
Marquette University
e-Publications@Marquette

Master's Theses (2009 -) Dissertations, Theses, and Professional Projects

A Message-Passing, Thread-Migrating Operating
System for a Non-Cache-Coherent Many-Core
Architecture
Michael W. Ziwisky
Marquette University

Recommended Citation
Ziwisky, Michael W., "A Message-Passing, Thread-Migrating Operating System for a Non-Cache-Coherent Many-Core Architecture"
(2012). Master's Theses (2009 -). Paper 156.
http://epublications.marquette.edu/theses_open/156

http://epublications.marquette.edu
http://epublications.marquette.edu/theses_open
http://epublications.marquette.edu/diss_theses

A MESSAGE-PASSING, THREAD-MIGRATING OPERATING SYSTEM

FOR A NON-CACHE-COHERENT MANY-CORE ARCHITECTURE

by

Michael W. Ziwisky

A Thesis Submitted to the Faculty of the

Graduate School, Marquette University,

in Partial Fulfillment of the Requirements for

the Degree of Master of Science

Milwaukee, Wisconsin

August 2012

ABSTRACT

A MESSAGE-PASSING, THREAD-MIGRATING OPERATING SYSTEM

FOR A NON-CACHE-COHERENT MANY-CORE ARCHITECTURE

Michael W. Ziwisky

Marquette University, 2012

The difference between emerging many-core architectures and their

multi-core predecessors goes beyond just the number of cores incorporated on a

chip. Current technologies for maintaining cache coherency are not scalable beyond

a few dozen cores, and a lack of coherency presents a new paradigm for software

developers to work with. While shared memory multithreading has been a viable

and popular programming technique for multi-cores, the distributed nature of

many-cores is more amenable to a model of share-nothing, message-passing threads.

This model places different demands on a many-core operating system, and this

thesis aims to understand and accommodate those demands.

We introduce Xipx, a port of the lightweight Embedded Xinu operating

system to the many-core Intel Single-chip Cloud Computer (SCC). The SCC is a

48-core x86 architecture that lacks cache coherency. It features a fast mesh

network-on-chip (NoC) and on-die “message passing buffers” to facilitate

message-passing communications between cores. Running as a separate instance per

core, Xipx takes advantage of this hardware in its implementation of a

message-passing device. The device multiplexes the message passing hardware,

thereby allowing multiple concurrent threads to share the hardware without

interfering with each other. Xipx also features a limited framework for transparent

thread migration. This achievement required fundamental modifications to the

kernel, including incorporation of a new type of thread. Additionally, a minimalistic

framework for bare-metal development on the SCC has been produced as a

pragmatic offshoot of the work on Xipx.

This thesis discusses the design and implementation of the many-core

extensions described above. While Xipx serves as a foundation for continued

research on many-core operating systems, test results show good performance from

both message passing and thread migration suggesting that, as it stands, Xipx is an

effective platform for exploration of many-core development at the application level

as well.

i

ACKNOWLEDGMENTS

Michael W. Ziwisky

I simply could not have accomplished this feat without the incredible family,

friends, and colleagues that I’m so lucky to have in my life. I am honored to express

my sincerest gratitude to:

• My parents, Patricia and Ronald Ziwisky, for their love, encouragement,

support, dependability, and money.

• My sister, Carrie Marino, for all of the above except money (though she’d

have given that too if I had needed it).

• My extraordinary advisor, Dennis Brylow, for patient guidance, endless

inspiration, money, and just being awesome.

• My committee members, George Corliss, Adam Welc, and Mike Johnson, for

constructive questions and comments, and for guidance even beyond the scope

of this thesis.

• My friend and labmate, Kyle Persohn, for his memory and organizational

aptitude, which surely spared me an extra semester or two.

• My friend and lab squatter, Adam Mallen, for excellent conversations, some

relevant to the thesis, some enlightening, but most just entertaining.

• My former advisor, Chung-Hoon Lee, for a wealth of guidance and wisdom in

my first foray into academic research.

• My favorite hypergeek, Devin Townsend, for unbounded energy, inspiration,

and entertainment.

• Evolution, for producing both the coffee bean and the man who discovered the

coffee bean.

Thank you all – it’s been an amazing time!

ii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . i

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER

1 INTRODUCTION . 1

1.1 Thesis Statement . 1

1.2 Problem Statement . 1

1.3 Contributions . 4

1.4 Thesis Organization . 5

2 OVERVIEW OF MANY-CORE COMPUTING 7

2.1 Origins of Many-Core Computers and Cache Coherency . . 7

2.1.1 Cache Operation 8

2.1.2 Chip Parallelism and Coherency 8

2.2 Terminology: Processes and Threads 10

2.3 Sharing Data . 14

2.3.1 Shared Memory 15

2.3.2 Message Passing 20

2.4 Promises and Asynchronous Calls 22

2.4.1 ActionScript Promises 22

2.5 Intel Single-Chip Cloud Computer 25

2.5.1 Many-Core Alternatives 29

2.6 Summary of Many-Core Computing 31

3 RELATED WORK IN DISTRIBUTED ARCHITECTURES . . . 33

3.1 Operating Systems for Many-Core Architectures 33

3.2 Inter-Core Communications 38

iii

3.2.1 Message Passing 38

3.2.2 Computation Migration 42

3.3 Summary of Related Work 48

4 XIPX: A MANY-CORE OPERATING SYSTEM 50

4.1 Original System . 50

4.2 Extensions for Many-Core Support 51

4.3 Message Passing . 53

4.3.1 Message Passing with the MPB 53

4.3.2 MPB Driver . 57

4.4 Computation Migration . 63

4.4.1 User Threads . 63

4.4.2 Virtual Memory, Protection, and System Calls . . 66

4.4.3 Indirect Device References 69

4.4.4 User Thread Migration 71

4.5 BareMichael and MikeTerm: A Bare-Metal Framework for
SCC . 83

4.5.1 Platform Initialization 84

4.5.2 MikeTerm . 88

4.5.3 Build Environment and Dependencies 89

4.6 Integration with RCCE . 93

4.6.1 Availability . 94

5 PERFORMANCE ANALYSIS . 95

5.1 Message Passing . 96

5.1.1 Comparison to RCCE 96

5.1.2 SCC-Specific Device Optimization 101

5.2 Thread Migration . 102

iv

6 SUMMARY AND FUTURE WORK 105

6.1 Future Work . 106

BIBLIOGRAPHY . 108

APPENDIX

A IMPLEMENTATION DETAILS: VIRTUAL MEMORY, PRIVI-
LEGE LEVELS, AND SYSTEM CALLS 116

B SCC L2 CACHE FLUSH ROUTINE 125

B.1 The PLRU Replacement Policy 126

B.2 Analysis of the L2 Cache Behavior 128

B.3 Effect of L1 Write-Backs 129

B.4 The Routine . 130

v

LIST OF TABLES

4.1 Message header format. 58

4.2 System address sub-destination ID ports. 74

vi

LIST OF FIGURES

2.1 Virtual memory management maps addresses in a virtual address space
to physical addresses in main memory. 12

2.2 A single-threaded process and a multi-threaded process. 13

2.3 Three ways to map user threads to kernel threads. 14

2.4 A C program that is vulnerable to a race condition. 16

2.5 The vulnerable C function implemented in x86 assembly. 16

2.6 The definition of the test-and-set operation. 18

2.7 Protecting a critical section with a test-and-set lock. 19

2.8 Asynchronous remote method invocation. 24

2.9 Schematic diagram of the 48-core Intel SCC. 26

2.10 Schematic 3 x 3 array of tiles connected by five separate networks on the
TILE64 architecture. 30

2.11 Block diagram of the hierarchical on-chip network of the ATAC. 31

4.1 User threads are isolated in virtual memory spaces. 67

4.2 The kernel translates thread-local device IDs to system device IDs before
calling device functions. 70

4.3 Address translation on the SCC. 73

4.4 Default LUT configuration for an SCC system with 32 GiB RAM. 75

4.5 Control and communication flow of the Xipx thread migration protocol. . 79

4.6 Per-core initialization procedure of BareMichael. 85

4.7 Sample output from MikeTerm . 89

5.1 Comparison of the communication patterns for (a) the ping-pong bench-
mark and (b) the ping-ping benchmark. 97

5.2 Benchmark performance of the asynchronous Xipx MPB device. 99

5.3 The impact of SCC-specific optimizations on message-passing device band-
width. 101

5.4 Freeze time of migrating Xipx user threads. 103

vii

A.1 Xipx CPU configuration and system call handling on an x86 architecture. 116

A.2 Code listing for the set of default interrupt handlers. 123

A.3 Code listing for a macro that an interrupt handler uses to ensure the
CPU is in a flat-mapped view of memory and to undo the effects of an
interrupt-induced stack change. 124

B.1 Binary decision tree for a PLRU cache replacement policy. 126

B.2 State machine for a PLRU cache replacement policy. 127

B.3 Software routine to flush the L2 cache. 132

1

CHAPTER 1

Introduction

1.1 Thesis Statement

Xipx, a port of the Embedded Xinu operating system to a distributed x86

architecture, is an effective host for exploring a computational model of concurrent,

migratable, promise-based threads on the many-core Intel Single-chip Cloud

Computer (SCC).

1.2 Problem Statement

Multi-core processors are ubiquitous, and further scaling in parallelism has

led to the emergence of many-core architectures. Many-core chips feature dozens of

cores communicating with each other via a Network on Chip (NoC) technology.

These architectures present a new domain in computation that is ripe for

exploration. How does one take advantage of such parallelism? Traditional

multi-core machines are cache-coherent, allowing concurrent lightweight threads to

access resources in a shared memory space. In contrast, many-core architectures

may be non-cache-coherent and are rather suited to executing isolated threads with

message-passing communications. Additionally, like any distributed memory

system, many-core chips can benefit from computation migration – the ability to

2

transfer an in-execution unit of computation from one processing core to another.

Among other advantages, migration enables active load balancing, which can

enhance system throughput and power management.

As a foundational step toward experimentation on a many-core platform,

this thesis introduces Xipx, a port of the Embedded Xinu operating system [1; 2] to

the 48-core Intel Single-chip Cloud Computer (SCC) [3]. Xipx serves as a viable

environment for supporting a scalable concurrent computation model centered

around migratable message-passing threads – a model well-suited to the emerging

class of many-core processors.

As evidence of present interest in such a computational model, Adobe

developers currently are building concurrency constructs into the Tamarin

ActionScript virtual machine [4; 5]. The concurrent computational model is based

on share-nothing message-passing threads with “promise-based” inter-thread

communications. In general, a promise is a placeholder for a value that will exist in

the future [6]. In the context of Tamarin, it may also be thought of as a local

reference to an object in another thread’s address space. Behind the scenes, a

promise interacts with an object proxy in the other address space, and these two

objects communicate via a pair of message-passing channels. While these

concurrency constructs may be new to the ActionScript language, JavaScript

already supports the model with promise-based “web workers” [7]. With its fast

message-passing router mesh, the SCC is a naturally advantageous architecture for

3

this distributed computational model. Providing a suitable platform for

experimental exploration of the model is a primary motivation for our work on Xipx.

The main problems addressed by our initial work on Xipx are how to support

efficient message passing between threads and how to support migration of threads.

Since message passing is such an elemental component of the many-core paradigm,

there has been significant research focused on efficient message-passing

implementations for the SCC platform (see Section 3.2.1). However, much of the

current research focuses on message passing at the application level, which results in

implementations that fully consume the SCC’s message-passing hardware to execute

just a single parallel application. An important goal for Xipx is to support

concurrent execution of multiple parallel programs whose constituent threads may

be distributed arbitrarily among the many cores. Our kernel therefore treats the

SCC’s message-passing hardware as a shared resource that must be managed at the

system level.

As an enabling technology with numerous benefits for distributed systems

(see Section 3.2.2), computation migration is another important topic in the realm

of many-core architectures. An interesting feature of the SCC is that each core has

the ability to remap dynamically the logical memory space of any of the cores to a

large system-wide memory space. This behavior is exploited in Xipx to reduce

dramatically the latency of inter-core data movement. As data transfers are

typically the most expensive part of a migration procedure, realizing an efficient

4

data transfer procedure helps to achieve very low “freeze times” for migrating

threads.

Finally, of the numerous modern operating systems targeting many-core

architectures (see Section 3.1), the current offerings with ports to the SCC are

bloated and complex. The SCC port of Barrelfish is composed of over 450,000 lines

of code, while SCC Linux version 1.4.1.2 tops 20,000,000 lines. Such overwhelming

codebases make these kernels difficult to understand and modify. In contrast, the

agile Xipx kernel comprises under 15,000 lines of code, while providing many of the

same features as mainstream kernels such as multitasking with a preemptive priority

scheduler, thread isolation and kernel protection, and an API for inter-thread

communication. The flexibility offered by Xipx allows for relatively easy

development of system-level constructs to exploit SCC-specific hardware features for

ground-up support of our target computational model.

1.3 Contributions

Although this work has been focused primarily on developing an environment

to provide support for a particular model of computation, the fruits of our labor

have resulted in a foundation that opens avenues for a wide range of research

opportunities. Concretely, the work comprising this thesis makes the following

contributions:

• Many-Core Port of Embedded Xinu. Xipx is the first port of the

5

lightweight and agile Embedded Xinu operating system to a platform in the

emerging class of many-core architectures.

• Message-Passing Device Implementation. We present a scalable,

efficient message-passing device for the Intel SCC that is able to service

multiple concurrent threads per core.

• Messaging Performance Analysis. Experimental bandwidth

measurements of our kernel-level message-passing device reveal its

competitiveness with a less flexible user-level library alternative. Iterative

measurements during the device’s development quantify the performance

benefits of SCC-specific caching mechanisms.

• Thread Migration Implementation. We present a simple thread

migration protocol and two implementations. One is portable to any

distributed system, while the other takes advantage of SCC-specific hardware

for extremely low-latency inter-core data transfers.

• SCC “Bare-Metal” Development Framework. A bare-metal

development framework has been created as a launching pad for

operating-system-free development of applications targeting the Intel SCC.

1.4 Thesis Organization

The remaining chapters of this thesis are organized as follows.

6

• Chapter 2 presents an overview of some history and background of many-core

computing including cache coherency, sharing data, asynchronous semantics,

and parallel architectures.

• Chapter 3 summarizes recent related work in many-core operating systems,

message passing implementations, and computation migration.

• Chapter 4 describes the design and implementation of Xipx, a many-core port

of the Embedded Xinu operating system, and BareMichael, a bare-metal

programming framework for the Intel SCC architecture.

• Chapter 5 discloses the measured performance of message passing and thread

migration implementations in Xipx.

• Chapter 6 summarizes the thesis and offers suggestions for future work on

Xipx.

7

CHAPTER 2

Overview of Many-Core Computing

This chapter outlines the history and concepts surrounding many-core

computing that are relevant to this thesis.

2.1 Origins of Many-Core Computers and Cache Coherency

In the beginning, computers were simple. Early computers only had one

central processing unit (CPU), no more than one single instruction could be

executed in a single clock cycle, and accesses to random access memory (RAM)

occurred at the same speed as executions of CPU instructions [8]. However, the

advancement of CPU execution speeds far outpaced that of RAM speeds, and

memory accesses soon became a major bottleneck for computers. To address this

issue, manufacturers introduced a faster storage medium called cache memory [9].

Because it typically is located on the same die as the CPU, and therefore is an

expensive commodity, cache memory generally comes in very limited quantity [10].

In contrast, RAM is comparatively plentiful. As such, cache is not a replacement for

RAM, but a staging area between RAM and the CPU. It does not provide

additional memory space, but redundant space, as it is used to hold copies of data

from RAM for low-latency access from the CPU.

8

2.1.1 Cache Operation

Cache memory has well-established operational principles and

terminology [9; 10]. It is organized as a number of fixed-size segments that are

called lines (one line may be 32 bytes in a typical system [11]), and data copies

between RAM and cache occur one entire line at a time. The first time a processor

wants to read some data from memory, it simultaneously loads the data into the

CPU and loads the line-sized chunk of RAM containing that data into a cache line.

If the caching policy is write-back, subsequent writes to that cached memory address

only update the cache, and RAM will contain outdated data. This condition is

recorded by setting a control bit which marks the cache line as dirty. Since the size

of RAM is so much greater than that of cache, each cache line must be shared

between many line-sized sections of RAM, and eventually, an occupied line will need

to hold a different section of RAM. When this happens and the current line is dirty,

the line gets written back to RAM before it is overwritten by the new section. If the

line was not dirty, no write-back occurs. Alternatively, executing a write instruction

on a CPU with a write-through cache causes RAM to be updated immediately to

keep it synchronized with the cache.

2.1.2 Chip Parallelism and Coherency

Advancing technologies in silicon fabrication throughout the late twentieth

century enabled the creation of smaller and smaller transistors. With smaller size

9

came faster switching speeds, and CPU manufacturers were able to realize

performance gains by, among other tricks [12], continually increasing the clock

frequencies of their chips [13]. However, a chip’s power consumption scales linearly

with its operating frequency, and heat dissipation becomes a major challenge with

clocks operating beyond a few GHz. In response to this situation, a new paradigm

has emerged for CPU design. Transistors continue to shrink, but rather than scaling

up chip clock frequency, manufacturers now take advantage of the smaller devices

by scaling up chip parallelism [14]. Clock speeds remain stagnant, but the number

of computational cores on a single die is increasing. An N -core processor can

execute N simultaneous instructions each clock cycle, leading to an N -fold

performance increase under ideal circumstances.

This paradigm shift has some undesirable consequences. In particular, the

combination of cache memory and multiple computing cores introduces some

additional complexity into a system [15]. Each core in a multi-core system has its

own independent cache and therefore has its own “idea” of what is in RAM. If two

or more cores have each cached a copy of the same resource and one core modifies

its copy, then all other cores with a copy must be informed of the change so they

know not to operate on their stale idea of what that resource is. In a cache coherent

multi-core system, hardware exists to ensure that when a resource in one cache is

modified, the other caches with a copy of that resource know about it [10]. If one of

those other cores needs to use the resource again, it will first update its copy to

10

maintain consistency with the core that modified it. The particular method and

timing of this update is a policy decision made by the cache designer [9].

Cache coherency hardware frees the system programmer from much of the

burden of dealing with cache, making its existence nearly transparent.

Unfortunately, current hardware techniques for maintaining coherency have

difficulty scaling beyond a handful of cores [16]. The accompanying hardware

overhead, bus use, and power consumption of coherency hardware is significant.

Therefore, as the number of cores on a chip increases and we move from the

multi-core class to the many-core class, the difference between the two is not simply

a matter of scale. Current many-core architectures either make no attempt to

maintain coherency in hardware, or they use a network-on-chip (NoC) technology to

do the job. In addition, inter-core communication and RAM accesses on a many-core

typically are carried out over a NoC rather than via a traditional bus [3; 17; 18].

2.2 Terminology: Processes and Threads

Having explored some important aspects of multicore hardware, we will now

discuss relevant software concepts involved in parallel programming. In this section,

we cover some terminology that typically is used in the literature [19].

A process is an instance of a computer program that is executing in a

multiprocessing computer. This includes the code and static data of the written

program along with stack and heap memory that are used during execution. With a

11

technique called virtual memory management, modern CPUs have the ability to

map system addresses to physical addresses arbitrarily (with a certain granularity).

For example, if the CPU executes an instruction to read a value from some memory

address, the virtual memory management hardware translates that address before

going to RAM to request the read. This ability to remap memory addresses is used

to isolate each process both from other processes in the system and from the

operating system kernel itself. Therefore, each process exists in its own unique

memory space. A schematic illustration of virtual memory mapping is seen in

Figure 2.1.

Every process consists of one or more flows of execution, or threads. A thread

is the thing that “does the work” in a process. It is a logical division of a process’

work. A process may be composed of multiple threads, each of which can execute

concurrently. (“Concurrently” means “at the same time,” but it can refer both to

threads executing truly in parallel on multiple cores, or to threads sequentially

sharing time on a single core [20].) All threads in a particular process exist in the

same memory space and therefore share program code and global data. However,

each thread has its own state, which includes a stack and register values (including

a stack pointer and an instruction pointer). A schematic diagram depicting the

relationship of threads and processes is given in Figure 2.2. Shared memory space

may be used to share data between concurrent threads, but this practice can lead to

certain pitfalls as discussed in Section 2.3.1. Threads are considered to be

12

0x00000000

0xFFFFFFFF

Virtual Address
Space

Physical Address
Space (RAM)

Mapped to
another

virtual space

Unmapped
in this

virtual space

0x00000000

0xFFFFFFFF

Figure 2.1: Virtual memory management maps addresses in a virtual address space

to physical addresses in main memory (after [19]).

