11, RSP7 in the RS; the IP2, IP3 and IP4 in the CSC complex 

and a novel docking protein, FAP206 are co-purified with His tagged RSP31-178 (Figure 

3-6). Thus, the CSC complex and FAP206 are located near the base of the RS, likely for 

directly interacting with RSP3 N-terminus. 

6) LC8 is not detectable in RS precursors in the flagellar matrix. Although LC8 

is present in the mature RS, the fractionation of soluble flagellar matrix showed that LC8 

is not detectable in the 12S RS precursor fractions (Figure 3-7). This supports an 

interesting idea that LC8 binds the other major RSPs after they arrive in the flagella, 

possibly at the tip. 

7) Mutation of LC8 binding sites in RSP3 results in multiple defects. The mutation of 

the TQT-like motif into AAA results in defective motility, (Figure 3-8); less LC8 in the 

RS and reduced stability of RS-axoneme association (Figure 3-9); and more hypo-

phosphorylated RSP3 (Figure 3-10). These pleiotropic effects from LC8 mutations 
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provide the in vivo evidence supporting the results described above from independent 

approaches. 

 Collectively, these results shed light on the long-standing questions regarding 

molecular assembly in motile cilia.  Chapter 4 will thoroughly discuss these findings and 

their implications.  
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CHAPTER 4: DISCUSSION 

 

The investigation of the role of LC8 in the assembly of the RS complex showed that 

multiple LC8 dimers bind to the RSP3 N-terminus and the binding has three effects on 

RSP3: to promote phosphorylation, to form the stalk and to associate with the docking 

proteins.  These results shed new light on LC8, RSP3 and the assembly of axonemal 

complexes during ciliogenesis. 

 

Multiple LC8 binding sites in RSP3 

Independent lines of evidence indicate that RSP3 N-terminus binds to multiple LC8 

dimers in tandem. First of all, quantification of the in vitro binding assay of bacterially 

expressed RSP3 N-terminus and LC8 demonstrated RSP3 binds to LC8 at a ratio of 1:3 

(Figure 3-3).  Secondly, the comparison of LC8 amounts in spokeless and WT axonemes 

suggests that the amount of LC8 in the RS fraction accounts for about a half of the total 

LC8 content in axonemes (Figure 3-5).  Furthermore, the trypsin digested RS particle 

with longer RSP3 fragments contains more LC8 molecules than the smaller one with 

shorter RSP3 fragments (Figure 3-2).  Moreover, perturbations of the last three LC8-

binding sites in RSP3 result in significant reduction of LC8 in the RS-containing KI 

extract (Figure 3-10).  Thus it is likely that each RSP3 dimer associates with at least 3 

LC8 dimers.  

 While conservative mutagenesis is sufficient to perturb the LC8-binding site 

effectively in several target polypeptides with a single binding site (Puthalakath et al., 

1999; Bergen and Pun, 2007), it is necessary to mutate TQT-like motifs into AAA in 
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RSP3 (Table 3-1) as well as in Bassoon (Fejtova et al., 2009) for mutants to exhibit 

phenotypes.  Both molecules have at least 3 binding sites aligned in tandem.  In the same 

vein, truncation mutagenesis of all binding sites was taken to investigate the functions of 

the 2 and 5 LC8-binding sites in p53BP1 and Nup159, respectively (Lo et al., 2005; 

Stelter et al., 2007).  The difficulty in perturbing tandem-aligned LC8 binding sites may 

be related to the synergistic effect on the affinity (Williams, et al., 2007).  For the target 

peptides that associate with two LC8 dimers in tandem, binding of the first dimer 

enhances the affinity for the 2nd dimer by 1000 fold (Hall et al., 2009).  Therefore, in the 

region with an array of LC8 binding sites, the conservative mutagenesis may not reduce 

the affinity for LC8 enough after the neighboring site associates with LC8.   

     

The role of a stack of LC8 dimers in the RS 

Each RSP3 dimer with multiple LC8 dimers in tandem will account for part of the spoke 

stalk.  High-resolution EM of reconstituted dimeric Nup159 peptides and LC8 revealed a 

20-nm rigid rod of 5 tightly packed LC8 dimers despite varied distances between the 

LC8-binding sites (Stelter, et al., 2007). These sites were 9 – 22 a.a apart in contrast to 

the LC8 binding sites in RSP3 that are 17 – 30 a.a apart. The larger distance between the 

LC8 binding sites but formation of close stack as seen in Nup159 will result in longer 

sequences protruding out of stacks forming secondary structure (Figure 4-1A).  

 However, the crystallography of dynein IC peptides with two LC dimers has 

inconsistent results. The study predicts that there is bending between the two sites that 

binds two LC8 dimers (IC.LC8.LC8) in tandem. The bending between the two LC dimers 

suggests that there is flexibility in this complex (Williams et al., 2007; Hall et al., 2009). 



