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ABSTRACT 

INVESTIGATION OF SPATIO-TEMPORAL EFFECTS OF FMRI VISUAL FIELD 

MAPPING TECHNIQUES ON V1 

 

 

John Janik 

 

Marquette University, 2011 

 

 

Blood oxygenation level dependent functional magnetic resonance imaging has 

been used extensively for mapping the representation of the visual field within the human 

brain. Visual field mapping using fMRI has been used clinically to assess patients with 

cortical pathology and to plan surgical treatment impacting the visual system. The 

accuracy of fMRI-based visual field mapping methods needs to be better understood for 

clinical use. This accuracy can be important for presurgical mapping of brain function 

near a tumor resection site since inaccurate rendition of the underlying neural function 

could lead to inappropriate resection of viable brain tissue. The most widely used method 

for visual field mapping is temporal phase mapping. This dissertation investigates the 

accuracy of temporal phase mapping, specifically focused on the detection of polar angle 

visual field locations in primary visual cortex. Early studies show that polar angle 

positions are not uniformly distributed as suggested by animal studies. These non-

uniformities are seen as relatively under-represented areas in the visual field maps used to 

display the fMRI data. This dissertation shows that temporal phase mapping is 

susceptible to hemodynamic distortions that lead to missassignment of visual field 

locations. Further analysis of the non-uniformity in the frequency distribution of voxels 

representing different angular position within the visual field shows an under-

representation of locations near the vertical meridia in V1. These results led to the 

development of a new retinotopic mapping technique, code-based mapping. The main 

reason for developing a new retinotopic mapping technique was to reduce the under-

representations of vertical meridia posed by using temporal phase mapping when 

assigning a stimulus location to a voxel. This dissertation shows that code-based mapping 

is a viable method for mapping visual field locations and produces a uniform distribution 

of voxels representing different angular positions within the visual field. Furthermore, the 

code-based mapping method is less susceptible to the hemodynamic biases than temporal 

phase mapping. With respect to clinical utility of fMRI mapping techniques, the code-

based mapping shows a greater potential to accurately map a patient’s visual field in the 

presence of a tumor or other malformations that can induce large noise effects in the 

fMRI voxel responses.  
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Background 

 

Resection of brain tissue is a common treatment for numerous neurological disorders 

such as brain tumors. Due to the location of the tumor, the surgeon often desires an 

assessment of the patient’s visual field to determine the following: (1) Is there a current 

visual field deficit as a result of the tumor? (2) How large is the deficit? (3) How 

sensitive is the deficit to stimulus intensity and spatial resolution of the stimulus 

presented? and (4) Is there a chance of creating new visual deficit once the tumor is 

removed? All of this information is relevant to determining how much neuronal tissue to 

remove at the boundary between viable neuronal tissue and the tumor. The physician at 

this point has several options:  (1) perform a clinical visual field assessment, (2) have the 

patient undergo a Goldman’s/Humphries visual field perimetry test, or (3) use a rather 

new visual field assessment technique using fMRI mapping.  

The basic in-office clinical visual field assessment is typically performed in the 

doctor’s office [70]. This test is a crude visual field test that can be performed by having 

the patient look straight ahead and count the fingers shown by the examiner as the fingers 

move from the patient’s fovea to the far periphery of the patient’s visual field. The patient 

is typically asked to cover one eye and focus on the examiner’s nose while conducting 

the test. If an entire visual field must be tested, both eyes must be examined. The clinical 

visual field test suffers from lack of accuracy due to subjective reporting by the patient 

and the perception of the examiner, and lacks a reliable method of monitoring eye 

movement of the patient. While this method of visual field assessment is crude, the test 

does offer a quick (less than five minutes) examination of the patient’s gross visual field. 
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In our example of brain surgery described above, this simple periphery technique would 

only be able to inform the physician of the presence of a visual field deficit and a general 

idea regarding the location of the deficit. This technique would not be able to provide 

information on intensity sensitivity or spatial resolution of the deficit’s visual field effect 

or relate information regarding possible visual field deficit risk after removal of the brain 

tissue. 

An alternative to the basic in-office clinical visual field assessment would be 

automated,  computerized visual field assessment, otherwise known as visual field 

perimetry tests [36]. For these procedures, one eye is covered, and the patient places his 

or her chin in a bowl-shaped chin rest. Small diameter flashes of light of varying 

intensities are presented randomly about the visual field. When the patient sees a flash of 

light, he or she pushes a button. In all standardized testing, the right eye is tested first, 

followed by the left eye. This process produces a computerized map of the visual field as 

sensed by the subject tested. A more specific kind of visual field perimetry test that is 

tailored to testing patients with visual field deficits due to neuronal malformations is the 

Goldman’s perimetry test [71]. The Goldman’s perimetry presents moving light targets 

on the surface of a concave bowl that is 33 cm away from the patient’s cornea. The speed 

of the target is typically 2-3 per second moving from the viewable area of the patient’s 

visual field to the non-viewable area of the patient’s visual field. The standard diameter 

of the flashing light target is 2.26 mm; however, the size of the target may vary with 

eccentricity (magnitude from the center of focus) depending on the functionality of the 

subject’s vision. An increase or decrease in size is equivalent to a 5 dB relative shift in 
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brightness. The subject is asked to respond via button press when they see the target. The 

perimetry test is easy to administer and is a small time investment (~20-30 minutes).  

The Goldman’s Test will report on several factors regarding a patient’s visual 

function:  (1) fixation error, which is an indicator of fatigue or cooperation, (2) false 

positives (i.e. pushing the button when there are no lights present), (3) false negatives 

(i.e. not pushing the button when the light is present), (4) reliability index (overall how 

the patient performed), and (5) standard deviation of visual field location at each point 

measured. One of the main issues with a perimetry test is the sparse sampling grid over 

the field of view.  

Although the sampling grid for the visual field is higher in resolution than the in-

office clinical method described earlier and more consistent with respect to controlling 

the positions of the test stimulus and repeatability of the visual test stimulus, it is possible 

for any computerized visual perimetry test to miss a tumor encompassing 3x5 of visual 

field near the fovea [37, 70]. Even though the computerized visual perimetry test is more 

reliable with respect to repeatability of the testing locations in the patient’s visual space 

than the in-office clinical visual field assessment, the visual functional data collected 

regarding a patient still has no means to align the visual field to the patient’s anatomy, 

specifically the primary visual cortex, V1.  

The correlation between the computerized visual perimetry test to a human’s 

cortical brain function is supported from monkey data [1-3,8-11, 12-18] and injury-based 

human data [24-35], all of which is discussed later in more detail with respect to fMRI 

mapping. Getting back to the issue of brain resection that involves visual areas of the 

brain, the Goldman’s perimetry would be able to detect a visual deficit, the relative 
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sensitivity of the deficit, and the location in the visual field with the limitations stated 

above. However, the computerized visual perimetry test does not provide a direct 

connection or map from the visual deficit of the patient to their brain anatomy, which is 

crucial in the case of surgery where tissue removal may lead to loss of vision.  

A novel technique under investigation for mapping a patient’s visual field to the 

visual cortex of the brain uses functional magnetic resonance imaging (fMRI). In this 

method, a patient lays down in a MRI scanner and is fitted with special optics that allow 

the examiner to project visual images onto the subject’s retina (Figure 1). Typically, a 

visual stimulus, such as a black and white checkerboard pattern, is projected into the MRI 

scanner via a fiber optic video system.   This video system projects stimuli with specific 

eccentricity and polar angle coordinates to the patient’s retina while the fMRI unit is 

collecting data.  The data consists of MR signal that varies with changes in the blood 

oxygenation levels of the brain as the visual stimulus is presented to the subject [69].  

Such fMRI is referred to as blood oxygenation level dependent (BOLD) fMRI.  The 

collected data, which can be localized to specific locations in the brain, is then analyzed 

through a series of signal detection and filtering schemes to produce a functional field 

map (FFMap), which represents those locations of the visual field space that have 

produced BOLD signal in the visual cortex of the brain. The FFMap reports several 

factors regarding a patient’s visual function: (1) fixation error (via eye tracking through 

the visual system), (2) the completeness of the patient’s visual field (fMRI visual field 

coverage is 15ºx15º), and (3) exact visual field locations as mapped to the visual cortex of 

the brain. Since this functional imaging technique is relatively new for mapping brain 

function, the surgeon has several questions regarding the FFMap:  (1) Exactly how is 
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BOLD fMRI, a hemodynamic signal, linked to underlying neuronal activation, (2) What 

is an FFMap and how it is created, and (3) how accurate and reliable is the FFmap? 

 

Figure 1: MRI System. Setup of a visual stimulus projection system in an fMRI unit. 
Adapted from US Patent 6430431, DeYoe. MRI System for Measuring Vision Capabilities. 
Pg. 11 [69]. 

BOLD fMRI and Neuronal Activation 
 

 

 

When a visual stimulus is presented to the visual system, an increase in neuronal 

activity in the visual cortex leads to a change in oxygen use and demand in the local area 

of the active neurons.  The change in oxygen demand leads to a compensatory change in 

blood flow and volume.  This change in blood flow leads to a change in the ratio between 

deoxyhemoglobin (paramagnetic) and oxyhemoglobin (diamagnetic), which in turn 

translates to an increase in the percent change in the fMRI signal when measuring the T2
*
 

decay signal [40-42]. Studies have shown that the T2
*
 decay signal is an indication of the 
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field inhomogeneity in the local area being sampled by BOLD fMRI  [40-42]. In brain 

mapping using fMRI, the main question is what is the source of the BOLD signal?  

The origin of the BOLD signal has been a subject of much debate and 

investigation. Oxyhemoglobin is weakly diamagnetic and produces minimal 

susceptibility changes in the magnetic field. On the other hand, deoxyhemoglobin is 

paramagnetic and introduces significant susceptibility changes (inhomogeneity) in the 

magnetic field. At a neuronal resting state (i.e. no neuronal firing) the ratio between 

oxyhemoglobin and deoxyhemoglobin is relatively constant (Figure 2, left). Therefore 

there is no change in the homogeneity of the magnetic field present. As neural activity 

increases (Figure 2, right) the blood flow to the neuronal tissue that is active increases. 

The increase in blood flow into the local capillary bed leads to an increase in 

oxyhemoglobin in the tissue area and a decrease in deoxyhemoglobin in the tissue area. 

As the more paramagnetic deoxyhemoglobin leaves the tissue area that is active, the 

induced magnetic field becomes more homogeneous and is measured as an increase in 

the BOLD signal [41].  

A specific example related to this dissertation research is to examine when a 

visual stimulus elicits a neuronal response in V1. When there is an increase in neuronal 

activity due to visual stimulation in V1, blood flow to the region increases, changing the 

deoxyhemoglobin concentration and decreasing the paramagnetic properties of the local 

tissue ( i.e. increasing the magnetic field’s homogeneity), and therefore producing a 

change in the BOLD signal [43-45]. It is still controversial as to what exactly triggers the 

increase in blood flow. There are arguments for local neuronal interconnections and 

cortical neurons [46-51] and synaptic activity [52-56]. It is thought that the input to 
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excited neurons being measured by fMRI from other cortical neurons and intracortical 

connections are recorded from the local field potential (LFP) whereas the output at the 

synaptic level is recorded from multi-unit activity (MUA)[49, 50, 55]. Even with this 

controversy, the BOLD signal is known to correlate with neuronal activity through a 

cascade of metabolic events.  

 

Figure 2:  BOLD Mechanism. The resting state (left side) and active state (right side) of 
oxyhemoglobin and deoxyhemoglobin during no neuronal firing (resting state) and 
neuronal firing (active state). 

 

Methods to Map the Visual Field onto the Primary Visual Cortex 

using BOLD fMRI 
 

 

Functional Field Map (FFMap) 

 

 

 

A Functional Field Map (FFMap) is a graphical representation of the subject’s 

visual field showing the complete distribution of visual field locations that maximally 

activate voxels in the primary visual cortex (Figure 3A) [40]. The FFMap is created by 

using a wedge (polar angle) and annulus (eccentricity) retinotopic mapping stimuli and 
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subsequent fMRI data to identify the preferred stimulus position (angle and eccentricity) 

that maximally activates each voxel in primary visual cortex. This mapping process is 

called Temporal Phase Mapping. For each activated voxel, a circle symbol is placed on a 

diagram of the visual field at the preferred location and is colored black to indicate a 

valid fMRI response. The radius of the circles indicates the 70% confidence interval for 

the preferred location and is based on a separate analysis of the variance of the temporal 

delay of the BOLD signal for a set of responding voxels [16].  
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Figure 3: Functional Field Mapping. (A) Functional Field Map (FFMap) representative of a 
subject with normal vision. (B) The corresponding voxel histogram of all of the voxels with 
valid polar angle visual field coordinates from the FFMap (A). 

Temporal Phase Mapping 

 

 

Temporal phase mapping distinguishes between different sectors of the visual 

field by assigning different phases, or time delays, of the period BOLD response to each 

visual sector. Figure 4 outlines how the temporal phase analysis works. A flashing 

checkered wedge slowly rotates about the visual field over a period of 40 seconds back to 

the original starting position. This rotation sequence is repeated 5 times. This rotation 
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creates a delay in the starting time of the stimulus for each visual sector relative to the 

original starting position of the wedge. Consequently, the temporal phase of the fMRI 

response signal is used to associate the visual field polar angle with the position of the 

visual stimulus. Different colors can then be used to color the fMRI response signals 

(right) according to the optimal visual field polar angle (left). 

 

Figure 4: Temporal Phase mapping. On the left, one 120 degree black/white checkered 
wedge sequentially rotates about a central fixation point five times in a sequential fashion 
(clock-wise/counter clockwise). The corresponding time series for each colored dot and 
time point (T1, T2, and T3) in the visual field is shown (right). 

Temporal phase mapping offers a novel method to quantitatively map the visual 

field to the visual cortex. These maps are called retinotopic maps because they represent 

the known organization of visual field orientation on primary visual cortex. Several 

studies have  produced  retinotopic maps expressing eccentricity or polar angle visual 

field locations in the visual cortex using temporal phase mapping [6, 22, 23, 59]. 

However, as this dissertation will demonstrate, temporal phase mapping does have 

limitations regarding consistently producing the expected voxel representation of a 

N
eu

ro
n

al
 R

es
p

o
n

se
 



11 
 

subject’s visual field. Figure 3A shows a typical FFMap from a subject with reported 

normal vision. The FFMap suggests the subject has two visual field deficits, a lesser 

deficit along the superior vertical meridian and another more distinct deficit along the 

inferior vertical meridian.   

One method that has been developed in this dissertation to analyze the percent 

contribution of the orientation stimuli (eccentricity or polar angle) producing these 

deficits is to separate the respective orientation data. This is accomplished by creating 

two separate histograms of all of the voxels that respond to eccentricity and polar angle, 

respectively. The polar angle and eccentricity voxel histograms are generated from the 

FFMap data and contain all of the valid phase delays (cross correlation coefficient, r
2
 > 

0.3, p <0.05) from voxels in the subject’s primary visual cortex that assisted in generating 

the FFMap (Figure 3A). The eccentricity voxel histogram does not show signs of the 

deficits seen in the FFMap (Appendix A: Figure S1). The polar angle voxel histogram 

shows over/under representations of specific polar angle visual field locations across the 

primary visual cortex of this subject (Figure 3B), which is contradictory to the known 

literature [tootell]. The current literature in animals suggests that the distribution of 

cortical area in the polar angle orientation of the visual field is constant with respect to 

each visual field polar [1-4].  

In order to understand if temporal phase mapping is producing the correct 

representation of the visual field onto the visual cortex, a thorough investigation of the 

retinotopic distribution of visual space onto the primary visual cortex must be done. 

Specifically, we examined the fMRI response of voxels in V1 when a subject was 

presented a visual field sector of a specific polar angle (also referred to as a wedge in our 
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specific use) and what level of statistical confidence exists in the fMRI response to the 

visual stimulus. 

Random Stimulus Presentation Mapping 

 

 

Given the observation described above that FFMaps of normal vision subjects can 

have areas of deficit and a nonuniform polar angle voxel histogram generated from 

temporal phase mapping [5], alternatives to producing the FFMap using sequential based 

stimuli was examined in this dissertation research. The goal was to determine whether or 

not there was a reasonable cause for using an alternative presentation stimuli other than 

the sequential-based temporal phase mapping to generate the FFMap.  