“lightweight” in comparison to “heavy” processes mainly because the cost of

context switching between two threads is much lower than that of switching

between two processes. The increased cost of a process switch comes from the need

to change the virtual memory space [21]. While this alone makes the process switch

more expensive than a thread switch, another costly side effect is that an entirely

new memory space cannot use any cached data, so most memory accesses performed

soon after the process switch have to go to RAM. On top of that, the translation

13

lookaside buffer (TLB), which is a cache for the tables that are used to translate

virtual addresses to physical addresses, contains useless data for the incoming

process and has to be refilled just to be able to translate the new memory addresses.

This results in even more accesses to RAM rather than cache memory.

registers stack

code data heap

registers

stack

registers

stack

registers

stack

registers

stack

registers

stack

registers

stack

code data heap

Figure 2.2: A single-threaded process and a multi-threaded process (after [19]). All

threads in a multi-threaded process share the same code, static data, and heap space,

but each one has its own stack and registers.

Our description of threads so far is fairly general, but we must make a

distinction between kernel threads and user threads [19]. A kernel thread is an

operating system construct that is managed and scheduled by the kernel. A user

thread is managed in user space without kernel support. Ultimately, a user thread

must be associated with a kernel thread in order to be dispatched to a processor.

There are three common ways in which user threads get mapped to kernel threads,

as illustrated in Figure 2.3. The one-to-one model maps a each user thread to a

14

kernel thread. The many-to-one model incorporates a user-space scheduler that

maps many user threads to a single kernel thread. The many-to-many model also

involves a user-space scheduler, but the scheduler multiplexes many user threads to

a smaller or equal number of kernel threads. Further discussion, including tradeoffs

for each of the models, is given in [19] and [20].

kernel thread

scheduler

user thread

user space

kernel space

One-to-one Many-to-one Many-to-many

Figure 2.3: Three ways to map user threads to kernel threads (after [19]).

2.3 Sharing Data

This section describes some typical methods for sharing data between

concurrent threads or processes.

15

2.3.1 Shared Memory

Perhaps the most straightforward way for threads to share a resource is to

have that resource located in an area of memory that is accessible by all of the

threads that want to share it [22]. Since threads of a single process exist in the same

memory space, any thread needing access to the shared resource would simply need

to know its address. A read-only shared resource may be accessed by any thread at

any time without consequence. However, if the resource is able to be modified by

executing threads, some synchronization constructs are necessary to ensure that

concurrent threads do not see an inconsistent view of the resource.

To see what can go wrong when modifying shared resources, consider

spawning two threads of the simple function increment var() shown in Figure 2.4.

One would expect the global variable var to equal 2 after the threads finished

executing. However, looking in Figure 2.5 at the x86 assembly that could implement

this C code, we see that the increment is actually split into three instructions: read

the data from memory, add one, and write back to memory. Consider two threads

executing this code concurrently with the following timing. Thread 1 executes line 5

and 6, then gets preempted. Upon preemption, the value of register eax is 1, and

this value gets saved during the context switch. Thread 2 then executes the entire

increment var function, reading var from memory, incrementing it to 1, then

16

storing it as 1. Some time later, Thread 1 resumes execution at line 7, where it

writes the value of register eax, which is 1, to var in memory.

1 int var = 0 ;

2 void increment var (void) ;

3

4 void main ()

5 {
6 spawn thread (increment var) ;

7 spawn thread (increment var) ;

8 }
9

10 void increment var ()

11 {
12 var++;

13 }

Figure 2.4: A C program that is vulnerable to a race condition.

1 var :

2 .word 0

3

4 increment var :

5 mov var , %eax # load var to r e g i s t e r eax

6 add $1 , %eax # increment the value o f eax

7 mov %eax , var # s t o r e eax to var

8 ret

Figure 2.5: The vulnerable C function implemented in x86 assembly.

We see that the particular timing of the execution of these two threads has

led to an unexpected result. Although we intended for var to equal 2 in the end, it

17

turned out to be 1. When the result of the execution of concurrent threads is

unexpectedly dependent on the timing of the execution, the situation is referred to

as a race condition [23]. Because the timing of concurrent thread execution is

generally variable, race conditions can be difficult both to detect and to debug.

However, once identified, a race condition can be remedied by ensuring execution of

the multiple threads does not occur in a problematic sequence. We define a critical

section of code as a section that accesses a shared resource that must not be

concurrently accessed by multiple threads. In our simple example, the critical

section is actually the whole body of increment var – line 12 in Figure 2.4, and

lines 5–7 in Figure 2.5.

In a single-core environment, a critical section can be protected simply by

disabling interrupts during its execution. This ensures that the thread will not be

preempted during the critical section, and a race will not occur. However, this is

insufficient in a multi-core environment, where multiple threads are executing

simultaneously on separate cores. We need some additional means to enforce mutual

exclusion – to ensure that no more than one core accesses the critical resource at a

time.

Most modern architectures provide mechanisms that may be used to protect

critical sections in a multi-core system. (These mechanisms may also be used in a

single-core system when disabling interrupts is undesirable.) At the heart of these

operations is the ability to update atomically a memory location. An atomic update

18

is one that appears to happen instantaneously. I.e., the procedure of reading,

modifying, and writing a location happens all together, uninterrupted, during which

all other processors in the system are disallowed access to the location. A simple

example of an atomic hardware primitive is a test-and-set instruction, the definition

of which is given in Figure 2.6 [19]. Passing it a memory location, target,

test and set() sets the value at that location to FALSE and returns its previous

value. Note that this operation is written out in C code for illustration purposes

only – the actual execution of the operation must be atomic in order for it to serve

its purpose.

bool t e s t a n d s e t (bool * t a r g e t)

{
bool r e t = * t a r g e t ;

* t a r g e t = FALSE;

return r e t ;

}

Figure 2.6: The definition of the test-and-set operation [19].

If the value at target is initialized to TRUE, we see that the first time

test and set() is called it returns TRUE and sets target to FALSE. Any subsequent

calls will return FALSE until target is reset to TRUE (which can be done by a

normal, non-atomic write). A test-and-set therefore may be used to protect a

critical section as seen in Figure 2.7. The critical section is not entered until a call

19

to test and set(&lock) returns TRUE, at which time we say we’ve acquired the

lock. Upon exiting the critical section, we release the lock by resetting lock to

TRUE. Because of its atomic operation, proper use of test and set() guarantees

that only one caller acquires the lock at any time.

bool l o ck = TRUE;

void my function ()

{
while (! t e s t a n d s e t (& lock))

; /* l oop u n t i l l o c k i s acqu i red */

. . . /* c r i t i c a l s e c t i o n */

l o ck = TRUE; /* r e l e a s e the l o c k */

}

Figure 2.7: Protecting a critical section with a test-and-set lock.

This issue of ensuring mutual exclusion is a separate problem from that of

cache coherency. Coherency generally is taken care of automatically by the

hardware, but it is necessarily the programmer’s responsibility to avoid race

conditions in the software.

While using shared memory for inter-thread communication may seem

straightforward, it is prone to pitfalls, such as race conditions, which may be

difficult to detect. In the following section, we explore an alternative.

20

2.3.2 Message Passing

Message passing is fundamentally different from shared memory [22].

Conceptually, each actor in the system owns a mailbox. (By “actor,” we mean any

entity that can affect memory, including computational cores and memory-mapped

I/O hardware, but also including the abstractions of processes, threads, and worker

threads.) These mailboxes can be thought of as real-world mailboxes – those that

can hold many letters from many different senders. When one actor wants to

communicate with another, it sends a message to the other’s mailbox. While any

actor can send a message to any mailbox, a mailbox can only be opened and read

from by its owner. In this way, memory locations are not “shared” because none are

ever accessible to more than one actor. Rather, when one actor passes a message to

another, the message data is copied directly into the private memory space of the

recipient.

Because it does not require a shared memory space, message passing is well

suited both for inter-process communication and for communication between worker

threads. Abandoning a shared memory model also eliminates the possibility of race

conditions since any object may only be accessed by a single thread. Furthermore,

when using message passing for communication in a multi-core environment, cache

coherency hardware is unnecessary because all memory locations are private to a

21

single core. In distributed systems, in which separate computational cores have no

means to share memory, message passing is the only option for data sharing.

Some message passing APIs offer both synchronous and asynchronous send

and receive functions. Beyond just data sharing, synchronous message passing can

be used for synchronization of actors. This is particularly useful in an environment

where both message-passing and shared memory are in use. For example, before

accessing some shared resource, one actor may wait to receive a message from

another which indicates that it is safe to do so.

When implementing a message passing system, the properties of the actual

message channels must be taken into account. For example, it is generally required

that messages sent from one point to another must arrive at their destination in the

order in which they were sent. If delivery order is not guaranteed by the hardware,

then additional software constructs are needed to resolve the issue. Other channel

properties to consider are reliability (can one count on a sent message to always

arrive at its destination) and data integrity (is there a chance that a sent message

becomes corrupted before it is received).

Further discussion of message passing implementation considerations may be

found in Section 4.3.

22

2.4 Promises and Asynchronous Calls

It is generally agreed upon [19; 24; 25] that concurrent programs are more

difficult to write and to understand than sequential programs. However, concurrent

programming is necessary to take advantage of the increasing parallelism of

computer architectures. Thus, there is a demand for language constructs that make

concurrent programs easy to understand and reason about. Asynchronous calls are

an example of a high-level abstraction that help make a concurrent program look

more like a sequential one from the programmer’s perspective. When a task makes

an asynchronous function call, it immediately receives a returned object, called a

promise, and continues executing. At the same time, the called function may

execute in parallel as an independent task. In general, a promise is a placeholder for

a value that will exist in the future [6]. The promise in this case is a placeholder for

the return value that is being calculated by the called function. Sometime later in

its execution, when the caller needs the return value itself, it uses the promise to

retrieve it.

2.4.1 ActionScript Promises

Adobe researchers recently began incorporating concurrency constructs into

the ActionScript language and building support for these new constructs into the

open source Tamarin virtual machine [5]. These extensions follow a model of

23

computation that is based upon concurrent worker threads interacting with each

other via promises. An initial worker thread – which we will refer to as the local

worker – can create another worker thread – a remote worker – from a file

containing a worker description. The local worker invokes the start() function on

the remote worker, which returns a promise representing the remote worker’s global

scope. The global scope promise gives the local worker access to all globally exposed

methods and members of the remote worker.

When a local worker invokes a method call in a remote worker, a promise is

always returned, and the local worker continues working immediately. The remote

worker exists outside of the local worker’s memory space, and therefore an

ActionScript promise is a handle to an object in an external memory space. Hidden

from the programmer is the fact that the promise interacts, via a pair of one-way

message passing channels, with an object proxy in the external memory space. The

object proxy interacts with the actual object and services requests from the promise

to act on or retrieve results from the object. In case the remote method call results

in an uncaught exception, the exception is propagated to the caller where it is

re-thrown when the caller attempts to retrieve the result of the original call. A

graphical illustration of an ActionScript asynchronous remote method invocation is

shown in Figure 2.8.

Promise results may be retrieved by the local worker either synchronously, in

which case the local worker sends a request to the remote worker and blocks until

24

P_gScope
PGS_OUT

PGS_INC
gScope_PROXY gScope

DICT

Local Worker Remote Worker

P_gScope
PGS_OUT

PGS_INC
gScope_PROXY gScope

DICT

MSG: someFunc(arg1, arg2){PRES_OUT, PRES_INC}

PGS_OUT

PGS_INC

P_result
PGS_OUT

PGS_INC

PRES_OUT

PRES_INC

P_gScope
PGS_OUT

PGS_INC
gScope_PROXY gScope

DICT

PGS_OUT

PGS_INC

P_result
PGS_OUT

PGS_INC
result_PROXY

PRES_OUT

PRES_INC
result

(a) Initial State

(b) Request issued

(c) Request handled

CODE: Promise result = gScope.someFunc(arg1, arg2);

CODE: Worker w = createWorkerFromURLRequest(...);
 Promise gScope = w.start();

Figure 2.8: Asynchronous remote method invocation (from [5]). (a) Initially, the local

worker creates and starts a remote worker; as a result, the local worker holds a promise

representing the remote worker’s global scope. (b) The local worker creates a new

promise which implicitly initializes a pair of message-passing channels (‘PRES OUT

and ‘PRES INC’). Then the local worker issues a request to invoke the someFunc()

function of the remote worker. Arguments (‘arg1’ and ‘arg2’) are passed explicitly

while channel information is passed implicitly. (c) Upon completing the requested

computation, the remote worker creates an object proxy for the result and links the

proxy to the established communication channels.

the result is received, or asynchronously in a slightly more complex fashion. Before

issuing an asynchronous result request, a sender creates a local callback function – a

promise resolution handler – and an object proxy for the callback. The sender then

25

issues the asynchronous result request on the local promise, which implicitly passes

to the remote object proxy the channel information for its callback object proxy.

When the remote worker has the result ready, it creates and links a promise with

the local callback object proxy and uses it to invoke the callback function. The

callback resolves the result of the original promise, and result retrieval is complete.

The semantics of promises allows ActionScript worker threads to be location

transparent; i.e., the source code looks the same no matter where workers are

physically executing, whether on a single local processor, on a hardware accelerator,

or on distributed resources accessed over a network. Thus there is the potential for

a single source code to take advantage dynamically of whatever computational

resources happen to be available at runtime.

2.5 Intel Single-Chip Cloud Computer

The Single-Chip Cloud Computer (SCC) experimental processor is a

“concept vehicle” created by Intel Labs as a platform for many-core software

research [3; 26]. It features 48 GaussLake processing cores based on the Pentium

P54C and a 256 Gb/s bisection bandwidth network-on-chip (NoC) routing mesh.

The chip is organized into 24 tiles, each of which contains two cores, a router, and

16 kB of shared memory that is accessible to all tiles via the NoC. This fast, on-chip

memory is referred to as the “message-passing buffer” (MPB). A schematic

representation of the SCC is seen in Figure 2.9.

26

D
IM

M
D
IM

M

System Interface

FPGA

SCC Die

D
IM

M
D
IM

M

Router

L1L1

L2
256KB

L2
256KB

Message Buffer

Tile

Management Console PC
Core

0
Core

1

VRC

M
C

M
C

M
C

M
C

R R

R

R R R R R R

RRRRR

R R R R R

R R RR

R

Tile

Tile

Tile

Tile Tile Tile Tile Tile

TileTile

Tile Tile Tile Tile Tile

TileTileTile

Tile TileTileTileTile

Tile

Figure 2.9: Schematic diagram of the 48-core Intel SCC [26].

To reduce hardware overhead and power consumption and to achieve high

scalability, cache coherency hardware for shared memory is nonexistent in the SCC.

Without coherency, shared RAM is not a viable method for high-performance data

sharing between cores. However, access latencies for MPB memory are much lower

than they are for RAM, and the MPB therefore offers relatively high performance

without caching. In lieu of coherency hardware, the SCC provides the NoC and

MPBs as a means to implement an efficient message-passing system for inter-core

communications.

The SCC die includes four memory controllers to interface with RAM; a

27

voltage regulator controller (VRC) capable of scaling chip voltage levels at a

granularity of four tiles per domain; and a system interface that interacts, through a

field programmable gate array, with a management console PC (MCPC), which is a

computer that serves as the user’s interface to the SCC. Each of these on-die

components is connected to the mesh network and therefore is potentially

addressable by any of the 48 cores.

In addition to the cores and NoC hardware, each SCC tile contains a set of

configuration registers. These registers include:

• LOCK0 & LOCK1 – a pair of test-and-set locks,

• GLCFG0 & GLCFG1 – a pair of core configuration registers,

• GCBCFG – a global clock configuration register,

• MYTILEID – a read-only unique identifier, and

• LUT0 & LUT1 – a pair of system address lookup tables.

The LOCK0/1 registers are atomic test-and-set locks that can be used to

enforce mutual exclusion. These are particularly useful as a tool to prevent race

conditions when accessing MPBs for a message-passing implementation.

The GLCFG0/1 registers each have two bits connected to the LINT0 and

LINT1 pins of the local advanced programmable interrupt controller (APIC) for

their corresponding cores. Each core has access to these bits for all of the cores in

the system and therefore can trigger a hardware interrupt on any core.

28

The GCBCFG register allows a programmer to set the clock frequency of the

local tile and of the local router. While all routers in the system must have the

same clock to prevent data loss and corruption in the NoC, tiles are able to be

clocked heterogeneously. Together with the voltage scaling capabilities provided by

the VRC, this frequency scaling allows for fine-grained power management across

the chip. The GCBCFG register also has a bit linked to each of the cores’ reset

pins. Offering the capability to reset discrete cores allows for even greater control

over power consumption and facilitates recovery from faults in individual cores.

The MYTILEID register contains a unique identifier for the local tile in the

form of its (x,y) location in the 6×4 grid of the chip. The value read from this

register differs by a single bit depending on which of the two cores on the tile reads

it, allowing each core to identify itself. The most common way to program the SCC

is to load the same single image into the private memory of all of the cores. For

such homogeneous image configurations, the MYTILEID register can be used to

differentiate code paths for different cores via conditional jumps.

On top of the standard segmentation and paging features of a typical P54C

core, the SCC has an additional layer of address translation that maps a core’s

32-bit physical address into a 46-bit system address. A system address includes the

identification of a router and one of the router’s ports, and it can refer to RAM,

MPBs, configuration registers, the VRC, or the system interface. Each core’s LUT

register contains 256 entries, one for each of the 16 MiB segments that make up a

29

core’s 4 GiB physical address space. Each entry is able to point to any system

address including the LUT itself, which enables dynamic system memory mapping.

Exploitation of this ability, along with further details of the LUT and system

addresses, is discussed in Section 4.4.4.

2.5.1 Many-Core Alternatives

The SCC is the architecture upon which this thesis work was developed.

However, it is worth mentioning a few of its contemporaries to compare the features

of the platforms and illustrate some viable alternatives in design.

The Tilera TILE64 is a commercially available processor with 64 cores and

multiple independent mesh NoCs [28]. Whereas the SCC has a single mesh for

handling traffic generated from events such as memory accesses, I/O accesses, data

streaming, and servicing cache misses, the TILE64 distinguishes between these

different events by using a different mesh for each one. Five on-chip meshes – called

the user dynamic network, I/O dynamic network, static network, memory dynamic

network, and tile dynamic network – each serve a particular purpose [27]. A

schematic representation of these networks is shown in Figure 2.10.

Tilera has released the TILEPro64 as the successor to the TILE64. Unlike

the TILE64 and the SCC, the TILEPro64 maintains cache coherency between cores.

The messaging traffic generated by the coherency protocol is significant enough to

30

Figure 2.10: Schematic 3 x 3 array of tiles connected by five separate networks on

the TILE64 architecture (from [27]).

cause Tilera to dedicate an entire additional mesh network solely to this

purpose [17].

Another cache-coherent design, the MIT ATAC is an unrealized architecture

focused in part on how to provide inter-core communication when the processor

scales beyond 1000 cores [29]. As illustrated in Figure 2.11, it is a tiled architecture

featuring a hierarchical interconnection network. The chip is divided into clusters of

cores. Each cluster consists of a hub connecting several cores in a star configuration,

31

Figure 2.11: Block diagram of the hierarchical on-chip network of the ATAC

(from [29]).

and the clusters are linked together by connecting all of the hubs in a ring topology

via an optical waveguide medium. While the ATAC architecture provides cache

coherency, it does so with a reliance upon this chip-scale optical communication

network, an unproven technology that has yet to be successfully mass produced.

2.6 Summary of Many-Core Computing

The evolution of semiconductor fabrication processes has driven computer

architectures from single-core processors to cache-coherent multi-core systems, and

it is now leading to non-cache-coherent many-core platforms. While some modern

architectures with dozens of cores are able to maintain coherency, the technologies

used to do so are not scalable. Therefore as chips scale further in parallelism, it is

important to figure out how non-coherent architectures can be leveraged by system

software for performance gains. Since the absence of coherency precludes efficient

shared memory processing, distributed memory paradigms, such as message-passing

32

communications, offer promising models for the many-core era. The following

chapter discusses recent work focused on distributed architectures, with a particular

emphasis on work related to the Intel SCC.

33

CHAPTER 3

Related Work in Distributed Architectures

3.1 Operating Systems for Many-Core Architectures

There are three general approaches to designing an operating system for

non-cache-coherent many-core architectures. The first is to manage coherency in

software so that traditional symmetric multi-processing (SMP) paradigms may be

used, such as employing a shared-memory kernel with data structures protected by

locks. The second approach is to abandon shared memory, make inter-core

communications strictly explicit, and design the system around this new paradigm.

While Boyd-Wickizer et al. argue that the latter is not necessary with currently

available hardware [30], they acknowledge that the status quo design would lack

performance in a future consisting of processors without high-performance cache

coherency. The third design approach is to view a many-core chip as a distributed

system and run a separate OS instance on each core. Insights from the fields of

networking and traditional distributed systems may benefit such on-chip clusters.

While Xipx fits into this last category, this chapter summarizes work that has been

done in each of the three domains.