	   102	  

This flexibility was observed when the two LC8 sites were 12 a.a. apart and could vary 

according to the distance between the binding sites.  

 Regardless of rigidity or flexibility, a stack of 3-5 LC8 dimers between RSP3 

dimers may contribute 12-20 nm to the 40-nm long spoke stalk (Nicastro et al., 2005) 

(Figure 4-1). It is possible that the longer sequences between LC8-binding sites protrude 

from the stack (Figure 4-1A) to interact with other molecules, like docking proteins or 

kinases; or they may account for additional length during RS tilting while flagellar 

beating (Figure 1-2).  Either way LC8 binding could change the physical property of the 

stalk.  Appropriate rigidity and elasticity of the stalk is predicted to underlie the RS-

mediated coupling of the CP and the outer doublets (Warner and Satir, 1974).  Missing 

LC8 in the RS may result in pliable RSs, consistent with the paralyzed or asynchronous 

flagella of 1-5AAA and 3-5AAA strains (Figure 3-9). 

 A recent study has shown that RSP3 is a structural scaffold extending throughout 

the entire RS complex (Sivadas et al., unpublished data). Other scaffold molecules, 

including the dimeric IC scaffold in the cargo-associating sub-complex in dynein motors 

(Sakato and King, 2004); Bassoon, the dimeric scaffold that is involved in the trafficking 

and organization of vesicles (Fejota et al., 2009); and GKAP, the dimeric neuronal 

scaffold protein that is involved in trafficking of postsynaptic density (Naisbitt et al. 

2000) bind to multiple LC8 dimers. Thus dimeric scaffold molecules with multiple 

binding sites for the small dimers, spaced at varied distances, may be a common way to 

form part of an elongated structure with proper physical properties. 
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The role of LC8 in RSP3 phosphorylation 

This study shows that at least one of the two threonine residues near the LC8-binding 

sites in RSP3 is phosphorylated by a proline-directed protein kinase and mutations in 

either LC8 or the last three LC8-binding motifs in RSP3 perturb phosphorylation (Figure 

3-1A and 3-11). This finding is consistent with the in vitro phosphorylation of these sites 

by ERK1/2 (Jivan et. al., 2009) and the double bands of RSP31-170 in SDS-PAGE (Figure 

3-6). These observations raise the possibility that these sites are also hypo-

phosphorylated in the fast migrating RSP3 in the RS particles that lack LC8, i.e. the 12S 

RS in the LC8-containing M+M (Figure 3-8) and the 20S and 12S RSs in the LC8-null 

M+M (Qin et al., 2004). In the yeast 2-hybrid system, ERK1/2 binds to an N-terminal 

extension of a mammalian-unique alternative spliced RSP3 variant. Perhaps this isoform 

allows RSP3 in selected cell types to tether ERK1/2 into flagella to enhance LC8-

dependent phosphorylation efficiency. For RSP3 molecules that lack this extension, these 

sites may be phosphorylated by one of the proline-directed kinases found in flagellar 

proteome (Pazour et al., 2005). Note despite complete replacement of TQT-like motifs in 

1-5AAA RSP3, there are still a fraction of phosphorylated RSP3 (Figure 3-11). Perhaps 

the mutations do not completely block LC8 binding; or LC8 binding merely enhances 

phosphorylation efficiency. 

Phosphorylation has been implicated in the regulation of flagellar beating 

(Piperno et al., 1981; Segal and Luck, 1985; Porter and Sale, 2000); and the assembly and 

disassembly of axonemal complexes (Qin et al., 2004; Luo et al., 2011). RSP3 

phosphorylation is tightly linked to RS assembly process but its significance is not clear 

yet. Hypo-phosphorylated RSP3 could be assembled into the axonemes of 1-5AN, 3-
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5AAA and 1-5AAA strains, while RS assembly and the motility of the 1-5AN flagella 

appear normal. Several possibilities that are not mutually exclusive could be considered. 

Firstly, the fraction of hypo-phosphorylated RSP3 may be too low to cause phenotypes. 

Or phosphorylation facilitates rather than necessitates certain molecular interactions and 

some of which are dispensable. For example, in HEK293 cells inhibition of ERK activity 

negatively affect the interaction of recombinant RSP3, presumably the amphipathic helix 

specifically with PKA’s RII subunit (Jivan et. al., 2009). Perhaps in Chlamydomonas 

flagella, threonine phosphorylation modulates the interaction of the nearby region to 

interact with the spoke docking proteins or the amphipathic helix (Figure 4-1A, AH) and 

the RIIa-domain in the RSP7 and RSP11 (Sivadas et al.) (Figure 4-1B, R) that are 

dispensable but beneficial for consistent flagellar beating (Yang and Yang, 2006; Gaillard 

et al., 2006).  