Figure 5 illustrates the meaning of random stimulus presentation in this 

dissertation research. More specifically, for every visual stimulus location, shown as 

orange 18º wedges (Figure 5, Right corner), that is displayed; no single stimulus location 

will have a high correlation to any other stimulus location through the duration of 

presentation time. Whereas in temporal phase mapping (Figure 5, Left corner), multiple 

stimulus locations are highly correlated to other stimulus locations through the duration 

of presentation time.   

In this research, an input visual stimulus was designed to minimize the error that 

occurs when assigning a voxel response to an input stimulus time series.  The idea was to 

create unique input stimulus patterns for different sectors of visual space such that when a 

single voxel fMRI response was statistically compared with the input stimulus sequence 

for a spatially specific visual stimulus wedge, the comparison between the voxel response 

and the stimulus time series using a least squares method for each sector will be 
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minimized for one of the sectors with little to no overlap with stimulus time series of 

neighboring sectors.   

An input stimulus function was created by randomly presenting a visual field 

polar angle numerous times over the duration of an fMRI scan. The visual field is divided 

into twenty equal polar angle segments. Each of the twenty visual field sectors is 

associated with one unique input stimulus function. Each input stimulus function can be 

viewed as a unique “code” for a specific visual field sector. For example, as an 18 

wedge stimulates a specific polar angle sector (purple dot) in the visual field (Figure 6 – 

left) over time, that polar angle sector gets a unique stimulus presentation sequence over 

time (left purple time series) representing only that visual field sector.  

To determine which visual field sector a voxel is responding to, the stimulus time 

series must first be convolved with a gamma variate function (simulated hemodynamic 

impulse response, HIR) and have pink noise added to the stimulus time series. This 

convolution will generate a simulated BOLD response for each stimulus time series. 

Thus, given a voxel’s actual fMRI signal and the estimated fMRI signal, a “goodness of 

fit” can be calculated using a multiple linear regression to determine which visual field 

sector(s) a voxel optimally responds (explained in more detail in Chapter 3). 
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Figure 5: Distinct Methods of Stimulus Presentation. Two distinct methods of stimulating 
the visual field. The sequential stimulus (top) represents a typical method for presenting 
the temporal phase mapping technique for visual field mapping. The random stimulus 
(bottom) represents an implementation of the code based mapping technique discussed in 
the dissertation. 

Previous mapping of visual cortex has been done using pseudo-random sequences 

to elicit fMRI responses in the visual cortex. Gallant et al. used polar angle sectors 

displayed in a pseudo-random sequence to examine the spatial linearity in the BOLD 

response in V1[60]. Linearity by spatial summation was assessed directly by comparing 

voxel responses to wedges and rings with sums of responses to component sectors[60]. 

Also, Biswal used a pseudo-random sequence to elicit fMRI responses from visual field 

sectors to create an assumption free fMRI analysis algorithm[61].  Biswal displayed a 

smaller visual stimulus that did not cover the entire visual field. The intent of this 

research was to determine if a stimulus could be detected using a specific algorithm that 

was not based on assumptions such as the multiple linear regression algorithms used in 

this dissertation. Other methods of measuring neuronal activity such as collected visually 

Sequential Stimulus 

Random Stimulus 
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evoked potentials (VEP) from EEG recordings have used pseudo-random sequences to 

map retinotopic responses [68] but these methods suffer from the limitations of lower 

spatial resolution to produce detailed retinotopic maps. To date, no one has attempted to 

use a random stimulus presentation technique to quantitatively map the primary visual 

cortex using fMRI with the purpose of investigating the expected voxel representations of 

the visual field in V1. 

 

Figure 6: Random Presentation Concept. The twenty 18 degree polar angle locations are 
presented in an uncorrelated sequence relative to each other (left). The corresponding 
time series for each colored dot in the visual field is shown (right). 
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Visual Topography and Potential Non-uniformities in the visual 

space representation in the visual cortex 
 

 

 

To construct spatially accurate cortical maps of visual function, we must have an 

understanding of the neural behavior of the primary visual cortex when the visual field is 

excited. The following section establishes the link between specific visual field excitation 

and cortical representation in monkey V1, the most analogous to the human visual field. 

The monkeys’ and other animals’ V1 topography and possible deficits in the 

representation of the visual field are examined in terms of previous literature. Findings in 

these species may provide insight into the behavior of human primary visual cortex 

relative to the visual field excitation used in fMRI mapping. We now examine various 

aspects of the visual system in the macaque monkey species and other animal models in 

searching for possible under/over representations in neuronal behavior across the visual 

cortex that may explain the observed deficits in the FFMap (Figure 3A) from the fMRI 

responses generated by the polar angle stimulus obtained in our experiments [5].  

Visual field and cortical representation in monkey V1 are generally 
uniform  

 

 

Since the 1960s, the monkey’s visual anatomy and function have been researched 

extensively. In particular, the monkey’s visual field representation in the visual cortex has 

been detailed [1-3,8-11, 12-14] using a number of techniques. Most of the early monkey 

data was gathered by measuring the extracellular potentials [13, 15-18], single unit 

recordings [14], or 2-deoxyglucose staining [1, 8] in the cortex. These techniques gave 
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researchers a method for directly correlating visual field activation and some form of 

cortical response.  

The earliest extracellular recordings showed that stimulating a localized region of 

visual space excited a localized region of monkey primary visual cortex [13]. Hubel and 

Wiesel [10-12] were the first to show that the visual cortex received input from the lateral 

geniculate nucleus and that the primary visual cortex was anatomically organized to 

handle this input in a retinotopic manner [12-14]. They achieved this mapping of visual 

field to visual cortex by sequentially moving light bars across a screen and recording the 

electrical response in the animal’s visual cortex. They found that the cortical response, as 

reflected in the extracellular recordings, also moved sequentially across the visual cortex, 

however, in the opposite direction of the moving light bar.   

In a 2-deoxyglucose (2-DG) study, Tootell showed that the representation of the 

visual field within primary visual cortex of macaque monkeys completely covers the 

cortex [1]. The 2-DG method tags relative glucose utilization by neuronal cells. As the 

cell uses more glucose the non-metabolized 2-DG accumulates in the cell. The resultant 

accumulation of the 2-DG can be captured using autoradiography[1]. Tootell illustrated 

(Figure 7) that the 2-DG stain highlighted the primary visual cortex when the monkey 

was presented with a visual target that covered the entire visual field. The topography of 

V1 was then sectored into regions of eccentricity and polar angle (Figure 7 - left) that 

corresponded to regions of eccentricity and polar angle of the visual stimulus (Figure 7 - 

right). Tootell showed that the area of cortex in V1 representing a visual field sector of a 

specific polar angle was not significantly different from one polar angle degree to the 

next (arrow widths in Figure 7). Tootell supported Hubel and Wiesel’s findings that the 
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V1 representation of the visual field is flipped and reversed (Colorbars on figure 7) with 

respect to the visual field.   

Tootell reported that the area of the region of the V1 cortex responsible for 

responding to the vertical meridian of the visual field was not doubled or repeated [10, 

19]. This was interesting because the vertical meridian represents the boundary between 

V1 and V2. These two visual cortical regions process visual information for different 

purposes but each used the single representation of the vertical meridian, not two distinct 

representations of the vertical meridian.  

Tootell illustrated a cortical magnification phenomenon in V1 with eccentricity of the 

visual field. Cortical magnification is the phenomenon by which a larger cortical surface 

area is dedicated to the representation of the fovea relative to the cortical surface area 

dedicated to the peripheral visual field. To this point in the literature, there has been no 

neurophysiological evidence to suggest that the polar angle sectors are associated with 

any sort of “magnification” across the cortex. A deeper investigation into the literature 

must be done to understand if the deficits observed in the FFMap are potentially non-

uniformities in polar angle activation across V1. 



19 
 

 

 

Figure 7: “Cortical representation of visual space” adapted from Tootell et al. J Nsci. 
8:1531-1568 (1998). Illustrates the correlation between the stimulation of half of the visual 
field (right) and the response via 2-DG staining in the contralateral monkey primary visual 
cortex (left). 

 

Non-uniformities exist in detailed V1 topography and LGN 

 

 

The anatomy and function of the lateral geniculate nucleus (LGN) suggests that in 

non-human primates the difference in LGN surface area responsive to the visual field 

along the vertical meridian versus the horizontal meridian is approximately 1.4:1 

(horizontal: vertical meridian). Van Essen and Connolly [21] show that four equal polar 

angle sectors (wedges) in the visual field are represented unequally, in terms of surface 

area in LGN layer 6 (Figure 8). The two sectors of layer 6 representing the horizontal 

meridian (sectors (2) and (3) in Figure 8) stimulate 31% and 26% of the LGN layer 6 

surface area, respectively. The sectors neighboring the vertical meridian, sectors (1) and 

(4), each stimulate 21% of the surface area in LGN layer 6. A 1.4:1 difference in the 

LGN surface areas of stimulated layer 6 is found by taking the ratio of total surface area 
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representing the horizontal meridian (sector 2 + sector 3) and total surface area 

representing the vertical meridian (sector 1 + sector 4).  

Recent reports in human LGN using BOLD fMRI signals have shown a 2:1 ratio in 

the number of voxels in LGN (horizontal: vertical meridian) when presenting temporal 

phase mapping stimuli [64]. It is conceivable that these distortions in polar angle could be 

translated to V1. In preliminary studies using temporal phase mapped fMRI of human 

V1, it has been observed that significantly disparate over/under representations of 

specific visual field polar angle locations exist when mapping normal vision subjects [5]. 

These preliminary results suggest that the difference in active voxels between the vertical 

meridian and horizontal meridian is at least 3.5:1. 

 

 

Figure 8: LGN Representation of Visual Space. (A) Macaque Monkey LGN Layer 6 
representation of Left hemi visual space. (B) Left hemi visual space for (A). Adapted from 
Van Essen D, J Comp Neurol. 226:544-564 (1984). 
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Other species give a different insight into V1 representation of the visual field. A 

distinct double representation of the vertical meridian near the V1/V2 boundary in 

electrophysiological recordings [2] exists in ferret and some monkey species [10]. This 

phenomenon causes approximately 3-5 of polar angle next to the vertical meridian to 

have an overlapped representation on the V1/V2 cortical border.  

Visual field data from various animal species has provided some insight into the 

possible under/over representations of visual field locations that may occur when 

mapping the human visual field. However, none of the data explains the deficits seen the 

in the FFMap produced by the polar angle stimulus previously described using temporal 

phase mapping fMRI [5].  

Non-fMRI Visual Field Mapping Techniques and Possible Uneven 

Distribution of Visual Field Function across V1 
 

 

 

In determining whether the true visual field representation in V1 is evenly represented 

across V1, it would be helpful if data measured directly from human neurons during 

visual field excitation existed. This is not the case; however there are alternatives to 

examine the extent of evenly distributed visual field orientation data across V1 cortical 

area in the human visual field.  

Assessment due to Injury 

 

 

The first accounts in modern history of direct correlation between visual field 

stimulation and human cortical response were observed in subjects treated for bullet 

wounds in World War I and World War II. Tatsuji Inouye [24], a Japanese 
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ophthalmologist, reported that head injuries to different regions of the brain caused 

different perceptual and sensory deficits. Specifically, Inouye published that injuries to 

specific locations in the occipital lobe affected specific characteristics of visual 

perception. He further observed that when certain areas in the occipital lobe were 

damaged, only portions of the visual field were lost. Since then, many surgeons have 

performed cortical stimulation during surgery to map visual function before tumor 

resection [25-35]. Unfortunately, none of the reported studies gave insight into how the 

perception of the visual field was distributed across the visual cortex.  

 

Direct Electric Measurement during Surgery 

 

 

Most traditional methods used during surgery to identify areas of cortex 

responsive to visual field location rely on cortical stimulation. Cortical stimulation has 

been used to map motor, language, somatosensory and visual function of the patient prior 

to surgery. For visual function, the mappings are performed during surgery to assess the 

functionality of the perception of the visual field and how the neurological pathology 

affects the patient’s visual function. This method does provide real-time data regarding 

the patient’s medical state at the moment of the procedure; however, the intraoperative 

recordings are time consuming, which increases the patient’s time under anesthesia and 

subsequent recovery time.  In addition, cortical recordings are performed on people with 

severe neurological issues that necessitate an opening of the patient’s skull, thus it is 

difficult to study visual function in a normal, healthy brain.  
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Assessment of a visual field in an injured brain leads to explaining how that 

particular patient’s visual field is functioning and does not provide insight into the 

functionality of the normal population of humans. Therefore, the data discussed does not 

provide general evidence regarding the behavior of visual field orientation across V1 or 

any other visual field in the human visual system. The data presented do give confidence 

that once a visual field deficit is present in a patients methods do exist to confirm the 

existence of these visual field deficits. This information will assist in providing a gold 

standard of measurement for visual field deficits to compare against fMRI visual field 

mapping once we have gained clarity on the interactions of the fMRI mapping methods 

and the human brain response to the stimulation being presented. 

Back to Our Example 
 

 

Returning to our example, suppose now that the surgeon has been given the 

opportunity to use the FFMap analysis as more information to use during pre-surgical 

planning for the patient’s tumor resection. What did our surgeon decide to do with 

additional information about visual function provided by the FFmap? The surgeon 

decides to use the FFMap test primarily due to the link from the visual field location to 

the patient’s visual cortex. This piece of information will tell the surgeon where specific 

regions of the visual field lie with respect to the tumor. Even though the temporal phase 

mapping technique leaves uncertainties regarding the reliability of the connection 

between visual field and visual cortex, the surgeon believes that the information will be 

of value in terms of defining regions of concern in resection. The surgeon will still opt for 

the patient to get a Goldman’s test because it is accepted as a clinically reliable standard 
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for assessing visual field reception. Even though the FFMap test can detect a visual 

deficit, provide the location of the deficit in the visual field, and establish the map 

between the visual field location and the patient’s visual cortex, the surgeon is still 

hesitant to completely rely on the FFMap test as the gold standard. 

The reason the surgeon is hesitant to adopt the FFMap analysis as a tool in 

presurgical planning for tumor resection is that the reliability of the FFMap with respect 

to accurately correlating a section of cortical tissue to the visual stimulus location is still 

not at an acceptable statistical level. This dissertation research examines the first step in 

proving the correlation between visual field stimulus presentation and V1 BOLD 

responses. Specifically this research focuses on determining if temporal phase mapping 

produces true representations of visual field locations as measured by fMRI given that 

early investigations suggests that polar angle visual field locations have a systematic bias 

in the distribution of voxels in V1. This dissertation research will develop a method of 

stimulus presentation; hence eventually visual field mapping that is not sensitive to 

systematic biases when measuring retinotopy with BOLD fMRI.   

Specific Aims 
 

 

This dissertation research is focused on producing the true voxel representation of 

the human visual field onto the visual cortex using fMRI-based mapping techniques with 

the polar angle coordinate system. More specifically, early investigations of the voxel 

distributions associated with temporal phase mapping method using polar angles showed 

unexpected non-uniformities in the distribution as one moved across polar angles. These 

non-uniformities can lead to incorrect assignment of visual field locations in an FFMap to 
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regions of the visual cortex.  Such possible misassignments lead to false positives in the 

FFMap and thus assessment of a patient’s visual field representation. In order for 

FFMaps to be used as a clinical tool, these false positives in the polar angle coordinate 

and their cause must be understood. If their origin cannot be understood completely, an 

alternative approach to mapping the visual system must be developed. Specifically this 

research aims to: 

Aim I:  Determine if the voxel representations of polar angle, using 

temporal phase mapping, is biased by non-neuronal sources. 
 

 

Aim Ia:  Quantitatively investigate the impact of visual stimulus 
attributes and data processing techniques used in temporal phase 
mapped fMRI on the polar angle voxel distribution.  

 

 

 

We have observed that the voxel representation of the polar angle coordinate is 

not uniformly distributed as suggested by previous electrophysiology studies [1]. We 

hypothesized that the source of this non-uniformity in mapping polar angle may lie in the 

attributes of stimulus presentation, namely the temporal and spatial attributes of the phase 

mapping stimulus. We also hypothesized that the data collection methods influence the 

polar angle distribution of voxels when using temporal phase mapping [6]. The data 

collection methods studied are the mode of MR signal detection, MR sampling of the 

cortex, and definition of cortical regions of interest. 