Sobania et al. analyze the aspects of the SCC that fall short of the Intel

MultiProcessor specification [31], an accepted standard for SMP hardware support

34

in x86 systems [32]. Two such deficiencies are the architecture’s lack of cache

coherency and inability to transfer an interrupt vector number as a part of an

inter-processor interrupt (IPI) signal. The authors introduce RockyVisor, a

distributed hypervisor that emulates the necessary support in a virtual layer.

RockyVisor could be implemented as either a Type 1 (running directly on the

physical hardware) or a Type 2 (running as a process within a host operating

system) hypervisor [33]. A Type 2 prototype implementation is still in early stages

of development, so it remains to be seen how effective this solution is for distributed

architectures.

Lankes et al. are developing MetalSVM, a hypervisor that is based on a

shared virtual memory (SVM) management system [34]. The authors are

implementing MetalSVM as a Type 1 hypervisor and therefore have the freedom to

interact directly with the SCC hardware. As a result, much of their published work

discusses the low-level mechanisms, such as synchronization [35] and inter-core

communications [36], on which the hypervisor will depend. Again, the hypervisor

itself is not yet developed to a level that reveals the efficacy of the solution. Our

Xipx OS disallows memory sharing between cores and, therefore, has no need for a

coherency-enforcing hypervisor layer.

Rather than trying to cast many-core architectures into the cache-coherent

mold of their multi-core ancestors, some choose to rethink the mold. Allowing many

individual cores to operate within isolated memory spaces begets the likeness of a

35

distributed system, not a unified system with multiple computing elements. While

the latter is traditionally managed by a “single system image” (SSI) kernel, the

former demands a new model. Baumann et al. introduce the term “multikernel” to

describe their kernel model that is tailored to distributed systems [37]. The three

guiding design principles of the model are: making all inter-core communications

explicit (via message passing), making OS structure hardware-neutral, and

replicating rather than sharing system state. The authors realize a multikernel with

their implementation of the Barrelfish OS. Originally written for x86-64 multi-core

systems, Barrelfish also has been ported to the SCC [38]. While the OS assumes a

“shared nothing” paradigm for kernel functionality, it does not enforce the same for

applications. Because many modern parallel programs are based on a model of

many concurrent threads operating in a shared memory space, Barrelfish

implements a shared virtual address space over the multikernel.

Also taking a non-traditional approach, the Factored Operating System, or

fos [39], is designed specifically for multi-core, many-core, and cloud computing

systems, but it does not fit the model of a multikernel. The distinguishing design

philosophy of fos is to employ space sharing rather than time sharing. Instead of

having user applications compete with kernel services for CPU time, the two are

executed on separate, dedicated cores. The kernel itself is similarly factored with

different cores hosting different services such as page allocation, process

management, and file serving. Space sharing offers a reduction or elimination of

36

context switching, which in turn enhances cache locality and results in a more

efficient use of implicit resources such as caches and TLBs. To ensure scalability and

manage protection, fos uses message passing for interactions between cores. The fos

design depends upon the existence of systems of sufficiently large scale to justify

complete dedication of cores to individual services, and it depends upon a

sufficiently low-latency messaging system to ensure that the benefits of cache

locality outweigh the overhead of inter-core communications [40]. In contrast, Xipx

still runs all OS services along with applications on each core and therefore employs

time sharing as much as a traditional OS.

Finally, Intel provides a modern port of the Linux kernel (version 3.1) which,

running on the SCC as a separate instance per core, is able to load and launch user

applications [41]. SCC Linux is neither a traditional SSI, because it runs as a

separate instance per core, nor a multikernel, because the kernel instances are fully

separated without global state. Rather, SCC Linux treats the cores of the chip like

nodes in a cluster. Parallelism is recognized at the application level, not at the

kernel level. RockyVisor uses SCC Linux as its host OS. Xipx is similar to SCC

Linux as it is also a distributed OS with a separate kernel instance running per core.

Lacking in SCC Linux is built-in support for process migration, an important

feature of our Xipx OS.

As the SCC is strictly a prototype platform, it lacks certain hardware that is

typically found in a multi-core computer and expected by the Linux kernel, such as

37

a Basic Input Output System (BIOS). Therefore, SCC Linux entails some

non-standard kernel modifications to work with the unique hardware. Intel’s original

approach to adapt the kernel involved, for example, compiling it with hard-coded

values for certain parameters that otherwise would be filled through queries to the

BIOS. Non-Intel researchers have since proposed some more portable solutions,

including BIOS emulation [42], which are incorporated into later versions of the OS.

Another consideration for many-core OS design is overall system efficiency.

While many researchers in the field focus on keeping many cores actively performing

useful work in parallel, few focus on the efficiency of each individual core. Vasudevan

et al. advise us not to forget about exploitable single instruction, multiple data

(SIMD) [43] parallelism, such as SSE vector instructions and GPU resources, in the

MIMD world of many-cores [44]. While their Vector Operating System (VOS)

design is certainly able to increase performance by eliminating redundancy in

parallel operations, it leaves some significant open questions. Should OS designers

break from long-standing system call interfaces and force application developers to

specify work in terms of vectors of resources? If not, how can the OS recognize and

exploit vectorizable operations? As the SCC lacks vector processing hardware, the

questions of whether and how to increase SIMD parallelism in Xipx are moot points.

38

3.2 Inter-Core Communications

The most common form of inter-core communication in a distributed system

is message passing. However, computation migration is essentially another form of

communication in which the data transferred between cores represent a unit of

computation. This section surveys work done in each of these realms.

3.2.1 Message Passing

Message passing is a form of inter-process communication that has roots in

the early days of distributed computing [45; 46]. It is useful in systems that consist

of communicating processes that reside in disjointed memory spaces. The Intel SCC

features a distributed memory layout with hardware to support low-latency

inter-core message passing, and there are several researchers investigating how to

best take advantage of that hardware. While section 2.3.2 discusses the paradigm in

detail, this section discusses some of the research that has been focused on message

passing both in general and in the context of the Intel SCC.

The Message Passing Interface (MPI) standard is a library specification for

message passing [47]. Completed in 1994, MPI Version 1.0 was proposed by an

international committee of vendors, researchers, implementors, and users. The

standard aims to describe portable primitives for communication in distributed

memory systems of various scales. These primitives include functions for

39

point-to-point communications, collective communications, synchronization, and

management of channels. With efficient implementations for a wide range of

hardware, MPI has become the de facto standard for message-passing-based parallel

programming [22; 48].

There have been a few independent efforts to develop an MPI

implementation for the SCC. The RCKMPI library [49] features three SCC-specific

MPICH2 [50] channels: SCCMPB, which uses the message passing buffer

exclusively; SCCSHM, which uses off-chip RAM exclusively; and SCCMULTI, which

uses a combination of the two. In general, MPI programs can benefit from

user-supplied communication topology information, but this feature was not

supported in the original RCKMPI. Christgau et al. enabled the feature by

rearranging and resizing data structures in the MPB [51]. Separately, the SCCMPB

channel later was improved with the addition of dynamic process support (a part of

the MPI Version 2 standard) and a more efficient communication protocol [52].

Based on MP-MPICH [53], the SCC-MPICH library [54] stands as another

MPI implementation for the SCC. The developers have demonstrated acceptable

performance from this library, but they refuse to share it with the community for

fear that they may lack the human resources for user support [55].

The proven MPI standard has been influential in the design of other SCC

message passing protocols. RCCE [41] (pronounced “rocky”) is a message passing

library with a semantics based on a subset of the MPI standard. Developed by

40

Intel, RCCE was co-designed with the SCC hardware. In addition to the

communications primitives, RCCE provides an API for SCC power management

operations such as frequency and voltage scaling. Although the library offers high

performance in terms of message passing bandwidth, it is subject to certain

restrictions including that only one parallel RCCE program may be executing on

the chip at a time [56]. Additionally, RCCE send and receive calls are synchronous

and blocking. In contrast, our device-layer management of the message-passing

hardware, discussed in Section 4.3.2, is asynchronous and allows for an arbitrary

number of parallel applications to share the hardware concurrently.

The RCCE library can be compiled both for SCC Linux and for “bare

metal.” Because bare-metal RCCE is merely a library and not an entire execution

environment, it alone does not provide the framework needed to run bare-metal

applications. Rather, it depends upon a bare-metal environment that will configure

an SCC core for 32-bit protected mode execution and provide a few particular

POSIX functions, file operations, and C library functions. In Section 4.5, we

introduce BareMichael, a minimalistic framework for bare-metal program execution

on the SCC. BareMichael serves as the foundation for Xipx, and it (optionally)

provides sufficient support for the bare-metal RCCE library.

Clauss et al. developed some useful extensions to the RCCE library [57].

Dubbed iRCCE (for “improved RCCE”), their extensions not only add new

non-blocking send and receive functions, but also improve the performance of the

41

standard blocking versions of the functions by optimizing memory copies between

MPBs and private RAM. For message lengths above a certain threshold, iRCCE

uses pipelining to further improve bandwidth. In addition, iRCCE introduces two

wildcard arguments, one of which may be used to receive messages of arbitrary size,

the other to receive from arbitrary senders. Standard RCCE requires that both of

these parameters are specified explicitly for calls to the receive function. While the

non-blocking primitives of iRCCE offer performance benefits, the library requires

the user to call a pushing function to make progress. This makes for more

complicated code compared to our Xipx device, which implicitly makes progress in

the background. Performance comparisons between RCCE, iRCCE, and the Xipx

MPB device are given in Section 5.1.

As another improvement on RCCE, Chandramowlishwaran and Vuduc

developed efficient collective communication algorithms, namely broadcast and

reduce, that outperform those of the RCCE library by a factor of 22 and 6.4

respectively [58]. The improved algorithms were guided by a performance model the

authors built from micro-benchmarks of the SCC NoC.

Also using micro-benchmarks, Rotta measured various latencies in the SCC

and used the results to analyze the tradeoffs involved in a number of design choices

for a message passing implementation [59]. In addition, he produced a quantitative

analysis of several existing protocols. However, the Xipx implementation does not

42

fit well into the design space proposed by Rotta, and therefore it is not easily

analyzed by his methods.

The Barrelfish OS implements a unique message passing layer that uses MPB

space only for inter-core notifications [38]. Payloads are transferred via off-chip

RAM. This design decision was motivated in part by the limited size of MPB

memory, the need to support multiple message channels simultaneously, and the

lack of fine-grained cache control. Like our Xipx MPB driver, the Barrelfish driver is

interrupt-driven.

3.2.2 Computation Migration

Computation migration is the act of moving an executing unit of

computation (e.g., a process or a thread) between two processors in a distributed

memory system. Some applications of migration include:

• dynamic load balancing, which is useful for enhanced throughput [60], reduced

power consumption [61], and control of thermal balance [62];

• reduction of communication latency, which is gained by moving

communicating entities closer together [63];

• and fault tolerance, which is enhanced by migrating work away from failing

cores [64].

43

With the increasing parallelism of new architectures, efficient migration is becoming

more important than ever.

Different challenges are faced depending on the migration granularity that is

pursued. The state of an executing process consists of many resources including

code, static data, dynamically allocated data, local stack data, and register state. It

also incorporates communication state, which includes open communication

channels and pending outgoing and incoming network messages, and kernel state,

which includes open devices and files [19]. In general, all of this state must be

transferred to migrate a process. On the other hand, a given thread may not need

all of the resources of its associated process, and therefore thread migration has the

potential to be a more lightweight procedure. However, a significant challenge in

thread migration is determining just how much state needs to go with the thread for

it to operate in its new home, and how to deal with the resources that are not

migratable [65]. In Xipx, migration is only supported for user threads (Section

4.4.1), which are similar to single-threaded processes. Process migration is therefore

the more relevant field of study for the purposes of this thesis, however we will also

touch on a couple of recent developments at the coarser- and finer-grained ends of

the spectrum.

In a straightforward migration implementation, a process is frozen, then its

complete state and address space is transferred to the destination machine, and

finally it is resumed at its new location. However, as data transfer is typically the

44

most expensive operation in a migration [66], this protocol incurs significant latency.

As an alternative strategy, the V kernel pre-copies memory pages while allowing a

process to continue executing on the source machine [67]. After a complete

pre-copy, the process is frozen and its state is migrated, then any pages that were

modified during the pre-copy period must be updated on the destination before

resuming the process. Copying some pages twice increases the communication

overhead, but this strategy greatly reduces the freeze time of the migrated process.

Xipx user thread migration is done in the straightforward manner, but it uses

unique SCC hardware features to perform rapid bulk data transfer between cores.

An alternative strategy for data transfer is a lazy protocol, in which a

minimal amount of resources and address space is transferred initially, and further

memory pages get shipped on-demand when they are needed. This approach, used

in Accent [68], offers reduced freeze time at the time of migration but incurs many

short delays later when additional pages are migrated. A significant advantage is

that a process often may not reference a substantial portion of its address space

after migration, so many pages may not need to be transferred at all. However, a

disadvantage is that the source processor needs to retain the yet-unreferenced

resources of any processes that have migrated away. This is one example of a

residual dependency, which is, in general, a resource on the source machine upon

which a migrated process continues to rely. Besides adding complexity and overhead

to a system, residual dependencies decrease reliability. A failing processor may take

45

down not only its local processes, but also any processes for which it holds residual

dependencies. A process that makes multiple hops in its lifetime may leave residual

dependencies scattered throughout the system and therefore become increasingly

fragile as it becomes sensitive to the potential failure of more and more

processors [66].

Sprite [69] uses a variation of the lazy data transfer approach which

eliminates the residual dependencies discussed above. It relies upon a networked file

server to which a process’s dirty pages get flushed before the process is migrated.

The destination core then retrieves pages from the server rather than from the

source core when page faults occur. Dirty pages get transferred twice, both from the

source to the server and from the server to the destination, which incurs some

increased overhead.

Sprite, however, is not devoid of residual dependencies. The kernel is largely

focused on transparency in the sense that a process should always appear, both to

the user and to all processes in the system, as though it is executing on its “home

machine,” the machine on which it was created. In other words, from outside of the

kernel, it should look like migration never happens. Sprite achieves this goal at the

expense of some residual dependencies. For example, a user or process may send the

kill signal to a process at any time, and, in a transparent system, this signal would

be directed to the home machine. If the process has been migrated, then the home

machine is responsible for forwarding that signal to its new location. Similarly, some

46

system calls, such as gettimeofday, get forwarded to and serviced by the home

node so that migration is transparent to the migrated process itself. To mitigate the

problem, Sprite ensures that subsequent migrations after an initial one do not leave

residual dependencies on the intermediate nodes, thereby limiting them to the home

machine only.

The type of residual dependency just described, that which is due to

communication redirection, commonly arises from the effort to enforce migration

transparency [70]. The Amoeba OS [71] avoids communication-based dependencies

by use of the Fast Local Internet Protocol (FLIP) [72], which associates a network

address with a particular process rather than with a host, thus making the address

itself migratable. Both LOCUS [73] and V [67] maintain local caches of last-known

locations of recently-accessed processes and are therefore able to bypass the home

node. While V corrects for stale process location information by broadcasting a

request for it, LOCUS retrieves updated information from the home node and

therefore retains a dependency. Our initial implementation of migration in Xipx

leaves no residual dependencies but sacrifices a degree of transparency. Inter-process

message passing remains transparent, but some system calls do not. For example,

the kill system call can only kill local threads, so a thread may not realize that a

once-local thread has migrated away and therefore that it cannot be killed.

In addition to being pursued at the granularity of individual processes,

migration has also attracted interest from the virtual machine (VM) community.

47

With many of the same motivations that drive process migration – including load

balancing, fault tolerance, communication latency reduction, and power

management – investigators have developed ways to migrate entire VMs across

hosts [74; 75; 76]. A VM conveniently encapsulates all of the state of hardware and

software running within, thereby simplifying migration by moving not only a set of

processes, but also the entire context in which they are executing. Furthermore, this

approach enables migration even when the source and destination host machines are

running different operating systems. VM migration has been used in practice to

move, for example, active web servers [77]. “Live migration” is achieved using the

pre-copying introduced in V, and local-area network migrations have been

demonstrated with server downtime of only a few seconds. Wide-area network

migrations achieve downtimes of tens of seconds.

On the other end of the spectrum from VM migration, task migration

involves movement of very fine-grained units of computation. The task parallel

programming model [78] prescribes the use of a number of concurrent worker

threads to execute a great number of individual tasks. The feasibility of this model

is investigated specifically in the context of the SCC by both [79] and [80]. Two

common scheduling strategies for task parallelism are work sharing and work

stealing. The work sharing approach uses a single centralized queue from which all

worker threads retrieve tasks to execute. The work stealing strategy employs a

separate work queue for each worker thread, and threads that exhaust their queue

48

may attempt to steal tasks from others to stay busy. The authors in [80] assert that

work stealing is the superior strategy on the SCC, but the experiments in [79] show

that work sharing exhibits better performance when there is a high variation in the

amount of work done per task. While these papers do not focus on the technical

challenges of process migration, fine-grained task migration is nonetheless a

common practice in which a workload is shifted between processing cores.

The distributed Barrelfish Inter-core Adaptive Scheduling (BIAS)

scheduler [81], a two-layer extension of the RBED scheduler [82], performs task

migration for load balancing. Two different methods of pre-migration task

suspension are performed depending on the implementation details of the worker

thread framework that is used. In spite of being an unoptimized implementation,

the adaptive load-balancing scheduler shows improved throughput for some of the

tested benchmarks.

3.3 Summary of Related Work

This chapter has discussed recent work in many-core operating systems of

various designs, message passing implementations, and solutions for computation

migration in distributed systems. Most of the work covered has been directly

related to the Intel SCC. Throughout the chapter, we have mentioned ways in which

our work on Xipx compares to the work being discussed. The following chapter

49

describes Xipx in detail, first introducing the Embedded Xinu kernel from which it is

derived, then explaining the many-core extensions that adapt it for use on the SCC.

50

CHAPTER 4

Xipx: A Many-Core Operating System

In this chapter, we introduce Xipx, a lightweight operating system for a

modern many-core architecture. The target platform for Xipx is the Intel SCC, a

non-cache-coherent, cluster-on-a-chip architecture with hardware to support

low-latency inter-core message passing. Due to the lack of cache coherency on the

SCC, the many cores of the chip are typically configured to have access to disjoint

private memory spaces, thereby resembling a distributed environment rather than a

traditional multi-core platform. As a result, system services such as task scheduling

are best handled at the core level, not the chip level. Therefore, Xipx is designed to

be booted as a separate instance on each core. In the following sections, we discuss

the design and implementation of some crucial aspects for our distributed operating

system. The chapter concludes with a description of BareMichael, a minimalistic

bare-metal programming framework for the Intel SCC that was extracted from the

Xipx kernel and released as open-source software for public use.

4.1 Original System

Xipx was built on the Embedded Xinu kernel [1; 2]. The original Xinu

operating system [83] has been ported to many platforms in the past

51

quarter-century, and it has a proven track record of both classroom and commercial

use. The modernized Embedded Xinu port is a multitasking kernel featuring a

preemptive scheduler, dynamic memory management, synchronization and

inter-thread communication primitives, and a robust device driver API. Despite its

wide set of capabilities, Embedded Xinu remains a lean, agile kernel comprising

under 20,000 lines of code. Being composed of such a modest codebase lends to the

understandability, accessibility, and adaptability of the kernel, all of which make it

an excellent research vehicle. Recently, Embedded Xinu has been the underlying

platform for research in such fields as IP-based telecommunications [84; 85] and

lock-free software concurrency mechanisms suitable for arbitrary data

structures [86].

4.2 Extensions for Many-Core Support

Although Xinu is a very capable operating system for a single-core

environment, significant extensions are needed to exploit adequately the unique

hardware features of a distributed many-core architecture. We have chosen the Intel

SCC as the target platform for the inaugural development of our many-core

operating system. The SCC is a highly scalable architecture developed by a major

leader in the CPU industry, and there is a sizeable, active community of researchers

using it to pursue diverse avenues of research on the next generation of parallel

computing [87]. Two of the most crucial areas in which an OS can offer support for

52

development on a many-core platform are in providing frameworks for message

passing and for computation migration.

Computation migration – the act of moving an executing thread or process

from one processor to another – is an ability from which any distributed system can

benefit. Migration enables active load balancing, which can enhance system

throughput [60] and power management [61]. It also allows a single core in a

distributed system to launch a parallel task that can spread out to take advantage

of the distributed resources.

With its on-tile message passing buffer (MPB) memory and on-chip mesh

network, the SCC was designed for fast, scalable inter-core message passing. As a

fundamental system resource upon which multiple processes may rely

simultaneously, the message passing hardware is something that is best managed by

the kernel. Therefore, a natural extension for Xipx is to provide a lightweight

framework and adequate API to give users access to the fast message-passing

hardware of the SCC.