 

The role of LC8 in axonemal docking of RSP3 

Independent lines of evidence indicate that LC8 promotes the docking of RSP3 and thus 

RS to the axonemes.  Firstly, in vitro reconstitution assays performed using the 

bacterially expressed RSP3 N-terminus with spokeless axonemes showed that RSP3 

binds poorly to the axoneme. The binding of RSP3 to axoneme suggests that RSP3 has 

tendency to bind axoneme by itself. However the enhanced reconstitution of RSP3 to 

spokeless axoneme in presence of LC8 suggests that LC8 promotes the docking of RSP3 

(Figure 3-5).  Secondly, the truncated RS particle expressing His-tagged-RSP3-N-

terminus in vivo, while lacking most of the RSPs contained LC8 and the putative docking 

proteins like IP2, IP3 and IP4 of the CSC complex (Figure 3-7).  Furthermore, the LC8 
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binding sites are either inside or at the downstream region of the axoneme-binding site in 

RSP3 (Figure 3-1).  Lastly, despite the abundance of LC8 in mature 20S RS isolated from 

axoneme or  the flagellar matrix, it is not detectable in the 12S precursor particles (Figure 

3-8). The large portion of LC8 sediments as free particle at the top of the gradient both in 

the matrix and cell body extracts. The simplest interpretation is that LC8 binds to RSP3 

in the 12S RS precursors to promote the association of RSP3 with the docking proteins 

for becoming part of the axoneme. The process of binding LC8 to 12S in flagella could 

serve as a control mechanism to prevent premature assembly of RS with the axoneme 

(Figure 4-2).  

 The pull down of FAP206 as well as CSC complex with RSP3 N-terminus shed 

light on the molecular mechanism underlying the precise architecture of the axoneme 

(Nicastro et al., 2006).  As mentioned in Chapter 1, there are two RS in each 96-nm 

longitudinal repeat (Figure 1-1A).  The bases of the first and the second spokes are in 

proximity to different dynein motors that confer distinct features to the oscillatory beating 

and are regulated differently (Porter and Sale, 1999; Kamiya, 2002). The structures in 

these two regions have discreet morphologies and are believed to be important for 

anchoring and linking the RS to distinct subtsets of dynein motors (Huang et al., 1982; 

Piperno et al., 1992; Heusero, et al., 2009).  A recent RNAi study has implicated the CSC 

complex in the assembly of the spoke 2 only (Dymek et al., 2011).  Furthermore, the pull 

down of CSC did not contain additional polypeptide the size of FAP206 (Dymek et al., 

2007). Thus FAP206 assembles independently of CSC complex and may be involved in 

docking spoke 1 (Figure 3-7).  
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 This study also raises the possibility that in spite of the large pool of small LC8 

particles known to be present in the flagellar matrix (Rompolas et al., 2007) and the cell 

body (Puthalakath et al., 1999), certain target proteins do not bind LC8 until at particular 

timings or cellular compartments.  For the RS, the most interesting scenario is that, like 

the spoke HSP40 (Yang et al., 2005; Yang et al., 2008), LC8 and precursor complexes 

enter flagella separately (Figure 4-2).  Upon arrival at the tip of flagella, the N-terminus 

of RSP3 in the RS precursor becomes accessible to the copious amounts of LC8 and their 

interaction triggers a series of events: the formation of the basal part of the stalk; RSP3 

phosphorylation by an unknown kinase; anchoring of the RIIa domain; and the 

interaction with the docking proteins.   

 This model explains that an additional tail at the LC8 C-terminus as seen in the 

fla14-3 mutant may interfere with the stacking of multiple LC8 dimers, causing the low 

abundance, reduced stability and hypo-phosphorylation of the RSs (Yang et al., 2009).  

By the same token but to a lesser extent, the short length flagella of the fla14-3 mutant 

suggests that the LC8 C-terminal tail also affects cytoplasmic dyneins that bind two LC8 

dimers in tandem (Rompolas, et al., 2007) more than axonemal dyneins that bind to one 

LC8 dimer only.  This model also explains the distinct morphologies of 12S and 20S 

spoke particles (Diener et al., 2011). In particular, the length of the stalk in the 12S is 

approximately half of that in the 20S RS on the axoneme or in the axonemal extract.  The 

missing bottom part may contain the LC8-RSP3 complex and the docking proteins. This 

model is not necessarily applicable to all LC8-containing complexes in flagella.  Some 

complexes are not assembled in the well-known tip-to-base direction as the RS (Johnson 

et al., 1999; Piperno et al., 1996), and LC8 also affects each complex differently (Yang et 
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al., 2009).  Yet the series of reactions, triggered by LC8 for the assembly of a mature RS, 

may commonly occur in the final steps of the process of ciliogenesis. 

	  
 
 
 
 
 



	   108	  

 
 
 

 
 
 
 

 
 
 

Figure 4-1. The model depicting the three effects of LC8 in the RS complex. A 

stack of 3-5 LC8 dimers binds to an RSP3 dimer to (A) form the basal part of the 

stalk; and enhance phosphorylation (asterisks); (B) to promote the RSP3-docking 

complex association. 
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