Aim Ib:  Determine if the non-uniformity in the polar angle voxel 
distribution correlates to specific cortical locations in primary visual 
cortex. 
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  From the data obtained in Aim Ia, we hypothesized that the voxels located along 

the midline of the primary visual cortex may have a different BOLD response to the 

temporal phase mapping stimulus than the voxels that lie more lateral to the midline. 

From literature on human neurophysiology, BOLD fMRI physics, and the data obtained 

in Aim I, we hypothesized that the voxels along the midline have greater variation in the 

fMRI response than voxels that lie more lateral to the midline due to noise from 

physiological sources (draining veins) located near those cortical locations near the 

midline. The increased variance in fMRI responses is further suspected to contribute 

additive noise, causing statistical drop out of the voxel, and/or additive delay to the phase 

estimated for a specific polar angle location.  Such additive delay can cause an incorrect 

assignment of the polar angle location to a region of voxels in the cortex.  

Aim II:  Determine if random stimulus presentation eliminates 

non-neuronal biasing effects in the polar angle voxel distribution 

as compared to temporal phase mapping. 
 

 

Aim IIa:  Develop a method to present and analyze random stimulus 
presentation fMRI data.   

 

 

 

The method for detecting responsive voxels during temporal phase mapping relies 

on the ability to detect the time delay (or phase) from the start of a stimulus to the onset 

of the individual fMRI response. With temporal phase mapping the higher correlation 

between input sequences restricts the voxel to only respond to one stimulus location. 

Even if the voxel could respond to multiple stimulus locations, the high correlation 
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between input sequences makes the ability to detect more than one stimulus location very 

difficult. Studies have shown that neurons in the primary visual cortex have orientation 

tuning curves [66] that show preference toward specific stimulus locations and 

sometimes more than one stimulus location [67]. It was hypothesized in the current study 

that a random stimulus presentation, referred to as code based mapping, where each 

stimulus location is stimulated with an on and off time sequence that is linearly 

independent of the stimulus time sequences used to excite any and all other stimulus 

locations, will be able to elicit detectable responses in a voxel responding to each visual 

field stimulus. The analysis method used to detect the code-based mapping input 

sequences will create a voxel “tuning response function” for the stimulus locations 

excited.    We refer to the vector of normalized linear coefficients (goodness of fit) of a 

voxel’s fMRI response to each stimulus location’s input sequence as a tuning response 

function because the vector shows the visual field representation for a voxel given a set 

of stimulus locations presented to the subject. 

Aim IIb:  Compare code-based mapping to temporal phase mapping.  

 

 

 

Due to the spatio-temporal correlation between temporal phase mapping and V1 

during fMRI visual field mapping, it was hypothesized that the high linear correlation 

between stimulus time series of neighboring visual areas used in temporal phase mapping 

combined with localized fMRI susceptibility influences on voxel signals due to draining 

veins reduces the accuracy of the visual field maps produced from temporal phase 

mapping.  We hypothesized that code-based mapping of the visual field onto the visual 

cortex would eliminate the intrinsic spatio-temporal-hemodynamic confounds that exist 
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in the temporal phase mapping method, thereby producing a more uniform voxel 

representation across the polar angle distribution. Along with polar angle assignment for 

each voxel, further comparison of the mapping methods is performed with respect to 

noise susceptibility of the mapping methods to stimulus location assignment and 

qualitative retinotopic organization.  
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Aim I:  Determine if the voxel representations of polar 
angle, using temporal phase mapping, is biased by non-
neuronal sources 
 

 

Introduction 
 

 

Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging 

(fMRI) has been used extensively for mapping the representation of the visual field 

within the human brain [23, 74-75]. One potential clinical application of visual field 

mapping using fMRI is in the assessment of patients with pre-existing field deficits, 

specifically patients with visual field deficits originating from cortical or sub-cortical 

pathology. For fMRI brain mapping to transition successfully from academic use into 

clinical practice, the spatial accuracy of the brain maps needs to be characterized better. 

One key issue is whether fMRI mapping techniques completely and accurately represent 

the underlying neural organization, especially in the absence of smoothing or other 

interpolation procedures that may be inappropriate in clinical applications where the 

detection of pathology-induced distortions or deletions is paramount. This can be 

particularly important for presurgical mapping of brain function near a tumor resection 

site since inaccurate rendition of the underlying neural function could potentially lead to 

inappropriate resection of viable brain tissue. Such concerns are also important for 

academic neuroscience since undetected distortions in fMRI-based brain maps could lead 

to inaccurate theories and models of neural organization. In this dissertation, we 

examined fMRI maps of visual cortex in healthy individuals in order to characterize 

potential distortions/omissions due to stimulation and to identify their cause.  
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Temporal phase mapping is a time-efficient method for fMRI-based mapping of the 

topographical representation of the visual field in human visual cortex [6, 59, 79]. This 

technique successively activates locations within the visual field using a traveling wave 

of activation evoked by a slowly expanding, checkered annulus or a rotating checkered 

wedge [23, 72,, 73, 74]. With temporal phase mapping, the stimulation parameter of 

interest (eg. preferred polar angle) is encoded in the time delay of the fMRI response 

relative to the stimulation sequence (Figure 9). When the complete stimulus sequence 

consists of multiple repetitions (eg. 5 repeated rotations of a checkered wedge), the time 

delay is typically expressed as the temporal phase delay of the fMRI waveform 

(approximately sinusoidal) relative to the stimulation timecourse.  

Many studies have used this technique to produce human retinotopic maps and to 

identify the boundaries of multiple, distinct visual areas within the occipital lobe and 

other brain regions[6, 23, , 22, 73, 75]. However, in preliminary fMRI experiments we 

observed that there can be significant over- or under-representations of visual field 

locations near the vertical meridian [5]. Such non-uniformities are noteworthy because 

macaque monkey data based on microelectrode recordings or other techniques do not 

appear to indicate major non-uniformities, at least in V1.  

In a 2-deoxyglucose (2-DG) study, Tootell showed that the representation of the 

visual field within primary visual cortex of macaque monkeys has a complete 

representation of polar angle with approximately equal areas of cortex from one polar 

angle to the next[1]. Tootell also documented the well known distortion of visual field 

eccentricity referred to as “cortical magnification” whereby foveal eccentricities are 

overrepresented within V1 and other visual areas. Other reported non-uniformities 
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include an asymmetry in ocular dominance column representation [77] and a 

representation of a strip of the ipsilateral field near the V1/V2 boundary [2,85] that is 

thought to be associated with callosal connections between the hemispheres [86]. 

However, there is little evidence that the neural representation of polar angle is distorted 

by significant over- or under-representation.  

Previous fMRI-based studies of human V1 topography in which theoretical models 

have been fit to the empirical data also have not typically noted major distortions of the 

polar angle representation. Shira et al. [87] did note a topographic “shear” distortion that 

is a function of polar angle but this does not appear to constitute a major over- or under-

representation of particular polar angles. Winaver et al. [65] do show a significant shift in 

the Bo field in cortical tissue due to the proximity to the transverse sinus and its nosie 

distortion of the fMRI response in V4h. This effect may play a role in the distortion of the 

V1 polar angle map; however, the study does not show that this effect would be as 

significant in the superior sagittal sinus (due to the superior sagittal sinus’s orientation to 

the Bo field), which is the major sinus that runs along V1.   

Given the small amount of evidence for major inhomogenities in the neural 

representation of visual field polar angle in V1, it follows that apparent over/under 

representations in the fMRI data may reflect methodological artifacts [2]. A variety of 

factors could potentially produce artifacts in the temporal phase encoding of preferred 

polar angle. These include the temporal and spatial characteristics of sequential visual 

stimulation or of the BOLD hemodynamic response itself. This may include nonlinear 

spatio-temporal interactions between cortical locations or between hemodynamic 

elements (eg. blood vessels). Such spatio-temporal interactions might be especially 
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important for visual stimulation that involves sequential activation of nearby cortical 

locations, as is the case for temporal phase mapping. Spatial sampling of the convoluted 

cortex with a uniform fMRI grid can cause some voxels to sample multiple cortical 

surfaces (e.g. across a sulcus) with significantly different visual field representations. 

Such voxels could have a BOLD signal reflecting contributions from multiple cortical 

responses with different stimulus onset times not accurately reflected in the average 

response. Furthermore, it is not clear if a regular rectangular voxel grid will produce a 

uniform spatial sampling of the 3-dimensionally convoluted cortical gray matter.  

Virtually all of these factors may apply to fMRI mapping of function in other brain 

areas besides visual cortex. However, the ability to uniformly and completely stimulate 

all locations within the visual field using video/graphic stimuli provides a unique 

opportunity to investigate these factors in detail within the human visual cortex. 

Consequently, the goal of this study was to quantitatively assess the ability of fMRI to 

accurately reflect the functional topography of primary visual cortex and to examine a 

number of potential causes of distortion in the resulting fMRI-based maps. We 

specifically focused on the fMRI representation of visual field polar angle since all 

available evidence indicates that this parameter should be uniformly represented in the 

neuronal map of human primary visual cortex. Our results indicate that there can be 

significant under-representation or even omission of visual field locations near the 

vertical meridian within the fMRI-based map of V1 and that these distortions may reflect 

hemodynamic effects and/or susceptibility drop out associated with anatomically fixed 

structures such as the midsagittal sinus and associated draining veins. Preliminary reports 

of this work have appeared in Janik et al [5].  
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General Methods 
 

 

We conducted six experiments to document distortions of the fMRI-based 

retinotopic map of V1 and to identify or eliminate potential sources of those non-

uniformities. The following methods apply to all experiments. 

Subjects 

 

 

Data were collected from 29 participants (21-51 years of age, 10 female) with no 

history of neurological or visual deficits. Subjects read and signed a detailed consent 

form describing the experimental procedures in accordance with the human subject 

Institutional Review Board of the Medical College of Wisconsin and Marquette 

University. Prior to data collection, subjects were trained in a mock scanner to position 

their head in a model of the gradient head coil, to adjust the custom optical system for 

optimal viewing of the video images, and to perform a visual task while constantly 

fixating on a point in the center of the visual field. 

fMRI Experimental Parameters 

 

 

Brain images were obtained with a 1.5T General Electric Signa scanner equipped 

with a custom three axis, shielded head coil designed for rapid gradient field switching. A 

64 x 64 voxel matrix covering a 24 x 24 cm field of view was used to obtain voxels of 

3.75mm x 3.75mm x 4.0mm. fMRI pulse sequences were gradient-recalled EPI and 

asymmetric spin-echo EPI. For both gradient-recalled EPI and the asymmetric spin echo 
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EPI the MR parameters were as follows: an initial 90 RF pulse, a TR of 2000 ms, and 

TE of 40 ms (gradient echo) and 110 ms (spin echo). The first four images of each scan 

were discarded to allow brain tissue magnetization to achieve steady state. At the end of 

the scanning session a high resolution, T1-weighted, spoiled GRASS anatomical image 

was also collected. The anatomical data set covered the whole brain with a voxel 

resolution of 1 x 1 x 1.1 mm (flip angle = 30°, TR = 25 ms, FOV = 24 cm).  

Visual Stimulation - Retinotopic Mapping 

 

 

High-quality visual stimulation was achieved using a custom optical system 

designed to project images directly onto the retina of subjects, thereby providing a high-

luminance, 60 field of view, and minimizing the effects of changes in pupillary size 

[74]. Custom computer graphical images were generated using a Cambridge Instruments 

VSG 2/3 video card and displayed via a Sharp XG2000U color LCD video projector. A 

variable, neutral density, polarizing filter was used to adjust the average luminance of the 

images to a comfortable photopic range (~20 cd/m
2
) for each subject. All experiments 

used an 8 Hz flickering checkerboard design. All subjects were asked to fixate on a green 

marker located in the center of the visual stimulus. 

Figure 9 outlines the temporal phase mapping stimulus paradigm used to chart 

retinotopy in the visual cortex. A counterphase flickering (8 HZ), checkered 180º wedge 

slowly rotated (18/2 sec) clockwise (CW) or counter clockwise (CCW) from 0 to 360 

over a period of 40 seconds. The sequence was repeated 5 times during the fMRI scan for 

a total of 200 seconds. The scans were typically repeated 3 times and averaged to 

increase contrast-to-noise. The space averaged luminance of the checkerboard matched 
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the mean luminance of the gray background. Voxels in visual cortex that received visual 

input from a restricted area on the retina (indicated by one of the colored spots at the left 

of Fig. 9) were activated each time the wedge passed over that position in the visual field. 

For retinal locations successively farther from the starting position of the wedge (purple, 

yellow and blue spots in Fig. 9), the time delay between onset of the stimulation sequence 

and activation of the voxel increased proportionally. Consequently the delay 

(equivalently the temporal phase) of the fMRI signal for each responsive voxel encoded 

the polar angle location of the stimulus that evoked the strongest activation (plus an 

additional hemodynamic delay that was corrected in post-processing – see below). To 

help control visual attention, a small checkered circle appeared near the center of the 

stimulus wedge but was displaced randomly inward or outward every 2 seconds. While 

maintaining fixation, the subject reported whether the circle moved closer or farther from 

the fixation point on each successive presentation.   
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Figure 9:  Temporal Phase Mapping. The temporal phase mapping process for retinotopic 
data acquisition in an fMRI study. 

We also mapped preferred eccentricity, using an analogous stimulation sequence 

involving an expanding checkered annulus whose size, expansion rate and check density 

were varied in proportion to mean eccentricity. For four experiments, we also used a 

stimulus consisting of a flickering full-field checkerboard presented in five cycles of 

twenty seconds ON and twenty seconds OFF, also typically repeated 3 times.   

Post-processing 

 

 

Raw fMRI signals were converted into image format using GE Signa software 

and assembled into time series of volumetric imaging data using the AFNI analysis 

package [79]. Each time sequence of collected brain volumes was corrected for head 
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motion using 3dvolreg in AFNI [79]. Temporal phase mapping data were analyzed using 

the Hilbert Delay plugin of the AFNI package. The Hilbert Delay calculates the temporal 

delay of each voxel’s fMRI time series to a reference sinusoidal waveform and estimates 

the correlation coefficient of the fit [76, 79]. For other experiments using a block 

stimulation paradigm, the data were subjected to conventional cross-correlation analysis 

[81] with a sinusoidal model of the stimulation sequence using AFNI’s 3dFim. AFNI was 

also used to display the resulting fMRI activation patterns (both magnitude and temporal 

phase delay maps) as pseudocolored overlays superimposed on the T1 anatomical 

images.        

Functional Field Maps 

 

 

As described previously [91], a Functional Field Map (FFMap) is a graphical 

representation of the subject’s visual field showing the complete distribution of visual 

field locations that maximally activated voxels in the primary visual cortex (Figure 10) 

[91]. The FFMap is created by using the wedge and annulus retinotopic mapping data to 

identify the preferred stimulus position (angle and eccentricity) that maximally activated 

each voxel in primary visual cortex. For each activated voxel, a circle symbol is placed 

on a diagram of the visual field at the preferred location and is pseudocolored to indicate 

the fMRI response magnitude. The radius of the circles indicates the 70% confidence 

interval for the preferred location and is based on a separate analysis of the variance of 

the temporal delay of the BOLD signal [78].  

As mentioned above, the temporal phase delay of a voxel’s BOLD response is 

determined by its preferred location in the visual field plus an additional delay caused by 



38 
 

the sluggish BOLD hemodynamic response. To accurately determine a voxel’s preferred 

visual field location, the phase delay was corrected for this latter component. For each 

visual field direction (eccentricity and polar angle), an ROI is created for each 

hemisphere including the primary medial cortex. An FFMap is constructed for each of the 

hemispheres. For the polar angle correction, each hemisphere’s FFMap is adjusted with a 

constant phase delay till each FFMap represents the correct visual hemifield associated 

with the corresponding cortical hemisphere. Each occipital hemisphere primarily 

represents the contra-lateral visual field (plus a small strip of ipsilateral field close to the 

vertical meridian).  For eccentricity, the entire FFMap is used for the phase delay 

correction. The FFMap is examined for a “gap” in the delay distribution corresponding to 

the point in the stimulus sequence when the ring disappears outside of the display radius. 