Although message passing and migration are very general capabilities for a

many-core OS, our work on Xipx is motivated particularly by a goal to support the

concurrency constructs that currently are being built into Tamarin, the open source

ActionScript virtual machine. These extensions follow a model of computation

based on memory-isolated, location-transparent worker threads interacting via

53

message-passing communications [5]. The distributed nature of the SCC makes it an

ideal host for such a model.

The following sections present specific details regarding the implementation

of the discussed many-core extensions to the Embedded Xinu kernel.

4.3 Message Passing

To improve scalability, the SCC omits cache coherency in favor of a fast

on-chip network and low-latency, tile-local memory buffers. Such hardware

encourages the use of message passing rather than shared memory for inter-core

communications [16]. This section discusses the design and implementation of a

message passing framework that takes advantage of this hardware and is consistent

with Embedded Xinu’s philosophy of lightweight, minimalistic kernel design.

4.3.1 Message Passing with the MPB

Functionally, the SCC message passing hardware is nothing more than

on-chip shared memory that is evenly distributed among the 24 tiles [26]. The

on-chip routers provide no special support for broadcasting data; they only facilitate

writes from a core to a single location. To the programmer, the routers are

transparent, and every MPB read and write looks like a simple memory access. It is

upon this hardware that a message-passing framework as described in Section 2.3.2

must be implemented.

54

In [59], a thorough exploration of a many-dimensional design space for a

message-passing framework on the SCC reveals the tradeoffs that exist for different

design decisions. The dimensions of the space include message placement (sender’s

MPB vs. receiver’s MPB) and notification methods (including polling and inter-core

interrupts), and different communication patterns, such as scattering (one core

writes one message to many cores) and gathering (many cores each write a message

to one core), will benefit from different design choices. For example, a scattering

pattern using sender-side placement requires a single write of the data, while

scattering with receiver-side placement requires a write per receiver. In contrast, a

gathering pattern will benefit from receiver-side placement because local reads are

slightly faster than remote reads, and senders can do their remote writing in parallel.

One of our design parameters is the decision of how to allocate MPB

memory for messages. In consideration of this dimension, let us assume messages

are placed on the MPB of the receiving core. One option is to divide evenly the

MPB space into fixed size message slots. Each slot may be statically allocated for

use only by a particular sender, or the system may allow any sender to use any

available slot. While the former may offer a simpler implementation, the latter has

the advantage of scalability as the number of slots required does not increase with

additional cores. The former also has the drawback of underuse of MPB space when

a core has few communicating partners. However, even the implementation with

55

dynamically allocated slots will underuse MPB space when messages are smaller

than a slot. Such a condition is a form of internal fragmentation [19].

In the design chosen for Xipx, messages have receiver-side placement, and

they are variable in size. By “variable in size,” we mean that there are no predefined

message slots; regardless of length, messages are tightly packed on the MPB. (In

fact, our implementation constrains messages to begin at cache line boundaries for

performance reasons, so there may be as many as L− 1 bytes of unused space

between messages, where L is the length of a cache line.) To avoid the use of slots

and placement restrictions, each message is prepended with a small header that

includes source and destination information and the length of the message.

A “first in, first out” (FIFO) queue is created in the MPB space by treating

it as a circular buffer with the first few bytes reserved to hold the head and tail

indices. Viewing message passing as a producer-consumer scenario, receiver-side

placement means a queue has multiple producers but only one consumer. The

benefits of this implementation are two-fold. First, while the many producers

require mutually exclusive accesses to write to the buffer, the single consumer can

pull messages off of the queue at any time. This is possible because the consumer

only updates the tail, and the tail is not updated by producers. In other words,

there are no shared resources that get updated by both the consumer and some

other code. Unfettered consumption is important because message retrieval occurs

in Xipx within an interrupt handler, and without the need to acquire a lock for

56

synchronization, the handler will run with low jitter, or variability in execution

time. Second, using a FIFO allows the handler to check one memory location – the

tail index of the local MPB – to locate the message(s) to retrieve. Using sender-side

placement and/or abandoning the FIFO in favor of a structure that allows

out-of-order accesses could allow multiple senders to write messages in parallel, but

it necessarily would create a more complicated look-up scheme for message retrieval

which could increase handler execution time.

Regarding this last trade-off, certainly when there are many cores trying to

write to a single receiver at the same time, the bottleneck of forcing sequential

writes becomes a much more significant system-level effect than the increased

overhead of a look-up scheme. A slotted implementation would alleviate this

bottleneck by allowing senders to write messages simultaneously. However, if any

slot can be written by any core, then slot allocation still must be done sequentially,

although presumably at a lower cost than sequential message writing. Using slots

that are preallocated to specific cores eliminates the need for any sequential

operations between multiple senders, but this is not very scalable as the fraction of

MPB memory any one core may write reduces as 1/(n− 1) for an n-core system.

Considering sender-side message placement rather than receiver-side opens the

possibility of parallel writes with dynamically allocated slots, but remote reads on

the receiver’s end come with a greater latency than local reads. Clearly, message

placement decisions can have significant effects on performance for various

57

communication patterns, and further theoretical and empirical analysis is a worthy

avenue for future research.

Another consequence of using variable sized messages delimited by headers is

that the MPB becomes a linked list rather than an array. As a result, if a single

message header’s length field is corrupted, the system is unable to determine the

location of the next message, and the entire list is lost. This is a common problem

for any linked list, but the risk is reduced in our implementation by ensuring the

length field is hidden from the user and only written by system code.

While this section is concerned with implementation details for a message

passing framework, the following section mainly discusses the interface of the Xipx

message passing device.

4.3.2 MPB Driver

The message passing hardware of the SCC is exposed to the Xipx user

through the standard Xinu device API [83]. Several instances of the MPB device

are created in the OS, the number of which is defined at compile time, and each

device acts as a two-way message passing channel. To support this abstraction,

message headers specify a sender-side and receiver-side socket identifier. The

complete set of fields that make up a message header are tabulated in Table 4.1.

Threads may allocate and open an MPB device at runtime, and they must specify

whether to open each device in ACTIVE mode or PASSIVE mode. In general, an

58

ACTIVE mode device may send messages only to a single socket on a single core

and receive messages only from that same core at a single local socket. A PASSIVE

device may send to any socket on any core and may receive from any core, but only

from a single specific local socket.

Table 4.1: Message header format.

Field Length (bits) Description

src 16 core ID of the sender

dst 16 core ID of the receiver

sndrsock 16 socket of the sender

rcvrsock 16 socket of the receiver

len 32 length of message in bytes

When an MPB device is opened in ACTIVE mode, the user specifies the

dst, txsock, and rxsock to use. While dst and txsock must be specified, the user

may pass a 0 as the rxsock to tell the device to allocate an unused socket of its

choice. When the user calls write() on an ACTIVE MPB device, he or she must

pass three arguments: the ID of the device, a pointer to a buffer containing the

payload to send, and the length of the buffer in bytes. The driver then prepends the

payload with a header whose fields are filled according to the values with which the

device was opened, and then the header and payload are written to the MPB of the

dst core. Before returning, the driver issues an interrupt on the receiving core. The

handler for this interrupt is described below.

When an MPB device is opened in PASSIVE mode, the only parameter that

59

matters is the rxsock. Calling write() on a PASSIVE MPB device requires the

same three parameters as it does on an ACTIVE device – a device ID, a buffer

pointer, and the buffer length – but the buffer must contain a header in addition to

the payload. Since the user explicitly writes the message header, he or she is able to

route the message to any destination by setting the dst and rcvrsock, but he or she

is also able to make it look like the message came from any source by setting the src

and sndrsock. The buffer length argument passed to write() should be the length

of only the payload. The driver copies this length into the len field of the message

header before delivering the message. PASSIVE mode MPB devices are useful to

allow daemons to retrieve and service requests that can come from any core.

Before a write() call returns, it triggers an interrupt on the receiving core.

The handler for this interrupt looks at the local MPB to find the least recently

written message, reads the message header, and searches for an open local device

that either (a) is ACTIVE and has a dst and rxsock that match the src and

rcvrsock of the header, respectively; or (b) is PASSIVE and has an rxsock that

matches the rcvrsock of the header. When such a device is found, the message is

copied to a buffer in private memory, and the state of that device is changed to

indicate that a message is waiting.

The read() function in Xipx is the dual of the write() function. It takes

three arguments: the ID of the device to read from; a pointer to a buffer in which to

copy the retrieved message; and the buffer length, which is the maximum number of

60

bytes that can be copied into the buffer. The MPB device is implemented as a

synchronous device. When a user calls read() on an MPB device, the driver checks

to see if a message is waiting. If so, the message gets copied into the passed buffer,

and the function returns immediately. If there is no message available, the thread

blocks and does not resume until one is received. If the device is in ACTIVE mode,

only the payload is copied back to the user; for a PASSIVE mode device, the header

is also copied. The value returned by read() reflects the number of bytes copied

into the buffer (including the size of the header for a PASSIVE device).

There are four ways in which a message delivery can fail in Xipx. The

simplest way is if a user tries to send a message that is larger than a defined

maximum size, MPB MAX PKT SIZE. The driver refuses to send messages that are

longer than this constant. A delivery also fails if the driver finds that there is not

enough room for the message on the receiving core’s MPB. Both of these errors are

reported to the sender via the return value of the write() function. If a message

does make it from the sending core to the receiver’s MPB, delivery fails if there is

no open device that is configured to receive it (based on the device mode and the

message header’s src and rcvrsock fields). Finally, failure also occurs if an

appropriate device is found to receive the message, but the device has no available

buffers in which to store it. Because we implement an asynchronous MPB device,

the sender returns immediately after a write to the receiver’s MPB succeeds, and

therefore it does not get notified in the event that either of these last two failures

61

occur. This design was chosen for increased performance. However, there are simple

ways of implementing a synchronous device in case the user needs the reliability of a

blocking send. For example, a sender could clear a single dedicated byte on its MPB

prior to a send, then repeatedly poll it while the receiver is handling the message

that was just sent. The receiver would change the byte to indicate the result of the

reception, and the sender would pass this up to the user.

Optimizations for SCC Hardware

The GaussLake cores of the SCC offer some unique features not found on the

standard P54C, the core on which its design is based. Here we discuss these features

and how we exploit them to improve the efficiency of our MPB device.

The memory management capabilities of the GaussLake core include a new

flag for page table entries. When this flag, called PMB, is set, the page to which the

entry refers is considered “message passing buffer type” (MPBT) memory [26].

Accesses to such memory are cached by L1 cache only – L2 cache is bypassed. Each

cache line in L1 includes a flag to represent whether the present line is MPBT or

not. Since cache coherency for the shared MPB memory must be managed in

software, MPBT lines must be explicitly invalidated at appropriate times. Using a

heavy-handed INVD instruction, which invalidates the entire L1 cache, would

degrade system performance by wiping out lines of private memory from L1 and

consequently causing more accesses to L2 cache and/or RAM. Instead, the

62

GaussLake core is able to invalidate all MPBT cache lines without affecting

non-MPBT lines via a new instruction called CL1INVMB. This instruction only

invalidates cache lines – it does not flush them. There is no instruction to explicitly

flush MPBT lines from L1.

The core additionally features a write-combining buffer (WCB) which is the

size of a cache line and enhances the speed of writes to MPBT memory. When the

core issues a write to an uncached MPBT line, the data is not committed to the

MPB right away, but buffered in the WCB. Once a series of writes fills the WCB,

the whole cache line is written to the MPB in a single burst. The WCB only buffers

full cache lines, i.e., data that belongs to a cache-line-aligned set of contiguous

addresses. The data in a partially filled WCB gets flushed back to the MPB if the

core issues a write to an MPBT memory address that is not part of the cache line

that the WCB is currently buffering. To fully exploit the WCB for fast writes to

MPB memory, one must first issue a CL1INVMB to ensure that the locations to write

are not cached in L1. Then one must write entire cache lines, or, if writing a partial

cache line, be sure to follow it with a write to a different MPBT cache line to flush

the partially filled WCB.

Underestimating the benefits of caching the relatively fast MPB memory, our

naive first implementation of the MPB device disregarded these GaussLake features.

MPB memory was simply mapped as uncached, and coherence was therefore not a

concern. However, in our latest implementation, we found that message passing

63

bandwidth can be significantly improved by taking advantage of the burst reads and

writes offered by L1 cache and the WCB. The benefits of our SCC-specific

optimizations are presented quantitatively in Section 5.1.2.

4.4 Computation Migration

While efficient message passing is an important component of a distributed

OS, its implementation as a peripheral device does not alter the nature of the

Embedded Xinu kernel. On the other hand, enabling the migration of executing

threads requires significant extensions to the kernel, and these extensions are the

primary attributes that distinguish Xipx from Embedded Xinu. A new type of

thread, virtual memory management, indirect device references, and a migration

protocol are the enabling features discussed in this section.

4.4.1 User Threads

Traditional Embedded Xinu recognizes a single class of computational

unit [83]. Although this unit does not fit perfectly with any one definition given in

Section 2.2, it most closely resembles a thread. Each Xinu thread has a unique state

including a stack, stack pointer, instruction pointer, and register values. While there

are several research ports of Xinu that include virtual memory support, the default

version does not, so all threads exist in the same memory space. Because there are

no processes in Xinu, the code that a thread executes is contained in the kernel

64

image, and heap memory is shared among all threads in the system. However, Xinu

threads are process-like in the sense that they do not necessarily all work together

towards a unified purpose. Also, although Xinu threads can communicate via shared

memory, a mailbox system exists in Xinu to deliver single-word messages from one

thread to another in a manner that typically is used for inter-process

communications. Although the design of Embedded Xinu makes assumptions about

what a thread should and should not do (i.e., what kernel functions and resources

should and should not be accessed by a thread), there is no actual protection built

into the kernel. The kernel and all threads are vulnerable to corruption, as any

thread can access and modify the entire memory space.

Besides the lack of protection, the problem with using Xinu threads in a

many-core system is that they are not migratable. Xinu is a monolithic kernel,

meaning threads get linked together with the kernel to form a single image. Each

thread exists at a specific, unique location in memory, and correct execution of the

binary code into which the thread gets compiled depends on it being located at that

unique spot. If the code is relocated in memory, it will not execute properly.

Therefore, a Xinu thread would only be able to migrate from one core to another if

the exact memory space that the thread requires were available on the receiving

core. In addition, any resources that the executing thread has allocated dynamically

and still depends upon would have to migrate to their same locations in the

65

receiving core’s memory space too. Given these restrictions, it is clear that a Xinu

thread is not suitable for migration.

Xipx supports the traditional style Xinu thread described above and refers to

it as a kernel thread. In addition to the kernel thread, Xipx introduces a new class

of thread, called a user thread, which differs from a kernel thread in a few key ways.

Most significantly, a user thread exists in a virtual memory space, meaning it may

be located anywhere (with page-size granularity) in physical memory without

jeopardizing correct execution. As a result, a core needs only to have enough

memory available to receive a migrating thread – a much more relaxed restriction

than requiring the availability of specific memory locations. Also unique from kernel

threads, a user thread holds indirect references to kernel resources it may need, such

as device IDs. Similar to the effect of virtual memory, this trait reduces migration

restrictions based on device availability. Both of these properties are described in

more detail in the following sections.

Note that in spite of their chosen names, the two threads described here

differ in character from the traditional definitions [19] of user thread and kernel

thread given in Section 2.2. A Xipx kernel thread is like a traditional one-to-one

mapped thread that is not a part of a process. Another way to think of it is to view

the kernel itself as the process-like entity that owns the Xipx kernel thread. On the

other hand, a Xipx user thread is like a single-threaded process. In the remainder of

66

this thesis, the terms “user thread” and “kernel thread” refer to the Xipx versions

unless otherwise noted.

4.4.2 Virtual Memory, Protection, and System Calls

In addition to making user threads migratable, virtual memory management

adds the benefit of executing each user thread in isolation, thereby protecting the

kernel and all other threads from being corrupted by malicious or erroneous threads.

The organization of memory in Xipx is illustrated in Figure 4.1. The kernel sees a

flat view of physical memory, while each user thread is isolated in its own virtual

memory space. Thread code is mapped to the bottom of the memory space, and

stack and heap memory are mapped higher up. A thread also has the Xipx kernel

mapped flatly into its physical location so that handlers located in the kernel can be

called when an interrupt occurs. However, during thread execution the CPU

privilege level (discussed below) is such that the kernel is neither readable nor

writable; only upon receiving an interrupt does the privilege level change so that the

kernel can service the interrupt.

Thread isolation through virtual memory management is necessary for

system protection, but it is not sufficient. In addition, the system must restrict the

set of CPU instructions that is available to the thread. For example, there are

instructions that modify the virtual memory mappings. If a thread were allowed to

67

Thr 1 code

Thr 1 heap

Thr 1 stack

Thr 2 code

Thr 2 heap

Thr 2 stack

Virt Mem
Bookkeeping

Kernel

Code

Heap

Stack

Kernel

Code

Heap

Stack

Kernel

Thread 1 Thread 2
Kernel

(Physical)

Kernel

Figure 4.1: User threads are isolated in virtual memory spaces.

execute these instructions, it would be able to get out of isolation and potentially

corrupt the kernel and/or other threads.

Since the SCC is based on the x86 architecture, each core of the chip has

privilege level management capabilities [11]. At any time, a core is executing in one

of four privilege levels. These levels, often referred to as “Rings,” are numbered 0

through 3, with numerically greater Rings having lesser privileges. Some CPU

instructions (e.g., those that modify virtual memory mappings) are only executable

from Ring 0. Others (e.g., I/O accesses) are only executable in some configurable

set of Rings. A common practice is for an operating system to only use two Rings –

Ring 0 for kernel code and Ring 3 for user code. An x86 interrupt gate is a data

68

structure that defines how the processor should behave when an interrupt occurs.

An interrupt gate can be configured to change the processor to Ring 0 when its

associated interrupt is triggered from Ring 3. This is the feature that makes it

possible to keep the kernel’s interrupt handlers mapped in a thread’s memory space

so that they can be executed when needed, and yet not be in danger of being

corrupted by the thread.

Keeping a user thread isolated in a lower privilege level is necessary to

protect the system, but user threads often require access to more privileged system

functions for tasks such as I/O accesses and inter-thread communication. For this

reason, operating systems provide threads with a system call interface – a controlled

gateway through which threads may request that the kernel carry out privileged

operations on their behalf. A common implementation of system calls on an x86

architecture sets up an interrupt gate that can be software triggered from Ring 3.

This gate is configured to change the privilege level of the CPU to Ring 0 and jump

to a handler in the kernel that selects which system call to execute based on an

identifier the user passes in a general purpose register. When the system call

completes, the kernel puts the CPU back into Ring 3 before returning the result to

the user thread. Appendix A describes the procedures and CPU configuration that

Xipx uses for virtual memory management, privilege level handling, and system call

operations, along with some subtleties involved in switching between different

memory spaces.

69

4.4.3 Indirect Device References

As in Embedded Xinu, each instance of a Xipx device has a unique identifier.

Typical device use in a Xinu thread starts with a call to the system function

getdev() or to some other device-specific allocation function. The identifier for the

device is returned, and the thread stores that identifier somewhere so that it may be

used in future device calls such as open() and write(). In Xipx, this procedure

works fine for kernel threads, but it is insufficient for migratable user threads. If a

user thread on core A holds a direct reference to some device and then it migrates

to core B, it will try using the device on B that has the same identifier as the one it

was using on A. (Device identifiers are not universally unique – they are only

unique with respect to the other devices on the same core.) That device on B is

almost certainly not configured the way the old device was, and it may even be in

use by some other thread. Embedded Xinu does not keep track of which threads are

using which devices, so the kernel would be unable to tell that a conflict has arisen.

Xipx addresses this issue by keeping a record of each user thread’s allocated

devices and only exposing to the thread an indirect, thread-level device reference

rather than the true, kernel-level identifier. When a user thread calls any device

allocation function, the kernel stores the identifier of the allocated device in an

array in the thread table, and it returns to the thread the index to which the

identifier was stored. User threads use that index as an argument for any device

70

calls they make. The kernel then looks up the true device identifier and passes it to

the device call along with the other arguments from the user thread. This indirect

reference system is illustrated in Figure 4.2.

tid = 3

kernelwrite(2, ...)

thrtab[3]

012345
12 9 1 400.devloc[]

thrtab[3].devloc[2] = 9

write(9, ...)

Figure 4.2: The kernel translates thread-local device IDs to system device IDs before

calling device functions.

With a record of device usage kept in the kernel, a pair of cores can work out

the necessary device dependencies before migrating a thread between them. Prior to

migration, the receiving core is given the thread’s device array along with sufficient

information about all devices that it references. Before committing to receive the

thread, the receiving core ensures it has the same types of devices that the thread

needs. If it does, these devices are allocated and properly configured, and the

entries in the thread’s device array are updated to point to them. The thread

71

continues to use the same local device identifiers without knowing that the global

identifiers to which they refer may have changed during migration. After offloading

the thread, the originating core can free all of the devices that the migrating thread

had been using.

We see that the use of indirect device references has a similar effect as the

use of virtual memory in terms of reducing migratability restrictions. Namely, a

device is restricted not by the availability of specific devices on the destination core,

but only by the availability of the specific types of devices to which it holds

references. For example, if a thread is using just one device which is of type T and

has identifier I, it can migrate to any core with any T device available, regardless of

that available device’s identifier (provided the receiving core also has enough free

memory to take on the thread).

4.4.4 User Thread Migration

As previously discussed, thanks to virtual memory management, a user

thread may be located anywhere, with page-size granularity, in physical memory.

Xipx creates user threads so that their code, stack, and local heap each align with a

page boundary. Therefore, when a core requests to offload a thread to a “helper”

core, the helper checks to make sure it has enough page-boundary-aligned free

memory for each of these three entities. If it does, and it has all of the necessary

devices available, then the helper core prepares a new thread with all of these

72

resources allocated to it. The helper then notifies the offloading core that it is

committed to taking the thread, and data transfer can proceed. A detailed

description of the current Xipx migration protocol is discussed near the end of this

section.

The simple and generalized way of transferring the code, stack, and heap of

the user thread is to send everything in packets via the message passing interface.

This is generalized because it works in any distributed system with message-passing

nodes. However, the SCC features some interesting hardware that can be exploited

to transfer relatively large amounts of contiguous data between cores much more

efficiently.

The SCC Lookup Table (LUT)

We have mentioned briefly in Section 2.5 that there is a lookup table (LUT)

associated with each SCC core that maps each 32-bit (physical) core address to a

46-bit system address. Each LUT consists of 256 entries, each of which maps a

16 MiB segment of the associated core’s 4 GiB memory space to some system

address. Figure 4.3 illustrates address translation and the composition of a system

address.

A complete system address consists of a single bypass bit, an 8-bit

destination ID, a 3-bit sub-destination ID, and a 34-bit sub-address. A LUT entry

holds the bypass bit, destination ID, sub-destination ID, and upper 10 bits of the

73

bypass

31

destID subdestID sub-address

core address:

LUT

24 23 0

23 02433
system address:

Figure 4.3: Address translation on the SCC (after [26]).

sub-address. The upper 8 bits of the core address index one of the 256 LUT entries,

and the lower 24 bits of the core address provide the lower 24 bits of the system

sub-address.

Each system address refers to a port of one of the SCC’s 24 routers. The

destination ID identifies the tile to which the target router belongs, and it is given

in (y, x) format – i.e. the upper four bits indicate the y-coordinate and the lower

four bits indicate the x-coordinate – where (0, 0) represents the lower left tile, and

(3, 5) represents the upper right tile. The sub-destination ID selects which port of

the router to access, which will determine whether we are addressing a memory

controller, the VRC, the system interface, the configuration registers, or the message

passing buffer. Memory controllers, the VRC, and the system interface are

connected to specific ports on specific tiles as can be seen in Figure 2.9, but all tiles

have router ports linked to configuration registers and the local MPB. Table 4.2 lists

the ports corresponding to each of the 3-bit sub-destination IDs, and Figure 4.4

74

shows the default mapping of a core’s 4 GiB address space for an SCC system with

32 GiB RAM.

Table 4.2: System address sub-destination ID ports [26].

subdestID Port Comment

0x0 Core0 Not a destination for memory R/W

0x1 Core1 Not a destination for memory R/W

0x2 CRB Configuration Register

0x3 MPB Message Passing Buffer

0x4 E port Memory Controller @ (0,5) and (2,5)

0x5 S port System IF @ (0,3); VRC @ (0,0)

0x6 W port Memory Controller @ (0,0) and (2,0)

0x7 N port Nothing is on this port of any edge router

Each of the four SCC memory controllers can support up to 16 GiB of RAM,

which is completely covered by the 34-bit sub-address space. If the destination is

something besides a memory controller, such as an MPB or configuration register,

the sub-address provides the offset into these spaces as well. The intended use of the

bypass bit is to lower the access latency for the local MPB. When this bit is set, the

core bypasses the local router and directly accesses the local MPB. However, Intel

researchers have discovered a hardware bug in which data corruption can occur on

the MPB when this bit is set, so it is now recommended to never set the bypass

bit [88].

75

LUT
ENTRY #

CORE
ADDRESS RANGE

MAPS TO
SYSTEM ADDRESS SPACE

255 FF000000 – FFFFFFFF Private RAM (16 MB)

: : :

251 FB000000 – FBFFFFFF VRC

250 FA000000 - FAFFFFFF MCPC Interface

: : :

247 F7000000 – F7FFFFFF Config Registers – Tile 23

: : :

224 E0000000 – E0FFFFFF Config Registers – Tile 0

: : :

215 D7000000 – D7FFFFFF MPB – Tile 23

: : :

193 C1000000 – C1FFFFFF MPB – Tile 0

: : :

131 83000000 – 83FFFFFF Shared RAM (64MB)

: : :

128 80000000 – 80FFFFFF

: : :

40 28000000 – 28FFFFFF Private RAM (656 MB)

: : :

1 01000000 – 01FFFFFF

0 00000000 – 00FFFFFF

Figure 4.4: Default LUT configuration for an SCC system with 32 GiB RAM [26].

LUT-Based Data Transfer

The default LUT configuration for each SCC core includes mappings to all

48 of the LUTs themselves, meaning any core can reconfigure any LUT at runtime.

This provides the interesting possibility of very rapidly swapping 16 MiB chunks of

private memory between cores. Thus, rather than aligning user threads merely to

76

page boundaries (which are at 4 KiB intervals), Xipx aligns threads to LUT

segment boundaries and stores the code, stack, and heap all within one or more

segments. The data transfer part of migration is then performed by a few short

LUT writes that swap segments between source and destination cores. One tradeoff

for getting such simple and quick data transfers is that each user thread, no matter

how small it may actually be, now takes up a minimum of 16 MiB of private RAM.

However, with a typical hardware configuration having 32 GiB of system memory,

this thread size is hardly excessive.

There is another disadvantage of LUT-based data transfers. Before a swap

can take place, both of the involved cores must ensure that their cache contains no

data from the segment they are about to give up. While the GaussLake cores of the

SCC have an instruction to write back and invalidate L1 cache, they unfortunately

have no direct control over their L2 cache. Instead, a software routine (described in

Appendix B) was written to flush the L2 cache. As discussed in Section 5.2, the cost

of this routine is rather low, and migration by LUT-swapping is less expensive than

message-passing migration even for relatively small threads. A more thorough

investigation of inter-core memory copy operations on the SCC using several

different techniques is given in [89].

77

Updating Message Passing Channels

We have covered the problems of transferring a thread’s state from one core

to another in a way that is transparent to the migrated thread. However, we have

not discussed how migration affects the other threads in a distributed system. In

particular, we want to maintain transparency for any threads that have open

communication channels with the migrated thread.

One strategy involves forwarding communications through the thread’s

originating core. However, such residual dependencies are undesirable for a number

of reasons (see Section 3.2.2). Another option involves reconfiguring any remote

devices that are being used to communicate with the migrating thread. A relatively

simple, restrictive, and unoptimized solution of the latter type is used in the

migration protocol developed for Xipx. We describe the LUT-swapping version of

the protocol below along with an account of its limitations. We also discuss a few

reasons why it is difficult to build a more robust solution, noting that this problem

is an excellent candidate for future development.

Current Xipx Migration Protocol

We describe here the LUT-swapping version of the Xipx migration protocol,

beginning with some terminology and relationships. Each core has a

“communication manager daemon” running as a kernel thread and a “migration

daemon” that comprises two kernel threads called the “request” thread and the

78

“helper” thread. The communication manager manipulates local devices based on

communications it receives from remote cores. The migration daemon “request”

thread initiates migrations of local user threads based on communications it receives

from local sources. It does so by spawning an “offloader” thread for each migration

request, and that offloader communicates with the helper thread on the core to

which the thread will migrate. The “target thread” is the thread that is being

migrated, and the “target core” is the core to which it is moving. We call its

original home the “source core.”

Our system enforces the restriction that migratable user threads are only

allowed to open MPB devices in the ACTIVE mode. This ensures that each device

communicates with a single end-point, which is necessary to allow the system to

determine which external devices need to be updated during migration.

Once an offloader has been spawned with a target thread and a target core

specified, communications between it, the target core’s helper thread, and the

system’s communication managers proceed as follows. (See Figure 4.5 for a

graphical representation of the protocol.)

The offloader sends to the helper a copy of the target thread’s control block

and information about the ports used by any MPB devices the thread has open.

The helper uses this information to determine what kernel resources are needed by

the target thread (e.g., a thread control block, one or more LUT segments, and zero

or more MPB devices) and then attempts to allocate those same resources locally. If

79

Offloader Helper
Comm.

Manager 1
Comm.

Manager 2

NEED HELP
(thr info, dev info)

CAN HELP

SUSPEND & UPDATE
(dev1, helper core)

UPDATE DEVS
(outstanding msgs)

DONE UPDATING

READY TO SWAP
(LUT info)

SWAP DONE

allocate resources
copy thr info to new thr

freeze thr

suspend dev1
update dev1

suspend dev2
update dev2

SUSPEND & UPDATE
(dev2, helper core)

flushL2()

copy outstanding
 msgs to devs

flushL2()

swap LUT segments

final thr preparations

kill thr RESUME (dev1)

RESUME (dev2)

resume dev2

resume dev1

DONE UPDATING

DONE UPDATING

Figure 4.5: Control and communication flow of the Xipx thread migration protocol.

Here, the migrating thread has open communication channels with two other cores,

and each of those cores’ communication managers are involved in the migration.

the local resources are allocated successfully, the helper copies much of the

80

information from the target thread’s control block into the just-allocated local one,

and then replies that it is able to help.

The offloader then freezes the target thread and checks which devices it has

open. Since each one is an ACTIVE device, the offloader can identify the “partner”

device with which it communicates, and it can identify on which core the partner

resides. The offloader sends a message to the communication manager on the

resident core of each partner. It asks the communication manager to suspend the

partner device and update it to direct future communications to the target core.

While a device is suspended, calls to read from it are permitted, but any attempts

to write to it will block until the device is resumed. Communication managers reply

to the offloader to let it know they completed their tasks.

Next, the offloader sends to the helper any buffered messages that the target

thread has not yet retrieved. The helper stores these messages in the buffers of the

locally allocated devices and notifies the offloader when it is finished.

At this point, the source core and target core are about to swap LUT

segments, so both the offloader and helper call flushL2() to ensure they have

written back from their L2 cache any data that belongs to the segment they are

about to give up. Then the offloader sends information about the target thread’s

LUT segment to the helper, and the helper uses it to perform the swap. The helper

notifies the offloader when the swap is complete, and then the offloader kills its local

representation of the thread, freeing any resources it had been holding.

81

Meanwhile, the helper has been preparing the migrated thread for execution

in its new environment. This includes building its page table, preparing its stack so

that it resumes properly when it gets scheduled, and adding it to the local readylist.

Finally, the helper restores communication channels by contacting all of the

appropriate communication managers to ask them to resume the target thread’s

partner devices.

Shortcomings

Although it is suitable under certain circumstances, the migration protocol

described above has some significant shortcomings in the Xipx environment. First,

we have already mentioned that user threads must only use MPB devices in the

ACTIVE mode. Additionally, the protocol is not safe to use if a migrating thread

has not already established communication links with all of its partners.

Communication channels may be updated safely, but the way in which they are

established currently depends upon the user thread knowing the location and

listening port of its partner at runtime. This information may be hard-coded by the

programmer, or it may be determined at runtime and shared between

communicating partners when they have a parent-child relationship. However, in

either case, if migration causes one of the threads to change locations before the

MPB channel is established, then the threads’ attempts to set up that channel will

fail.

82

A potential solution for this problem is to establish a globally unique

identifier for Xipx threads and use that ID, rather than a destination core and port,

to specify the endpoint of an ACTIVE MPB device. Globally unique thread IDs

would have to be established at runtime – the programmer would have no way of

knowing them beforehand. Therefore, the IDs must be shared between threads

before they have an MPB channel established, which implies that the threads must

have a parent-child relationship. Independently created user threads would not be

able to identify each other, so this solution restricts the way in which parallel

programs must be written.

Furthermore, for a thread to establish a communication link solely based on

its partner thread’s ID, there needs to be a way to locate that partner in the

system. An efficient and residual-dependency-free solution to this problem is not

obvious. A “master core” could be used to keep track of thread locations in the

system, requiring all threads to register with the master when they change hosts.

However, centralized solutions like this are not scalable because the master becomes

a bottleneck as the number of nodes or the migration volume grows. An example of

a distributed solution is to broadcast a message asking every core if they host the

thread in question, but requiring all cores to spend time searching their thread

tables is clearly undesirable.

Xipx is in need of efficient, scalable solutions to lower its restrictions on

thread migration. However, as a small, agile kernel, it is an excellent platform for

83

exploration of solutions that may require significant system-level changes. We leave

the problem as an avenue for future work.

4.5 BareMichael and MikeTerm: A Bare-Metal Framework for SCC

The initial stages of porting an operating system to a new platform present

significant challenges to developers. It may be difficult to establish a proper build

environment for compiling, loading, and executing a system image, and the hardship

is compounded by the fact that there usually are no means to deliver feedback to

the developer until a sufficient amount of code is written “in the dark” to operate a

serial output device. Such barriers took a significant amount of time to overcome in

the early phases of the Xipx port, and little support for “bare-metal” (i.e.,

operating-system-free) SCC development existed.

As interest in bare-metal programming increased in the MARC

community [90], we saw it as an opportunity to share our work so that the barriers

would be lowered for those who were just starting out. We extracted from Xipx all

of the essential parts that are needed to load and launch bare-metal C and assembly

code on the SCC with supervisor-level access to all aspects of the chip. This includes

the build environment to compile and load an image into memory, the initialization

code to bring the SCC cores to 32-bit protected mode and set up a C code execution

environment, a set of exception handlers that provide debugging information, and a

subset of the standard C library. We also included some SCC-specific helper

84

functions and definitions to do things such as read the local core ID, read mesh and

tile clock frequencies, address MPBs and configuration registers, acquire and release

tile lock registers, and trigger inter-core interrupts. A one-way pseudo-terminal

program named MikeTerm is used to display output from each SCC core.

We named our minimalistic framework BareMichael. As an open-source tool,

every aspect of the package is exposed to the developer who is free to modify,

remove, or reimplement its parts at will. The following sections provide technical

details about the composition and execution flow of the framework. Their content

has been extracted from [91].

4.5.1 Platform Initialization

The following is a brief walkthrough of the code path BareMichael steps

through to initialize an SCC core. This description, accurate for the latest versions

(4, 5, 6, and 7) of the framework, illuminates the BareMichael startup process so

that a developer may understand both how it works and how it may be modified to

suit particular needs. Paragraph headers identify the location of the code being

discussed, and a schematic representation of the entire process is illustrated in

Figure 4.6.

boot/reset vector.S Based on the Intel P54C, each SCC core boots in “real

mode,” and consequently has access to just a 20-bit address space. In spite of this

85

boot/startup.S

startup:
 # define & load GDT
 # initialize stack
 # clear bss
 call platforminit
 call main

system/platforminit.c

void platforminit() {
 init_idt();
 init_APIC();
 enable_caching();
}

boot/initPaging.c

void initPaging() {
 // priv mem cached
 // MPB cached + PMB
 // rest uncached
}

boot/getprotected.S

getprotected:
 # define & load GDT
 # get into 32-bit
 # protected mode
 call initPaging
 # jump to startup

boot/reset_vector.S

backabit:
 # load seg regs
 # jump to getprotected

_start: # @0xFFFFFFF0
 jmp backabit

text/main.c

void main() {
 // your code here
}

Figure 4.6: Per-core initialization procedure of BareMichael.

limitation, the first instruction a core executes after its reset pin is released is loaded

from memory address 0xFFFFFFF0, sixteen bytes from the end of a 32-bit address

space. We put a short relative jump instruction here, which takes us back just far

enough to initialize the core’s segment registers and stack pointer, then far-jump

down to a getprotected() routine located within the first mebibyte of memory.

86

boot/getprotected.S The getprotected() routine takes the processor into

32-bit “protected mode” by setting up the necessary CPU configuration data

structures and registers, including a global descriptor table (GDT) to define flat

code and data segments. Then a page table is created for virtual memory

management.

boot/initPaging.c The default look-up table (LUT) for an SCC core, which

maps core addresses into a larger system address space, splits the core’s address

space into sections including private memory, shared memory, message passing

buffer space, and configuration register space. Our page table flatly maps all of this

space with cache disabled for all but private RAM and message passing buffers.

Message passing buffer pages also have the PMB flag set to enable special caching

features of the SCC [26]. With the page table configured and enabled, the core

jumps to the startup() routine.

boot/startup.S The startup() code gets linked together with libxc and the

rest of the developer’s bare-metal code to create the main image, which may be

located in private memory wherever the developer chooses (specified via a Makefile

variable). The startup() routine defines and loads a new (but identical) GDT

within the main image to allow for easier addressing of the data structure should

the developer wish to access it later. Space then is allocated for an interrupt

87

descriptor table (IDT) which will be loaded with descriptors momentarily. After

initializing a stack, clearing the bss section of the image, and initializing the

floating point unit, the core calls platforminit().

system/platforminit.c Among the duties of the platforminit() routine are

calls to initialize and enable the local advanced programmable interrupt controller

(APIC), load the IDT with some default descriptors, and enable caching. As of

version 3, the framework includes real-time clock support using the local APIC

timer. If this feature is enabled (via a definition in include/conf.h), its

initialization function is called here. Interrupt vectors 0x00 through 0x1F are

reserved for CPU faults and exceptions, and the default handlers BareMichael

assigns to these vectors print out information about the state that the system was

in when the interrupt occurred. Such information is useful for debugging. After

platforminit() returns, BareMichael calls the main() function in text/main.c,

which is assumed to be the starting point of the developer’s code.

To summarize, we now describe the state of an SCC core after BareMichael

initialization. The setup routine brings the SCC core to 32-bit protected mode at

privilege level 0 (supervisor level). Virtual memory management is enabled with

page table entries present only for the core addresses that are mapped to actual

system addresses by the default LUT configuration. Private memory is configured

to have cache enabled, MPB-mapped pages have cache enabled and the

88

SCC-specific PMB flag set, and all other sections have cache disabled. The local

APIC is enabled and, by default, its periodic timer is set up to trigger a handler

(found in system/clock.c) every millisecond. If the framework is configured for

RCCE support (see Section 3.2.1), the core’s MPB space is initialized to zeros, and

a heap is initialized to allow dynamic management of private memory.

4.5.2 MikeTerm

BareMichael applications can print text back to the MCPC through a call to

printf(). This function simply writes data to a circular buffer in memory where it

can be seen and retrieved by the MCPC via the SCC’s system interface. Each core

has a different buffer allocated for this purpose. Running on the MCPC, a utility

called MikeTerm acts as a one-way pseudo terminal, periodically polling each of the

48 buffers and printing any text found therein. All output from MikeTerm is

preceded by a core identifier. Because MikeTerm scans the shared memory buffers

sequentially, it is not guaranteed that its output will be printed in the order in

which the cores wrote to their respective buffers. The output from any given core

will be delivered in the order in which the core printed it, but ordering of output

between any two cores is not necessarily preserved. Additionally, if a core is writing

to its buffer faster than MikeTerm is retrieving it, old data will be overwritten and

lost without being printed. No protections are built in to prevent this. The default

configuration of the framework allocates 64 KiB buffers which get polled by

89

MikeTerm roughly once per second, so data is likely to be lost when output rates

are greater than about 64,000 characters per second. BareMichael currently offers

no mechanism for interacting with running SCC programs by feeding data in the

other direction, from the MCPC to the chip.

[00]: Hello, World -- I'm core 0!

[01]: Hello, World -- I'm core 1!

[05]: Hello, World -- I'm core 5!

[24]: Hello, World -- I'm core 24!

[47]: Hello, World -- I'm core 47!

[00]: I'm going to trigger core 47's LINT0 now.

[47]: I've been interrupted!
[47]: (SCC has been booted for 2 seconds)

[00]: Now I'm toggling core 47's LINT1.

[47]: Another interruption!
[47]: (SCC has been booted for 5 seconds)
^C
Thanks for flying MikeTerm!

Figure 4.7: Sample output from MikeTerm. In this sample program, each booted

core says “Hello.” Then, after a short delay, core 0 toggles each of core 47’s APIC

interrupt pins with a delay in between. Core 47 has set these interrupt vectors to

point to handlers that print out the total time passed since boot up. That time is

kept track of by the real-time clock which operates based on the APIC timer and the

tile clock frequency.