The data points central (closer to the fovea) should than be positions at the maximum 

eccentricity of the display. This is cross checked by examining the positions of a sample 

of individual voxels at the occipital pole versus the anterior portions of the calcarine 

sulcus. This is done to ensure that there is no “wrap around” effect of the most outer 

eccentricities to the occipital pole or vice versa.   
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Figure 10:  Functional Field Mapping. Functional Field Mapping illustrating how 
eccentricity and polar angle visual stimuli are analyzed using signal processing 
techniques and fMRI data from a human subject’s primary visual cortex. The fMRI data are 
then combined 

 

 

ROI Selection 

 

 

Flat map brain models were created from the anatomical data using SureFit and Caret 

v5[80]. Regions of interest for V1 were created by identifying the V1/V2 boundaries 

from flat maps of the retinotopic data. ROIs were manually drawn in Caret v5 [80] or 

AFNI/SUMA [79].  

Histogram Construction and Analysis 

 

 

Histograms of the temporal phase delays for all experiments were constructed and 

analyzed as described here unless otherwise stated in the Results section. To construct the 

histogram of preferred polar angles, we used a correlation coefficient threshold of 0.35 
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(p<0.02 whole brain) for detecting activated voxels [104]. Phase delays from voxels in 

the V1 ROI were sorted into twenty, 2 second bins and the voxel count for each bin 

displayed graphically as a histogram.  

The experiments involved comparisons of histograms obtained under different 

experimental conditions. The null hypothesis was that there was no change in shape of 

the histogram across conditions. To test this hypothesis, histogram bin counts were first 

normalized to the total number of voxels contained in all bins. Any shift offset between 

the two histograms was then estimated using the Hilbert Delay plugin of AFNI [7] but 

using the bin values of one histogram as the “standard” waveform and the second 

histogram as the “test” waveform. If the correlation of the two waveforms was 

statistically significant (r>0.3, p<0.05) and the delay offset was non-zero, the bins of one 

histogram were then shifted by this offset value to align the two histograms (unless the 

offset itself was of specific interest for a given experiment). Finally, a chi square 

goodness of fit test was performed in Matlab to detect differences on a bin-by-bin basis at 

a statistical significance level of 0.05. 

Results 
 

 

Six separate experiments and two computational simulations were performed to 

document non-uniformities in the cortical representation of preferred polar angle and then 

to identify or eliminate potential sources of those non-uniformities. We focus here on the 

representation of preferred polar angle rather than eccentricity to avoid complications that 

would be introduced by cortical magnification effects on the eccentricity representation. 

For the purposes of documenting distortions and identifying their causes, either 
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representation could be used so we have chosen to focus on the most straight-forward 

analysis. (In Appendix I, Figure S1, we document non-uniformities in the eccentricity 

representation.)  

Experiment 1: Non-uniformity in the polar angle representation: The goal of 

the first experiment was to document non-uniformities in the polar angle representation 

measured with phase mapped fMRI employing a rotating checkered hemifield (See 

Methods). Histograms of preferred polar angle were obtained from 29 subjects (ages 21-

51, 10 female) using 3-5 repetitions of the phase mapping scans per subject.  

Figure 11A illustrates the range of shapes of the voxel-count histograms obtained 

from our sample of 29 subjects. Each histogram illustrates the proportion of voxels 

representing different preferred polar angles in the visual field. The shapes ranged from 

bimodal, to unimodal, to uniform though the non-uniform shapes accounted for 

approximately 65% of the subjects tested (Figure 11B) . The bimodal and unimodal types 

in this figure exhibit more than a 3 fold difference from trough to peak. The small icons 

on the graphs mark the bins associated with the vertical and horizontal meridian 

representations. Note that the representations of one or both vertical meridia tend to be 

under-represented relative to other field positions. The overall shapes of these 

distributions did not change significantly as the correlation coefficient threshold criterion 

was increased or decreased over a range of 0.3-0.5. Figure 11C illustrates the data from 

one subject as the correlation coefficient threshold varies from 0.3 to 0.5. Thresholds 

above 0.5 are not illustrated since the number of voxels became too small to adequately 

represent the shape of the histograms. 
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Figure 11:  Characterization of the polar angle voxel distributions. (A) The observed range 
of histogram shapes of polar angle. Circles in the histograms represent the visual field. 
The location of the black hash represents the visual field location associated with the 
superimposed bin. (B) The assessment of 43 subjects’ polar angle voxel distributions. 
Each subject was placed into one of three categories. (c) Effects of cross correlation 
thresholding on the phase delay data. 

Voxel histograms for the 29 subjects were classified into the three categories:  

bimodal (two peaks), unimodal (one peak), or uniform (no discernable peak). Overall 

80% (23 out of 29 data sets) revealed a histogram that was not uniform (Figure 11B). 

Bimodal histograms accounted for the majority (18 out of 29 -- 62%). For this sample, 

there was an average of a 3.5-fold difference in voxel count from the lowest trough (local 

minimum) and the highest peak (local maximum) in the histogram.  

Using the polar angle data in conjunction with eccentricity mapping data allows 

construction of a Functional Field Map (FFMap) for each case. As illustrated in Figure 

12B, the FFMap permits inspection of the complete visual field representation and can be 

used to help identify specific visual field locations associated with under-representations 

in the polar angle histogram (see Methods for additional details of FFMap correction and 

interpolation). The FFMap fills in valid visual field locations as black circles. A black 
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area on the FFMap represents a valid visual field area; likewise, an area with color 

represents a visual field location that the fMRI data did not represent.  The FFMap shown 

in Figure 12B is associated with the histogram shown in Figure 12A. The 0/360 degree 

(x-axis) bin position of the voxel histogram (Figure 12A) is associated with the upper 

vertical meridian in the FFMap (Figure 12B). Notice the region of low symbol density in 

the superior portion of the FFMap near the superior vertical meridian (visible green color 

in the FFMap in figure 12B). This depression is associated with a broad trough in the 

associated polar angle histogram. However, the FFMap also shows that certain 

combinations of polar angle and eccentricity are completely lacking, thus appearing as a 

“hole” in the FFMap.  One can see that polar angles of 324-0° are associated with the 

superior vertical meridian. In addition, another under-representation can be seen around 

the inferior vertical meridian. This second under-representation of voxels is associated 

with polar angles of 162-198°, which represent the inferior vertical meridian. When the 

delay data is projected onto the primary visual cortex (Figure 12C – dash out line), one 

can see that the “holes” in the FFMap are not due to a lack of data but a reassignment of 

data along the vertical meridia to another delay value, thus assignment to another polar 

angle visual field location. Unimodal histograms from other subjects are associated with 

a single region of low density symbols in the FFMap, again typically associated with the 

superior vertical meridian. In contrast, uniform histograms tend to be associated with a 

more uniform density of symbols throughout the FFMap. 
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Figure 12: Polar Angle Maps. (A) A typical bimodal polar angle voxel histogram illustrating 
the under-representations at the vertical meridia. (B) A typical functional field map that 
corresponds to the polar angle voxel histogram in (A). (C) An inflated brain map with V1 
ROI in dashed lines. The pinwheel of colors (right) represents the phase delays associated 
with each polar angle location in the visual field. 

One concern with the preceding analysis was that errors in defining the ROI for V1 

could potentially affect the number of voxels representing the vertical meridia which 

demarcate the cortical boundaries between V1 and V2. More specifically, an overly 

conservative definition of the V1 ROI could preferentially assign voxels representing the 

vertical meridian to V2 rather than V1, thus leading to an apparent under-representation 

in V1. To eliminate this possibility, we performed a careful reconstruction of the cortical 

retinotopy using cortical surface maps and identified the most likely location of the 

V1/V2 border based on anatomy and phase mapping representation of the vertical 
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meridian. We then tested the effects of systematically displacing that border. As 

illustrated in Figure 13, spatially over- (blue) or under- extending (red) the V1 ROI did 

not materially alter the bimodal shape of the polar angle histogram. The under-

representation associated with the vertical meridian persisted despite the variation in the 

ROI placement. The only noticeable difference across histograms was in the total number 

of voxels assigned to V1 (453, 359, and 227 respectively). Thus, a 2 fold change in total 

number of voxels in the ROI did not eliminate the under-representation of vertical 

meridian; it only increases the number of voxels in each ROI and thus in the polar angle 

delay histogram.  
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Figure 13: V1 ROI. The different polar angle voxel distributions for three different V1 ROIs: 
Conservative ROI (red), Moderate ROI (black), and Liberal ROI (blue). 

In sum, fMRI retinotopic maps based on temporal phase mapping for the majority of 

subjects are significantly non-uniform in the representation of visual field polar angle. 

For V1, these non-uniformities typically manifest as an under-representation of locations 

near the vertical meridian sometimes with “holes” at certain eccentricities. Given these 

non-uniformities, we next sought to identify potential causes of the distortions in a series 

of subsequent experiments.  

Expt 2: Anatomically Fixed Noise Source Causing Phase Delay Distortion. One 

possible cause of distortions in the brain map of polar angle is that there are anatomically 
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fixed features within the brain, such as the midsagittal sinus, that distort the fMRI signals 

and associated phase delays of voxels in their vicinity or that cause susceptibility induced 

drop out. If true, then the peaks and troughs in the phase delay distribution should be 

associated with voxels at anatomically fixed locations. This can be detected if the rotating 

wedge stimulus is started at different visual field positions in different fMRI scans. In 

such case, the phase delay of peaks and troughs should shift in time depending on the 

start position. Figure 14 illustrates voxel histograms for two stimulus conditions in which 

the leading edge of the checkered hemi wedge started at the right horizontal meridian 

(Fig. 14, top) or at the superior vertical meridian (Fig. 14, bottom). These two stimulus 

sequences should produce roughly the same polar angle histograms but shifted relative to 

each other by about 10 seconds for a 40 second period. In fact, the histogram for the 

superior vertical meridian start location (Fig. 14, bottom) was shifted to the left (earlier 

delay) by approximately 10 seconds (~5 bins) with respect to the histogram for the right 

horizontal meridian start position. The histograms showed no significant differences in 

shape on a bin-by-bin basis (Chi-square test, p-value = 0.002) after shifting the 

histograms to account for the delay induced by the different starting positions. 

Furthermore, the functional field maps and histograms, which are color coded by polar 

angle phase delay, show that the depressions in the histograms are associated with the 

vertical meridian representations regardless of stimulus starting position, consistent with 

a fixed anatomical location of the under-represented voxels.  
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Figure 14: Anatomically fixed voxel under-representations. Voxel Distribution’s 
relationship to the starting position of the stimulus. The original starting position of the 
hemi-wedge (top) produces a typical bimodal distribution. A change in the starting 
position of the hemi-wedge (bottom) shifts the bimodality of the phase delay distribution. 

The anatomically fixed locations of the under-represented voxels suggest that 

some process associated with those locations is distorting the BOLD signal. These 

locations tend to be associated with the vertical meridian representations which, for 

human V1, are located medially along the lips of the calcarine sulcus. These locations are 

close to the midsagittal sinus and its associated draining veins. Plausibly, such vascular 

features might cause distortions of the BOLD hemodynamic signals. It is typical of 
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voxels along the occipital midline to exhibit noisy BOLD fluctuations that could reduce 

signal quality in that region.  Consequently, we performed a selective analysis of fMRI 

signals from voxels in this region to assess this possibility.  

For 5 subjects, we used retinotopic maps displayed on cortical surface models to 

define a separate anatomical ROI within V1 that included the lips of the calcarine fissure 

but omitted the depths of the sulcus (cf. Figure 15b, red shaded zone). We then compared 

the polar angle histograms for (1) all of V1 (Fig. 15A1 and B yellow dotted line), (2) for 

all voxels in the midline ROI (Fig. 15A2), and (3) for a “high-noise” (voxels with at NSR 

> 0.1) subset of voxels in the midline ROI (Fig. 15A3). To make this comparison, we 

first used a liberal correlation coefficient threshold (0.25). We wanted to allow voxels in 

all of V1 that had at least some minimal stimulus-induced activation to be counted in the 

analysis.  
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Figure 15: Noise effects in V1. (A1-3) Polar angle voxel histograms of: (1) the entire V1 ROI, 
(2) Midline ROI with no noise threshold, and (3) Midline ROI with a noise threshold > 0.1. 
(B) Anatomical representation of the entire V1 ROI (dashed line) and Midline ROI (shaded 
region). (C) Percentage of voxels for each ROI condition (A1-A3) showing the actual 
percentage of voxels representing vertical meridian, VM (faded bar), actual percentage of 
voxels not representing VM (solid bar), and the expected percentage for each of the 
previous two categories (VM and ~VM, dashed line). 

For these voxels, we then calculated the contrast-to-noise ratio (CNR) of the 

fMRI signals using the power spectrum method of Boynton et al 1999 [98]. To identify 

voxels that were visually responsive but with relatively high levels of noise, we used a 

modification of the power spectrum approach to compute an index of the relative noise 

amplitude, we call Noise to Signal Ratio (NSR): 

max

NSR = noiseP

P
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Figure 16 illustrates graphically how the NSR is calculated. The power spectrum of the 

BOLD signal is analyzed over 100 points. The power spectrum of the noise (Pnoise) is the 

average of the shaded red areas on the power spectrum. The fundamental frequency of 

the stimulus (Pmax) is represented in the yellow shaded area. The NSR is the ratio of the 

estimated power of the noise (Pnoise) to power of the fundamental frequency (Pmax). 

Finally, we used this index to select a “high-noise” sub-set of voxels in the midline ROI 

with NSR > 0.1. (Colors of bar graphs in Figure 15 indicate the corresponding ROI in 

15B from which they are computed. The gray shaded bins represent the vertical meridia. 

Figure 15 shows results for one subject, case APO.) 

 

Figure 16: NSR Method. Pmax is estimated by taking the power spectrum value at the 
fundamental frequency (shaded yellow) of the stimulus. Pnoise is estimated by averaging 
the power spectrum value at the neighboring frequencies surrounding the fundamental 
frequency. 

Figure 15C highlights key differences among the distributions shown in A1-A3 

relative to expected values computed from an ideal uniform distribution in which all 

polar angles are represented equally (dashed lines). Specifically, Figure 15C depicts the 

percentage of voxels in the vertical meridian (VM, gray) versus non-vertical meridian 

(~VM, non-gray) bins in each of the distributions of Figure 15A. The expected values 

(dashed lines) were computed for each distribution (A1-A3) by taking the relative 
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proportion of the complete V1 ROI represented by the midline ROI and assigning to it 

the ideal voxel counts for the corresponding number of bins in a uniform distribution. 

Thus, for the bars labeled A1 in Figure 15C, the expected values represent the proportion 

of voxels that would have fallen in the 6 bins representing the vertical meridian of a 

uniform distribution (6 bins out of 20 = 30%). This re-iterates our finding that, for all of 

V1, there is a relative under-representation of the vertical meridian (with other locations 

appearing to be correspondingly overrepresented). Additionally however, we see that 

voxels in the midline ROI do not preferentially represent the vertical meridian (A2), as 

might have been expected (dashed lines). Moreover, this bias is reflected in the noisiest 

voxels in the midline ROI (A3) which account for 43 of the total 48 voxels contained in 

this ROI.  

Figure 17, shows the NSR in V1 for the same subject in Figure 15. The occipital 

pole and lips of the calcarine (V1/V2 boundaries) show the areas of highest noise content 

in the fMRI BOLD signal (yellow intensity). These areas of higher noise are confirmed 

by computing the power spectrum (Red box, inset) for the voxels in the corresponding 

region on the lips of the calcarine (red ROI). The power spectrums of the BOLD signals 

along the lips of the calcarine are noisy and predominately do not show a dominant 

spectral peak as expected with a periodic stimulus. The areas along the depths of the 

calcarine (orange intensity) have lower noise content. Corresponding power spectrums of 

the fMRI BOLD signals (green box) along the depths of the calcarine (green ROI) 

confirm that the fMRI BOLD signals are lower in noise compared to the occipital lobe 

and lips of the calcarine. In fact, the power spectrums in the depth of the calcarine sulcus 

predominantly show the dominant spectral peak associated with presenting a periodic 



53 
 

visual stimulus. These results suggest that midline voxels in V1 that should preferentially 

represent the vertical meridian, instead represent other visual field locations far more 

often than expected, thus potentially accounting for the empirically observed under-

representation. 