4.5.3 Build Environment and Dependencies

BareMichael is a flexible framework with few dependencies. This section

enumerates the dependencies and describes the build environment, concluding with

90

a discussion of the ways in which the environment may be modified for extended

functionality.

Dependencies

BareMichael leverages some open-source utilities for image compilation,

image loading, and delivering output through MikeTerm. The framework uses the

i386-unknown-linux-gnu cross-compiler tools from gcc version 3.4.5 to produce

flat binary object files. sccKit is a suite of utilities, provided by Intel, that run on

the MCPC and interact with the SCC. BareMichael is compatible with sccKit

version 1.4.1, and it uses the bin2obj, sccMerge, sccBoot, and sccReset tools for

loading binaries into SCC memory and toggling reset pins of individual cores.

MikeTerm uses sccDump and sccWrite to access print buffers in shared memory.

Compilation and Execution

Compilation of both MikeTerm and the SCC image is managed using

Makefiles written for the GNU make utility. MikeTerm is written in C++ and

located in the miketerm directory. To compile it, simply change to that directory

and invoke make.

BareMichael expects the directory containing sccKit binaries to be included

in the user’s PATH environment variable. Paths to the cross-compiler and bin2obj

tool must be specified in the framework’s Makefile, which is located at

91

compile/Makefile. The Makefile also includes a configuration variable for

specifying a list of cores to boot. After defining these few variables, compiling and

running a bare-metal application is very simple and straightforward. The default

make target builds the image; the run target loads that image into SCC memory and

releases the resets of the specified cores. The main() function in test/main.c is the

entry point for the developer’s code, and if all of the developer’s code is contained in

that file (or in any set of files already in the framework), a simple ‘make; make

run’ is all that is needed to get the code running on the SCC. Follow it up with

‘../miketerm/miketerm’ to view output from the cores. If additional source files

need to be linked, one must add them to one of two lists in the Makefile: C source

files get added to the C FILES list, while assembly files belong in the S FILES list.

Advanced Capabilities

Although most developers probably will be satisfied with the default

configuration of the build environment, additional customization is possible. One

simple example is changing the memory address to which the main image gets

loaded onto the core. This is easy to modify as it is already defined by a variable

(IMG ADDR) in the Makefile. However, the framework has other potential capabilities

– such as loading and booting different images on different cores – that are possible

to realize but not as simple to exploit. For this reason, we disclose the roles of a few

files that the build process creates along the way to creating a loadable SCC image.

92

Initially, the source is compiled into three flat binary object files: the reset

vector, the “get protected” and paging initialization code, and the main image. The

file compile/load.map is created and populated with the names of these three

objects, each preceded by the memory address (32-bit core address, not a memory

controller address) to which it is to be loaded. This file serves as the input to the

bin2obj tool, which creates a text file, compile/battle.obj, that represents a

composite of the three objects. The sccMerge tool decides where to load the

composite image into SCC memory and how to set initial core LUT configurations.

The tool makes these decisions based on three arguments: the number of cores to be

served by each memory controller (12 by default), the size per memory controller in

GiB (8 by default), and the contents of a .mt input file. BareMichael creates the file

compile/battle.mt and populates it with 48 lines, each of which identifies a core, a

memory controller, a “memory slot” (between 0 and 47, inclusive), and a .obj file.

By default, this file assigns to each core: the nearest memory controller; a memory

slot between 0 and 12, which is assigned in increasing numerical order to the 12

cores sharing a memory controller; and the object file that was built earlier,

compile/battle.obj. The output of sccMerge is a directory, compile/obj/, and

files therein that define the SCC memory contents and the LUT configurations. This

directory is provided as an argument to sccBoot, which does the actual loading of

SCC memory and configuring of LUTs. Finally, the framework issues the command

‘sccReset -r <list of cores>’ to release the reset pins of the desired cores.

93

Clearly, the build procedure may be altered in a few ways – most notably

through modifications to the .mt file – to customize how SCC memory gets loaded

and distributed among cores. As an example, one may arbitrarily assign .obj files

to cores in the .mt file to boot heterogeneous images among the cores. Of course,

this requires building multiple .obj images, so multiple load maps must be defined

and fed to bin2obj. Implementation of such alterations is left to the interested

developer.

4.6 Integration with RCCE

RCCE [56] is a message-passing software library that Intel Labs designed and

implemented in conjunction with the SCC hardware. The current version of the

library, V2.0, may be compiled for use in SCC Linux [41], a kernel port also

supplied by Intel, or for use in a bare-metal environment. However, because

bare-metal RCCE is a library and not an environment itself, it does not provide the

execution framework needed to run bare-metal applications on its own. In addition

to a CPU initialization process, RCCE demands:

• POSIX functions mmap() and munmap() for virtual memory management,

• file operations such as open(), flush(), and fprintf(),

• malloc() and free() for dynamic memory management, and

• various additional C library functions.

94

These gaps are filled by BareMichael, allowing the developer to use the unmodified

bare-metal RCCE library with BareMichael “out of the box.” While some features

such as dynamic memory management are properly implemented for general use,

others, including virtual memory management functions and file operations, are

tailored to be compatible with RCCE, though not fully implemented to fulfil their

intended duties. These functions are not necessarily safe for use outside of the

purpose of supporting RCCE V2.0.

Performance measurements of the bare-metal RCCE message-passing library

are given in Section 5.1.

4.6.1 Availability

We provide the BareMichael framework as an open-source package in the

hope that it will lower the entry barrier for others wishing to develop and run

bare-metal applications on the Intel SCC. The framework is available to download at

http://marcbug.scc-dc.com/svn/repository/trunk/baremetal/baremichael/.

95

CHAPTER 5

Performance Analysis

This thesis focuses on the foundational work that has brought Xipx to life on

the many-core Intel SCC. Achieving state-of-the-art performance in message passing

bandwidth and migration latency is beyond the scope of this work. Nonetheless, it

is important to demonstrate reasonable performance in order to justify the claim

that Xipx is a suitable platform to support a programming model that is centered

around concurrent, migratable, promise-based threads. We disclose in this chapter

the measured bandwidth of the Xipx MPB device with a comparison to Intel’s

user-space message passing library, RCCE [41]. We also exhibit the performance of

two different thread migration implementations; one is portable to any message

passing system, while the other takes advantage of unique SCC hardware features to

achieve a dramatic reduction in latency for large threads. Since the SCC has

configurable frequency domains, we note that all tests presented here were

performed with all tile, router, and RAM clocks configured to 533 MHz, 800 MHz,

and 800 MHz, respectively. Unless otherwise noted, cores 0 and 1 were used in the

tests that involve two interacting cores.

96

5.1 Message Passing

We begin with a report on the measured bandwidth of the Xipx MPB device.

A discussion of the device’s design, along with details of SCC architectural features

that enhance MPB access performance, may be found in Section 4.3.2. The benefits

gained by use of these features are quantified below.

5.1.1 Comparison to RCCE

RCCE [41] is a user-space message passing library that Intel Labs designed

and implemented in conjunction with the SCC hardware (see Sections 3.2.1

and 4.6). Like the Xipx MPB device, RCCE uses the SCC’s MPB space for passing

messages between cores. However, unlike the Xipx device, the basic RCCE API only

offers synchronous (blocking) send and receive functions. As a result, a call to

RCCE send() will not return until after a corresponding call to RCCE recv() occurs

at the receiver side. A primary design goal for Xipx is the ability to support

simultaneous execution of multiple programs that each consist of a number of

concurrent threads. Threads of different programs must be able to share a single

processing core and each perform message passing communication with remote

threads without interfering with one another. Such sharing of the MPB space is not

safe with the RCCE library because unpredictable preemptions may cause a thread

to intercept messages inadvertently that were intended to be read by a different

97

thread that is sharing the core. Indeed, the RCCE release specification [56] states

that use of the library is constrained to a single parallel program that executes on

all or a subset of the SCC cores. In contrast to Intel’s offering, the Xipx MPB

device is an asynchronous, interrupt-driven device that meets our goal of supporting

multiple parallel applications concurrently.

write()

read()

write()

read()

Core A Core B

time

time

(a) Ping-Pong (b) Ping-Ping

Core A Core B

write()

read()

write()

read()

Figure 5.1: Comparison of the communication patterns for (a) the ping-pong bench-

mark and (b) the ping-ping benchmark (after [57]).

Two benchmarks, whose communication patterns are visualized in

Figure 5.1, were used to assess the bandwidth of the Xipx MPB device. The simple

“ping-pong” benchmark [41] incorporates two cores, Core A and Core B, each

running a single thread. The thread running on Core A sends a message to the

thread on Core B; then the thread on Core B sends a message back to the thread on

Core A. Both messages have the same payload length, L, which we vary from 1 byte

to 4 KiB. We measure the total time that this transaction takes, T , beginning with

98

the call to write() on Core A and ending with the return from read() on Core A.

Bandwidth is calculated as 2L/T .

The “ping-ping” benchmark [57] involves both Core A and Core B sending a

message to each other simultaneously. Again, the time of the transaction is

measured from the beginning of the write() call on Core A to the end of the

read() call on the same core. Bandwidth again is calculated as 2L/T . This

benchmark demonstrates a very basic communication pattern that is not achievable

with the synchronous primitives of RCCE. If each of two RCCE threads try to send

to each other simultaneously, neither will return from their call to RCCE send()

because each one will block and wait for the other to call RCCE recv(). On the

other hand, the asynchronous semantics of the iRCCE isend() and iRCCE irecv()

functions from the iRCCE library are able to implement the ping-ping benchmark.

Benchmark results are seen in Figure 5.2. RCCE and iRCCE measurements

were performed on bare-metal implementations supported by the BareMichael

framework (Section 4.5), but the respective implementations for SCC Linux

performed identically. The ping-pong benchmark was implemented and executed

both with Xipx user threads and with Xipx kernel threads (Section 4.4.1). The

lower performance of the user thread implementation is due to the overhead that

user threads incur from the Xipx system call interface (described in Appendix A).

The proportional difference is generally smaller for larger messages because the

relatively constant number of extra cycles spent passing through a system call gate

99

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 4 16 64 256 1024 4096

B
a
n
d
w

id
th

 [
M

iB
/s

]

Message Size [bytes]

iRCCE baremetal ping-ping
RCCE baremetal ping-pong

Xipx kern thr ping-ping
Xipx 2-to-1 kern thr ping-ping

Xipx 2-to-1 kern thr ping-pong
Xipx kern thr ping-pong
Xipx user thr ping-pong

Figure 5.2: Benchmark performance of the asynchronous Xipx MPB device.

is a lower proportion of the growing amount of total work being done per system

call. We find the speedup of kernel threads over user threads is between 8% (for

4-KiB messages) and 29% (for 1-byte messages). Xipx kernel threads achieved

about 17% of RCCE’s ping-pong performance for messages between 1 and 64 bytes

long. The relative performance of Xipx increased as messages got longer, up to 69%

of RCCE’s bandwidth for 4 KiB messages.

One of the reasons the asynchronous Xipx driver does not achieve the same

bandwidth as RCCE is because it performs an extra memcpy() on the receiving side.

Each Xipx MPB device has a buffer pool associated with it, and messages sent to a

device immediately get copied off of the MPB and into a buffer from the pool. In

addition to the overhead of moving the data, this design can degrade performance

100

by causing extra cache ejections. However, it facilitates asynchrony in the device

and prevents saturation of the MPB space, both of which are important for

supporting concurrent parallel applications.

The ping-ping benchmark implemented as a pair of Xipx kernel threads

exhibits a 44% to 99% gain in bandwidth over the Xipx kernel thread ping-pong

results. This higher bandwidth is achieved by allowing communications between the

pair of cores to travel in both directions concurrently. Ping-ping communications in

Xipx surpass RCCE’s ping-pong bandwidth for message payloads of 1 KiB and

higher. A bandwidth improvement of 37% over RCCE is measured for 4-KiB

messages. The iRCCE ping-ping implementation outperformed that of Xipx by 43%

for 4 KiB messages.

In a two-to-one test, core 0 runs two concurrent benchmarks, each with a

different partner core (cores 1 and 2). The measured bandwidth is calculated based

on the total data flow in and out of the shared core. Both the RCCE and iRCCE

libraries are incapable of running concurrent parallel applications, so these

benchmarks were only performed in Xipx. Two-to-one ping-pong showed between

1% and 44% increased bandwidth over its one-to-one counterpart. The two-to-one

ping-ping benchmark outperformed its one-to-one counterpart for messages of 256

bytes or shorter, but it displayed a lower bandwidth for larger messages. The lower

performance may be due to reduced L1 cache efficiency on the shared core,

contention for MPB space, and/or overhead from context switching.

101

5.1.2 SCC-Specific Device Optimization

An initial implementation of the MPB device neglected to exploit the special

caching facilities that the GaussLake core provides for MPB memory (see

Section 4.3.2). Furthermore, it used the standard, portable memcpy() routine from

libxc, Embedded Xinu’s subset of the standard C library. The x86 architecture

features special instructions for copying arrays of words (MOVSL) or arrays of bytes

(MOVSB) from one memory location to another. However, the compiled libxc

memcpy() does not take advantage of these instructions.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 4 16 64 256 1024 4096

P
in

g
-P

o
n
g
 B

a
n
d
w

id
th

 [
M

iB
/s

]

Message Size [bytes]

WCB + optimized memcpy
WCB

optimized memcpy
no optimizations

Figure 5.3: The impact of SCC-specific optimizations on message-passing device

bandwidth.

As seen in Figure 5.3, this unoptimized implementation running the

ping-pong benchmark achieves about 4 MiB/s bandwidth or less with the tested

102

message lengths. When the libxc memcpy() was replaced with an assembly coded

routine that takes advantage of the x86 array copying instructions, performance

increased up to four fold. The plot marked “WCB” (for write-combining buffer) was

produced from reverting to the libxc memcpy() and enabling the GaussLake MPB

caching features. Finally, both optimizations were combined to obtain our final

device implementation, which beats the original by an order of magnitude for large

messages. Comparing the fully optimized device to the one that only incorporated

an optimized memcpy(), we see a four-fold increase in bandwidth for large messages.

The impact of the MPB caching hardware is clearly significant for our use of the

MPB space.

5.2 Thread Migration

In addition to message passing bandwidth, another important performance

measure for a distributed system is thread migration latency. In Section 4.4.4, we

identify two methods for thread migration on the SCC, namely message-passing

based and LUT swapping. We evaluate the performance of these two techniques by

measuring the “freeze time” of a migrating user thread, which is the amount of time

that the thread must be suspended during migration. In our experiments, we

migrate a thread with code and stack sizes of 470 bytes and 64 KiB, respectively,

and a heap size that is varied between 16 KiB and 256 MiB. Results are shown in

Figure 5.4.

103

 0.5

 1

 2

 4

 8

 16

 32

2
14

2
16

2
18

2
20

2
22

2
24

2
26

2
28

F
re

e
z
e
 T

im
e
 [
s
e
c
]

Heap Size [bytes]

Message passing
LUT swapping

Figure 5.4: Freeze time of migrating Xipx user threads.

We see that no matter the heap size, LUT-based migration exhibits a lower

latency than message-passing, although the two are very similar for small threads.

By profiling the LUT-swapping method, we find that the procedure is dominated by

the creation of a new page table for the incoming thread. This rather expensive

routine takes about 804 ms in Xipx, and it is executed every time a user thread is

created or received in a migration. Page table creation accounts for about 99.8% of

the LUT-based freeze time regardless of the size of the incoming thread. The second

most expensive procedure is the L2 cache flush which takes about 1.18 ms, or 0.15%

of the freeze time. While our migration routine suspends the migrating thread

during the time that the destination core prepares its page table, a more

104

sophisticated implementation could dramatically lower the freeze time by allowing

the thread to continue executing on the source core during this period.

Message-passing based migration suffers from the same baseline freeze time

of about 804 ms for page table creation. The bulk of the remaining freeze time is

consumed by data transmission via the Xipx MPB device. For a thread with a

16 KiB heap (about 80 KiB including stack and code), data transmission takes

about 10.8 ms, which is about 1.3% of the total 815 ms freeze time. With a

256 MiB heap, the largest migrating thread we tested spent 24.07 s, 96.7% of its

freeze time, on data transmission.

We were surprised to see LUT-based migrations outperform message-passing

for small threads because we expected the L2 flush routine to be a more expensive

procedure than it turned out to be. Note, however, that the execution time of this

routine varies depending on the state of L2 cache when it is called. Since L2 is

configured to be write-back, it may contain a varied number of dirty lines at any

time. The greater the number of dirty lines, the more RAM accesses are needed for

a flush, and the longer the routine takes. An explanation of the L2 flush routine is

given in Appendix B.

105

CHAPTER 6

Summary and Future Work

This thesis introduced the Xipx operating system, an x86 port of the

Embedded Xinu OS tailored to the many-core Intel Single-chip Cloud Computer

(SCC). An asynchronous Xipx device that multiplexes the SCC’s message passing

hardware among many concurrent threads has been presented and has exhibited

good performance. Measurements of the device’s bandwidth with and without

platform-specific optimizations demonstrate the benefits provided by the SCC’s

unique cache-related hardware features.

Xipx extends Embedded Xinu with a new type of thread that is migratable

between separate instances of the OS. A limited framework and protocol for thread

migrations has been realized both in a generalized implementation, suitable for any

homogeneous distributed environment, and in an implementation that takes

advantage of SCC-specific capabilities for drastically reduced data transfer latency.

A significant pragmatic contribution of this thesis is an SCC bare-metal

programming framework named BareMichael. As a tool that lowers the barriers to

operating-system-free programming on the SCC, the open-source, minimalistic

framework has generated interest from several members of the Intel Many-core

Applications Research Community.

106

6.1 Future Work

Though the Xipx MPB device meets the goal of providing fast, scalable

message passing channels for concurrent threads, it leaves room for improvement in

performance. While our protocol is general enough to support arbitrary networks of

message-passing threads, different communication patterns (e.g., collective

communications such as broadcast or reduce) have been shown to benefit from more

tailored designs. Additionally, our experiments in thread migration suggest that

sufficiently large messages might be sent faster by LUT-swapping than by MPB use.

The SCC features dynamic voltage and frequency scaling (DVFS)

capabilities. These features provide software control of the chip’s speed and power

usage, but they are not currently explored in Xipx. With a rapidly growing mobile

device market and increased development of large-scale power-hungry clusters and

servers, energy-efficient computing has become an increasingly important problem.

Thread migration in Xipx currently lacks robustness. Transparency is

compromised, for unexpected migrations may cause threads to fail at establishing

communication channels. Providing an efficient and robust migration algorithm is

not only a challenging problem in its own right, it also enables exploration of other

interesting problems that involve deciding when and where to move threads to

achieve gains in performance or energy efficiency. A better migration solution might

involve fundamental kernel changes such as the use of globally unique resource

107

identifiers to keep track of mobile threads. With a very manageable codebase, Xipx

is a convenient platform for such system-level modifications.

As it stands, Xipx provides a solid foundation for pursuing research avenues

in distributed and many-core computing. However, the kernel would benefit from

some optimizations, particularly in dealing with user threads. Currently, Xipx

performs very basic virtual memory management. By not leveraging x86

segmentation features, the kernel has to build for each user thread a page table that

spans the entire 32-bit memory space. This is inefficient both in space and in time,

and it is by far the most expensive operation in user thread creation and LUT-based

migration.

Finally, although we believe Xipx features all of the components necessary to

support the share-nothing promise-based concurrent threads of the upcoming

extensions to the Tamarin virtual machine, experimental validation of this belief has

not been possible because those extensions are not yet available to the public. Once

the new VM is released, we hope to use it to develop more insight into how an

operating system can best host its concurrent threads on a many-core platform for

which they are so naturally suited.

108

BIBLIOGRAPHY

[1] Dennis Brylow, “An experimental laboratory environment for teaching embedded
operating systems”, in SIGCSE 2008: Proceedings of the 39th SIGCSE
Technical Symposium on Computer Science Education, New York, NY, USA,
2008, vol. 40, pp. 192–196, ACM.

[2] Dennis Brylow and Bina Ramamurthy, “Nexos: A next generation embedded
systems laboratory”, SIGBED Review, vol. 6, no. 1, Jan. 2009, URL
http://sigbed.seas.upenn.edu/.

[3] J. Howard, S. Dighe, S. R. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erraguntla,
M. Konow, M. Riepen M. Gries, G.Droege, T. Lund-Larsen, S. Steibl,
S. Borkar, V. K. De, and R. Van der Wijngaart, “A 48-core IA-32 processor in
45 nm CMOS using on-die message-passing and DVFS for performance and
power scaling”, IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp.
173–183, Jan. 2011.

[4] “Tamarin - MDN”, Online, Accessed on 28 May 2012. URL
https://developer.mozilla.org/en/Tamarin.

[5] Jason Williams and Krzysztof Palacz, “Concurrency in Flash runtimes”, Online
video clip, 2011, Accessed on 31 January 2012. URL http://tv.adobe.com/
watch/max-2011-develop/concurrency-in-flash-runtimes/.

[6] B. Liskov and L. Shrira, “Promises: Linguistic support for efficient asynchronous
procedure calls in distributed systems”, in Proceedings of the ACM SIGPLAN
1988 Conference on Programming Language Design and Implementation, New
York, NY, USA, 1988, PLDI ’88, pp. 260–267, ACM.

[7] Ido Green, Web Workers: Multithreaded Programs in JavaScript, O’Reilly,
Sebastopol, CA, 2012.

[8] Herman H. Goldstine, The Computer: From Pascal to von Neumann, Princeton
University Press, Princeton, NJ, 1972.

[9] Jim Handy, The Cache Memory Book, Academic Press, Inc., 1250 Sixth Avenue,
San Diego, CA 92101-4311, 2nd edition, 1998.

[10] John L. Hennessy and David A. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann Publishers, San Francisco, CA, 2nd
edition, 1996.

[11] Intel, Intel Architecture Software Developer’s Manual, Volume 3: System
Programming, 1999.

[12] David A. Patterson and John L. Hennessy, Computer Organization and Design:
The Hardware/Software Interface, Morgan Kaufmann Publishers, San
Francisco, CA, 3rd edition, 2005.

109

[13] Mostafa Abd-El-Barr and Hesham El-Rewini, Fundamentals of Computer
Organization and Architecture, Wiley, Hoboken, NJ, 2005.

[14] Lionel Torres, Pascal Benoit, Gilles Sassatelli, Michel Robert, Fabien Clermidy,
and Diego Puschini, An Introduction to Multi-Core System on Chip – Trends
and Challenges, Springer, New York, NY, 2011.

[15] David E. Culler, Jaswinder Pal Singh, and Anoop Gupta, Parallel Computer
Architecture: A Hardware/Software Approach, Morgan Kaufmann Publishers,
San Francisco, CA, 1999.

[16] Rakesh Kumar, Timothy G. Mattson, Gilles Pokam, and Rob Van Der Wijngaart,
“The case for message passing on many-core chips”, in Multiprocessor
System-on-Chip: Hardware Design and Tool Integration, Michael Hübner and
Jürgen Becker, Eds. Springer, New York, 2011.

[17] Charlie Demerjian, “Tilera releases a second 64-core chip”, Sept. 2008, Accessed
on 5 May 2012. URL http://www.theinquirer.net/inquirer/news/
1006963/tilera-releases-core-chip.

[18] Jason Miller, James Psota, George Kurian, Nathan Beckmann, Jonathan Eastep,
Jifeng Liu, Mark Beals, Jurgen Michel, Lionel Kimerling, and Anant Agarwal,
“ATAC: A manycore processor with on-chip optical network”, Tech. Rep.,
Massachusetts Institute of Technology, May 2009.

[19] Avi Silberschatz, Peter Baer Galvin, and Greg Gagne, Operating Systems
Concepts, Wiley, Hoboken, NJ, 8th edition, 2009.

[20] Scott J. Norton and Mark D. Dipasquale, Threadtime: The Multithreaded
Programming Guide, Prentice Hall, Upper Saddle River, NJ, 1997.

[21] Thomas W. Doeppner, Operating Systems in Depth, Wiley, Hoboken, NJ, 2011.

[22] Thomas Rauber and Gudula Rünger, Parallel Programming for Multicore and
Cluster Systems, Springer, New York, 2010.

[23] András Vajda, Programming Many-Core Chips, Springer, New York, 2011.

[24] Herb Sutter and James Larus, “Software and the concurrency revolution”, Queue,
vol. 3, no. 7, pp. 54–62, Sept. 2005.

[25] Edward A. Lee, “The problem with threads”, Computer, vol. 39, no. 5, pp. 33–42,
2006.

[26] Intel Corporation, SCC External Architecture Specification (EAS), Nov. 2010,
Revision 1.1.

[27] D. Wentzlaff, P. Griffin, H. Hoffmann, Liewei Bao, B. Edwards, C. Ramey,
M. Mattina, Chyi-Chang Miao, J.F. Brown, and A. Agarwal, “On-chip
interconnection architecture of the tile processor”, Micro, IEEE, vol. 27, no. 5,
pp. 15 –31, Oct. 2007.

[28] Shane Bell, Bruce Edwards, John Amann, Rich Conlin, Kevin Joyce, Vince

110

Leung, John MacKay, Mike Reif, Liewei Bao, John Brown, Matthew Mattina,
Chyi-Chang Miao, Carl Ramey, David Wentzlaff, Walker Anderson, Ethan
Berger, Nat Fairbanks, Durlov Khan, Froilan Montenegro, Jay Stickney, and
John Zook, “TILE64 processor: A 64-core SoC with mesh interconnect”, in
Proceedings of the IEEE International Solid-State Circuits Conference, Feb.
2008.

[29] George Kurian, Jason Miller, James Psota, Jonathan Eastep, Jifeng Liu, Jurgen
Michel, Lionel Kimerling, and Anant Agarwal, “ATAC: A 1000-core
cache-coherent processor with on-chip optical network”, in Proceedings of
Parallel Architectures and Compilation Techniques. Sept. 2010, ACM.

[30] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev,
M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich, “An analysis of
Linux scalability to many cores”, in 9th USENIX Symposium on Operating
System Design and Implementation, OSDI10, Oct. 2010.

[31] Intel Corporation, MultiProcessor Specification, May 1997.

[32] Jan-Arne Sobania, Peter Tröget, and Andreas Polze, “Towards symmetric
multi-processing support for operating systems on the SCC”, in Proceedings of
the 4th Many-core Applications Research Community Symposium. Dec. 2011,
Hasso Plattner Institute at the University of Potsdam.

[33] “IBM systems: Virtualization”, White Paper, IBM, Dec. 2005.

[34] Stefan Lankes, Pablo Reble, Carsten Clauss, and Oliver Sinnen, “The path to
MetalSVM: Shared virtual memory for the SCC”, in Proceedings of the 4th
Many-core Applications Research Community Symposium. Dec. 2011, Hasso
Plattner Institute at the University of Potsdam.

[35] Pablo Reble, Stefan Lankes, Carsten Clauss, and Thomas Bemmerl, “A fast
inter-kernel communication and synchronization layer for MetalSVM”, in
Proceedings of the 3rd Many-core Applications Research Community
Symposium. July 2011, KIT Scientific Publishing.

[36] Stefan Lankes, Pablo Reble, Carsten Clauss, and Oliver Sinnen, “Revisiting
shared virtual memory systems for non-coherent memory-coupled cores”, in
Proceedings of the 2012 International Workshop on Programming Models and
Applications for Multicores and Manycores (PMAM 2012), Feb. 2012.

[37] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh
Singhania, “The multikernel: A new OS architecture for scalable multicore
systems”, in Proceedings of the 22nd SOSP, Oct. 2009.

[38] Simon Peter, Adrian Schüpbach, Dominik Menzi, and Timothy Roscoe, “Early
experience with the Barrelfish OS and the Single-Chip Cloud Computer”, in
Proceedings of the 3rd Many-core Applications Research Community
Symposium. July 2011, KIT Scientific Publishing.

[39] David Wentzlaff, Charles Gruenwald III, Nathan Beckmann, Kevin Modzelewski,

111

Adam Belay, Lamia Youseff, Jason Miller, and Anant Agarwal, “A unified
operating system for clouds and manycore: fos”, in Proceedings of the 1st
Workshop on Computer Architecture and Operating Systems co-design
(CAOS), Jan. 2010.

[40] Adam Belay, “Message passing in a factored OS”, Master’s thesis, MIT, 2011.

[41] Timothy G. Mattson, Michael Riepen, Thomas Lehnig, Paul Brett, Werner Haas,
Patrick Kennedy, Jason Howard, Sriram Vangal, Nitin Borkar, Greg Ruhl, and
Saurabh Dighe, “The 48-core SCC processor: The programmer’s view”, in
Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, Washington, DC,
USA, 2010, SC ’10, pp. 1–11, IEEE Computer Society.

[42] Jan-Arne Sobania, Peter Tröger, and Andreas Polze, “Linux operating system
support for the SCC platform - an analysis”, in Proceedings of the 3rd
Many-core Applications Research Community Symposium. July 2011, KIT
Scientific Publishing.

[43] Michael J. Flynn, “Very high-speed computing systems”, Proceedings of the
IEEE, vol. 54, no. 12, pp. 1901–1909, 1966.

[44] Vijay Vasudevan, David G. Andersen, and Michael Kaminsky, “The case for VOS:
The Vector Operating System”, in Proceedings of HotOS XIII, May 2011.

[45] Per Brinch Hansen, “The nucleus of a multiprogramming system”,
Communications of the ACM, vol. 13, no. 4, pp. 238–241, Apr. 1970.

[46] J E White, “A high level framework for network-based resource sharing”, in
Proceedings of the National Computer Conference. June 1976, AFIPS Press.

[47] Marc Snir, Steve W. Otto, David W. Walker, Jack Dongarra, and Steven
Huss-Lederman, MPI: The Complete Reference, MIT Press, Cambridge, MA,
USA, 1995.

[48] Stephen F. Siegel and Ganesh Gopalakrishnan, “Formal analysis of message
passing”, in Verification, Model Checking, and Abstract Interpretation, Ranjit
Jhala and David Schmidt, Eds., vol. 6538 of Lecture Notes in Computer
Science, pp. 2–18. Springer Berlin / Heidelbert, 2011.

[49] Isáıas Comprés Ureña, Michael Riepen, and Michael Konow, “RCKMPI –
lightweight MPI implementation for Intel’s Single-chip Cloud Computer
(SCC)”, in Recent Advances in the Message Passing Interface, Yiannis
Cotronis, Anthony Danalis, Dimitrios Nikolopoulos, and Jack Dongarra, Eds.,
vol. 6960 of Lecture Notes in Computer Science, pp. 208–217. Springer Berlin
/ Heidelberg, 2011.

[50] William Gropp, “MPICH2: A new start for MPI implementations”, in Recent
Advances in Parallel Virtual Machine and Message Passing Interface, Dieter
Kranzlmúller, Jens Volkert, Peter Kacsuk, and Jack Dongarra, Eds., vol. 2474
of Lecture Notes in Computer Science, pp. 37–42. Springer Berlin /
Heidelberg, 2002.

112

[51] Steffen Christgau, Bettina Schnor, and Simon Kiertscher, “The benefit of
topology-awareness of MPI applications on the SCC”, in Proceedings of the
3rd Many-core Applications Research Community Symposium. July 2011, KIT
Scientific Publishing.

[52] Isáıas A. Comprés Ureña and Michael Gerndt, “Improved RCKMPI’s SCCMPB
channel: Scaling and dynamic process support”, in Proceedings of the 4th
Many-core Applications Research Community Symposium. Dec. 2011, Hasso
Plattner Institute at the University of Potsdam.

[53] Boris Bierbaum, Carsten Clauss, Rainer Finocchiaro, Martin Pöppe, Silke Schuch,
and Joachim Worringen, MP-MPICH – User Documentation and Technical
Notes, Chair for Operating Systems, RWTH Aachen University, 2009.

[54] C. Clauss, S. Lankes, P. Reble, and T. Bemmerl, “Evaluation and improvements
of programming models for the Intel SCC many-core processor”, in High
Performance Computing and Simulation (HPCS), 2011 International
Conference on, July 2011, pp. 525–532.

[55] Carsten Clauss, Stefan Lankes, Pablo Reble, and Thomas Bemmerl, “Recent
advances and future prospects in iRCCE and SCC-MPICH”, Poster at the 3rd
Many-core Applications Research Community Symposium, July 2011.

[56] Tim Mattson and Rob van der Wijngaart, “RCCE: A small library for many-core
communication”, Jan. 2011, Software Version 2.0-release.

[57] Carsten Clauss, Stefan Lankes, Thomas Bemmerl, Jacek Galowicz, and Simon
Pickartz, iRCCE: A Non-blocking Communication Extention to the RCCE
Communication Library for the Intel Single-Chip Cloud Computer – User
Manual, Chair for Operating Systems, RWTH Aachen University, June 2011.

[58] Aparna Chandramowlishwaran and Richard Vuduc, “Performance modeling on
SCC’s on-chip interconnect”, Poster at the 2nd Many-core Applications
Research Community Symposium, Mar. 2011.

[59] Randolf Rotta, “On efficient message passing on the Intel SCC”, in Proceedings of
the 3rd Many-core Applications Research Community Symposium. July 2011,
KIT Scientific Publishing.

[60] M.J. Litzkow, M. Livny, and M.W. Mutka, “Condor – a hunter of idle
workstations”, in Proceedings of the 8th International Conference on
Distributed Computing Systems, June 1988, pp. 104–111.

[61] Dario Simone, “Power management in a manycore operating system”, Master’s
thesis, Swiss Federal Institute of Technology Zurich, 2009.

[62] Mohamed Gomaa, Michael D. Powell, and T. N. Vijaykumar, “Heat-and-run:
Leveraging SMT and CMP to manage power density through the operating
system”, in Proceedings of the 11th International Conference on Architectural
Support for Programming Languages and Operating Systems, New York, NY,
USA, 2004, ASPLOS-XI, pp. 260–270, ACM.

113

[63] K. Thitikamol and P. Keleher, “Thread migration and communication
minimization in DSM systems”, Proceedings of the IEEE, vol. 87, no. 3, pp.
487–497, Mar. 1999.

[64] Sayantan Chakravorty, Celso Mendes, and Laxmikant Kalé, “Proactive fault
tolerance in MPI applications via task migration”, in High Performance
Computing - HiPC 2006, Yves Robert, Manish Parashar, Ramamurthy
Badrinath, and Viktor Prasanna, Eds., vol. 4297 of Lecture Notes in Computer
Science, pp. 485–496. Springer Berlin / Heidelberg, 2006.

[65] Gengbin Zheng, L.V. Kale, and O.S. Lawlor, “Multiple flows of control in
migratable parallel programs”, in International Conference on Parallel
Processing Workshops, ICPP 2006 Workshops. 2006, IEEE.

[66] Dejan S. Milóičić, Fred Douglis, Yves Paindaveine, Richard Wheeler, and
Songnian Zhou, “Process migration”, ACM Comput. Surv., vol. 32, no. 3, pp.
241–299, Sept. 2000.

[67] Marvin M. Theimer, Keith A. Lantz, and David R. Cheriton, “Preemptable
remote execution facilities for the V-system”, in Proceedings of the 10th ACM
Symposium on Operating Systems Principles, New York, NY, USA, 1985,
SOSP ’85, pp. 2–12, ACM.

[68] E. Zayas, “Attacking the process migration bottleneck”, in Proceedings of the 11th
ACM Symposium on Operating Systems Principles, New York, NY, USA,
1987, SOSP ’87, pp. 13–24, ACM.

[69] Fred Douglis and John Ousterhout, “Transparent process migration: Design
alternatives and the Sprite implementation”, Software: Practice and
Experience, vol. 21, no. 8, pp. 757–785, 1991.

[70] Amnon Barak, Oren Laden, and Yuval Yarom, “NOW MOSIX and its preemptive
process migration scheme”, Bulletin of the IEEE Technical Committee on
Operating Systems and Application Environments, vol. 7, no. 2, pp. 5–11, 1995.

[71] E. Steketee, Wei Ping Zhu, and P. Moseley, “Implementation of process migration
in Amoeba”, in Proceedings of the 14th International Conference on
Distributed Computing Systems, June 1994, pp. 194–201.

[72] M. Frans Kaashoek, Robbert van Renesse, Hans van Staveren, and Andrew S.
Tanenbaum, “FLIP: An internetwork protocol for supporting distributed
systems”, ACM Trans. Comput. Syst., vol. 11, no. 1, pp. 73–106, Feb. 1993.

[73] Gerald J. Popek and Bruce J. Walker, The LOCUS Distributed System
Architecture, MIT Press, Boston, MA, 1985.

[74] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul,
Christian Limpach, Ian Pratt, and Andrew Warfield, “Live migration of
virtual machines”, in Proceedings of the 2nd Conference on Symposium on
Networked Systems Design & Implementation - Volume 2, Berkeley, CA, USA,
2005, NSDI’05, pp. 273–286, USENIX Association.

114

[75] Michael Nelson, Beng-Hong Lim, and Greg Hutchins, “Fast transparent migration
for virtual machines”, in Proceedings of the Annual Conference on USENIX
Annual Technical Conference, Berkeley, CA, USA, 2005, ATEC ’05, pp. 25–25,
USENIX Association.

[76] Wei Huang, Qi Gao, Jiuxing Liu, and D.K. Panda, “High performance virtual
machine migration with RDMA over modern interconnects”, in Cluster
Computing, 2007 IEEE International Conference on, Sept. 2007, pp. 11–20.

[77] Robert Bradford, Evangelos Kotsovinos, Anja Feldmann, and Harald Schiöberg,
“Live wide-area migration of virtual machines including local persistent state”,
in Proceedings of the 3rd International Conference on Virtual Execution
Environments, New York, NY, USA, 2007, VEE ’07, pp. 169–179, ACM.

[78] R.D. Blumofe and C.E. Leiserson, “Scheduling multithreaded computations by
work stealing”, in Proceedings of the 35th Annual Symposium on Foundations
of Computer Science, Nov. 1994, pp. 356–368.

[79] D. Majeti, “Lightweight dynamic task creation and scheduling on the Intel Single
Chip Cloud (SCC) processor”, in Proceedings of the Fourth Workshop on
Programming Language Approaches to Concurrency and
Communication-cEntric Software, 2011, pp. 35–42.

[80] Andreas Prell and Thomas Rauber, “Task parallelism on the SCC”, Poster at the
3rd Many-core Applications Research Community Symposium, July 2011.

[81] Georgios Varisteas, Mats Brorsson, and Karl-Filip Faxèn, “Resource management
for task-based parallel programs over a multi-kernel”, in Proceedings of
RESoLVE 2012. Mar. 2012, ACM.

[82] S.A. Brandt, S. Banachowski, Caixue Lin, and T. Bisson, “Dynamic integrated
scheduling of hard real-time, soft real-time, and non-real-time processes”, in
Real-Time Systems Symposium, 2003. RTSS 2003. 24th IEEE, Dec. 2003, pp.
396–407.

[83] Douglas E. Comer, Operating System Design: The XINU Approach, Prentice Hall,
1984.

[84] Zachary D. Lund, “A VoIP implementation on an embedded platform”, Master’s
thesis, Marquette University, 2010.

[85] Kyle Persohn and Dennis Brylow, “Interactive real-time embedded systems
education infused with applied internet telephony”, in Computer Software and
Applications Conference (COMPSAC), 2011 IEEE 35th Annual, July 2011,
pp. 199–204.

[86] Michael J. Schultz, “Using software transactional memory in interrupt-driven
systems”, Master’s thesis, Marquette University, 2009.

[87] “Many-core applications research community”, An online community of users of
the SCC processor. http://communities.intel.com/community/marc/.

115

[88] “Bug 46: Bypass causes data corruption in the MPB”, Many-core Applications
Research Community (MARC) Bugzilla, Aug. 2010, Accessed on 28 May 2012.
URL http://marcbug.scc-dc.com/bugzilla3/show_bug.cgi?id=46.

[89] Michiel W. van Tol, Roy Bakker, Merijn Verstraaten, Clemens Grelck, and
Chris R. Jesshope, “Efficient memory copy operations on the 48-core Intel
SCC processor”, in Proceedings of the 3rd Many-core Applications Research
Community Symposium. July 2011, KIT Scientific Publishing.

[90] “Is there any documentation for running applications on baremetal”, Intel MARC
forums, July 2011, Accessed on 15 March 2012. URL
http://communitites.intel.com/thread/23765/.

[91] Michael W. Ziwisky and Dennis W. Brylow, “BareMichael: A minimalistic
bare-metal framework for the Intel SCC”, in Proceedings of the 6th Many-core
Applications Research Community (MARC) Symposium, Éric Noulard and
Simon Vernhes, Eds. July 2012, ONERA, The French Aerospace Lab,
http://sites.onera.fr/marconera2012.

[92] “Bug 195: Cache flushing with shared memory unreliable”, Many-core
Applications Research Community (MARC) Bugzilla, Apr. 2011, Accessed on
28 May 2012. URL
http://marcbug.scc-dc.com/bugzilla3/show_bug.cgi?id=195.

116

APPENDIX A

Implementation Details:

Virtual Memory, Privilege Levels, and System Calls

argN

...

arg2
arg1

return %eip

...

calling convention:
mySyscall(arg1, ..., argN);

mySyscall:
 %ecx = &arg1
 %eax = syscall_ID
 int $0x2a

usrthr %ss (0x20)

usrthr Stack kernel "Landing Stack"

usrthr %esp
usrthr %eflags

usrthr %cs (0x18)
usrthr %eip

old %cr3
&arg1 (usrthr view)

syscall_ID

pushed by hardware

stack change

syscall_handler:
 push old %cr3, &arg1, syscall_ID
 translate usrthr %esp
 copy "Landing Stack" to usrthr Stack

Ring 0 Code seg

GDT

Task Register

CS

IDT

...
...