Expt 3: Gradient Echo vs. Spin Echo. Another possible cause of non-uniformities in 

the polar angle representation is the pulse sequence by which the fMRI data were 

collected. It is possible that the BOLD fMRI response is overly sensitive to signals from 

large blood vessels, or conversely, insensitive to signals from the parenchyma since 

gradient echo pulse sequences are thought to preferentially reflect signals associated with 

  

  

 

 

 

 

 

 

  

  

Figure 17:  Distribution of Noise in V1. Distribution of noise to signal ratio for 
a single subject due to the rotating hemi wedge. The color bar in the middle 
shows the levels of noise to signal. The power spectrum (Red Box) of the 
fMRI signals along superior V1/V2 boundary in both hemispheres. The 
power spectrum (Green Box) of the fMRI signals along Calcarine sulcus 
boundary in both hemispheres. 
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larger vessels [82]. This might make the resulting data especially susceptible to 

hemodynamic-based distortions. To assess this possibility, we used a combined gradient 

echo / spin echo pulse sequence that acquires both types of images simultaneously. Spin 

echo images are thought to reflect a more equal contribution from large vessels and 

parenchyma, so the spin echo sequence should be less likely to show large vessel 

distortions[82].  Figure 18 shows polar angle histograms for a subsample of 4 subjects. 

Both the histograms for gradient echo (Fig. 18 - left) and spin echo (Fig 18 - right) show 

a relative under-representation of the vertical meridian. The peak to trough ratio is 

approximately 3:1 for spin echo and 3.5:1 for gradient echo. This difference was not 

statistically significant (t-test, p>0.05). Spin-echo EPI yielded significantly fewer 

activated voxels then gradient echo (mean of 30 vs 175 voxels per bin, t-test, p<0.001) 

consistent with previous reports [5]. But, the shapes of the two histograms were not 

statistically different on a bin-by-bin basis (chi square, p>0.05). Thus, the MRI pulse 

sequence does not appear to be a contributing factor. 
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Figure 18: Echo Sequences. Illustrates average phase delay histogram for gradient echo 
(left) and asymmetric spin echo (right).  For most of the subjects, the bimodal 
characteristic is present in both imaging techniques. 

Expt 4: Visual Stimulation Sequence and Contrast. The direction of wedge 

rotation for polar angle mapping was varied to determine if the non-uniformities in the 

phase delay distribution might reflect an asymmetric directional facilitation of 

sequentially activated cortical loci that is interrupted as the activation passes from one 

hemisphere to the other. The hemifield containing this under-representation would then 

switch if the direction of stimulus rotation was reversed. To test this possibility, the hemi-

wedge stimulus was rotated in counter-clockwise and clockwise directions in separate 

fMRI scans. Figure 19 compares the mean voxel histograms for a subset of 3 subjects 

using counterclockwise (CCW) and clockwise (CW) stimulus rotations. Both histograms 

show under-representations in similar areas with no apparent offset related to direction of 

rotation. Indeed, the histograms are not significantly different on a bin-by-bin basis (chi 

square test, p>0.05).  
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Figure 19: Stimulus rotation. The polar angle voxel distributions for the counter clock-wise 
rotating hemi-wedge (light) and the clock-wise rotating hemi-wedge (dark). 

Another concern was that high stimulus contrast might cause excessively strong 

BOLD responses with large changes in blood flow, thereby increasing the likelihood of 

hemodynamic abnormalities distorting the phase delay data.  Consequently, we compared 

polar angle delay histograms for 3 subjects using stimuli with 25% and 99% luminance 

contrast for the check pattern. Figure 20 shows the average preferred polar angle 

histograms for the two stimuli. Both histograms are nonuniform and there was no 

significant difference between the shapes of the two histograms on a bin-by-bin basis 

(Chi square test, p>0.05).  
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Figure 20: Stimulus Contrast. The distribution of # of voxels versus polar angle was 
plotted for all activated voxels in V1 and examined for uniformity (Top –100% contrast, 
Bottom – 25% constrast).  For both contrast sensitivities, the distributions were 
nonuniform and had a bimodal shape with a 3 fold or greater difference from peak to 
trough. 

Expt 5:  Stimulus Size and Extent of Cortical Activation. Long-duration, wide-

spread, stimulation of one visual hemifield might cause a significant asymmetry in blood 

flow within, or between, hemispheres. In turn, such a massive lateralized change in blood 

flow might increase the possibility of a BOLD artifact that is spatially non-uniform in 

visual cortex and, consequently, within the representation(s) of the visual field. If under-

representations in the visual field are related to BOLD artifacts caused by stimulation of 
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excessive areas of cortex, then these artifacts might be reduced by using a smaller 

stimulus. To test this hypothesis, we tested 4 subjects with two different wedge sizes 36 

and 180 covering 10% and 50% of the visual field respectively. The different stimulus 

sizes should activate very different areas of V1 visual cortex at any given moment.  

We tested 4 subjects with the two stimulus sizes and obtained the average polar 

angle histograms illustrated in Figure 21. For both stimulus sizes, the histograms were 

nonuniform with a peak:trough ratio of 3:1. (As mentioned earlier, not all subjects show 

under-representations for both vertical meridia and this was the case for this subsample of 

subjects.) There was no significant difference between the shapes of the two histograms 

on a bin-by-bin basis (Chi square test, p>0.05). In sum, we found that stimulus size and 

associated differences in extent of cortical activation did not account for our observed 

distortions of the visual field representation. 
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Figure 21: Stimulus Size. The distribution of # of voxels  versus polar angle was plotted for 
all activated voxels in V1 and examined for uniformity (Top – 36° wedge, Bottom – 180° 
wedge).  For both wedge sizes, the distributions were nonuniform and had a bimodal 
shape with a 3 fold or greater difference from peak to trough. The minimum number of 
voxels was typically associated with the superior vertical meridian. 

Simulation 1: Sampling with large voxels. Using a uniform grid of relatively large 

voxels to sample fMRI signals along a tortuous surface such as the primary visual cortex 

might cause unexpected distortions in the apparent representation of the cortical map. 

Using a simulation created in AFNI/SUMA, we were able to examine the potential 

sampling distortion of different size voxels. First we constructed a cortical surface model 

for one of our subjects using Caret software [80]. Each node within primary visual cortex 
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of the flattened surface model was assigned a simulated fMRI signal approximating a 

typical sinusoidal response to the temporal phase mapping stimulus. Each sinusoid was 

assigned one of twenty different temporal phase delays representing the range of possible 

preferred polar angles. However, each of the 20 phase delayed signals was assigned to an 

equal number of nodes and hence to roughly equal areas of the flat map in order to 

simulate an ideal, uniform retinotopic map of preferred polar angle. The flat map was 

then transformed back to its original folded 3D configuration and sampled using 3 

different fMRI voxel grids. We then computed the preferred phase delay for each voxel 

[7] using the Hilbert delay plugin in AFNI and constructed histograms of preferred polar 

angle as we had done previously for our empirical data. We ran the simulation using three 

voxel sizes: 4 mm
3
, 3 mm

3
, and 2 mm

3
 and compared the preferred polar angle 

histograms with each other and with the empirical data (voxel size 3.75 mm
3
 - same data 

as shown in Figure 15). As illustrated in Figure 22, the voxel histograms for the 3 

simulations are effectively uniform and markedly different from the empirical histogram 

(Chi square test, p<0.002 for each simulated data set). (Data for only one hemisphere are 

show in the figure since the simulation was time consuming and the results are 

unequivocal.) This simulation indicates that sampling the folded cortical surface with a 

regularly spaced grid of voxels does not account for the distortions in the visual field 

representation measured empirically. 
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Figure 22: Voxel Size Simulation. Simulation of Grid Sample Sizes versus actual data from 
Figure 7 single subject (only one hemisphere, half the visual field was simulated). 

Simulation 2:  Anatomically Specific Noise Effects on Temporal Stimulus. Given 

that larger veins and draining sinuses are anatomically situated near the midline of the 

occipital lobe [17, 57,  84], these venous structures could cause a change in the cortical 

BOLD signals that lie on or near these venous structures. This hypothesis suggests that 

voxels at the midline (and hence fMRI signals that will represent the vertical meridia) 

may be adversely affected by noise associated with midline structures. There are two 

ways that noise can affect a signal and cause distortion. First, the noise can cause the 

fMRI signal to drop below a statistical threshold. This would eliminate the signal from 

any type of analysis. Second, the noise could distort the phase information in the fMRI 

signal. This would cause the fMRI signal to misrepresent the phase information and 

associated visual field location. To test this, we created a simulation in which we 

selectively increased the noise associated with the phase delays representing the vertical 
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meridian. The selective noise was added to a voxel histogram representing twenty (20) 

phase delays that correspond to polar angle locations of a subject’s visual field. 100 

simulated fMRI signals were created to represent each phase delay. The noise associated 

with the specific phase delays representing the vertical meridian was selectively 

increased to simulate noise associated with midline voxels in the occipital midline. As 

noise increased and the CNR decreased, troughs appear in the histogram (Figure 23 – left 

column). To produce the 3:1 difference in peak to trough voxel count observed in the 

empirical data, the CNR would have to be approximately 0.1 in the troughs and a CNR = 

10 dB at the peaks of the voxel histogram (translating to a 1:100 difference in CNR). 

However, at a CNR = 1 dB we see the beginnings of the troughs at the phase delays that 

represent the vertical meridia. The right column of Figure 14 shows that starting at a 

CNR = 1 dB the phase delays not only start to be eliminated by the correlation coefficient 

threshold but also the voxels start to assign to different phases. The incorrect assignment 

of phase delay to a voxel is seen in Figure 23 as an increasing peak in specific phase 

delay bins (right column). This simulation suggests that a predominance of lower CNR 

values in specific anatomical location may influence the assignment of phase delays in 

the fMRI signal, and thus distort the voxel histogram representation of polar angle visual 

space. 
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Figure 23:  Noise Simulation I. CNR distortion of phase delays that represent preferred 
polar angle. The CNR decreases for the simulated vertical meridian regions from the top 
figure to the bottom figure. For each CNR value the left column shows the phase delay 
histogram and the right column shows the phase distribution illustrating the known phase 
delay of the simulated signal (y-axis) vs. the estimated phase delay in the presence of 
noise (x-axis). 
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Discussion 
 

 

There can be significant non-uniformities in the cortical representation of the 

visual field obtained with fMRI-based temporal phase mapping of human primary visual 

cortex. Though this is not necessarily true for every subject, the majority do exhibit 

significant under-representations of restricted portions of the visual field typically at, or 

close to, the vertical meridian. These non-uniformities often appear in the histogram of 

preferred polar angle as peaks (horizontal meridian representation) and troughs (vertical 

meridian representation) which, on average, have a 3:1 ratio in number of voxels, 

respectively. The under-representations are associated with anatomically fixed locations 

in the cortex typically near the occipital midline where the vertical meridian is usually 

represented. Indeed a close examination of the polar angle preference of V1 sites near the 

midline indicated that significantly fewer voxels had a vertical meridian preference than 

expected given an ideal uniform distribution. Such distortions do not appear to be related 

to the fMRI pulse sequence, the definition of the V1 region of interest or to stimulus 

features such as size, contrast or the spatiotemporal order of presentation. Simulations 

indicated that potential spatial sampling biases due to voxel size and the rectangular 

fMRI voxel grid also do not account for the empirically observed distortions. In other 

studies from our lab, we have used checkered stimulus segments that were flashed at 

fixed locations in a random sequence and obtained similar non-uniform representations of 

polar angle (See Appendix A: Figure S2). This alternate technique is much less sensitive 

to the temporal properties of the fMRI signal to encode visual field preference. This 

further corroborates the findings that our observations are robust with respect to specific 

stimulation or analysis techniques.  
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Could our results reflect a true neuronal bias in the human representation of polar 

angle? This seems unlikely. As outlined in the introduction, there is little evidence for a 

major non-uniformity in the neuronal retinotopic representation in V1, though a slight 

over-representation of the vertical meridia might be expected due to the known presence 

of a thin strip of ipsilateral field representation near the vertical meridian that is 

associated with callosal connections between the hemispheres [10, 86]. Electrode and 2-

DG studies of V1 in non-human primates [1, 2 , 77, 85] do not show major retinotopic 

non-uniformities of the neuronal representation of the vertical meridian. By homology, 

this would be expected to be true for humans as well. Functional considerations also 

argue against a true neuronal bias. If a consistent neural under-representation was the 

norm, this would be expected to have corresponding sensory effects such as reduced 

acuity along the vertical meridian. To our knowledge, no such sensory deficits have been 

reported for healthy human observers [36, 37]. This is also consistent with a study by 

Boynton et al. [89] in which fMRI-based measurements of cortical magnification (mm of 

cortex per degree of visual field) revealed significant differences among subjects that 

correlated with differences in acuity. They did not report any obvious reduction in 

magnification or acuity associated with the vertical meridian.   

 It is important to point out that our results could appear to be at odds with several 

previous fMRI studies of human visual cortex that failed to note major distortions of V1 

retinotopy [e.g. 60, 23, 75, 85, 87, 90]. One clue to this potential discrepancy is that for 

most of these studies the retinotopic data were examined in the form of a cortical surface 

map to which a topographic grid was “fit” through some optimization procedure either 

manual or computational. In addition, the retinotopic data themselves often were 
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“smoothed” to reduce local heterogeneities that were assumed to represent noise or 

measurement variance. In contrast, our voxel count histograms, cortical representation of 

the data, and FFMaps (Figs 11 and 12) are computed directly from the retinotopic phase 

delay data without smoothing and thus may be more sensitive indicators of “holes” and 

local distortions of the retinotopic map. Also our data may not be as disparate as it might 

seem. A careful examination of one previous study, Engel et al. [23], does reveal non-

uniformities in polar angle data on flat maps (Engel, Figure 7A) that may be consistent 

with those reported here. Finally, it is important to note that there remains some 

controversy over the exact nature of the topographic mapping between the visual field 

and primary visual cortex. Schira et al. [87], argue that there is more “shear” distortion in 

the retinotopic map than may have been appreciated previously, especially near the 

vertical meridian. While such shear distortion does not necessarily imply an under-

representation of the vertical meridian, the study does highlight the fact that our ability to 

precisely measure and quantify the human retinotopic map is still evolving and that 

important details can be overlooked. Thus, our results may not necessarily contradict 

previous studies. Rather, our explicit focus on the completeness and uniformity of the 

cortical map may have allowed us to highlight the fMRI distortions more dramatically 

and precisely than previous studies. 

A Vascular Explanation: The battery of tests described in this study effectively 

eliminated many potential methodological artifacts that might have accounted for our 

results and we have argued above that our results are unlikely to reflect a true neuronal 

effect. One explanation that we have not been able to reject, however, is that the observed 

distortions of the cortical maps arise from anatomically fixed vascular elements, such as 
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the mid-sagittal sinus and its associated draining veins. These structures may have 

hemodynamic properties that differ from those of blood vessels in other areas of the brain 

[42, 57].  

Winawer et al [65] reported shifts in Bo field in tissue that caused distortions in 

fMRI data for visual stimulus exciting V4h along the transverse sinuses. The transverse 

sinuses run along the inferior portion of the occipital pole and portions of V1, which may 

induce some of the distortions that have been reported here but not all of the distortions. 

So, it is plausible that the draining veins could alter the temporal properties of BOLD 

signals in certain physiological locations. These effects may include the introduction of 

excessive noise or changes in the speed/latency of the BOLD response. For V1 and V2, 

the retinotopic representation of the vertical meridian tends to be located along the medial 

lips of the calcarine sulcus and thus the sagittal sinus.  According to Winawer et al, the 

sagittal sinus has less distortion of the Bo field than areas such as the transverse sinus. 

Tissue in the medial lips of the calcarine still could be preferentially affected by midline 

vascular structures thereby causing a locally restricted degradation or delay of BOLD 

responses.  

We propose that the potential effects of midline vasculature structures on the 

BOLD response may be adding a systematic and/or random delay to the conventional 

hemodynamic delay of the undistorted, phase mapped, fMRI signal (Equation 1). 

 

measured = stimulus+hemodynamic + systematic + random 

 
 Equation 1: Factors potentially contributing to measured temporal phase of BOLD fMRI signals. 

 

Normally, the measured temporal phase delay,measured, is composed of the delay due to 

the timing of the visual stimulus, stimulus, plus a delay due to the BOLD hemodynamic 
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mechanism, hemodynamic. This latter component is relatively constant across voxels and is 

taken into account during analysis of the temporal phase mapping data [76, 78].  

However, we propose that for voxels near the occipital midline, the mid-sagittal 

sinus or associated large veins may introduce an additional systematic delay, systematic, 

and/or a random component, random. The random shift would arise from noise added to 

the BOLD signal. However, noise also would reduce the quality of response and, if large 

enough, would cause a voxel to fall below the threshold for acceptance, thus dropping out 

of any subsequent analysis. Both systematic and random changes in the measured delay 

would shift the apparent preferred polar angle away from its true value, thereby leading 

to an apparent under-representation of the true polar angle preference. Voxels inside the 

calcarine sulcus that are farther from the midline would be less affected, so that their 

phase delays would encode the correct polar angle preference.  

In this respect, it is important to point out that the analysis of temporal phase 

mapping data typically incorporates an implicit “winner-take-all” effect in that each 

voxel is assigned a single, unique temporal phase associated with the stimulus location 

that produced the best activation. However, a given voxel may actually respond well to a 

range of stimulus locations. Indeed, as pointed out by Dumoulin et al. [88] a voxel’s 

complete response is determined by the convolution of the stimulus sequence with the 

voxel’s population receptive field (the area of the visual field to which the voxel is 

responsive). Consequently, a relatively minor distortion of the BOLD response could 
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shift the preferred retinotopic locus over a significant range of stimulus locations, 

especially if the BOLD signal is relatively noisy for the reasons proposed above
1
. 

Conclusions 
 

 

If fMRI brain mapping is to be used clinically to guide tumor surgery or other 

invasive treatments, then it is essential to understand its ability to accurately and 

completely represent the underlying neuronal signals. Errors in this respect could 

compromise the physician’s ability to maximize treatment success while minimizing 

neurological side effects. For academic neuroscience, errors in fMRI brain maps may 

have less severe consequences, but still could lead to inaccurate conclusions about brain 

function and theory. Here we have used the retinotopic organization of human visual 

cortex as a model system for assessing the accuracy of fMRI-based brain mapping by 

documenting distortions and identifying their likely cause. While it has long been 

appreciated that BOLD fMRI signals could be distorted by so called “draining vein” 

effects [42, 57], it has not always been apparent exactly how these effects might play out 

with respect to any particular brain map. A critical, but rarely addressed issue in this 

respect is whether fMRI-based maps are “functionally complete” in the sense of 

containing a reasonably equivalent representation of all neurons that contribute to the 

underlying neuronal map, albeit not individually. The answer is “no”, at least for cortical 

areas in the vicinity of midline vascular structures such as the mid-sagittal sinus and its 

                                                 
1
 Dumoulin et al, [35] point out that the preferred retinotopic locus assigned to a particular voxel 

can be improperly computed if the size (and shape) of the population receptive field is not 
modeled accurately. Though true in general, the error is minor for small pRF’s as found in V1, 
and is more significant for eccentricity mapping with rings than for polar angle mapping with 
rotating wedges. This is another reason for our focus in this paper on the polar angle 
representation in human V1 for which these factors are insignificant.   
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draining veins [65]. While this has been demonstrated here for visual cortex, it is likely to 

be true for other midline systems such as sensorimotor cortex, parietal areas involved in 

attention and midline frontal areas associated with executive functions. Whether non-

midline vasculature structures can exert similar influences is unclear but should be 

considered when interpreting BOLD-based mapping data. FMRI techniques that are less 

dependent on the temporal precision of BOLD signals may be less susceptible to these 

distortions but are unlikely to be completely immune unless based on some alternate non-

vascular mechanism.    
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Aim II: Determine if random stimulus presentation 
eliminates non-neuronal biasing effects in the polar 
angle voxel distribution as compared to temporal phase 
mapping 
 

 

Introduction 
 

 

Blood oxygenation level dependent (BOLD) functional magnetic resonance 

imaging (fMRI) has been used extensively for mapping the representation of the visual 

field within the human brain [6, 23, 71]. Visual field mapping using fMRI has been used 

clinically to assess patients with cortical or sub-cortical pathology and to plan surgical 

treatment impacting the visual system. For use as a clinical tool, the accuracy of fMRI-

based visual field mapping methods needs to be better understood. This accuracy can be 

particularly important for presurgical mapping of brain function near a tumor resection 

site since inaccurate rendition of the underlying neural function could potentially lead to 

inappropriate resection of viable brain tissue. As shown previously (Aim 1), the most 

widely used method for visual field mapping, temporal phase mapping, is susceptible to 

hemodynamic distortions that lead to missassignment of visual field locations in the 

functional field maps (FFMaps). These missassignments are commonly seen as virtual 

holes in the FFMaps. Further analysis of the visual field mapping data indicates that the 

frequency distribution of voxels representing different angular position within the visual 

field is markedly non-uniform, with under-representations of locations near the vertical 

meridia in V1 being most common. These results are also consistent with data reported in 

other published studies [92]. In this study, we explore an alternate visual field mapping 
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method using a random rather than sequential stimulus presentation sequence. This 

alternative mapping method can reduce spatial inaccuracies induced by hemodynamic 

distortions on or near the primary visual cortex [5, 66]. 

In previous experiments using fMRI retinotopy and temporal phase mapping, we 

have shown that the number of voxels responding to equivalent regions of visual space is 

not uniform [5]. Based on previous animal studies where retinotopy has been performed 

using 2-DG [8], we expect that the number of voxels responding to equally sized and 

distributed regions of visual space will be uniform throughout the visual cortex.  We have 

evidence to suggest that the source of the non-uniform distribution of voxels is 

hemodynamic in nature and lies along the midline of the occipital lobe, at or near the 

cortical representation of the vertical meridian.  

Based on voxel time series simulations and empirical evidence of the effects of 

the major sinuses that lie near the occipital midline [5], it has been shown that fMRI time 

series along the occipital midline have lower contrast-to-noise ratios relative to more 

lateral aspects of the primary visual cortex (Aim 1). A high concentration of veins rests 

along the occipital midline contributing to the high noise content of the local fMRI 

signals [66, 103]. From this physiological phenomenon, two possible factors affect the 

response of the voxel to sequentially presented stimulus locations.  First, in the cortical 

regions of high noise (i.e. hemodynamic noise), the sequentially presented stimulus 

locations, distinguished by phase only, have a high probability of being assigned to other 

visual field locations [5]. Previous simulations have shown that the probability of 

detecting the correct sequentially presented stimulus location decreases significantly as 

the noise content increases [5].  Second, the level of noise present along the occipital 
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midline can also lower the statistical correlation coefficient of an active voxel below the 

statistical threshold set for validly active voxels.   

Given a sequentially independent set of input stimulus functions, poor signal to 

noise contrast in the fMRI time series could be less significant in mapping the polar angle 

visual field location to a voxel location in the brain. Moreover, the probability of 

detecting multiple stimulus locations in a single voxel is increased due to the reduced 

linear correlation between the input stimulus functions. To reduce the error in assigning a 

voxel to a specific location of visual space that may stem from the linear correlation of 

the stimulus sequences used in temporal phase retinotopic mapping, we have examined 

the use of a more randomized presentation of stimuli in the visual field when performing 

retinotopic mapping.  In using this random presentation of stimuli, wedges of visual field 

vary randomly in polar angle over time.  

Using a more randomized presentation of visual stimuli; we sought to eliminate 

systemic distortions due to the temporally correlated nature of the input stimuli produced 

in temporal phase mapping. Previous work has been done on using psuedo-random 

sequences to elicit fMRI responses in the visual cortex [68, 102]. Gallant et al. used polar 

angle sectors displayed in a psuedo-random sequence to examine the spatial linearity in 

the BOLD response in V1 [92]. Linearity of the fMRI response by spatial summation of 

visual sectors was assessed directly by comparing responses to wedges and rings with 

sums of responses to sub-component sectors [92]. Others have previously investigated 

using pseudo-random sequence approaches to visual field mapping [68, 102]. These 

studies did not focus on the accuracy of mapping the visual field or producing functional 

field maps for the analysis of a subject’s visual field [68, 102].  
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In this study, we investigate whether a code-based (random stimulus) mapping 

technique is more accurate than temporal phase mapping in identifying those stimulus 

locations that activate each voxel in the primary visual cortex, V1, of human subjects. We 

hypothesize that the random code-based technique will be less susceptible to 

hemodynamic distortions and will be less susceptible to errors as fMRI signal quality 

degrades. We further hypothesize that the code-based technique can determine if single 

voxels are activated by multiple stimulus locations. If true, we predict that the frequency 

distribution of voxels responding to different angular locations within the visual field will 

be uniform. 

Experimental Methods 
 

 

Subjects 

 

 

Data were collected from ten subjects (21-36 years old, 4 female) with no history 

of neurological or visual deficits. Subjects read and signed a detailed consent form 

describing the experimental procedures in accordance with the human subject 

Institutional Review Boards at the Medical College of Wisconsin and Marquette 

University. Prior to data collection in the MRI environment, subjects were trained in a 

mock MR scanner to position their head in a model of the gradient head coil, adjust the 

optical system to allow optimal viewing of the video images, and perform the visual task 

while constantly fixating on a central fixation marker. 
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Visual Stimulus 

 

 

High-quality visual stimulation was achieved using an Avotec optical system 

(Avotec Inc., Stuart, FL) designed to project images directly onto the retina of subjects, 

thereby providing a high-luminance, 16-20 (diameter) field of view, and minimizing the 

effects of changes in pupillary size. Custom computer graphical images were generated 

using a Cambridge Research Systems (Cambridge Research Systems, Rochester, Kent, 

UK) VSG 2/3 video card and displayed via the Avotec optical system.  

Retinotopic Mapping Methods 

 

 

Temporal Phase Mapping 

 

 

For temporal phase mapping [81], the visual stimulus consists of a single black 

and white checkered, 8 Hz flickering, wedge of 180° that is slowly rotated (18° every 2 

seconds) counter clockwise throughout the 360° of visual field over a period of 40 

seconds. The rotation is repeated 5 times, so that any wedge of the visual field can be 

presented by an activation sequence that alternates between OFF and ON every 20 

seconds (50% duty cycle). Subjects were asked to fixate on a green marker (<1 degree 

dia.) located in the center of the visual stimulus. The activated voxels were detected using 

the Hilbert Delay plugin of the AFNI analysis package [30] to estimate the phase delay 

relative to a sinusoidal reference waveform [78, 76]. The input sequences for temporal 

phase mapping are identical across all wedges of the visual field, except for a time delay 

between ON and OFF periods between neighboring regions (Figure 24A). Therefore, 
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assigning a voxel to a specific location (visual polar angle sector) of the visual field 

simply translates to finding the estimated delay between the fMRI response to an input 

sequence and a reference waveform.  To determine whether a voxel is significantly 

activated (p < 0.05) using the Hilbert Delay plugin, a minimum threshold value of 0.35 

(correlation coefficient, p < 0.05) is used.  A number of techniques have been previously 

reported for determining the maximum correlation value [, 76, 81].   

 

Figure 24: Retinotopic mapping methods for fMRI visual field mapping. (A) Temporal 
phase mapping of polar angle visual field locations moving in a sequential fashion counter 
clockwise. (B) Code-based mapping of the polar angle visual field location which is in a 
random presentation mode. 
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Code-Based Mapping 

 

 

 

The term “code-based” is derived from information theory [93] and refers to a 

protocol in which different sources (e.g. stimulus locations) are represented by unique 

binary sequences (codes) when transmitted through a noisy channel. In the code-based 

retinotopic mapping experiments, the stimulus consisted of twenty distinct, 18 non-

overlapping, 8Hz flickering black and white checkered wedges that together covered the 

entire visual field (Figure 24B). Each wedge was randomly presented in five distinct 10-

second epochs, with each epoch randomly distributed within the 240 second scan run. 

The on-off (or activation) sequence for a particular wedge was uncorrelated with the 

activation time sequences of any of the other wedge presentations. On average, at any 

given moment, 50% of the visual field was stimulated by a combination of wedges.  All 

subjects were asked to fixate on a green fixation point located in the center of the visual 

stimulus, thereby establishing a fixed center point for the code base mapping.  

In a defined set of visual field sectors, we can define a fixed sector of visual 

space, G. We can further identify G in time with a binary sequence representing visual 

presentations of G. If we let one (1) represent the time that G is displayed (in our example 

G is a wedge) and zero (0) represent the time that G is not displayed (ie. no wedge), then 

each Gi where i is a unique sector number, can be identified with a binary sequence 

through time. In order for each Gi to be uniquely identifiable with respect to time, each 

binary sequence must be uncorrelated to all other sequences, and preferably orthogonal 

with respect to all binary sequences in the set. Each unique sequence can then be used to 

identify which voxels of the visual cortex are associated with a specific region of visual 
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space. When each unique sequence, Σi, is detected via the fMRI signal; Σi is convolved 

with a hemodynamic response function (HRF), typically estimated as a gamma variate 

function [95].  This convolution with the HRF distorts the orthogonality of the set of 

input sequences. However, each Gi in the code-based mapping method is less correlated 

to all other Gj (where i ≠ j). In temporal phase mapping, each voxel in the code-based 

method has a greater probability to uniquely respond to Gi. Figure 25 shows the 

correlation matrices for the input sequences of the code-based (left) and temporal phase 

mapping methods (right), where the x and y axes represent the input sequences (1-20 

input sequences) and the color represents the Pearson’s correlation coefficient, +1 (hot, 

red) and -1 (cool, blue).  Below each correlation matrix is the distribution of correlation 

coefficients, where the y-axis is the number of counts for each correlation coefficient bin 

and the x-axis is the correlation coefficient range, +1 to -1, broken down into ten bins. 

The main mode for the code-based correlation matrix is a correlation coefficient of 0.1 

and +/- 1 for the temporal phase method. Therefore, the code-based stimuli are not 

systematically correlated with each other whereas temporal phase stimuli are highly 

correlated with each other.  
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Figure 25: Input Stimuli Comparison. The correlation matrices (top) for the input stimulus 
sequences for the code-base (left) and temporal phase (right) mapping techniques. The 
distribution of the correlation coefficients (bottom) between the input stimulus sequences 
for the code-based (left) and temporal phase (right) mapping techniques. 

Mathematically, multiple linear regression analysis is used to detect active voxels and, for 

each voxel, to identify which stimulus locations evoke a statistically reliable response. 

The code-based analysis contains four steps (Figure 26). For the code-based method, we 

assume that the twenty input excitation sequences are binary and uncorrelated to each 

other. The following steps explain the code-based retinotopic analysis [94]:   

(1) Creation of the Modeled fMRI responses. A gamma variate function, which 

represents the hemodynamic impulse response (H(t)), is convolved with the input 

excitation sequence to yield the “modeled” response for a voxel responding to the input 
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excitation sequence. After the convolution, fMRI noise, approximated with the pink noise 

spectrum, was added to the modeled response.  

 

Figure 26: Code-based Mapping Signal Detection. Graphical representation of the signal 
detection method and histogram generation of the code-based mapping method. 

(2) Computation of the General Linear Model (GLM) coefficients for each input 

stimulus per voxel.  For each input stimulus the GLM coefficient was calculated. This 
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was accomplished by first defining a null hypothesis that includes the twenty stimulus 

locations as linear constraints on the model parameters.  

            (1) 

 

Where C is an 20 X B matrix, B is the total number of parameters in the full model (20 

polar angle locations + noise + constant + linear trend). The least squares estimate for β 

that satisfies the linear constraints for the model is given by: 

      (   )    ( (   )    )      (2) 

 

Where bF = the least squares estimate of β under the full model, bR = the least squares 

estimate of β under the reduced model, and X is the input matrix. The error sum of 

squares for this reduced model is given by: 

 

   ( )  (     ) (     ) (3) 

 

Where Z is the model of the measured fMRI response to the presented stimulus. The test 

statistic for each general linear test is defined as the F-test: 
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Where X Fdf df s  . Now 20 X B can be written in terms of C. We can estimate Cβ by: 
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)  (5) 

 

Where LC[0]1, LC[0]2 … LC[0]20 are the twenty linear combinations of the vector bF 

specified by the GLM.   
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Repeat steps (1) and (2) for every modeled input signal (in this case, twenty 

inputs), this will produce a vector (LC[0]) of linear coefficient values, LC[0]i, showing 

the strength of the fit of each modeled input signal to the voxel’s actual fMRI response.  