Offset
DPL = 3

TSS

...

ESP0
SS0

...

syscall_handler()

0x2a0x08

Ring 0 Data seg
0x10

Ring 3 Code seg
0x18

Ring 3 Data seg
0x20

NULL
0x00

TSS desc
0x28

1

2

3

4

Figure A.1: Xipx CPU configuration and system call handling on an x86 architecture.

Figure A.1 illustrates some details of the data structures that Xipx creates to

configure the CPU to use multiple privilege levels on an x86 system. It also depicts

the beginning of the flow of events that occurs when a user thread executes a

117

system call. The purpose of this Appendix is not to describe how the x86

architecture works, but to describe how Xipx uses the architecture. For details of

the former, see [11].

Xipx uses a static global descriptor table (GDT) with a minimal setup to

support two privilege levels. The GDT includes code and data segment descriptors

configured to span the entire 4 GiB memory space for both Ring 0 and Ring 3. It

also includes a task segment selector (TSS) descriptor, which is a necessary for

privilege level management.

Task segment selectors generally are used to define and configure hardware

tasks on an x86 processor, but hardware task management is not a common

architecture feature outside of x86. For reasons that include maximizing the

portability of kernel code, Xipx performs task management in software. However, as

discussed below, at least one TSS is required to use x86 privilege level features.

Therefore, Xipx creates a single TSS in memory and references it by a TSS

descriptor in the GDT. The Task Register indicates the current TSS – the only TSS

for Xipx – by pointing to the TSS descriptor in the GDT.

The interrupt descriptor table (IDT) created by Xipx holds a descriptor (at

index 0x2a) that points to the function syscall handler() and to the Ring 0 code

segment descriptor, with a descriptor privilege level (DPL) of 3. The DPL defines

the highest current privilege level (CPL) at which the interrupt may be triggered.

(Triggering the interrupt when the CPL is greater than the DPL results in a general

118

protection exception.) Therefore, the DPL of 3 means the interrupt handler may

execute from any CPL, and the CS field pointing to the Ring 0 descriptor means

that the CPL changes to (or remains at) 0 upon handler execution.

Xipx needs to define a TSS because when an x86 interrupt causes a privilege

level change, a mandatory stack change takes place. The hardware automatically

changes the stack segment and stack pointer to the values defined by the SS# and

ESP# fields, respectively, of the current TSS, where # is the privilege level to

which the CPU has changed. Because all interrupt descriptors in Xipx point to the

Ring 0 code segment descriptor, interrupt-induced stack changes only occur when

going from Ring 3 to Ring 0. Therefore, there is no need to define the TSS SS/ESP

fields for Rings 1–3. The SS0 field points to the Ring 0 data segment descriptor, and

the ESP0 field points to a space we refer to as the kernel landing stack.

The x86 architecture mandates a stack change when changing privilege levels

so that the kernel may use a controlled stack, rather than the stack of the

previously running thread, while handling the interrupt. Some of the reasons this

may be desirable are to avoid overflowing a thread stack that happens to be nearly

full, and to avoid exposing to the thread any data that the OS places on the stack

lest that data be exploitable. However, using a single landing stack for system calls

from all threads is dangerous. Some system calls in Xipx may reschedule before

returning, which could allow another user thread to run and execute another system

call. If ESP0 is unchanged before this time, the new system call will corrupt the

119

previous thread by overwriting the data it stored on the landing stack. One solution

is to allocate a new stack and set ESP0 to point to it whenever a system call yields,

but such dynamic memory management would introduce a varying amount of

processing overhead to system calls.

Xipx copies everything from the landing stack onto the stack of the current

thread immediately and then uses the thread stack to process the system call.

Although this solution ignores the concerns of using a thread stack for kernel work,

it would be a trivial matter to preallocate a stack per user thread in kernel space

and copy from the landing stack to that location instead.

We will now discuss in detail the actions that take place when a user thread

performs a system call. In these paragraphs, we refer to Steps 1 through 4, which

correspond to the enumerated details in Figure A.1.

Step 1 When a user thread invokes a system call, arguments get pushed onto the

stack in right-to-left order as is expected by the cdecl calling convention Xipx

uses. The x86 call instruction then pushes the return address before jumping to

the called function.

Step 2 Several system calls are defined and linked into each user thread, and

each one is a short and simple function. Although system call declarations list the

120

parameters required by the kernel function that will ultimately execute, the defined

functions in user space simply:

1. load register ECX with the address of the first argument pushed,

2. load register EAX with a unique system call identifier, and

3. trigger a software interrupt for vector 0x2a.

As described above, this vector is configured to switch to CPL 0 (thereby changing

SS/ESP to the kernel landing stack) and execute the syscall handler() function

in the kernel.

Step 3 With a stack change, the x86 hardware pushes the following five items

onto the landing stack:

1. the old stack segment selector,

2. the old stack pointer,

3. the old flags register,

4. the old code segment selector, and

5. the old instruction pointer.

These values are needed later on to return, by the iret instruction, from the

interrupt handler in Ring 0 to the user space system call function in Ring 3. When

calling iret, the change from Ring 0 to Ring 3 does not involve the SS3 and ESP3

121

entries in the current TSS – rather, it pops the new SS and ESP off the stack. With

the landing stack primed for an iret, control is given to the syscall handler()

function.

Step 4 The syscall handler() function begins by pushing the CR3, ECX, and

EAX registers. The CR3 register, also known as the page-directory base register,

holds the base physical address of the current page-directory and therefore controls

the virtual memory mapping of the processor. As stated in Step 2 above, the ECX

and EAX registers contain a pointer to the first argument of the system call and the

identifier of the system call to execute, respectively. With these three values on the

stack, syscall handler() switches to the kernel’s flat-mapped memory space by

loading CR3 with the kernel page-directory base address, locates the physical

address of the user thread stack by reading the pushed ESP off of the landing stack

and translating it, and then copies all of the contents from the landing stack to the

user thread stack.

Finally, the system call identifier is used to determine how many arguments

to pass to the actual system call function in the kernel, and the location of those

arguments is determined by translating the argument pointer. After the system call

executes and returns, the old stack pointer that was pushed by the hardware in step

3 is saved to a register, then the user thread’s view of memory is restored by setting

CR3. Then the old stack pointer is used to set ESP to point to the base of the five

122

values that were pushed by the hardware in step 3 (on the user thread stack now

rather than the kernel stack), and finally an iret instruction brings the CPU back

to Ring 3 while returning control to the user thread.

Note that system call handling is a special case of interrupt handling in

general, and the procedure followed for interrupt handling is similar to that just

described. While system calls only execute when they are called from within user

threads, interrupts may occur at any time. For this reason, an interrupt handler

first saves all general purpose registers, then determines whether a stack change

occurred and whether the kernel’s (flat) view of memory is in place. System calls

always come with a stack change, meaning values must be copied from the landing

stack to the user thread stack. They also always occur from a non-flat view of

memory, meaning some pointer translation is needed. Either or both of these things

may be untrue when an interrupt occurs, so there is some conditional control flow

that decides whether stack copies and pointer translations are done. The code

listing for interrupt handling is given in Figure A.2, and the ut to k view() macro

that it references is given in Figure A.3.

123

#define EXCEPTION(num , ecode) \
.globl _Xint##num; \

_Xint##num: \
pushal; \

\
movl %cr3 , %eax; \
pushl %eax; \

\
_ut_to_k_view (9+ ecode); \

\
movl %esp , %ecx; \
cmp $0x0 , %ebx; \
je 1f; \

/* change pushed %esp to what it would have been */ \
/* w/o stk change (and prior to changing to cr3 =0) */ \

movl ((12+ ecode)*4)(% esp), %ecx; /*ecx = old esp , ut view*/ \
subl $(0x14 + 4* ecode), %ecx; /*move to after intr stuff */ \
movl %ecx , 0x10(%esp); /* replace in stack */ \
subl $0x24 , %ecx; /* move to after pushal & cr3 */ \

\
/* save physical %esp in thrtab (needed for thr migration */ \

1: movl thrcurrent , %eax; \
movl $THRENTSIZE , %edx; \
mull %edx; \
movl $thrtab , %edx; \
movl %esp , STKDIVOFFSET (%edx , %eax , 1); \

\
pushl %ebx; /* change_stk */ \
pushl %ecx; /* stk_ptr */ \
pushl $num; /* exc_num */ \
call dispatch; \
addl $3*4, %esp; \

\
movl 0x10(%esp), %ecx; /* ecx = user esp before pushal */ \
subl $0x20 , %ecx; /* ecx = user esp after pushal */ \
popl %edx; \
movl %edx , %cr3; /* to usrthr view of mem */ \
movl %ecx , %esp; /* restore esp */ \

\
popal; \
iret;

/* Create the individual exception handlers */
EXCEPTION (0x00 , 0)
EXCEPTION (0x01 , 0)
EXCEPTION (0x02 , 0)
/* ... etc. */

Figure A.2: Code listing for the set of default interrupt handlers.

124

#define _ut_to_k_view(nelem) \
movl ((nelem +1) *4)(%esp), %edx; /* edx = old CS */ \
andl $~0xffff0007 , %edx; /* forget about RPL and hi bits*/ \
mov %cs , %cx; /* cx = curr CS */ \
andl $~0xffff0007 , %ecx; \
cmp %ecx , %edx; /* did we change stacks? */ \
je 1f; /* if not , jump */ \
movl $0x1 , %ebx; /* from now on, ebx = 1 if we changed */ \
movl ((nelem +3) *4)(%esp), %ecx; /* user esp to ecx */ \
jmp 2f; \

1: movl $0x0 , %ebx; /* ebx = 0 if we didn't change stacks */ \
movl %esp , %ecx; /* current esp in ecx */ \

\
2: cmp $0x0 , %eax; /* if cr3 is already 0x00000000... */ \

je 3f; /* ...then skip the translation. */ \
xorl %edx , %edx; \
movl %edx , %cr3; /* now in kernel view of mem */ \
movl %ecx , %edx; \
shrl $0x16 , %edx; /* edx = pdindex of user esp */ \
shll $0x2 , %edx; \
addl %edx , %eax; /* eax = &(pdir[pdindex]) */ \
movl (%eax), %eax; /* eax = pdir[pdindex] */ \
andl $0xfffff000 , %eax; /* eax = &ptab */ \
movl %ecx , %edx; \
shrl $0xc , %edx; \
andl $0x3ff , %edx; /* edx = ptindex of user esp */ \
shll $0x2 , %edx; \
addl %edx , %eax; /* eax = &(ptab[ptindex]) */ \
movl (%eax), %eax; /* eax = ptab[ptindex] */ \
andl $0xfffff000 , %eax; \
movl %ecx , %edx; \
andl $0xfff , %edx; \
addl %edx , %eax; /* eax = phy addr of user esp */ \
movl %esp , %esi; /* going to be copying from kern stk */ \
movl %eax , %esp; /* now we're on user stack! */ \

3: cmp $0x0 , %ebx; \
je 4f; /* if no stack change , then nothing to copy */ \

/* otherwise , copy elements to usrthr stack */ \
subl $((nelem +5) *4), %esp; /* make room for copies */ \
movl $(nelem +5), %ecx; /* copy n+5 doublewords... */ \
movl %esp , %edi; /* ...to usrthr stack. */ \
cld; \
rep; \
movsl; /* do the copying! */ \

4: \

Figure A.3: Code listing for a macro that an interrupt handler uses to ensure the CPU

is in a flat-mapped view of memory and to undo the effects of an interrupt-induced

stack change.

125

APPENDIX B

SCC L2 Cache Flush Routine

This appendix explains in detail the operation of L2 cache on the Intel SCC.

It also describes a software routine to flush the contents of L2 cache to RAM. Much

credit for the concepts that guided the development of our flushL2() routine is due

to the Many-core Applications Research Community (MARC) members –

particularly Michiel van Tol and Werner Haas – whose contributions on the topic

are archived in [92].

Each core of the SCC has associated with it a 256 KiB, 4-way set associative

L2 cache [26] that uses a pseudo-least-recently-used (PLRU) replacement policy. It

is useful in a non-cache-coherent system to be able to explicitly flush the entire L2

cache. However, this cache is off-core and therefore cannot be controlled directly by

the CPU. The x86 instruction set includes the WBINVD instructions to write back

and invalidate all L1 cache lines, but there is no analogous instructions to control L2

cache. Therefore, we must achieve this end through more roundabout means. Using

knowledge of how the L2 cache operates, we have built a routine that flushes the

entire L2 cache by performing a sequence of reads from memory that evict and

replace each line in succession.

126

B.1 The PLRU Replacement Policy

To describe our L2 flush routine, we must first describe how the L2 cache

controller decides which of the four ways is replaced when a new line is loaded. The

PLRU policy makes this decision based on its current state, which is stored by three

bits for each set. We refer to a set’s PLRU state as t|lr where t, l, and r are the

values of the top, left, and right nodes of the corresponding binary tree. In our

discussion, an x in the state means it does not matter what that bit’s value is. The

binary decision tree, showing which way to replace based on the current PLRU

state, is depicted in Figure B.1. There is no significance to the numbers we use to

distinguish the ways – they are numbered arbitrarily.

TOP

LEFT

0

RIGHT

1

Way 0

0

Way 1

1

Way 2

0

Way 3

1

0|0x 0|1x 1|x0 1|x1State:

Figure B.1: Binary decision tree for a PLRU cache replacement policy (after [92]).

Bit l always indicates the least-recently used way of the two in the “left

half” (ways 0 and 1 in Figure B.1). Similarly, bit r indicates the least-recently used

127

way of the two in the “right half” (ways 2 and 3). Bit t indicates the least-recently

used half, i.e., the most-recently used way is not in the half to which t points.

Knowing these facts, one is able to derive the rules for transitioning between PLRU

states based on cache hits and cache misses that cause replacements. A state

transition diagram is given in Figure B.2.

0|00

H3

0|01

H2

1|00

H1
1|10

R0

H3

H2

1|01

H1

1|11

R0

0|10H3

0|11

H2

R1
H0

H3

H2

R1

H0

H3

R2

H1

H0

R3

H2

H1
H0

H3

R2

H1
H0

R3

H2

H1

H0H<n>: Hit on way n
R<n>: Replacement or hit on Way n

Figure B.2: State machine for a PLRU cache (after [92]).

128

B.2 Analysis of the L2 Cache Behavior

Based on the discussion in [92], our strategy for flushing the L2 cache

involves issuing a series of reads of “dummy data” that fill up every line and, in the

process, flush to RAM all dirty lines that were cached before the procedure began.

We allocate two 256-KiB sections of address space as dummy data, each used solely

for L2 flushing. If we can fill the entire L2 cache with one of these sections, we will

have successfully flushed all other data back to RAM. We alternate which section is

used each time the flushL2() routine is called. This way, we can guarantee that

none of the dummy data we are using for the flush is already cached – i.e., every

read of dummy data will be a cache miss. If we issue four consecutive reads of

dummy data from the same set, that entire set will be evicted. An analysis in

support of this claim follows.

Consider addresses A, B, C, and D as the four addresses in our dummy data

section that each map to the same set in L2. We start with unknown data, denoted

by a *, in each of the set’s four ways. Without loss in generality, we may assume the

initial state of the set is:

L2 set PLRU bits

**** 0|00

We then read our four dummy data addresses sequentially, the effect of which is

illustrated below.

129

step L2 set PLRU bits Action

0 **** 0|00 read A

1 A*** 1|10 read B

2 A*B* 0|11 read C

3 ACB* 1|01 read D

4 ACBD 0|00 RESULT: set flushed

These four sequential reads, under the assumption that none of the dummy data is

already cached, do in fact replace the entire set in L2. Therefore, our procedure

consists of repeatedly issuing groups of four reads, one group per set, until we have

flushed every L2 set back to RAM. However, prior to beginning this series of reads,

a WBINVD instruction must be issued. The justification for this requirement is

provided in the following section.

B.3 Effect of L1 Write-Backs

Each SCC core has an on-die L1 data cache that is 16 KiB in size and 4-way

set associative. The L1 cache also uses a PLRU policy, and its state is separate from

that of L2. Our analysis thus far has neglected interactions between the L1 and L2

cache. However, consider the following scenario. We observe a particular situation

in which some stale data that we want flushed to RAM exists in both L1 and L2

cache. The stale data is represented below as #. From an initial L1 and L2 state, we

perform a series of four reads as follows.

130

step L1 set L1 PLRU L2 set L2 PLRU Action

0 *#** 1|11 *#** 0|00 read A

1 *#*A 0|10 A#** 1|10 read B

2 *B*A 1|00 A#B* 0|11 L1: write-back #

3 *B*A 1|00 A#B* 1|01 read C

4 *BCA 0|01 A#BC 0|00 read D

5 DBCA 1|11 D#BC 1|10 RESULT: stale data # not flushed

At step 1, we read B from our dummy data. Since B is not present in either

L1 or L2, it first gets copied to L2, which causes the L2 PLRU bits to update. Data

B then gets copied into L1, which causes an eviction of the stale data, and the stale

data gets written back to L2 at step 2. The write-back changes the L2 PLRU bits in

such a way that the subsequent reads of C and D fail to flush the stale data from L2.

We see that this problem occurs only when L1 contains a copy of the stale

data that we wish to eject from L2 (and the states of the two caches have a certain

unfortunate relationship). However, all cache lines in L1 always can be found also in

L2, so this vulnerability is always present if L1 contains stale data. Therefore, to

prevent the unintended changing of the L2 PLRU bits, we must ensure L1 does not

contain any stale data before we perform our dummy data reads. This is done by

issuing the WBINVD instruction just prior to beginning the sequence of reads.

B.4 The Routine

The assembly language source of our flushL2() routine is presented in

Figure B.3. We refer to the dummy data locations as “flush areas,” and we set the

base of the first flush area to the address just after the end of the local MPB

131

memory space. Each core’s local MPB space is mapped to a single LUT entry,

which covers 16 MiB of address space. However, the MPB itself is only 16 KiB long.

It turns out that reading an address in this segment that is beyond the initial

16 KiB is a valid operation. The address space of the segment wraps after every

16 KiB, so the requested read address modulo 16384 gives the MPB location from

which the data is read. However, to the core issuing the read, no address

manipulation is observed, so even if the data at the truncated MPB address is

present in L2, the read still causes a cache miss. Since reads from the local MPB

space are much faster than reads from RAM, we can use these upper MPB address

spaces as flush areas to achieve high performance.

132

#define L2_CACHE_SIZE (256*1024)
#define L2_LINE_SIZE 32
#define L2_WAYS 4
#define L2_WAY_SIZE (L2_CACHE_SIZE / L2_WAYS)
#define L2_SETS (L2_WAY_SIZE / L2_LINE_SIZE)

#define BASE_FLUSH_AREA (0 xd8000000 + 0x4000) /*just after MPB_OWN */

.globl flushL2

.extern disable

.extern restore

.align 4
flusharea:

.long BASE_FLUSH_AREA

flushL2:
push %ebp
movl %esp , %ebp
subl $0x4 , %esp /* make room for irqmask */

/* flip -flop between two flush areas */
cmpl $BASE_FLUSH_AREA , flusharea
jne 1f
movl $(BASE_FLUSH_AREA + L2_CACHE_SIZE), flusharea
jmp 2f

1: movl $BASE_FLUSH_AREA , flusharea
2: movl flusharea , %edx /* edx is the flusharea to use */

call disable
movl %eax , -0x4(%ebp) /* store irqmask */

wbinvd
/* begin loop over sets */
xorl %ecx , %ecx /* i = 0 */
/* fill all four ways of the set */

3: movl (0x0*L2_WAY_SIZE)(%edx , %ecx , 1), %eax
movl (0x1*L2_WAY_SIZE)(%edx , %ecx , 1), %eax
movl (0x2*L2_WAY_SIZE)(%edx , %ecx , 1), %eax
movl (0x3*L2_WAY_SIZE)(%edx , %ecx , 1), %eax
/* move to next set */
addl $L2_LINE_SIZE , %ecx /* i += L2_LINE_SIZE */
cmpl $L2_WAY_SIZE , %ecx
jl 3b /* loop if i < L2_WAY_SIZE */

pushl -0x4(%ebp)
call restore
addl $0x4 , %esp
leave
ret

Figure B.3: Software routine to flush the L2 cache.

	Marquette University
	e-Publications@Marquette
	A Message-Passing, Thread-Migrating Operating System for a Non-Cache-Coherent Many-Core Architecture
	Michael W. Ziwisky
	Recommended Citation

	tmp.1347286918.pdf.HW5ZQ