(3) Stimulus selectivity tuning curve for each voxel. To assign the visual field 

location(s) to a voxel using the LC[0]i, a Z-score is estimated by the following: 

 
^

i L
voxel

L

L
L








                        (4)

 

where, LC[0]i is the linear coefficient for a voxel when modeled by a specific  input 

signal, xi,  μL is the average linear coefficient for all voxels across all inputs, and σL is the 

standard deviation of linear coefficients for all voxels across all inputs. All statistically 

valid 
^

voxelL  scores (p<0.05) for input signals are assigned to a voxel. In the assignment to 

the visual field, each voxel can now have multiple visual field locations to which each 

voxel responds.     

(4) Histogram of responses to all stimulus locations.  We wish to summarize the 

response of all voxels to the different stimulus locations while allowing that each voxel 

may respond to more than one location. Consequently, each voxel’s response tuning 

curve is normalized so that the sum of its significant responses to each stimulus location 

is unity. For example, if a voxel has statistically significant responses to two stimulus 

locations, then its normalized response to each location is 0.5. We then sum the 

normalized responses of all voxels to each stimulus location to produce a composite 

histogram (Fig 26, panel 4). This approach also has the advantage that it permits a direct 

comparison of the histograms for code-based and temporal phase mapping, since the 

latter typically employs a winner-take-all computation that assigns each voxel’s response 

to a single (best) stimulus location.  
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Code-based vs. temporal-phase based mapping 
 

 

 

If the code-based approach is to be accepted as a valid method for mapping of visual 

fields with quantitative certainty, we need know how the two mapping methods 

addressed in this paper compare to each other.  The following are a series of comparisons 

that will allow us to determine if the code-based mapping technique is at least as accurate 

as temporal phase mapping with respect to assigning visual field stimulus locations. 

 Assess the physiological organization of the retinotopic mapping techniques. Do the 

mapping techniques produce similar representations of retinotopy in the primary 

visual area, V1? 

 Assess the mapping techniques ability to produce the known polar angle visual field 

representation as stated by different subjects and known neurophysiology in research 

literature [21, 73, 92].  Statistically comparing the voxel distributions between the 

mapping methods to determine irregularities in voxel responses for the polar angle 

visual field representation. Further assess the performance of the mapping techniques 

by statistically compare the voxel-by-voxel stimulus location assignment given the 

full signal detection capability of each mapping technique. 

 Assess the performance of highly correlated input sequences versus highly 

uncorrelated input sequences in the presence of noise. More specifically, use 

simulations to compare the effects of noise on the ability of the mapping techniques 

to properly detect the correct stimulus location. 
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Results 
 

 

 

Code-based and temporal-phase based paradigms were both used to map the 

occipital visual cortex in 10 subjects. As described below, the results of the two methods 

were then compared in several ways designed to quantify the sensitivity of the methods to 

the presence of hemodynamic noise in the fMRI measurement in voxels residing in V1.    

Retinotopic Maps of Occipital Visual Cortex. Qualitative comparison of the code-

based and temporal phase techniques is illustrated in Figure 27, which shows the 

retinotopic organization of the medial occipital lobe as displayed on a smoothed 

representation of the cortical surface. Use of a surface model permits better appreciation 

of the functional retinotopic organization without the complications introduced by the 3-

dimensional folding of the cortical sheet. Figures 27A and B show results from the code-

based and temporal-phase based mapping respectively. Before mapping onto the cortical 

surface model, each voxel was colored according to the single visual field location (polar 

angle 18° wedge) that produced the highest normalized linear coefficient (
^

L , equation 4) 

for the code-based mapping and the delay value for temporal phase mapping. The color 

coding of preferred stimulus location is depicted by the small inset of Figure 27A. The 

progression of colors is seen to extend from the lower vertical meridian (purple colors in 

upper right cortex) down through the depths of the right calcarine sulcus (blue-green 

colors) to the superior vertical meridian (green) across to the upper vertical meridian in 

the left hemisphere. It then continues dorsally into the left calcarine sulcus (oranges) and 

ending at the inferior vertical meridian representation in the upper left cortex 

(magentas/purples). In other words, the left visual field is represented in the right 
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hemisphere of V1 and the right visual field is represented in the left hemisphere of V1. 

Likewise, the superior vertical meridian is represented in ventral V1 while the inferior 

vertical meridian is represented dorsally. Moreover, there appears to be qualitative 

agreement between the two mapping techniques though with some differences in local 

details. 

 

Figure 27: Polar Angle Maps. (A) The “best-fit” polar angle location for the random 
presentation of wedges as detected by code-based mapping technique. (B) The polar 
angle location for the rotating wedge stimulus as detected by temporal phase mapping. 

Individual voxel tuning curves. The foregoing analysis assigned a single preferred 

stimulus location to each voxel. However, as mentioned above, the code-based technique 
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can determine if individual voxels are responsive to multiple stimulus locations. To 

highlight this aspect of the data, Figure 28A color codes the cortical map of one subject 

to voxels that respond to any number of wedge stimuli (1 through 20 wedges).  The 

colors that code for a voxel that responds to greater than 5 wedges lie primarily on the 

lips of the calcarine sulcus and on the pole of the occipital lobe. Figure 28C shows two 

examples of voxel tuning curves from the data generated in the V1 ROI. The voxel tuning 

curves show the normalized GLM coefficients (y-axis) for each polar angle location in 

the visual field (x-axis). For a given voxel, a stimulus location is considered valid if the 

GLM coefficient is greater than 3.0 (regression analysis, p< 0.05). The majority of voxels 

respond to more than one stimulus location. The voxels that respond to only one stimulus 

location tend to reside on the occipital pole and the most distal portion of V1 with respect 

to the calcarine sulcus. Figure 28B illustrates the frequency distribution of voxels for one 

subject responding to one or more stimulus locations in the V1 ROI. The V1 ROI was 

determined by the V1/V2 boundaries created by the temporal phase mapping.  Over 70% 

of voxels respond to five stimulus locations or fewer and over 95% of the voxels respond 

to fewer than 10 stimulus locations (i.e. half of the visual field).  
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Figure 28: Number of Stimulus Location Maps. (A) The distribution of cortical locations 
that elicit a response from any number of stimuli, ranging from one polar angle location to 
all 20 polar angle locations using code-based mapping method. (B) The frequency 
histogram for the number of voxels that respond to any stimulus location. (C) 
Representations of the voxel tuning curves for a voxel that responds to one stimulus 
location (blue) and multiple stimulus locations (orange). 

Population representation of polar angle location. According to animal studies 

[8, 10], the area of cortex representing different polar angles within V1 is essentially 

uniform. As demonstrated previously [5], however, the cortical representation of polar 

angle in human cortical mappings using fMRI is distinctly non-uniform. Figure 29 

illustrates this effect.  The average frequency histograms, for ten subjects, for the code-

based (top) and temporal phase (bottom) methods are distinctly different. The error bars 
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on each histogram represent the standard error of the number of voxels representing each 

polar angle location. The temporal phase method (lower graph) yields a non-uniform 

histogram with a bimodal characteristic. In contrast, the code-based method yields a more 

uniform distribution. The temporal phase and code-based methods yielded a total of 393 

and 395 responsive voxels respectively for the same V1 ROI in each subject. Even 

though there was no difference in the number of activated voxels (p<0.6, Wilcoxon rank 

sum), the uniform (code-based) versus bimodal (temporal phase) were statistically 

different on a bin-by-bin comparison (Chi-square test XI = 31.6, p< 0.03). Moreover, the 

code-based histogram was not significantly different from an ideal, uniform distribution 

(Chi-square XI = 6.07, p<0.99), whereas the temporal phase histogram was significantly 

different (Chi-square XI = 45.1, p<6.6e-4). In contrast, when tested for similarity to a 

bimodal distribution, the code-based histogram was different (Chi-square XI = 50.4, 

p<1.1e-4), but the temporal phase histogram was not (Chi-square XI = 11.5, p<0.9). 
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Figure 29: Polar Angle Voxel Distributions. The average (n = 10) voxel distributions for the 
polar angle stimulus locations (visual field positions described in lower left corner) for the 
code-based (top) and temporal phase (bottom) mapping. 

Effects of Noise on the Visual Stimulus (Input) Signals via Simulation. The effects 

of applying higher, but physiologic, noise levels to simulated voxels representing specific 

visual field locations were investigated. In a previous study, we showed that the ability of 

the temporal phase mapping technique to produce a uniform distribution across all polar 

angle locations is highly susceptible to noise [5]. It was hypothesized that the temporal 

phase mapping method would result in a depression of detected voxels in the visual field 

locations where the increased levels of noise are located. It was further hypothesized that 

the code-based method would be considerably less susceptible to the increase in noise. 

One hundred voxel time series were created for each of the twenty visual field locations. 
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Each set of voxels was assigned either a unique code-based input stimulus function or 

temporal phase delay. The baseline CNR for all-time series was 10 dB. The two visual 

field locations chosen for increasing level of noise was the superior vertical meridian 

(90) and inferior vertical meridian (270). These two visual field locations were 

decremented in CNR to 1dB. Figure 30 shows the code-base method’s (bottom) and 

temporal phase method’s (top) ability to code for the true visual field location (x-axis) 

relative to all other visual field locations with the CNR for the simulated voxels 

representing inferior and superior vertical meridia at a CNR level of 1dB. The black dots 

on each plot only represent the locations where voxels respond to visual field locations, 

not the number of voxels responding to each location. With the inferior and superior 

vertical meridia at 1 dB the code-base method correctly assigns every voxel to the correct 

visual field location, thus creating a uniform distribution of voxels across the visual field 

representation. The temporal phase mapping method begins to incorrectly assign voxel 

visual field locations at a CNR = 1 dB. Not only does a depression in the correct visual 

field locations start to occur but the voxels that should have been in the superior and 

inferior vertical meridian locations are assigned to different (incorrect) visual field 

locations. 
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Figure 30: Noise Simulation II. CNR distortion of phase delays that represent preferred 
polar angle at a CNR = 1 dB. The known phase delay of the simulated signal (x-axis) vs. 
the estimated phase delay in the presence of noise (y-axis) is shown for the temporal 
phase (top) and code-based (bottom) mapping. 

The simulation above illustrates the effects of noise on the mapping methods 

when trying to detect signals in a defined space (ie polar angle visual field assessment). A 

simpler approach to the above study is to examine the ability of each mapping method to 

correctly assign one polar angle location to a group of voxels undergoing increased levels 

of noise. We hypothesized that the code-based mapping method will be less susceptible 

to noise with respect to assigning the true polar angle of a group of voxels. This 

hypothesis is primarily based on the random design of the code-based mapping input 

stimulus functions, which are more linearly independent than the temporal phase 
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mapping input stimulus functions. We created two groups of 100 simulated voxel time 

series. In Group 1, all the voxels contained times series that consisted of a sinusoid with a 

constant phase (temporal phase). In Group 2, all the voxels contained the same random 

presentation of the input stimulus (code-based). Each group of simulated voxel time 

series underwent cross correlation analysis to a respective reference signal with varying 

levels of white noise added to the voxel time series. Five simulated trials were run with 

increasing levels of additive white noise for each trial. The degree of noise was measured 

by controlling the contrast to noise level of each group of simulated voxels. The CNR for 

each trial increased by decades, ranging from 0.01 dB to 100 dB. Figure 31 shows the 

percentage of simulated voxels that were correctly assigned by each mapping method 

given greater levels of noise (ie. lower value of CNR). At CNR > 10 dB, both methods 

will assign the voxel’s visual field position correctly > 95% of the time. The percentage 

of correct assignment using temporal phase mapping decreases to ~20% at 1 dB, 

whereas, the code-base mapping assignment only slightly decreases in accuracy as the 

CNR decreases. Also, note that the temporal phase method incorrectly assigns the voxels 

to other visual field locations. The code-base method neglects the voxels with low CNR, 

and thus does not assign it to a visual field location, therefore, limiting the error in 

assigning voxels to incorrect visual field locations.  
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Figure 31:  Mapping Method Detection Sensitivity. Illustrates the percentage of simulated 
voxels that were correctly assigned by each mapping method given greater levels of noise 
(ie. lower value of CNR). CBM = Code-based Mapping, TPM = Temporal Phase Mapping 

Discussion 
 

 

In this study, we investigated whether a code-based (random stimulus) retinotopic 

mapping technique can more accurately assign regions of cortex to the polar angle visual 

field than temporal phase mapping. The techniques were compared on cortical retinotopic 

topography, single and multiple voxel responses, and on noise immunity. 

Topographically, the methods showed little difference with respect to the overall pattern 

of retinotopic organization. However, the code-based technique produced a more uniform 

representation of polar angle compared to temporal phase mapping. In regards to the 

immunity of the mapping techniques to anatomical specific noise, temporal phase 

mapping is highly susceptible to noise with respect to the inaccuracy of the assignment of 

a voxel’s visual field location. This anatomically specific susceptibility leads to two 

effects. First, the increase in local noise causes a displacement of the assignment of the 

voxel location at CNR levels as high as 1dB. The code based technique, on the other 

hand, was not influenced by the presence of noise as low as CNR = 0.1 dB. Second, the 
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increase in noise causes statistical drop out of the validly responding voxels to visual 

stimuli, which ultimately affects both mapping techniques.  

The results indicate that the code-based technique produces a relatively uniform 

representation of angular position within the visual field. This is in agreement with 2-DG 

studies that suggest primary visual cortex is equally distributed with respect to polar 

angle [23]. In contrast, the voxel distribution from the temporal phase mapping technique 

produced a non-uniform (bimodal) distribution, consistent with previously reported fMRI 

data [5]. We speculate that the major difference between the techniques is the interaction 

of how the stimulus is presented and how the stimulus presentation interacts with the 

cortical tissue when sampled by fMRI. This difference can be seen in the anatomical 

layout of the stimulus location responses to the mapping techniques (Figure 27). Even 

though the mapping techniques globally have a similar pinwheel representation on V1, a 

closer examination of the noisier areas (on the lips of the calcarine and the occipital pole) 

shows that the mapping techniques differ in these areas with respect to the stimulus 

location assignment. In fact, these anatomical regions are where the code-based method 

responds to the most wedges. Possible sources of this difference related to the anatomy 

and physiology of V1 are that cortical surface in these areas are highly convoluted 

responding to multiple stimulus locations or the underlying hemodynamics in the region 

is producing high noise content. An examination of the differences between the stimulus 

presentation, the signal integrity, and visual field mapping implications is warranted. 

Stimulus Presentation and Information Content in the fMRI Signal. Temporal 

phase mapping’s high correlation within the input stimulus set representing visual field 

locations and between the input stimulus set and reference causes complications with 
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respect to assigning visual field locations to voxels. As it has been shown in this work 

and previous [23], the assignment of a specific voxel’s fMRI response to a specific visual 

field location is highly sensitive to increased levels of noise in the voxel response. The 

number of voxels correctly assigned to the correct stimulus location decreased by a factor 

of 4 when the CNR dropped from 10 dB to 1 dB. Also due to this high correlation 

between input sequences, the ability to detect multiple stimulus locations in a voxel 

becomes highly improbable. Code-based mapping codes visual field polar angles with 

input stimulus functions (pseudo-random binary sequences) that are more linearly 

uncorrelated than temporal phase mapping. The input sequence describing each polar 

angle location of the visual field is independent of each other [93, 95].  The low 

correlation coefficient between input stimulus sequences used in code-based mapping 

allows a unique fMRI response to be assigned to an equally unique input signal. Thus, the 

assignment of a specific voxel’s fMRI response to a specific visual field location is less 

sensitive to increased levels of noise in the voxel response. The number of voxels 

assigned to the correct stimulus location did not decrease when the CNR dropped from 10 

dB to 1 dB.  Even when the CNR was dropped to 0.01 dB, the percent of correctly 

assigned stimulus locations for the fMRI responses was >85%. Of course, both mapping 

methods are still susceptible to statistical drop out at very low CNR levels.  

The low correlation coefficient between input sequences in code-based mapping also 

provides the opportunity for the technique to detect multiple stimulus locations in one 

voxel. The code-based method allows clarification of the neuron’s action in the voxels to 

respond to multiple locations, essentially treating the voxels as if they have orientation 

tuning curves [96-101]. The ability to create stimulus location response tuning curves 
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allows the code-base technique to be insensitive to the possibility that the voxel possibly 

contains a cortical surface that may be highly convoluted, containing two cortical 

surfaces that respond to two distinct visual field locations [99-101]. This allows the voxel 

to add more information to the assessment of a patient/subject’s visual field.  

Let us examine how each mapping technique would respond to a voxel that can code 

from more than one location. Assume a voxel, v, responds to three visual field sectors 

(vf1, vf2, and vf3). Voxel, v, using the temporal phase mapping will respond to all three 

locations but due to the phasic relationship between the input sequences and the winner-

take-all algorithm, the response will be a composite of all three locations. On the other 

hand, using code-based mapping, voxel, v, will “tune” to all three possible visual field 

sectors. Translating this result to the voxel histogram or visual field map, there will be 

two visual field locations that will not be counted as a positive visual field location for 

the subject using temporal phase mapping. However, using code-base mapping all three 

visual field locations will be counted. 

Signal Integrity Effects on Mapping Primary Visual Cortex using fMRI. The main 

finding in this study is that the two mapping techniques correlate with respect to polar 

angle visual field assignment when the contrast-to-noise ratio (CNR) is relatively high 

(>= 5 dB). When the CNR is relatively low (<= 5 dB), the agreement between the two 

mapping techniques is inconsistent. In this study, we showed, through simulation, that the 

code-based mapping technique is significantly less sensitive to the noise in the fMRI 

signal than the temporal phase mapping technique. In fact, the majority of the time the 

code-based mapping technique assigns a voxel to the correct polar angle if the voxel 

continues to have a statistically significant response. The only effect of the noise on the 
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assignment of voxels by the code-based technique is “drop-out” of voxels due to the 

statistical threshold set. Temporal phase mapping is susceptible to not only statistical 

drop out but also the incorrect assignment of stimulus locations due to high noise content. 

Most of this noise can be attributed to hemodynamic-related fMRI noise [23, 66]. The 

code based technique provides a higher probability of mapping the correct polar angle 

visual field location to a voxel due to a decrease in sensitivity to noise content.  

In previous reports [5], we have shown that temporal phase mapping can be 

systematically biased by an increase in the noise of BOLD signals within restricted 

spatial regions of visual cortex, particularly in the vicinity of draining veins. In such 

cases, the increased noise can cause selective misassignment of a voxel’s preferred 

location to nearby locations. This is due to the relative similarity of the response 

waveforms representing neighboring locations, which differ by only a small shift in 

temporal phase (Figure 24A). In effect, the variance of the phase estimate depends on the 

contrast to noise ratio (CNR). Though a reduced CNR lowers the probability that the 

response will be statistically significant, it simultaneously raises the likelihood that the 

true preferred location will be miss-assigned to a nearby location before statistical 

significance is lost altogether. This effect is ameliorated in code-based mapping because 

stimuli at nearby locations are presented with markedly different (uncorrelated) time 

sequences (Figure 24B). So, a key advantage of code-based mapping is the decreased 

sensitivity of the method to changes in signal-to-noise relative to temporal phase 

mapping.  

 Visual Field Mapping Implications. One major issue with temporal phase 

mapping in regards to visual field mapping is the need to correct for the hemodynamic 
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delay. Before each phase delay is mapped to the FFMap, the phase delay must be 

“calibrated” to the static hemodynamic delay present in every fMRI response. The 

calibration is typically accomplished heuristically or by using oppositely sequenced 

stimuli. The first approach is time intensive on the post processing side of creating an 

FFMap. The second approach doubles the acquisition time of the scan. In code-based 

mapping, the hemodynamic delay is either accounted for in the regression model or the 

optimal delay can be found from the cross correlation function.  

Conclusion 
 

 

The main reason for developing a new retinotopic mapping technique is to reduce 

the biases posed by using temporal phase mapping when assigning a stimulus location to 

a voxel. The main source of biasing that effects temporal phase mapping is the 

underlying hemodynamics in the occipital midline region which produces high noise 

content voxels. For research applications, these issues can be tolerated. However, in a 

clinical setting, it is important to have a high statistical confidence that voxels will code 

for the correct stimulus location(s). We have demonstrated the following: 

 Code-base mapping offers the ability to detect a voxel’s response to all of the 

presented stimulus locations.  

 When using code-base mapping, polar angle visual field locations across V1 have 

a more uniform distribution compared to temporal phase mapping. 

 Both mapping techniques elicit a similar global polar angle retinotopic response 

in the primary visual cortex. 
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 The visual stimulus inputs used in code-based mapping are less spatio-temporally 

correlated than temporal phase mapping and thus less susceptible to fMRI noise 

effects.  

 On a per voxel basis, the two techniques have a high probability to assign 

stimulus locations at high CNR levels. As CNR decreases, probability of correct 

assignment for temporal phase mapping decreases but code-based mapping does 

not decrease.  

Analyzing all of these findings, suggests that the code-based mapping technique is a 

valid technique for mapping polar angle retinotopic locations in the primary visual cortex 

and provides promise for mapping visual fields in the clinical fMRI setting.  
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Conclusion 
 

 

Relevance of Thesis to the Body of Research 
 

 

This thesis illustrates that using temporal phase mapping for coding the polar 

angle visual field locations in V1 does not accurately represent the distribution of polar 

angle as the research literature suggests. This leads to an irregular representation of a 

subject’s visual field map. The irregularity presents itself as false negative depressions in 

the visual field.  

This thesis suggests that the depressions in the visual field in V1 are due to the 

interaction of the sequential nature of temporal phase mapping with the anatomically 

fixed noise sources (i.e. draining vein effects) local to specific polar angle visual field 

locations. The visual field locations that are affected reside on or near the lips of the 

calcarine sulcus and typically represent the visual field areas on or near the vertical 

meridia. Examining these inherent limitations in temporal phase mapping turned the 

focus of this thesis towards an alternative method to mapping stimulus locations that was 

less susceptible to the aforementioned issues.  

The code-based method developed was a pseudo random presentation of the 

stimulus locations representing polar angles in the visual field. This method decreases the 

correlation between the input stimuli sequences associated with the set of stimulus 

locations being mapped onto the cortex. Code-based mapping allows a voxel to respond 

to multiple stimulus locations regardless of the voxel content. We suggest that voxels 

could respond to multiple locations because the cortex being sampled in a voxel actually 
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represents different physical locations and/or the effective receptive field of the voxel is 

more broadly tuned. The code-base technique also provides a more robust method for 

detecting a voxel’s response to a stimulus location in the presence of noise. It turns out 

that utilizing the above mentioned features of code-based mapping provides a uniform 

voxel distribution of the polar angle visual field assignments in V1 unlike temporal phase 

mapping.  

Code-based mapping as explored in this thesis sets a foundation for mapping 

visual cortex in a clinic setting to presurgically assess visual function that lies near tissue 

malformations such as tumors. Code-based mapping gives the physician a more confident 

statistical measure of a voxel’s response to a set of stimulus locations presented visually 

to a patient. Code-based mapping also provides more information than temporal phase 

mapping about the function of the tissue in a sampled voxel as the voxel responds to the 

set of visual stimulus locations. 

Future of Code-based Mapping 
 

 

The research from this thesis can evolve into clinical applications that require 

detailed assessment of a patient’s visual field and provide presurgical information for 

surgeons to make a better decision regarding the course of action. More specifically the 

concentration of future research for code-based mapping can be understood by the 

following mission statement: 

 

Characterize the dynamics of the visual field map of patients as they recover from 

surgery that involves removal of neural tissue affecting the patient’s visual field. 
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When dealing with presurgical planning of tissue removal (in our case visually 

specific tissue) around any viable, functional neural tissue, the code-based mapping 

method can assist in addressing two of the surgeon’s main tasks: 

1. Weigh the risks associated with removing the malformation and boundary areas 

of tissue and trying to maximize the functional tissue around the risk area that the 

patient will have after surgery.  

2. Consulting with (or predicting for) the patient on how much visual field the 

patient will have after the surgery. 

In regards to the first task, the risk assessment in the presurgical planning stage 

typically leads to an area of tissue classified as the boundary area. The boundary area is 

the tissue that lies between what is classified as viable tissue and non-viable tissue. 

Surgeons must decide how much of this boundary area to remove. Ultimately, surgeons 

would prefer to collect functional data prior to the surgery that would allow them to 

describe the boundary area more clearly. Currently temporal phase mapping is being used 

to provide visual field information in some medical institutions but unfortunately as in 

the research described above, temporal phase mapping has limitations in the assignment 

of voxels that reside in tissue areas that contain a high content of noise. Some of the 

tissue in the boundary areas contains viable areas of tissue but have noise laden fMRI 

signals due to the presence of the malformation and therefore go undetected. The tissue 

responding to visual field locations in the boundary areas go undetected due to the 

interactions of temporal phase mapping with the different noise sources in fMRI signals 

and the insensitivity of temporal phase mapping to detect a voxel’s multiple stimulus 

locations. Code-based mapping provides an opportunity to map the boundary areas by 
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reducing the effects of noise on the detection method. Adding the code-based mapping’s 

ability to be highly sensitive to the geometry in a voxel and the opportunity to respond to 

multiple stimulus locations, code-based mapping seems to be a good fit for visual field 

mapping in patients with neural malformations affecting the visual field.  

The first set of experiments could be focused on developing the fully optimized code-

based mapping stimulus set. First one would need to show that code-based mapping can 

be used on normal subjects and clinical patients to map the visual field. The experiment 

could be ran with two separate stimulus sets, polar angle and eccentricity, mimicking the 

temporal phase mapping method. Although this is not an optimal format, this would 

prove the effectiveness of code-based mapping in two populations. Also evolving out of 

this experiment would be the need to develop a new method for creating functional field 

maps (FFmaps) from the data. The approach would consist of building individual voxel 

functional field maps (VFFMaps), since a voxel has the ability to respond to all visual 

field locations. To construct the global FFmap, a statistically valid method for combining 

each of the VFFMaps needs to be constructed. The next step would be to determine the 

effectiveness of showing polar angle and eccentricity stimulus sets simultaneously. There 

are two feasible approaches:  (1) show traditional eccentricity and polar angle stimulus 

simultaneously or (2) present two dimensional chords as visual field sectors. The 

traditional method of stimulus presentation would provide the ability to determine the 

entire visual field with only 40 stimulus inputs which will make the number of 

presentations shorter to run. To prove the concept is feasible, a larger spatial resolution 

can be ran (i.e. 10 polar angle stimuli and 10 eccentricity stimuli). In order to optimize 

the stimulus presentation, the next step would be to determine the actual spatial resolution 
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limitations and the needed spatial resolution in the clinic. Several studies can be executed 

here determining several aspects of spatial resolution of the visual stimulus. 

 What is the smallest size of visual stimulus that can be detected? 

 Study the effects of the number of stimulus presentations to stimulus size. This 

may lead to an unbalanced number of presentations for stimulus locations as they 

vary in size as scaled by cortical magnification. 

 How small can two neighboring stimulus locations be before they can no longer 

be detected as separate stimulus locations? 

 Is there a degree a complexity of geometry in the cortical surface that the code-

based mapping method cannot detect? This outcome could lead to not having to 

use higher resolution fMRI scans which trade-off lower SNR per voxel for finer 

anatomical resolution. 

 Determine if spatial linearity of stimulus locations affects the voxel response to 

the point that detectability is compromised. This outcome could lead to design 

constraints around the level of acceptable correlation between stimulus locations.  

Once the optimal set of stimuli has been created the next step will be to start mapping 

other visual areas of the brain. This is very important if code-based mapping is to be used 

to determine the effects of neural malformations on the visual field. Not all neural 

malformations will affect only the primary visual cortex, so code-based mapping must be 

able to map the visual field in the higher order visual areas. With this specification in 

mind, the code-based mapping method would also integrate the ability to test the visual 

features of contrast sensitivity, color sensitivity, and enable the ability to test visual 

neglect. All of the experiments mentioned would provide a robust foundation for code-
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based mapping to be used in the clinic to assess visual fields that are compromised by 

neural malformations. The final study of this section of research would be to have 

patients that undergo both an fMRI-based retinotopic mapping using code-based mapping 

and during their surgery have a cortical-based visual field mapping especially around the 

tumor location. This study would illustrate that the code-based mapping technique is 

accurately mapping data to the physiological response on the cortex, and that the visual 

function around the boundary area in the cortical tissue is mapping similar to the fMRI 

collected data.  

The second task builds on top of the optimization of the code-based mapping method 

and the clinical evidence showing the utility of visual field mapping in patients with 

malformations affecting the visual field. The main goal of the long term research would 

be to gain insight into reorganization of the visual field in the viable cortex after tissue 

removal. More specifically, the aim would be to develop a prediction model based on the 

study of visual field functional reorganization/recovery after a patient’s surgery. The 

model would ideally provide the surgeon the ability to remove tissue in a virtual setting 

and show the degradation of the visual field as more tissue was removed. For this model, 

one could focus only on patients that have a tumor that directly affects the visual cortex 

and thus the patient’s visual field. The first major study in this aim would be to collect 

visual field maps using fMRI prior to surgery and after surgery at days 5, 10, 15, 20, 25, 

and 50. The first patient population of 20 patients would be used to determine if there are 

predictable indicators using fMRI in visual field reorganization after tissue removal. 

Some of the first observations would be to determine how the visual field is dynamically 
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changing in the first two months post-surgery. The changes would include but not limited 

to the following: 

 Global organizational changes in the functional topology of the visual field map 

both on the cortex and expressed in the VFFMaps. 

 Voxel-by-voxel analysis of changes over time 

 Changes in blood volume over time as measured with rCBF maps 

 Changes in magnetic field susceptibility as measured with a Bo map 

Other factors would also be documented such as tumor location, volume of tumor, 

volume of tissue removed, additional treatments the patient is undergoing (ie radiation, 

chemotherapy), and general medical history. The patients would then be followed on a 

monthly basis for six months. Once indicators have been identified, the next step is to run 

a larger test sample of 50-100 patients and follow the same protocol.  This set of data 

would be used to verify that the indicators in the first study are consistently present and 

the relationships of these indicators could then be investigated.  

The final evolution of this research would be to extend the mapping method to 

investigate functional connectivity between the LGN and V1. Clinically, the ability to 

determine if the tumors located at or near the white matter fiber tracks involving visual 

processing affect the visual field if removed would add another level of value to 

presurgical planning. This would be beneficial for tumors that involve the white matter 

fibers (optic radiations) related to visual field processing. The first step would be to 

retinotopically map the LGN and V1 in normal subjects and functionally correlate 

specific locations in the LGN to specific cortical locations in V1 using fMRI and DTI. 

Code-based mapping would be a good tool again for retinotopic mapping in the LGN due 
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to the level of noise in the anatomical area. Once the method to retinotopically map the 

LGN/V1 system is understood, the next step would be to complete a study of patients 

with a before and after surgery retintopic map using fMRI. The ideal outcome of this 

study would be to show that the LGN is processing the visual information without defect 

and that V1 is mapping either incorrectly or is rewired. From this point the reorganization 

study can be repeated for tumors affecting visual processing location in or near the white 

matter fibers. 
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Appendix A:  Supplementary Figures for Aim I 

 
Figure S1:  Eccentricity Histogram. The preferred phase delay for the visual field 

eccentricity. The under-representation of voxels beyond 34 seconds of phase delay is a 

stimulus anomaly and not the true subject’s visual field representation. It is noted that the 

subject’s typically did show a slight under-representation in the peri-foveal eccentricities. 
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Fig S2:  Static Wedge Analysis. The voxel histograms for the counter-clockwise rotating 

hemi wedge (left) and the statically-presented eight polar angle wedge locations (right). 

Both voxel histograms have under-representations at the vertical meridia representations 

using the two visual stimuli. 
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